KR100502999B1 - Recombinant human G-CSF/GM-CSF fusion protein and it's coding gene - Google Patents

Recombinant human G-CSF/GM-CSF fusion protein and it's coding gene Download PDF

Info

Publication number
KR100502999B1
KR100502999B1 KR10-2002-0064921A KR20020064921A KR100502999B1 KR 100502999 B1 KR100502999 B1 KR 100502999B1 KR 20020064921 A KR20020064921 A KR 20020064921A KR 100502999 B1 KR100502999 B1 KR 100502999B1
Authority
KR
South Korea
Prior art keywords
csf
leu
protein
ala
fusion protein
Prior art date
Application number
KR10-2002-0064921A
Other languages
Korean (ko)
Other versions
KR20040036113A (en
Inventor
윤현주
김진규
이동석
이아영
정혜경
배은경
Original Assignee
학교법인 인제학원
이동석
윤현주
김진규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 인제학원, 이동석, 윤현주, 김진규 filed Critical 학교법인 인제학원
Priority to KR10-2002-0064921A priority Critical patent/KR100502999B1/en
Publication of KR20040036113A publication Critical patent/KR20040036113A/en
Application granted granted Critical
Publication of KR100502999B1 publication Critical patent/KR100502999B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 재조합 인간 G-CSF/GM-CSF 융합 단백질 및 이를 암호화 하는 유전자에 관한 발명으로 G-CSF 단백질의 기능 및 GM-CSF 단백질의 기능을 둘 다 발휘할 수 있는 재조합 인간 G-CSF/GM-CSF 융합 단백질을 제공함으로써, 골수 간세포의 생체 내 또는 생체 외 확장(expansion)을 포함하여 G-CSF 단백질 및 GM-CSF 단백질의 기능이 필요한 경우에 보다 간편하게 사용될 수 있는 단일의 융합단백질을 제공하는 뛰어난 효과가 있다.The present invention relates to a recombinant human G-CSF / GM-CSF fusion protein and a gene encoding the same. The present invention relates to a recombinant human G-CSF / GM- that can exert both a function of a G-CSF protein and a GM-CSF protein. By providing a CSF fusion protein, it provides an excellent single fusion protein that can be used more conveniently when the function of G-CSF protein and GM-CSF protein is required, including in vivo or ex vivo expansion of bone marrow hepatocytes. It works.

Description

재조합 인간 G-CSF/GM-CSF 융합 단백질 및 이를 암호화하는 유전자 {Recombinant human G-CSF/GM-CSF fusion protein and it's coding gene} Recombinant human G-CSF / GM-CSF fusion protein and it's coding gene

본 발명은 재조합 단백질 및 이를 암호화하는 유전자에 관한 발명으로 더욱 상세하게는 재조합 인간 G-CSF/GM-CSF 융합 단백질 및 이를 암호화 하는 유전자에 관한 발명이다. The present invention relates to a recombinant protein and a gene encoding the same, and more particularly, to a recombinant human G-CSF / GM-CSF fusion protein and a gene encoding the same.

콜로니-자극 요소(Colony-stimulating factor; CSF)는 골수 간세포의 확장(expansion) 및 분화(differentiation)를 자극하는 시토카인이다. 다양한 CSF가 다양한 발전 단계의 골수세포에 작용을 하고, 다양한 계통의 특이적 콜로니 형성을 촉진시킨다. GM-CSF 및 G-CSF는 골수세포의 분화를 촉진하는 조혈생장인자(hematopoeictic growth factor)이고, 또한 성숙 골수세포의 활성인자이다.Colony-stimulating factor (CSF) is a cytokine that stimulates expansion and differentiation of bone marrow hepatocytes. Different CSFs act on myeloid cells at various stages of development and promote the formation of specific colonies of various strains. GM-CSF and G-CSF are hematopoeictic growth factors that promote differentiation of bone marrow cells and are also active factors of mature bone marrow cells.

최근에, 재조합 GM-CSF 단백질과 G-CSF 단백질은 암 및 조혈질환을 포함하는 다양한 질병을 치료하기 위하여 연구되어 왔고(Buchsel PC, Forgey A, Grape FB, Hamann SS. Granulocyte macrophage colony-stimulating factor: current practice and novel approaches. Clin J Oncol Nurs 2002 Jul-Aug;6(4):198-205 Related Articles, Links), 재조합 G-CSF과 GM-CSF는 미국에서 상표이름 'Filgrastima' 및 'Sargramostim'으로 각각 알려져 있다. Recently, recombinant GM-CSF protein and G-CSF protein have been studied to treat various diseases including cancer and hematopoietic diseases (Buchsel PC, Forgey A, Grape FB, Hamann SS.Granulocyte macrophage colony-stimulating factor: current practice and novel approaches.Clin J Oncol Nurs 2002 Jul-Aug; 6 (4): 198-205 Related Articles, Links), Recombinant G-CSF and GM-CSF have been renamed under the trade names 'Filgrastima' and 'Sargramostim' in the United States. Each is known.

GM-CSF는 과립백혈구 및 대식세포를 포함하는 염증 백혈구 군락을 증가시키기 위해 골수세포에 작용을 한다(Staynov, D.Z., D.J. Cousins, and T.H. Lee. 1995. A regulatory element in the Promoter of the human Granulocyte-Macrophage Colony Stimulating Factor gene that has related sequences in other T-cell expressed cytokine genes. Proc. Natl. Acad. Sci. 92: 3606-3610.). 또한 그것은 다양한 항균 활성을 자극하고, 염증 반응을 가능하게 하면서, 시험관 내 대식세포 활성화 요소로의 활성을 나타낸다(Jarmin, D.I., R.J. Nibbs, T. Jamieson, J.S. de Bono and G.J. Graham. 1999. Granulocyte macrophage colony-stimulating factor and interleukin-3 regulate chemokine and chemokine receptor expression in bone marrow macrophages. Exp. Hematol. 27:1735-1745.; Bischof, R.J., D. Zafiropoulos, J.A. Hamilton and I.K. Campbell. 2000. Exacerbation of acute inflammatory arthritis by the colony-stimulating factors CSF-1 and granulocyte macrophage (GM)-CSF: evidence of macrophage infiltration and local proliferation. Clin. Exp. Immunol. 119:361-367.). GM-CSF는 암 화학요법 후에 골수 회복을 촉진시키는데 사용되어 왔고, 이식을 위한 골수 줄기 세포의 회수에 사용되어 왔다(Keller, J.R., S.E.W. Jacobsen, K.T. Sill, L.R. Ellingsworth, and F.W. Ruscetti. 1991. Stimulation of granulopoiesis by transforming growth factor β: Synergy with Granulocyte/Macrophage Colony Stimulating Factor. Proc. Natl. Acad. Sci. 88: 7190-7194.; Aglietta, M., F. Montemurro, F. Fagioli, C. Volta, B. Botto, M. Cantonetti, V. Racanelli, L. Teofili, R. Ferrara, S. Amadori, G.L. Castoldi, F. Dammacco and A. Levis. 2000. Short term treatment with Escheria coli recombinant human granulocyte-macrophage-colony stimulating factor prior to chemotherapy for Hodgkin disease. Cancer 88:454-460.). 그것은 감염성 질병, 조혈질환 및 암을 포함하는 다양한 질병의 치료를 위한 임상연구에 있어 증가 추세에 있고, 어떤 생물학적 치료제로서 임상학적으로 가장 성공적인 적용 중 하나가 되었다(Janik, J.E., L.L. Miller, W.C. Kopp, D.D. Taub, H. Dawson, D. Stevens, P. Kostboth, B.D. Curti, K.C. Conlon, B.K. Dunn, S.E. Donegan, R. Ullrich, W.G. Alvord, B.L. Gause and D.L. Longo. 1999. Treatment with tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor increases epidermal Langerhans' cell numbers in cancer patients. Clin. Immunol. 93:209-221.; Groenewegen, G. and G.C. de Gast. 1999. GM-CSF can cause T cell activation; results of sequential chemo-immunotherapy. Eur. J. Cancer 35 Suppl. 3:S23-24.; Jones, T.C. 1999. Use of granulocyte-macrophage colony stimulating factor (GM-CSF) in prevention and treatment of fungal infections. Eur. J. Cancer 35 Suppl. 3:S8-10.). 또한 그것은 전망적인 백신 보강제로서의 잠재성을 나타내었다(Kapoor, D., S.R. Aggarwal, N.P. Singh, V. Thakur, S.K. Sarin. 1999. Granulocyte-macrophage colony stimulating factor enhances the efficacy of hepatitis B virus vaccine in previously unvaccinated haemodialysis patients. J. Viral. Hepat. 6:405-409.; Anandh, U., B. Bastani and S. Ballal. 2000. Granulocyte-Macrophage Colony Stimulating Factor as an adjuvant to Hepatitis B vaccination in maintenance hemodialysis patients. Am. J. Nephrol. 20:53-56.; McClay EF. Adjuvant therapy for patients with high-risk malignant melanoma. Semin Oncol. 2002 Aug;29(4):389-99.).GM-CSF acts on bone marrow cells to increase inflammatory leukocyte colonies, including granulocytes and macrophages (Staynov, DZ, DJ Cousins, and TH Lee. 1995. A regulatory element in the Promoter of the human Granulocyte- Macrophage Colony Stimulating Factor gene that has related sequences in other T-cell expressed cytokine genes.Proc. Natl. Acad. Sci. 92: 3606-3610.). It also exhibits activity as an in vitro macrophage activating element, stimulating various antimicrobial activities and enabling inflammatory responses (Jarmin, DI, RJ Nibbs, T. Jamieson, JS de Bono and GJ Graham. 1999. Granulocyte macrophage colony-stimulating factor and interleukin-3 regulate chemokine and chemokine receptor expression in bone marrow macrophages.Exp . Hematol. 27: 1735-1745 . ; Bischof, RJ, D. Zafiropoulos, JA Hamilton and IK Campbell. 2000. Exacerbation of acute inflammatory arthritis by the colony-stimulating factors CSF-1 and granulocyte macrophage (GM) -CSF: evidence of macrophage infiltration and local proliferation.Clin.Exp . Immunol. 119: 361-367.). GM-CSF has been used to promote bone marrow recovery after cancer chemotherapy and has been used to recover bone marrow stem cells for transplantation (Keller, JR, SEW Jacobsen, KT Sill, LR Ellingsworth, and FW Ruscetti. 1991. Stimulation of granulopoiesis by transforming growth factor β: Synergy with Granulocyte / Macrophage Colony Stimulating Factor.Proc.Natl.Acad.Sci . 88: 7190-7194 . ; Aglietta, M., F. Montemurro, F. Fagioli, C. Volta, B Botto, M. Cantonetti, V. Racanelli, L. Teofili, R. Ferrara, S. Amadori, GL Castoldi, F. Dammacco and A. Levis. 2000. Short term treatment with Escheria coli recombinant human granulocyte-macrophage-colony stimulating factor prior to chemotherapy for Hodgkin disease Cancer 88:. 454-460).. It is on the rise in clinical research for the treatment of various diseases, including infectious diseases, hematopoietic diseases and cancer, and has become one of the most clinically successful applications as a biological therapy (Janik, JE, LL Miller, WC Kopp). , DD Taub, H. Dawson, D. Stevens, P. Kostboth, BD Curti, KC Conlon, BK Dunn, SE Donegan, R. Ullrich, WG Alvord, BL Gause and DL Longo. 1999. Treatment with tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor increases epidermal Langerhans' cell numbers in cancer patients.Clin . Immunol. 93: 209-221 . ; Groenewegen, G. and GC de Gast. 1999. GM-CSF can cause T cell activation; results .. of sequential chemo-immunotherapy Eur J. Cancer 35 suppl 3:... S23-24 .; Jones, TC 1999. Use of granulocyte-macrophage colony stimulating factor (GM-CSF) in prevention and treatment of fungal infections Eur J Cancer 35 Suppl. 3: S8-10.). It also showed potential as a prospective vaccine adjuvant (Kapoor, D., SR Aggarwal, NP Singh, V. Thakur, SK Sarin. 1999. Granulocyte-macrophage colony stimulating factor enhances the efficacy of hepatitis B virus vaccine in previously unvaccinated . haemodialysis patients J. Viral Hepat 6: .... 405-409 .; Anandh, U., B. Bastani and S. Ballal 2000. Granulocyte-Macrophage Colony Stimulating Factor as an adjuvant to Hepatitis B vaccination in maintenance hemodialysis patients Am J. Nephrol. 20: 53-56 . ; McClay EF.Adjuvant therapy for patients with high-risk malignant melanoma.Semin Oncol. 2002 Aug; 29 (4): 389-99.).

G-CSF는 과립백혈구의 분화를 촉진하기 위하여 골수 간세포에 작용을 한다. 그것은 조혈 간세포 움직임을 유도하고 골수 간세포 군락을 증진시킨 이래로 임상학적 이식을 위해 광범위하게 사용되어 왔다(Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002 Jul;3(7):687-94 ; de la Rubia J, Regadera A, Martin G, Cervera J, Sanz G, Martinez J, Jarque I, Garcia I, Andreu R, Moscardo F, Jimenez C, Molla S, Benlloch L, Sanz M. Second mobilization and collection of peripheral blood progenitor cells in healthy donors is associated with lower CD34(+) cell yields. J Hematother Stem Cell Res. 2002 Aug;11(4):705-9.). G-CSF는 말초에서의 면역세포와 상호작용을 나타내고, 또한 암 뿐만 아니라 조혈 및 자동면역 질환을 포함하는 다양한 질병의 치료 및 예방에 대한 임상연구에 사용되고 있다(CasTaqna L, Bertuzzi A, Nozza A, Siracusano L, Balzarotti M, Magagnoli M, Sarina B, Timofeeva I, Sinnone M, Grimoldi MG, Fare M, Santoro A. Reduced intensity conditioning regimen followed by glycosylated G-CSF mobilized PBSCT in patients with solid tumors and malignant lymphomas. Bone Marrow Transplant. 2002 Aug;30(4):207-14.; Ott MG, Merget-Millitzer H, Ottmann OG, Martin H, Bruggenolte N, Bialek H, Seger R, Hossle JP, Hoelzer D, Grez M. Mobilization and Transduction of CD34+ Peripheral Blood Stem Cells in Patients with X-Linked Chronic Granulomatous Disease. J Hematother Stem Cell Res 2002 Aug;11(4):683-94; Adams JR, Lyman GH, Djubegovic B, Feinglass J, Bennett CL. G-CSF as prophylaxis of febrile neutropenia in SCLC. Expert Opin Pharmacother 2002 Sep;3(9):1273-81; Hanna NH, Gordon MS, Fife K, Sandler AB. Phase I trial of topotecan plus vinorelbine with/without filgrastim (G-CSF) in patients with refractory malignancies. Am J Clin Oncol 2002 Aug;25(4):337-9; Smith MA, Smith JG. Clinical experience with the use of rhG-CSF in secondary autoimmune neutropenia. Clin Lab Haematol 2002 Apr;24(2):93-7).G-CSF acts on bone marrow hepatocytes to promote differentiation of granulocytes. It has been used extensively for clinical transplantation since inducing hematopoietic stem cell movement and enhancing bone marrow hepatocyte colonies (Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS). , Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR 4. Nat Immunol 2002 Jul; 3 (7): 687- 94; de la Rubia J, Regadera A, Martin G, Cervera J, Sanz G, Martinez J, Jarque I, Garcia I, Andreu R, Moscardo F, Jimenez C, Molla S, Benlloch L, Sanz M. Second mobilization and collection of peripheral blood progenitor cells in healthy donors is associated with lower CD34 (+) cell yields.J Hematother Stem Cell Res. 2002 Aug; 11 (4): 705-9.). G-CSF interacts with immune cells in the periphery and is also used in clinical studies for the treatment and prevention of various diseases, including cancer as well as hematopoietic and autoimmune diseases (CasTaqna L, Bertuzzi A, Nozza A, Siracusano L, Balzarotti M, Magagnoli M, Sarina B, Timofeeva I, Sinnone M, Grimoldi MG, Fare M, Santoro A. Reduced intensity conditioning regimen followed by glycosylated G-CSF mobilized PBSCT in patients with solid tumors and malignant lymphomas.Bone Marrow Transplant. 2002 Aug; 30 (4): 207-14 .; Ott MG, Merget-Millitzer H, Ottmann OG, Martin H, Bruggenolte N, Bialek H, Seger R, Hossle JP, Hoelzer D, Grez M. Mobilization and Transduction of CD34 + Peripheral Blood Stem Cells in Patients with X-Linked Chronic Granulomatous Disease.J Hematother Stem Cell Res 2002 Aug; 11 (4): 683-94; Adams JR, Lyman GH, Djubegovic B, Feinglass J, Bennett CL.G- CSF as prophylaxis of febrile neutropenia in SCLC.Expert Opin Pharmacother 2002 Sep; 3 (9): 12 73-81; Hanna NH, Gordon MS, Fife K, Sandler AB.Phase I trial of topotecan plus vinorelbine with / without filgrastim (G-CSF) in patients with refractory malignancies. Am J Clin Oncol 2002 Aug; 25 (4): 337-9; Smith MA, Smith JG. Clinical experience with the use of rhG-CSF in secondary autoimmune neutropenia. Clin Lab Haematol 2002 Apr; 24 (2): 93-7).

G-CSF 단백질과 GM-CSF 단백질의 결합(combination)은 다양한 질병의 치료 및 말초 혈액으로부터 조혈 간세포(PBPC: progeitor cells from peripheral blood)를 제조하는데 보다 나은 결과를 발생할 수 있다. GM-CSF 단백질과 G-CSF 단백질은 정상 인간 말초 혈액으로부터 시험관 내에서 정제된 CD34(+) 거핵 조세포의 클론 확장을 증진시켰다. PBPC는 G-CSF 단백질 및 GM-CSF 단백질의 동시 도움에 의하여 효과적으로 재이동되었고(remoblized), 이는 G-CSF 단백질 및 GM-CSF 단백질의 결합이 PBPC를 활성화시키는 효과적인 방법이 될 수 있다는 것을 증명한다. 또한, 적혈구생성소(EPO)에 의한 PBPC 이동도 연속적인 GM-CSF 단백질 및 G-CSF 단백질의 처리에 의하여 매우 향상되었고, PBPC 집합의 효율성을 향상시켰다.The combination of G-CSF protein and GM-CSF protein can produce better results in the treatment of various diseases and in the production of progeitor cells from peripheral blood (PBPC) from peripheral blood. GM-CSF protein and G-CSF protein promoted clonal expansion of purified CD34 (+) megakaryocytes in vitro from normal human peripheral blood. PBPC has been effectively remoblized by the simultaneous help of G-CSF protein and GM-CSF protein, demonstrating that binding of G-CSF protein and GM-CSF protein may be an effective way to activate PBPC. . In addition, PBPC migration by erythropoietin (EPO) was also greatly improved by the continuous treatment of GM-CSF protein and G-CSF protein, improving the efficiency of PBPC aggregation.

다른 시토카인과 GM-CSF 단백질 및 G-CSF 단백질의 결합은 인간 탯줄 혈액(UCB) 샘플 유래의 골수 간세포를 매우 증가시켰고, 이는 생체 외 조혈 간세포를 모으는 효과적인 방법을 제공하였다.The combination of GM-CSF protein and G-CSF protein with other cytokines greatly increased bone marrow hepatocytes from human umbilical cord blood (UCB) samples, providing an effective method for collecting hematopoietic stem cells in vitro.

GM-CSF 단백질 및 G-CSF 단백질은 둘다 암세포로부터 생산되었고, 염증세포의 생존을 연장시켰으며, 이는 상호 결합이 암 치료에 있어 적용될 수 있다는 것을 암시한다. 이 발견은 G-CSF 단백질과 GM-CSF 단백질이 그들의 활성을 증가시키기 위하여 세포와 동시에 그리고 연속적으로 결합할 수 있음을 나타내고, 이는 재조합 G-CSF/GM-CSF 융합 단백질의 잠재적 중요성을 향상시켰다. Both GM-CSF protein and G-CSF protein were produced from cancer cells and prolonged the survival of inflammatory cells, suggesting that mutual binding could be applied in the treatment of cancer. This finding indicates that G-CSF proteins and GM-CSF proteins can bind simultaneously and sequentially with cells to increase their activity, which enhances the potential importance of recombinant G-CSF / GM-CSF fusion proteins.

그러나, 아직까지 인간 G-CSF 유전자와 인간 GM-CSF 유전자가 결합(link)된 유전자 및 이로부터 발현된 융합 단백질에 대해서는 알려진 바가 없다. However, there is no known gene linked to the human G-CSF gene and the human GM-CSF gene and a fusion protein expressed therefrom.

이에 본 발명은 인간 G-CSF 유전자와 인간 GM-CSF 유전자가 링크되어 제조되는 유전자를 제공하는 것을 목적으로 한다. Accordingly, an object of the present invention is to provide a gene produced by linking a human G-CSF gene and a human GM-CSF gene.

또한 본 발명은 상기 유전자로부터 제조되는 G-CSF/GM-CSF 융합단백질을 제조하는데 그 목적이 있다. It is also an object of the present invention to prepare a G-CSF / GM-CSF fusion protein prepared from the gene.

상기 목적을 달성하기 위하여 본 발명은 서열번호 1의 DNA 서열로 구성된 폴리뉴클레오티드를 제공한다.In order to achieve the above object, the present invention provides a polynucleotide consisting of the DNA sequence of SEQ ID NO: 1.

또한 본 발명은 서열번호 2의 아미노산 서열로 구성된 폴리펩타이드를 제공한다. The present invention also provides a polypeptide consisting of the amino acid sequence of SEQ ID NO: 2.

단일 구조체로 인간 G-CSF 및 GM-CSF의 cDNA을 결합(ligation)하기 전에 삽입 cDNA 및 링커는 하기의 프라이머를 사용하여 PCR법에 의해 증폭할 수 있다. Before ligation of cDNAs of human G-CSF and GM-CSF into a single construct, the inserted cDNA and linker can be amplified by PCR using the following primers.

G-CSF는 프라이머 31 및 32를 사용하여 증폭하고, GM-CSF는 프라이머 33 및 39를 사용한다. GS 링커 절편(Olafsena, T., Rasmussena, I. B., Norderhaugb, L., Bruland, S. and Sandliea, I. (1998) IgM secretory tailpiece drives multimerisation of bivalent scFv fragments in eukaryotic cells. Immunotechnology 4 : 141-153.)의 증폭은 프라이머 34 및 35를 사용한다.G-CSF is amplified using primers 31 and 32, and GM-CSF uses primers 33 and 39. GS linker fragment (Olafsena, T., Rasmussena, IB , Norderhaugb, L., Bruland, S. and Sandliea, I. (1998) IgM secretory tailpiece drives multimerisation of bivalent scFv fragments in eukaryotic cells Immunotechnology 4:. 141-153. ) Amplification uses primers 34 and 35.

한편, G-CSF, GM-CSF 및 링커 시퀀스의 결합은 스플라이싱 오버랩트 익스텐션(Splicing Overlapped Extension; SOEing) 기술을 사용하여 수행한다(Horton RM, Cai ZL, Ho SN, Pease LR. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques. 1990 8(5):528-35.). 첫번째 SOEing 반응을 통하여, G-CSF 및 링커 그리고, 링커 및 GM-CSF의 DNA 절편들이 각각 하기의 과정에 의하여 결합될 수 있다.On the other hand, the combination of G-CSF, GM-CSF and linker sequences is performed using Splicing Overlapped Extension (SOEing) technology (Horton RM, Cai ZL, Ho SN, Pease LR. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction.Biotechniques . 1990 8 (5): 528-35.). Through the first SOEing reaction, DNA fragments of the G-CSF and the linker and the linker and the GM-CSF can be combined by the following procedure.

먼저, G-CSF와 링커 절편을 어니얼링(annealing)하고, 변성(denaturing), 확장(extending)의 사이클 하에서 어떤 프라이머도 사용하지 않고 Taq 폴리머라제를 사용하여 함께 결합시킨다.First, the G-CSF and linker fragments are annealed and bound together using Taq polymerase without using any primers under a cycle of denaturing, extending.

반응 후에 프라이머 31 및 35를 추가하고, 변성, 어니얼링 및 확장의 사이클로 증폭시키면 G-CSF/링커 절편을 획득할 수 있다.Add primers 31 and 35 after the reaction and amplify with cycles of denaturation, annealing and expansion to obtain G-CSF / linker fragments.

한편, 유사한 과정 및 프라이머 34 및 39를 사용하면, 링커/GM-CSF 절편도 획득할 수 있다. On the other hand, using similar procedures and primers 34 and 39, linker / GM-CSF fragments can also be obtained.

증폭된 G-CSF/링커와 링커/GM-CSF 절편은 1% 아가로스 겔로부터 정제하고 G-CSF/링커/GM-CSF DNA 절편의 제조를 위해, 두 번째 SOEing 반응에 사용한다. G-CSF/링커와 링커/GM-CSF DNA 절편은 어떤 프라이머의 사용없이 변성 및 확장의 사이클 하에서 Taq 폴리머라제를 사용하여 어니얼링하고, 함께 결합시킨다. 반응 후에 프라이머 31 및 39를 추가하고, 변성, 어니얼링 및 확장의 사이클로 증폭시킨다.Amplified G-CSF / linker and linker / GM-CSF fragments were purified from 1% agarose gels and used in the second SOEing reaction for the preparation of G-CSF / linker / GM-CSF DNA fragments. G-CSF / Linker and Linker / GM-CSF DNA fragments are annealed and bound together using Taq polymerase under a cycle of denaturation and expansion without the use of any primers. After the reaction primers 31 and 39 are added and amplified in a cycle of denaturation, annealing and expansion.

상기의 과정을 통해 인간 G-CSF 및 GM-CSF의 PCR 증폭 산물로 단일의 증폭된 DNA 절편을 제조할 수 있는데, G-CSF 절편 및 링커 그리고, GM-CSF 및 링커를 각각 가지고 한 첫 번째 SOEing 반응을 통해 G-CSF 및 GM-CSF 절편 보다 약간 더 긴 DNA 절편을 증폭시킨 결과물을 얻을 수 있으며, 이를 통해 첫 번째 SOEing 반응이 성공적이었다는 사실을 확인할 수 있다. 또한, G-CSF/링커 및 링커/GM-CSF 절편을 가지고 한 두 번째 SOEing을 통해 G-CSF/링커/GM-CSF 절편을 얻을 수 있으며, 제조된 G-CSF/링커/GM-CSF DNA 절편은 pGEMT에 클론하고, G-CSF/GM-CSF 융합 단백질을 발현하는 pEThGGMCSF 구조체를 제조하기 위하여 pET-22b(+)벡터의 NcoⅠ 및 NotⅠ 위치로 서브클론한다. 추가적인 pEThGGMCSF 구조체 분석을 통해, 오픈 리딩 프레임에 GS 링커 시퀀스를 가지고 있으며 임의적으로 결합된 인간 G-CSF 및 GM-CSF 코딩지역 전체가 있음을 확인할 수 있다.Through the above procedure, a single amplified DNA fragment can be prepared from PCR amplification products of human G-CSF and GM-CSF. The first SOEing with G-CSF fragment and linker, and GM-CSF and linker, respectively The reaction results in amplification of DNA fragments that are slightly longer than G-CSF and GM-CSF fragments, confirming that the first SOEing reaction was successful. In addition, a second SOEing with a G-CSF / linker and a linker / GM-CSF fragment yields a G-CSF / linker / GM-CSF fragment and the prepared G-CSF / linker / GM-CSF DNA fragment. Cloned into pGEMT and subcloned to the Nco I and Not I positions of the pET-22b (+) vector to prepare pEThGGMCSF constructs expressing the G-CSF / GM-CSF fusion protein. Further analysis of the pEThGGMCSF construct shows that the open reading frame has the GS linker sequence and the entirety of the randomly coupled human G-CSF and GM-CSF coding regions.

선형으로 확장된 구조는 인간 G-CSF 단백질의 3' 끝과 인간 GM-CSF 단백질의 5' 말단에서 각각 발견되며, 융합단백질에 있어 G-CSF 및 GM-CSF의 독립적인 구조를 허락한다.Linearly expanded structures are found at the 3 'end of the human G-CSF protein and the 5' end of the human GM-CSF protein, respectively, allowing independent structures of G-CSF and GM-CSF in fusion proteins.

G-CSF/링커/GM-CSF 융합 단백질의 발현은 구축체의 E. coli BL21(DE)로의 형질전환 후, IPTG 유도에 의해 수행한다. 즉, 세포는 글루코스 및 앰피실린이 보충된 배지에서 배양하고 클론된 G-CSF/GM-CSF 융합 단백질의 발현을 유도하기 위해 IPTG 및 앰피실린이 보충된 무(無)글루코스배지로 옮긴다.Expression of the G-CSF / Linker / GM-CSF fusion protein is performed by IPTG induction after transformation of the construct with E. coli BL21 (DE). That is, cells are cultured in medium supplemented with glucose and ampicillin and transferred to glucose-free medium supplemented with IPTG and ampicillin to induce expression of the cloned G-CSF / GM-CSF fusion protein.

유도 후, 세포를 회수하고, 김 등(Kim J. K., Tsen, M. F., Ghetie, V. and Ward, E. S. (1994a) Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed muTaqenesis. Eur. J. Immunol. 24, 542-547.; McClay EF. Adjuvant therapy for patients with high-risk malignant melanoma. Semin Oncol. 2002 Aug;29(4):389-99.)에 의하여 설명된 방법에 의해 주변세포질 공간, 세포질, 세포 봉입체로부터 단백질을 추출한다.After induction, cells were harvested, Kim JK, Tsen, MF, Ghetie, V. and Ward, ES (1994a) Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed muTakenesis.Eur . J. Immunol. 24 , 542-547 . ; McClay EF. Adjuvant therapy for patients with high-risk malignant melanoma. Semin Oncol. 2002 Aug; 29 (4): 389-99. Proteins are extracted from the cytoplasm and cell inclusion bodies.

그 결과 40 kDa의 재조합 인간 G-CSF/GM-CSF 융합 단백질(rhG-CSF/GM-CSF)을 세포봉입체로부터 추출할 수 있는데, 비록 구조체가 주변세포질내 발현된 단백질을 얻고자 pelB 리더 시퀀스(leader sequence)를 보유하고 있었으나, 융합 단백질은 세포 봉입체에서 발현이 되며, 이는 대장균 세포 내에서 과도한 발현에 의한 불용성 단백질 응집체를 형성하였음을 의미할 것이다.As a result, a 40 kDa recombinant human G-CSF / GM-CSF fusion protein (rhG-CSF / GM-CSF) can be extracted from the cell inclusion body, even though the construct was expressed in a pelB leader sequence to obtain a protein expressed in the periplasm. fusion protein is expressed in the cell inclusion body, which may mean that an insoluble protein aggregate is formed by overexpression in E. coli cells.

발현된 융합 단백질은 결합된 인간 G-CSF 및 인간 GM-CSF의 크기에 상응하고, 엘리자법 및 웨스턴 블랏을 이용하여 확인될 수 있다. The expressed fusion protein corresponds to the size of bound human G-CSF and human GM-CSF and can be identified using Eliza and Western blot.

한편, 요소액에 있는 rhG-CSF/GM-CSF 융합 단백질은 요소의 높은 농도로 인하여 변성되기 때문에, 생물학적 활성의 측정 전에 복원되어야 할 필요가 있으며, 단백질의 간단한 투석은 단백질의 침전을 유도하지 않으나, 단백질을 잘 녹일 수 있으며, 이는 단백질이 천연의 형태로 다시 접혀지는(folding) 것을 의미할 것이다. On the other hand, since the rhG-CSF / GM-CSF fusion protein in urea solution is denatured due to the high concentration of urea, it needs to be restored before the measurement of biological activity, and simple dialysis of the protein does not induce precipitation of the protein. The protein can be dissolved well, which will mean that the protein is folded back into its natural form.

투석된 rhG-CSF/GM-CSF 융합 단백질의 콜로니 자극 활성은 백혈병 환자로부터 유래한 골수세포를 가지고 콜리니 형성을 검정하는 것에 의하여 조사할 수 있는데, 정제된 40kDa 단백질은 유의적으로 콜로니 형성을 증가시킴을 확인할 수 있다. 이는 요소 시료로부터 유래한 40kDa 단백질이 콜로니 자극 요소로 작용할 뿐만 아니라 간단한 투석에 의하여 생물학적 활성 형태로 다시 접혀질 수 있다는 사실을 뒷받침한다.Colony-stimulating activity of the dialyzed rhG-CSF / GM-CSF fusion protein can be examined by assaying colony formation with bone marrow cells derived from leukemia patients, and the purified 40 kDa protein significantly increased colony formation. Can be confirmed. This supports the fact that 40kDa proteins from urea samples not only act as colony stimulating elements but can also be folded back into biologically active forms by simple dialysis.

융합 단백질로 처리된 배지의 콜로니 형성 유니트(colony forming units)는 동일한 수의 재조합 G-CSF 또는 GM-CSF를 각각 처리한 배지보다 높은데, 비록 융합 단백질의 활성이 단지 G-CSF 및 GM-CSF의 부수적 효과인지 또는 단지 첨가하는 것 이상의 효과인지가 아직까지 불명하다 할지라도, 그 결과는 융합 단백질로 G-CSF 및 GM-CSF이 융합단백질 내에서 독립적으로 작용함을 나타내고, G-CSF 및 GM-CSF의 결합은 각각을 서로 방해하지 않는다는 것을 나타낸다. The colony forming units of the medium treated with the fusion protein are higher than the medium treated with the same number of recombinant G-CSF or GM-CSF, respectively, although the activity of the fusion protein is only in the G-CSF and GM-CSF. Although it is still unknown whether it is a side effect or more than just adding it, the results indicate that G-CSF and GM-CSF act independently in the fusion protein as fusion proteins, and G-CSF and GM- The binding of CSFs indicates that they do not interfere with each other.

또한, 다양한 세포 군락이 골수세포를 구성하고 그리하여 많은 분화 세포가 G-CSF 또는 GM-CSF에 반응하기 때문에, 융합 단백질에 있는 G-CSF 및 GM-CSF가 같은 세포에 함께 작용을 하는지 다른 세포에 각각 작용을 하는지 여부는 불명확하지만, 융합 단백질에서 양쪽 CSF가 비록 Gly-Gly-Gly-Gly-Ser의 짧은 GS 링커에 의해 결합되었다 할지라도 G-CSF와 GM-CSF의 콜리니 자극 활성을 보인다는 사실은 확인할 수 있다. In addition, because the diverse cell population constitutes myeloid cells, and thus many differentiated cells respond to G-CSF or GM-CSF, whether G-CSF and GM-CSF in the fusion protein work together on the same cell or not. It is unclear whether they act individually, but both CSFs in the fusion protein show colony-stimulating activity of G-CSF and GM-CSF even though they are bound by a short GS linker of Gly-Gly-Gly-Gly-Ser. The facts can be confirmed.

이하, 본 발명의 구성을 하기 실시예를 들어 더욱 상세히 설명하지만 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니다. Hereinafter, the configuration of the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited only to the following examples.

실시예 1: 재조합 인간 G-CSF 유전자와 GM-CSF 유전자가 링크된 G-CSF/GM-CSF 유전자의 제조Example 1 Preparation of G-CSF / GM-CSF Gene Linked with Recombinant Human G-CSF Gene and GM-CSF Gene

재료로서 올리고뉴클레오타이드는 'Bionix(서울, 한국)'로부터 구입하였고, 제한효소는 'Kosco(서울, 한국)'로부터 구입하였다. 대장균발현을 위한 배양 배지는 'Difco Ltd(Sparks, MD, USA)'로부터 구입하였고, 다른 화학물질들은 'Sigma Aldrich Co. Ltd(St. Louis, MI, 미국)'로부터 구입하였다. Ni-NTA 정제 시스템은 'Qiagen Co.(Hilden, 독일)'로부터 구입하였다. Oligonucleotide was purchased from 'Bionix (Seoul, Korea)' as a material and restriction enzyme was purchased from 'Kosco (Seoul, Korea)'. Culture medium for E. coli expression was purchased from 'Difco Ltd (Sparks, MD, USA)', other chemicals were 'Sigma Aldrich Co. Ltd (St. Louis, MI, USA). Ni-NTA purification system was purchased from Qiagen Co. (Hilden, Germany).

플라스미드 pGEMT(Promega, Madsion, WI, 미국) 및 pET-22b(+)(Novagen, Darmstadt, 독일)는 발현 구조체의 재료로 사용되었다. 대장균 균주 DH-5α 및 BL21(DE)는 플라스미드 안정성 및 재조합 단백질의 발현을 위해 사용되었다. DNA 조작 및 단백질 조작은 표준 과정(Garland, 1987; Bradley, 1980)에 의하여 수행되었고, PCR은 Taq DNA 폴리머라제(Promega)를 사용하여 제조자의 지시에 의하여 수행되었다. 인간 GM-CSF cDNA는 텍사스 대학교, 사우스웨스턴 메디컬 스쿨의 'Dr. David Carbone'으로부터 입수하였고, 인간 G-CSF cDNA는 R&D 시스템(Minneapolis. MN, 미국)으로부터 구입하였다.Plasmids pGEMT (Promega, Madsion, WI, USA) and pET-22b (+) (Novagen, Darmstadt, Germany) were used as the material of the expression construct. E. coli strains DH-5α and BL21 (DE) were used for plasmid stability and expression of recombinant proteins. DNA and protein manipulations were performed by standard procedures (Garland, 1987; Bradley, 1980), and PCR was performed by manufacturer's instructions using Taq DNA polymerase (Promega). Human GM-CSF cDNA was developed by the University of Texas at Southwestern Medical School's Dr. David Carbone 'and human G-CSF cDNA were purchased from the R & D system (Minneapolis. MN, USA).

단일 구조체로 인간 G-CSF 및 GM-CSF cDNA을 결합(ligation)하기 전에 삽입 cDNA 및 링커는 하기의 프라이머를 사용하여 증폭되었다. The insert cDNA and linker were amplified using the following primers before ligation of human G-CSF and GM-CSF cDNA into a single construct.

인간 G-CSF는 프라이머 31 및 32를 사용하여 증폭되었고, 인간 GM-CSF는 프라이머 33 및 39를 사용하였다. GS 링커 절편(Olafsena, T., Rasmussena, I. B., Norderhaugb, L., Bruland, S. and Sandliea, I. (1998) IgM secretory tailpiece drives multimerisation of bivalent scFv fragments in eukaryotic cells. Immunotechnology 4 : 141-153.)의 증폭은 프라이머 34 및 35를 사용하여 수행되었다.Human G-CSF was amplified using primers 31 and 32, and human GM-CSF used primers 33 and 39. GS linker fragment (Olafsena, T., Rasmussena, IB , Norderhaugb, L., Bruland, S. and Sandliea, I. (1998) IgM secretory tailpiece drives multimerisation of bivalent scFv fragments in eukaryotic cells Immunotechnology 4:. 141-153. Amplification was performed using primers 34 and 35.

PCR 반응은 Taq 폴리머라제를 사용하여 하기의 증폭조건에 의하여 수행되었다. 95℃에서 4분 동안 변성(denaturing), 50℃에서 2분 동안 어니얼링(annealing), 72℃에서 3분 동안 신장(extention)으로 구성된 사이클(cycle)이 1회 수행된 후, 95℃에서 1 분 동안 변성, 50℃에서 2 분 동안 어니얼링, 72℃에서 3 분 동안 신장으로 구성된 사이클이 45회 수행되었다. PCR reaction was carried out using Taq polymerase by the following amplification conditions. One cycle consisting of denaturing at 95 ° C. for 4 minutes, annealing at 50 ° C. for 2 minutes, and extension at 72 ° C. for 3 minutes, followed by 1 cycle at 95 ° C. 45 cycles consisted of denaturation for minutes, annealing at 50 ° C. for 2 minutes, and elongation at 72 ° C. for 3 minutes.

72℃에서 10 분 동안 추가적인 확장을 한 후, 증폭된 DNA 절편들은 1% 아가로스 겔로부터 정제되었다.After 10 min extension at 72 ° C., the amplified DNA fragments were purified from 1% agarose gel.

한편, G-CSF, GM-CSF 및 링커 시퀀스의 상호 결합은 그림 1a에 도시된 바와 같이 스플라이싱 오버랩트 익스텐션(Splicing Overlapped Extension; SOEing) 기술을 사용하여 수행되었다. On the other hand, the mutual coupling of G-CSF, GM-CSF and linker sequences was performed using a Splicing Overlapped Extension (SOEing) technique, as shown in Figure 1a.

먼저, 첫번째 SOEing 반응을 통하여, G-CSF/링커와 링커/GM-CSF를 함유하는 DNA 절편이 하기의 계획에 의하여 제조되었다. First, through the first SOEing reaction, DNA fragments containing G-CSF / linker and linker / GM-CSF were prepared according to the following scheme.

먼저 G-CSF와 링커 절편은 어니얼링되었고, 95℃에서 1 분 동안 변성, 72℃에서 4분 동안 확장으로 구성된 사이클이 10회 수행된 후, 어떤 프라이머도 없이 Taq 폴리머라제를 사용하여 함께 결합되었다.First G-CSF and linker fragments were annealed and bound together using Taq polymerase without any primers after 10 cycles consisting of denaturation at 95 ° C. for 1 minute and extension at 72 ° C. for 4 minutes. .

반응 후, 프라이머 31 및 35가 추가되었고, 95℃에서 30 초 동안 변성, 60℃에서 30 초 간 어니얼링 및 72℃에서 1 분 간 확장으로 구성된 사이클이 30회 수행되어 증폭되었으며, 그 결과 G-CSF/링커 절편이 제조되었다.After the reaction, primers 31 and 35 were added and amplified by performing 30 cycles consisting of denaturation at 95 ° C. for 30 seconds, annealing at 60 ° C. for 30 seconds and extension for 1 minute at 72 ° C., resulting in G- CSF / linker sections were made.

상기와 동일한 과정 및 프라이머 34 및 39를 사용하여, 링커/GM-CSF 절편이 획득되었다. Using the same procedure and primers 34 and 39 above, a linker / GM-CSF fragment was obtained.

증폭된 G-CSF/링커와 링커/GM-CSF 절편은 1% 아가로스 겔로부터 정제되었고 G-CSF/링커/GM-CSF DNA 절편의 제조를 위한 하기의 두 번째 SOEing 반응에 사용되었다(도 1a). Amplified G-CSF / linker and linker / GM-CSF fragments were purified from 1% agarose gel and used in the second SOEing reaction below for the preparation of G-CSF / linker / GM-CSF DNA fragments (FIG. 1A). ).

먼저, G-CSF/링커와 링커/GM-CSF DNA 절편은 어니얼링되었고, 어떤 프라이머의 사용없이 95℃에서 1 분 동안 변성 및 72℃에서 4 분 동안 확장으로 구성된 사이클이 10회 수행된 후, Taq 폴리머라제를 사용하여 상호 결합되었다. 그 후, 프라이머 31 및 39이 추가되었고, 95℃에서 30 초 동안 어니얼링, 60℃에서 30 초 동안 복원 및 72℃에서 1 분 동안 확장으로 구성된 사이클 30회 수행됨으로써 증폭되었다.First, the G-CSF / Linker and Linker / GM-CSF DNA fragments were annealed and after 10 cycles consisting of denaturation at 95 ° C. for 1 minute and expansion at 72 ° C. for 4 minutes without the use of any primers, Taq polymerase was used to interconnect each other. Primers 31 and 39 were then added and amplified by 30 cycles consisting of annealing at 95 ° C. for 30 seconds, restoring at 60 ° C. for 30 seconds, and expansion at 72 ° C. for 1 minute.

그 결과 서열번호 1의 DNA 서열로 구성된 폴리뉴클레오티드를 얻을 수 있었다.As a result, a polynucleotide composed of the DNA sequence of SEQ ID NO: 1 was obtained.

반응 후, 상기에서 제조된 대략 1.1kb의 DNA 절편이 1% 아가로스 겔로부터 분리되었고(도 1b), pGEMT 벡터에 클론되었으며, 연속적으로 pelB 리더(leader), His.Taq 및 T7 프로모터를 함유하는 pET-22(+)벡터에 클론되었다.After reaction, approximately 1.1 kb of DNA fragment prepared above was isolated from 1% agarose gel (FIG. 1B), cloned into pGEMT vector, and subsequently contained pel B leader, His.Taq and T7 promoters. Was cloned into the pET-22 (+) vector.

즉, 1.1 kb DNA 절편은 먼저 pGEMT에 클론되었고, G-CSF/GM-CSF 융합 단백질을 발현하는 pEThGGMCSF 구조체를 제조하기 위하여 pET-22b(+)벡터의 NcoⅠ 및 NotⅠ 위치로 서브클론되었다.That is, 1.1 kb DNA fragments were first cloned into pGEMT and subcloned into the Nco I and Not I positions of the pET-22b (+) vector to prepare pEThGGMCSF constructs expressing the G-CSF / GM-CSF fusion protein.

실시예 2: 실시예 1에서 제조한 유전자로부터 단백질의 제조Example 2 Preparation of Proteins from the Gene Prepared in Example 1

G-CSF/링커/GM-CSF 융합 단백질의 발현은 구축체의 E. coli BL21(DE)로의 형질전환 후, IPTG 유도에 의해 수행하었다. 글루코스 및 앰피실린이 보충된 50 mL의 배지에서 세포를 배양한 후 클론된 G-CSF/GM-CSF 융합 단백질의 발현을 유도하기 위해 IPTG 및 앰피실린이 보충된 25 mL의 무(無)글루코스배지로 옮겼다.Expression of the G-CSF / Linker / GM-CSF fusion protein was performed by IPTG induction after transformation of the construct with E. coli BL21 (DE). 25 mL of glucose-free medium supplemented with IPTG and ampicillin to induce expression of cloned G-CSF / GM-CSF fusion proteins after culturing cells in 50 mL of medium supplemented with glucose and ampicillin Moved to.

5시간의 유도 후에 세포를 회수하였고, 김 등(Kim J. K., Tsen, M. F., Ghetie, V. and Ward, E. S. (1994a) Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed muTaqenesis. Eur. J. Immunol. 24, 542-547.; McClay EF. Adjuvant therapy for patients with high-risk malignant melanoma. Semin Oncol. 2002 Aug;29(4):389-99.)에 의하여 설명된 바에 의해 주변세포질 공간, 세포질, 세포 봉입체로부터 단백질을 추출하였다. 주변세포질 단백질의 추출을 위하여 세포 펠레트(pellet)를 TES 버퍼(0.5 M 수크로오스, 0.1 mM EDTA, 0.2 M Tris-Cl, pH 7.4)에서 40 분 동안 삼투압 쇼크처리하였다. 잔류 세포 펠레트는 음파처리 버퍼 (0.25M NaCl, 0.05 M Tris, pH 7.5)를 사용하여 음파처리하였고, 불용성 잔류물은 요소 디네이쳐링 버퍼(urea denaturing buffer; 8M urea, 0.1M NaH2PO4, 0.01M Tris, pH 8.0)에 녹였다.The cells were recovered after 5 hours of induction, etc. Kim (Kim JK, Tsen, MF, Ghetie, V. and Ward, ES (1994a) Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed muTaqenesis. Eur Peripheral cytoplasm as described by J. Immunol. 24 , 542-547 . ; McClay EF.Adjuvant therapy for patients with high-risk malignant melanoma.Semin Oncol. 2002 Aug; 29 (4): 389-99. Proteins were extracted from space, cytoplasm, cell inclusion bodies. Cell pellets were subjected to osmotic shock for 40 minutes in TES buffer (0.5 M sucrose, 0.1 mM EDTA, 0.2 M Tris-Cl, pH 7.4) for extraction of periplasmic protein. Residual cell pellets were sonicated using sonication buffer (0.25 M NaCl, 0.05 M Tris, pH 7.5), and insoluble residues were urea denaturing buffer (8 M urea, 0.1 M NaH 2 PO 4 , 0.01 M Tris, pH 8.0).

추출된 단백질은 제조자(Qiagen)의 지시대로 Ni-NTA 아가로스 정제를 수행하였다.The extracted protein was subjected to Ni-NTA agarose purification as directed by the manufacturer (Qiagen).

상기의 재료 및 방법에 의하여 실험한 결과, 요소시료에서 40 kDa의 재조합 인간 G-CSF/GM-CSF 융합 단백질(rhG-CSF/GM-CSF)이 발현됨을 확인할 수 있었다(도 2). 비록 구조체가 주변세포질내에서 발현되는 단백질을 얻고자 pelB 리더 시퀀스(leader sequence)를 보유하고 있었으나, 융합 단백질은 세포 봉입체에서 발현이 되었으며, 이는 대장균 세포 내에서 과도한 발현에 의한 불용성 단백질 응집체의 형성을 의미하였다.As a result of the experiment with the above materials and methods, it was confirmed that 40 kDa recombinant human G-CSF / GM-CSF fusion protein (rhG-CSF / GM-CSF) was expressed in the urea sample (FIG. 2). Although the construct had a pel B leader sequence to obtain a protein expressed in the periplasm, the fusion protein was expressed in the cell inclusion body, which formed insoluble protein aggregates by overexpression in E. coli cells. Meant.

한편, 본 발명자들은 재조합 G-CSF와 GM-CSF 단백질을 각각 pET-22b(+) 벡터를 사용하여 각각 제조하였는데 GM-CSF는 세포 봉입체에서 발현됨을 확인할 수 있었고, G-CSF는 세포질에서 발현됨을 확인할 수 있었다(도 2). 그러나 CSF/GM-CSF 융합 단백질은 비록 GM-CSF가 세포질에서 발현되는 G-CSF에 결합되었다 할지라도 세포 봉입체에서 발현되었다. Meanwhile, the present inventors prepared recombinant G-CSF and GM-CSF proteins using pET-22b (+) vectors, respectively. GM-CSF was expressed in the cell inclusion body, and G-CSF was expressed in the cytoplasm. It could be confirmed (Fig. 2). However, CSF / GM-CSF fusion proteins were expressed in cell inclusion bodies even though GM-CSF was bound to G-CSF expressed in the cytoplasm.

또한, 발현된 융합 단백질은 결합된 인간 G-CSF 및 인간 GM-CSF의 크기에 상응하고, 엘리자법 및 웨스턴 블랏을 이용하여 확인되었다. In addition, expressed fusion proteins corresponded to the size of bound human G-CSF and human GM-CSF, and were identified using Eliza and Western blot.

실험예 1: 실시예 2에서 제조된 단백질의 기능분석Experimental Example 1: Functional Analysis of the Protein Prepared in Example 2

정제된 단백질의 콜로니 자극 활성은 'Garland(1987)'에 의하여 기술된 바에 의하여 검사되었고, 모든 실험은 24 웰 플레이트(well plate)에서 3회 반복으로 수행되었다. 백혈병 환자로부터 추출된 2×106의 골수세포 중 각각은 1 mL의 DMEM/10% FCS 배지에 잠시 보류되었고, 그 후, 각각의 웰로 평판되었다. 각각의 세포 웰에 8 ㎍ 또는 16 ㎍의 Ni-NTA 정제 단백질이 첨가되었고, 2.2%의 저녹는점 아가로스에 의해 정치되었다. 웰은 37℃로 5%의 CO2를 포함하는 습한 공기에서 배양되었다. 일주일 후 콜로니 숫자는 각각 웰 중 5개의 임의 사이트에서 계수되었고 콜로니의 평균숫자는 상호 비교되었다.Colony stimulating activity of the purified protein was examined as described by Garland (1987), and all experiments were performed in three replicates in a 24 well plate. Each of 2 × 10 6 myeloid cells extracted from leukemia patients was briefly suspended in 1 mL of DMEM / 10% FCS medium and then plated into each well. 8 μg or 16 μg of Ni-NTA purified protein was added to each cell well and allowed to stand by 2.2% low melting agarose. The wells were incubated at 37 ° C. in humid air containing 5% CO 2 . A week later colony numbers were counted at five random sites in each well and the mean number of colonies was compared with each other.

한편, 재조합 G-CSF/GM-CSF 융합 단백질의 콜로니 자극 활성을 조사하기 위해서는, 요소의 높은 농도로 인하여 변성되어 있는 8M의 요소액 내 rhG-CSF/GM-CSF 융합 단백질은 생물학적 활성의 측정 전에 복원되어야 할 필요가 있었다. 단백질의 간단한 투석은 단백질의 침전을 유도하지 않았으나, 단백질을 잘 녹였으며, 이는 단백질이 천연의 형태로 다시 접혀지는(folding) 것을 의미 할 수 있을 것이다. On the other hand, in order to investigate the colony-stimulating activity of the recombinant G-CSF / GM-CSF fusion protein, rhG-CSF / GM-CSF fusion protein in 8M urea solution denatured due to the high concentration of urea before the measurement of biological activity It needed to be restored. Simple dialysis of the protein did not induce precipitation of the protein, but it dissolves well, which may mean that the protein is folded back into its natural form.

투석된 rhG-CSF/GM-CSF 융합 단백질의 콜로니 자극 활성은 백혈병 환자로 부터 유래한 골수세포를 가지고 콜리니 형성을 검정하는 것에 의하여 조사하였는데, 정제된 40kDa 단백질 8 및 16 ㎍/mL의 첨가는 음의 대조군(negative control)과 비교하여 유의적으로 콜로니 형성을 증가시켰고(도 3), 이는 요소 시료로부터 유래한 40kDa 단백질이 콜로니 자극 요소로 작용할 뿐만 아니라 간단한 투석에 의하여 생물학적 활성 형태로 다시 접혀질 수 있었음을 의미하였다.Colony-stimulating activity of the dialyzed rhG-CSF / GM-CSF fusion protein was examined by assaying colony formation with bone marrow cells derived from leukemia patients. The addition of purified 40 kDa protein 8 and 16 μg / mL Compared with the negative control significantly increased colony formation (FIG. 3), which indicates that the 40 kDa protein from the urea sample not only acts as a colony stimulating element but also can be folded back into the biologically active form by simple dialysis. It meant.

융합 단백질로 처리된 배지의 콜로니 형성 유니트는 동일한 수의 재조합 G-CSF 또는 GM-CSF를 각각 처리한 배지보다 높았다(도 2 및 3). 비록 융합 단백질의 활성이 단지 G-CSF 및 GM-CSF의 부수적 효과인지 또는 단지 첨가하는 것 이상인지가 모호하지만, 실험결과는 융합 단백질로 G-CSF 및 GM-CSF이 융합단백질에서 독립적으로 작용함을 나타내었고, G-CSF 및 GM-CSF의 결합은 각각을 서로 방해하지 않는다는 것을 나타내었다. Colony forming units of media treated with the fusion protein were higher than media treated with the same number of recombinant G-CSF or GM-CSF, respectively (FIGS. 2 and 3). Although it is ambiguous whether the activity of the fusion protein is only a side effect of G-CSF and GM-CSF or more than just addition, the experimental results show that G-CSF and GM-CSF act independently of the fusion protein as the fusion protein. It was shown that the binding of G-CSF and GM-CSF did not interfere with each other.

한편, 다양한 세포 군락이 골수세포를 구성하고 그리하여 많은 분화 세포가 G-CSF 또는 GM-CSF에 반응하기 때문에, 융합 단백질에 있는 G-CSF 및 GM-CSF가 같은 세포에 함께 작용을 하는지 다른 세포에 각각 작용을 하는지 여부는 불명확하지만, 융합 단백질에서 비록 Gly-Gly-Gly-Gly-Ser의 짧은 GS 링커에 의해 결합되었더라도 양쪽 CSF가 G-CSF와 GM-CSF의 콜리니 자극 활성을 보였다.On the other hand, since a diverse cell population constitutes bone marrow cells, and thus many differentiated cells respond to G-CSF or GM-CSF, whether G-CSF and GM-CSF in the fusion protein work together on the same cell or not. It is unclear whether they act individually, but both CSFs showed colony-stimulating activity of G-CSF and GM-CSF in fusion proteins even though bound by the short GS linker of Gly-Gly-Gly-Gly-Ser.

이상 상기에서 설명한 바와 같이 본원발명인 서열번호 1의 DNA 서열로 구성된 폴리뉴클레오티드로부터 코딩되는 서열번호 2의 아미노산 서열로 구성된 폴리펩타이드는 세포 봉입체로부터 추출될 수 있으며, G-CSF 단백질의 기능 및 GM-CSF 단백질의 기능을 둘 다 발휘할 수 있으므로, 골수 간세포의 생체 내 또는 생체 외 확장을 포함하여 G-CSF 단백질 및 GM-CSF 단백질의 기능이 필요한 경우에 보다 간편한 하나의 융합단백질로 제공될 수 있으므로, 생명공학산업상 매우 유용한 발명인 것이다. As described above, the polypeptide consisting of the amino acid sequence of SEQ ID NO: 2 encoded from the polynucleotide consisting of the DNA sequence of SEQ ID NO: 1 of the present invention can be extracted from the cell inclusion body, the function of the G-CSF protein and GM-CSF As both proteins can function, they can be provided as one simpler fusion protein when the functions of G-CSF protein and GM-CSF protein are needed, including in vivo or ex vivo expansion of bone marrow hepatocytes. It is a very useful invention in the engineering industry.

도 1a는 인간 G-CSF/링커/GM-CSF 융합 DNA의 구축과정을 보여주는 모식도이다. Figure 1a is a schematic diagram showing the construction of human G-CSF / linker / GM-CSF fusion DNA.

도 1b는 인간 G-CSF, GM-CSF 및 링커 시퀀스로 결합된 인간 G-CSF/GM-CSF의 PCR 증폭 산물을 보여주는 사진도이다. 1B is a photograph showing the PCR amplification products of human G-CSF / GM-CSF bound with human G-CSF, GM-CSF and linker sequences.

도 2는 정제된 재조합 인간 G-CSF, GM-CSF 및 G-CSF/GM-CSF 융합 단백질의 SDS-PAGE 분석을 보여주는 사진도이다.2 is a photograph showing SDS-PAGE analysis of purified recombinant human G-CSF, GM-CSF and G-CSF / GM-CSF fusion proteins.

도 3은 정제되고, 재겹침(folding)된 G-CSF/GM-CSF 융합 단백질의 콜로니 자극 활성을 보여주는 그래프이다. 3 is a graph showing colony stimulating activity of purified, folded G-CSF / GM-CSF fusion proteins.

<110> YOUN, Hyun Joo KIM, Jin-Kyoo LEE, Dong seok Inje University <120> Recombinant human G-CSF/GM-CSF fusion protein and it's coding gene <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 930 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(930) <400> 1 atg gcc acc ccc ctg ggc cct gcc agc tcc ctg ccc cag agc ttc ctg 48 Met Ala Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu 1 5 10 15 ctc aag tgc tta gag caa gtg agg aag atc cag ggc gat ggc gca gcg 96 Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala 20 25 30 ctc cag gag aag ctg tgt gcc acc tac aag ctg tgc cac ccc gag gag 144 Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu 35 40 45 ctg gtg ctg ctc gga cac tct ctg ggc atc ccc tgg gct ccc ctg agc 192 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser 50 55 60 tcc tgc ccc agc cag gcc ctg cag ctg gca ggc tgc ttg agc caa ctc 240 Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu 65 70 75 80 cat agc ggc ctt ttc ctc tac cag ggg ctc ctg cag gcc ctg caa ggg 288 His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Gln Gly 85 90 95 ata tcc ccc gag ttg ggt ccc acc ttg gac aca ctg cag ctg gac gtc 336 Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val 100 105 110 gcc gac ttt gcc acc acc atc tgg cag cag atg gaa gaa ctg gga atg 384 Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met 115 120 125 gcc cct gcc ctg cag ccc acc cag ggt gcc atg ccg gcc ttc gcc tct 432 Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser 130 135 140 gct ttc cag cgc cgg gca gga ggg gtc ctg gtt gct agc cat ctg cag 480 Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln 145 150 155 160 agc ttc ctg gag gtg tcg tac cgc gtt cta cgc cac ctt gcg cag ccc 528 Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170 175 ggt gga ggc gga tcg gca ccc gcc cgc tcg ccc agc ccc agc acg cag 576 Gly Gly Gly Gly Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln 180 185 190 ccc tgg gag cat gtg aat gcc atc cag gag gcc cgg cgt ctc ctg aac 624 Pro Trp Glu His Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn 195 200 205 ctg agt aga gac act gct gct gag atg aat gaa aca gta gaa gtc atc 672 Leu Ser Arg Asp Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile 210 215 220 tca gaa atg ttt gac ctc cag gag ccg acc tgc cta cag acc cgc ctg 720 Ser Glu Met Phe Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu 225 230 235 240 gag ctg tac aag cag ggc ctg cgg ggc agc ctc acc aag ctc aag ggc 768 Glu Leu Tyr Lys Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly 245 250 255 ccc ttg acc atg atg gcc agc cac tac aag cag cac tgc cct cca acc 816 Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr 260 265 270 ccg gaa act tcc tgt gca acc cag act atc acc ttt gaa agt ttc aaa 864 Pro Glu Thr Ser Cys Ala Thr Gln Thr Ile Thr Phe Glu Ser Phe Lys 275 280 285 gag aac ctg aag gac ttt ctg ctt gtc atc ccc ttt gac tgc tgg gag 912 Glu Asn Leu Lys Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu 290 295 300 cca gtc cag gag gtc acc 930 Pro Val Gln Glu Val Thr 305 310 <210> 2 <211> 310 <212> PRT <213> Homo sapiens <400> 2 Met Ala Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu 1 5 10 15 Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala 20 25 30 Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu 35 40 45 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser 50 55 60 Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu 65 70 75 80 His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Gln Gly 85 90 95 Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val 100 105 110 Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met 115 120 125 Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser 130 135 140 Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln 145 150 155 160 Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170 175 Gly Gly Gly Gly Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln 180 185 190 Pro Trp Glu His Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn 195 200 205 Leu Ser Arg Asp Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile 210 215 220 Ser Glu Met Phe Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu 225 230 235 240 Glu Leu Tyr Lys Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly 245 250 255 Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr 260 265 270 Pro Glu Thr Ser Cys Ala Thr Gln Thr Ile Thr Phe Glu Ser Phe Lys 275 280 285 Glu Asn Leu Lys Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu 290 295 300 Pro Val Gln Glu Val Thr 305 310<110> YOUN, Hyun Joo KIM, Jin-Kyoo LEE, Dong seok Inje University <120> Recombinant human G-CSF / GM-CSF fusion protein and it's coding gene <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 930 <212> DNA <213> Homo sapiens <220> <221> CDS (222) (1) .. (930) <400> 1 atg gcc acc ccc ctg ggc cct gcc agc tcc ctg ccc cag agc ttc ctg 48 Met Ala Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu 1 5 10 15 ctc aag tgc tta gag caa gtg agg aag atc cag ggc gat ggc gca gcg 96 Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala 20 25 30 ctc cag gag aag ctg tgt gcc acc tac aag ctg tgc cac ccc gag gag 144 Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu 35 40 45 ctg gtg ctg ctc gga cac tct ctg ggc atc ccc tgg gct ccc ctg agc 192 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser 50 55 60 tcc tgc ccc agc cag gcc ctg cag ctg gca ggc tgc ttg agc caa ctc 240 Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu 65 70 75 80 cat agc ggc ctt ttc ctc tac cag ggg ctc ctg cag gcc ctg caa ggg 288 His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Gln Gly 85 90 95 ata tcc ccc gag ttg ggt ccc acc ttg gac aca ctg cag ctg gac gtc 336 Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val 100 105 110 gcc gac ttt gcc acc acc atc tgg cag cag atg gaa gaa ctg gga atg 384 Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met 115 120 125 gcc cct gcc ctg cag ccc acc cag ggt gcc atg ccg gcc ttc gcc tct 432 Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser 130 135 140 gct ttc cag cgc cgg gca gga ggg gtc ctg gtt gct agc cat ctg cag 480 Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln 145 150 155 160 agc ttc ctg gag gtg tcg tac cgc gtt cta cgc cac ctt gcg cag ccc 528 Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170 175 ggt gga ggc gga tcg gca ccc gcc cgc tcg ccc agc ccc agc acg cag 576 Gly Gly Gly Gly Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln 180 185 190 ccc tgg gag cat gtg aat gcc atc cag gag gcc cgg cgt ctc ctg aac 624 Pro Trp Glu His Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn 195 200 205 ctg agt aga gac act gct gct gag atg aat gaa aca gta gaa gtc atc 672 Leu Ser Arg Asp Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile 210 215 220 tca gaa atg ttt gac ctc cag gag ccg acc tgc cta cag acc cgc ctg 720 Ser Glu Met Phe Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu 225 230 235 240 gag ctg tac aag cag ggc ctg cgg ggc agc ctc acc aag ctc aag ggc 768 Glu Leu Tyr Lys Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly 245 250 255 ccc ttg acc atg atg gcc agc cac tac aag cag cac tgc cct cca acc 816 Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr 260 265 270 ccg gaa act tcc tgt gca acc cag act atc acc ttt gaa agt ttc aaa 864 Pro Glu Thr Ser Cys Ala Thr Gln Thr Ile Thr Phe Glu Ser Phe Lys 275 280 285 gag aac ctg aag gac ttt ctg ctt gtc atc ccc ttt gac tgc tgg gag 912 Glu Asn Leu Lys Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu 290 295 300 cca gtc cag gag gtc acc 930 Pro Val Gln Glu Val Thr 305 310 <210> 2 <211> 310 <212> PRT <213> Homo sapiens <400> 2 Met Ala Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu 1 5 10 15 Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala 20 25 30 Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu 35 40 45 Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser 50 55 60 Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu 65 70 75 80 His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Gln Gly 85 90 95 Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val 100 105 110 Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met 115 120 125 Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser 130 135 140 Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln 145 150 155 160 Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170 175 Gly Gly Gly Gly Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln 180 185 190 Pro Trp Glu His Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn 195 200 205 Leu Ser Arg Asp Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile 210 215 220 Ser Glu Met Phe Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu 225 230 235 240 Glu Leu Tyr Lys Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly 245 250 255 Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr 260 265 270 Pro Glu Thr Ser Cys Ala Thr Gln Thr Ile Thr Phe Glu Ser Phe Lys 275 280 285 Glu Asn Leu Lys Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu 290 295 300 Pro Val Gln Glu Val Thr 305 310

Claims (2)

서열번호 1의 DNA 서열로 구성된 폴리뉴클레오티드.Polynucleotide consisting of the DNA sequence of SEQ ID NO: 1. 서열번호 2의 아미노산 서열로 구성된 폴리펩타이드.Polypeptide consisting of the amino acid sequence of SEQ ID NO: 2.
KR10-2002-0064921A 2002-10-23 2002-10-23 Recombinant human G-CSF/GM-CSF fusion protein and it's coding gene KR100502999B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0064921A KR100502999B1 (en) 2002-10-23 2002-10-23 Recombinant human G-CSF/GM-CSF fusion protein and it's coding gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0064921A KR100502999B1 (en) 2002-10-23 2002-10-23 Recombinant human G-CSF/GM-CSF fusion protein and it's coding gene

Publications (2)

Publication Number Publication Date
KR20040036113A KR20040036113A (en) 2004-04-30
KR100502999B1 true KR100502999B1 (en) 2005-07-21

Family

ID=37334718

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0064921A KR100502999B1 (en) 2002-10-23 2002-10-23 Recombinant human G-CSF/GM-CSF fusion protein and it's coding gene

Country Status (1)

Country Link
KR (1) KR100502999B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870003200A (en) * 1985-09-17 1987-04-15 우에노 기미오 Colony Stimulating Factors of Human Granulocytes
KR890013178A (en) * 1988-02-08 1989-09-21 오스카 아끼히꼬 Human Colony Stimulator
KR970070200A (en) * 1996-04-26 1997-11-07 김태훈 Genes encoding human granulocyte colony stimulating factor
US5908763A (en) * 1984-07-06 1999-06-01 Novartis Corporation DNA encoding GM-CSF and a method of producing GM-CSF protein
US6022953A (en) * 1989-04-19 2000-02-08 Chiron Corporation Multifunctional M-CSF proteins and genes encoding therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908763A (en) * 1984-07-06 1999-06-01 Novartis Corporation DNA encoding GM-CSF and a method of producing GM-CSF protein
KR870003200A (en) * 1985-09-17 1987-04-15 우에노 기미오 Colony Stimulating Factors of Human Granulocytes
KR890013178A (en) * 1988-02-08 1989-09-21 오스카 아끼히꼬 Human Colony Stimulator
US6022953A (en) * 1989-04-19 2000-02-08 Chiron Corporation Multifunctional M-CSF proteins and genes encoding therefor
KR970070200A (en) * 1996-04-26 1997-11-07 김태훈 Genes encoding human granulocyte colony stimulating factor

Also Published As

Publication number Publication date
KR20040036113A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
CN109689087B (en) Targeted mutant interferon-beta and uses thereof
ES2917000T3 (en) Target mutant interferon-gamma and uses thereof
JP7030704B2 (en) Bispecific signaling substances and their use
AU2018216032B2 (en) Targeted chimeric proteins and uses thereof
CN110573172A (en) Targeted engineered interferons and uses thereof
KR20170094341A (en) Interleukin 15 protein complex and use thereof
JP2004508014A (en) Method for refolding a protein containing a free cysteine residue
IL184423A (en) Homogeneous preparations of il-31, process for their production and formulations comprising them
RO115788B1 (en) Mgdf polypeptide, mgdf polypeptide derivative, monopegylated mgdf polypeptide and process for preparing the same
EP3833391A1 (en) SIRP1alpha TARGETED CHIMERIC PROTEINS AND USES THEREOF
CN113767115A (en) Therapeutic interferon alpha 1 proteins
CN112142859A (en) Human interleukin 10-Fc fusion protein and coding gene and application thereof
CN116723851A (en) Interleukin-18 variants and methods of use
ZA200508767B (en) Apparatus for cryogenic air distillation
US6242570B1 (en) Production and use of recombinant protein multimers with increased biological activity
WO2020097350A1 (en) Modulation of dendritic cell lineages
Lee et al. A recombinant human G-CSF/GM-CSF fusion protein from E. coli showing colony stimulating activity on human bone marrow cells
CA3151928A1 (en) Pd-l1 targeted chimeric proteins and uses thereof
KR100360594B1 (en) Expression and secretion vector for human interferon alpha and process for producing human interferon alpha by employing same
KR100502999B1 (en) Recombinant human G-CSF/GM-CSF fusion protein and it&#39;s coding gene
Kaushansky The Hematopoietic Colony-Stimulating Factors
WO2022221746A1 (en) Il-2 based constructs
JPH09512165A (en) Interleukin 15
Bashir et al. Enhanced and secretory expression of human granulocyte colony stimulating factor by Bacillus subtilis SCK6
US20220378925A1 (en) Conjugated chimeric proteins

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100713

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee