KR100501825B1 - Highly active nano-catalyst for phenol hydroxylation at room temperature - Google Patents

Highly active nano-catalyst for phenol hydroxylation at room temperature Download PDF

Info

Publication number
KR100501825B1
KR100501825B1 KR10-2002-0086980A KR20020086980A KR100501825B1 KR 100501825 B1 KR100501825 B1 KR 100501825B1 KR 20020086980 A KR20020086980 A KR 20020086980A KR 100501825 B1 KR100501825 B1 KR 100501825B1
Authority
KR
South Korea
Prior art keywords
catalyst
phenol
room temperature
reaction
nanocatalyst
Prior art date
Application number
KR10-2002-0086980A
Other languages
Korean (ko)
Other versions
KR20040061184A (en
Inventor
이철위
박중남
한상윤
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2002-0086980A priority Critical patent/KR100501825B1/en
Publication of KR20040061184A publication Critical patent/KR20040061184A/en
Application granted granted Critical
Publication of KR100501825B1 publication Critical patent/KR100501825B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 실온에서 고활성을 보이는 페놀의 수산화 반응용 나노촉매에 관한 것으로서, 더욱 상세하게는 양성자형 나노세공 분자체 상에 철, 아연, 망간, 코발트 중에서 선택된 2종 이상의 전이금속과 알칼리금속 이온이 동시에 담지된 불균일계 촉매로서, 과산화수소를 산화제로 사용하는 페놀의 수산화 반응에 촉매로 사용되어 특히 물을 용매로 사용하여 실온(20 ℃)에서도 반응 활성이 우수하며 카테콜 및 히드로퀴논의 선택적 합성이 가능하도록 하는 나노촉매에 관한 것이다.The present invention relates to a nanocatalyst for the hydroxylation reaction of phenol exhibiting high activity at room temperature, and more particularly, at least two transition metals and alkali metal ions selected from iron, zinc, manganese and cobalt on proton-type nanoporous molecular sieves. At the same time, it is a supported heterogeneous catalyst, which is used as a catalyst for the hydration reaction of phenol using hydrogen peroxide as an oxidizing agent, and in particular, the reaction activity is excellent even at room temperature (20 ° C.) using water as a solvent. It relates to a nanocatalyst that makes it possible.

Description

실온에서 고활성을 보이는 페놀의 수산화 반응용 나노촉매{Highly active nano-catalyst for phenol hydroxylation at room temperature}Highly active nano-catalyst for phenol hydroxylation at room temperature

본 발명은 실온에서 고활성을 보이는 페놀의 수산화 반응용 나노촉매에 관한 것으로서, 더욱 상세하게는 양성자형 나노세공 분자체 상에 철, 아연, 망간, 코발트중에서 선택된 2종 이상의 전이금속과 알칼리금속 이온이 동시에 담지된 불균일계 촉매로서, 과산화수소를 산화제로 사용하는 페놀의 수산화 반응에 촉매로 사용되어 특히 물을 용매로 사용하여 실온(20 ℃)에서도 반응 활성이 우수하며 카테콜 및 히드로퀴논의 선택적 합성이 가능하도록 하는 나노촉매에 관한 것이다.The present invention relates to a nanocatalyst for the hydroxylation reaction of phenol exhibiting high activity at room temperature, and more particularly, at least two transition metals and alkali metal ions selected from iron, zinc, manganese and cobalt on proton-type nanoporous molecular sieves. At the same time, as a heterogeneous catalyst supported, it is used as a catalyst in the hydroxylation reaction of phenol using hydrogen peroxide as an oxidizing agent, and in particular, water is used as a solvent at room temperature (20 It also relates to a nanocatalyst that is excellent in the reaction activity and to enable the selective synthesis of catechol and hydroquinone.

유기과산화물(organic peroxide)을 산화제로 사용하는 액상 산화공정은 반응이 다단계로 이루어져 있고, 반응 후 원하지 않는 유기물이 부산물로 생성되기 때문에 환경 친화성이 부족하다. 이에, 산화제로서는 유기과산화물을 사용하기 보다는 과산화수소를 사용하는 것이 선호되었는 바, 과산화수소는 산화제로서 선택성이 우수할 뿐만 아니라 반응 후 부산물로 물이나 산소를 배출하기 때문에 비교적 환경 친화성이 우수한 편이다. 또한, 일반적으로 균일계 촉매 공정 보다는 불균일계 촉매 공정이 반응물과 생성물의 분리가 용이하고, 사용된 촉매의 재사용이 가능하고, 반응기의 부식방지 효과가 우수하여 경제적으로나 환경적으로 더 바람직한 것으로 알려져 있다.The liquid phase oxidation process using organic peroxide as an oxidant is insufficient in environmental friendliness because the reaction is composed of multiple steps and unwanted organic substances are generated as by-products after the reaction. Therefore, it is preferable to use hydrogen peroxide rather than organic peroxide as an oxidizing agent. Since hydrogen peroxide has excellent selectivity as an oxidizing agent and discharges water or oxygen as a by-product after the reaction, it is relatively environmentally friendly. In addition, it is generally known that the heterogeneous catalyst process is more preferable than the homogeneous catalyst process because it is easy to separate the reactant and the product, the used catalyst can be reused, and the corrosion prevention effect of the reactor is excellent. .

예를 들어, 카테콜을 제조하는 종래방법으로는 1-염화페놀을 가성소다와 황산으로 각각 처리하여 카테콜을 합성하는 기술이 공지되어 있으나, 이 기술에 의하면 생성물 1톤당 1.1톤의 가성소다 및 0.9톤의 황산이 부산물로 생성될 뿐만 아니라 경제성이 결여된 단점이 있다.For example, as a conventional method for preparing catechol, a technique of synthesizing catechol by treating 1-phenolic phenol with sodium hydroxide and sulfuric acid, respectively, is known. According to this technique, 1.1 tonne of caustic sodium per tonne of product and Not only 0.9 tonnes of sulfuric acid is produced as a by-product but also lacks economic feasibility.

또 다른 카테콜의 합성방법으로서, 페놀을 수산화반응하여 카테콜, 히드로퀴논 및 벤조퀴논 등의 이수산화벤젠 혼합물을 함께 합성하는 기술이 알려져 있는데, 이 기술은 사용된 촉매의 특성, 반응물의 비, 반응온도, 압력, 촉매와 반응물의 상대적비 등에 의하여 전환율 및 생성물의 선택도가 달라지는 것으로 알려져 있다. 예컨대, 과산화수소를 산화제로 사용하는 페놀의 수산화반응에 의해 이수산화벤젠을 선택적으로 합성하고자 한다면 온화한 조건 즉, 60∼80 ℃ 이하의 반응 온도와 상압을 유지하는 것이 주요하며, 온화한 조건 이상으로 반응온도와 압력이 높게 유지되면 페놀이 분해되는 완전산화 반응이 이루어지므로 이러한 반응은 폐수에 존재하는 페놀을 제거하기 위한 수단으로 활용되는 것이 바람직하다. 또한, 페놀로부터 이수산화벤젠을 선택적으로 제조하는 반응에서의 촉매의 선택에 따라 전환율과 선택도를 결정지어주는 바, 산화력이 강한 촉매를 사용하면 벤조퀴논이 주로 생성되며 산화반응이 많이 진행되면 유기산 등의 부산물이 생성되기도 한다.As another method for synthesizing catechol, a technique for synthesizing benzene mixtures such as catechol, hydroquinone and benzoquinone by hydration of phenol is known. It is known that the conversion and product selectivity vary depending on temperature, pressure, relative ratio of catalyst and reactants, and the like. For example, when selectively synthesizing benzene dihydride by the hydroxylation reaction of phenol using hydrogen peroxide as an oxidizing agent, it is important to maintain the reaction temperature and the atmospheric pressure under mild conditions, that is, 60 to 80 ℃ or less, and the reaction temperature above the mild conditions. If the pressure is kept high and the phenol is decomposed completely, the reaction is preferably used as a means for removing the phenol present in the waste water. In addition, the conversion and selectivity are determined according to the selection of the catalyst in the reaction for the selective production of benzene dihydroxide from phenol. When an oxidizing catalyst is used, benzoquinone is mainly produced. By-products may be produced.

과산화수소를 산화제로 사용하는 페놀의 수산화반응을 수행함에 있어 촉매의 선택에 따른 페놀 전환율과 생성물의 선택도 변화를 간단히 살펴보면 다음과 같다. 과염소산과 인산을 촉매로 사용하는 반응의 경우, 5%의 페놀 전환율과 카테콜/히드로퀴논 생성비=1.5을 보이나 반응 후 과량의 인산이 생성되는 단점이 있다. Fe(Ⅱ)와 Co(Ⅱ)를 촉매로 사용하는 반응의 경우, 10%의 페놀 전환율과 카테콜/히드로퀴논 생성비=2.3을 보이나 반응 후 중금속이 생성되는 단점이 있다. 산 클레이(Acid clay)를 촉매로 사용하는 반응의 경우, 10%의 페놀 전환율과 카테콜/히드로퀴논 생성비=1.5를 보이나 황산을 첨가제로 사용하는 단점이 있다. In carrying out the hydroxylation reaction of phenol using hydrogen peroxide as an oxidizing agent, the change of phenol conversion and product selectivity according to the selection of the catalyst is briefly described as follows. In the case of using perchloric acid and phosphoric acid as a catalyst, a 5% phenol conversion rate and a catechol / hydroquinone generation ratio = 1.5 are shown, but an excessive amount of phosphoric acid is generated after the reaction. In the case of using Fe (II) and Co (II) as a catalyst, the phenol conversion and catechol / hydroquinone production ratio = 2.3 of 10% shows a heavy metal is produced after the reaction. In the case of using acid clay as a catalyst, a phenol conversion rate of 10% and a catechol / hydroquinone generation ratio = 1.5 are shown, but sulfuric acid is used as an additive.

상기한 촉매이외에도 과산화수소를 산화제로 사용하는 페놀의 수산화반응에는 다공성 촉매를 적용한 예도 다수 있다. 활성금속이 담지되어 있지 않은 고체산 그 자체를 촉매로 사용하는 반응[A. Germain, M. Allian, F. Figueras, Catal. Today 32(1996) 145]의 경우, 활성이 저조할 뿐만 아니라 지연시간(Induction time)이 길어서 개선의 여지가 많으나, 페놀의 수산화반응에서 고체산에 의해 반응이 진행될 수 있다는 가능성을 제시하고 있으며, 종래 염산 등과 같은 강산을 촉매로 사용하였던 공정을 고체산으로 개선할 수 있다는 가능성을 강력히 시사하는 좋은 예이다. 현재, TS-1(Titanium Silicalite)을 촉매로 사용하는 페놀의 수산화반응에 의하여 카테콜과 히드로퀴논을 제조하는 방법[J.A. Marten et al Appl. Catal. A. 99(1993) 71]이 실용화되어 있는 바, 이 반응의 경우 페놀 전환율은 27%, 카테콜/히드로퀴논의 생성비=1, 카테콜+히드로퀴논의 선택도 82%이고, 또한 이 공정에서는 생성물(카테콜+히드로퀴논) 1톤당 약 200 kg의 아세톤(용매)이 부산물로 생성된다. TS-1 촉매는 60 ∼ 80 ℃ 범위에서는 활성과 안정성이 우수하다는 장점이 있으나 실온에서는 활성을 거의 나타내지 않으며 TS-1 촉매의 제조방법이 용이하지 않아서 재현성의 문제가 있다. 또 다른 다공성 촉매로서 Ti-MCM-41 등과 같이 Ti가 골격에 위치한 메조세공 촉매는 활성이 저조할 뿐만 아니라 반응 중 쉽게 비활성화 되며, 바나듐을 함유한 다공성 촉매는 반응 중 바나듐이 용액 중으로 용출되어 불균일 촉매로의 역할을 다하지 못한다[S.-E. Park, J.W. Yoo, W.J. Lee, J.-S. Chang and C.W. Lee, Proceedings of 12th IZC 2(1999) 1253]. Fe 혹은 Co가 골격에 위치한 AlPO4-11 분자체인 FeAPO-11 혹은 CoAPO-11은 80 ℃에서 페놀/H2O2 몰비가 3일 때, 최적의 선택성과 활성을 보이나(FeAPO-11 : 페놀의 전환율 25.8%, 카테콜/히드로퀴논=1.1; CoAPO-11 : 페놀의 전환율 23.1%, 카테콜/히드로퀴논=1.2) [P.-S.E. Dai et al Appl. Catal. A. 143(1996) 101], Fe(Ⅱ) 혹은 Co(Ⅱ)이온을 AlPO4-11 골격에 위치하도록 합성하는 과정에서 골격이 아닌 자리에 위치하게 되면 선택성과 활성이 저조할 뿐만 아니라, 순수한 FeAPO-11 합성이 용이하지 않을 것이다. Cu(Ⅱ)를 함유하고 있는 층상구조 화합물인 CuM(Ⅱ)AlCO3-HTLcs(여기서 M=Co, Ni, Cu, Zn, Fe)도 페놀의 수산화반응에 우수한 촉매로 보고되어 있는데, 55 ℃에서 페놀/H2O2 몰비가 1일 때 전환율 53.5%, 카테콜+히드로퀴논 선택도 95%, 카테콜/히드로퀴논의 생성비=1.6을 보인다[K. Zhu, C. Liu, X. Ye, Y. Wu, Appl. Catal. A. 168(1998) 365].In addition to the above catalysts, there are many examples in which a porous catalyst is applied to the hydroxylation reaction of phenol using hydrogen peroxide as an oxidizing agent. Reaction using solid acid itself, which is not supported by active metal, as a catalyst [A. Germain, M. Allian, F. Figueras, Catal. Today 32 (1996) 145] shows a possibility that the reaction can be progressed by a solid acid in the phenol hydroxylation reaction, although the activity is low and the induction time is long. It is a good example that strongly suggests the possibility of improving the process using a strong acid such as hydrochloric acid as a solid acid. Currently, a method for preparing catechol and hydroquinone by the hydroxylation of phenol using TS-1 (Titanium Silicalite) as a catalyst [JA Marten et al Appl. Catal. A. 99 (1993) 71] has been put to practical use. In this reaction, the phenol conversion rate is 27%, the catechol / hydroquinone production ratio = 1, and the catechol + hydroquinone selectivity is 82%. About 200 kg of acetone (solvent) is produced as a byproduct per tonne of (catechol + hydroquinone). TS-1 catalyst has the advantage of excellent activity and stability in the range of 60 ~ 80 ℃ but shows little activity at room temperature and there is a problem of reproducibility because the production method of TS-1 catalyst is not easy. As another porous catalyst, the mesoporous catalyst in which Ti is located in the skeleton such as Ti-MCM-41 is not only poorly active but also easily deactivated during the reaction, and the porous catalyst containing vanadium is a heterogeneous catalyst because vanadium is eluted into the solution during the reaction. Cannot play the role of [S.-E. Park, JW Yoo, WJ Lee, J.-S. Chang and CW Lee, Proceedings of 12th IZC 2 (1999) 1253]. Co or Fe is located in the backbone AlPO 4 -11 molecular chain FeAPO-11 or CoAPO-11 when the phenol / H 2 O 2 molar ratio of from 80 ℃ 3 days, look at the best selectivity and activity (FeAPO-11: the phenol Conversion 25.8%, catechol / hydroquinone = 1.1; CoAPO-11: conversion of phenol 23.1%, catechol / hydroquinone = 1.2) [P.-SE Dai et al Appl. Catal. A. 143 (1996) 101], Fe (Ⅱ) or Co (Ⅱ) When the ion the AlPO 4 -11 located at non-skeletal place in the course of the synthesis to be positioned in the backbone, as well as the low selectivity and activity, pure FeAPO- 11 Synthesis will not be easy. CuM (II) AlCO 3 -HTLcs (where M = Co, Ni, Cu, Zn, Fe), a layered compound containing Cu (II), has also been reported to be an excellent catalyst for the hydration of phenol. When the phenol / H 2 O 2 molar ratio is 1, the conversion ratio is 53.5%, the catechol + hydroquinone selectivity is 95%, and the production ratio of catechol / hydroquinone = 1.6 [K. Zhu, C. Liu, X. Ye, Y. Wu, Appl. Catal. A. 168 (1998) 365].

또한, 페놀의 수산화반응에 적용되는 촉매로서 Bi2O3-V2O5-CuO-H 2O로 표시되는 혼합금속화합물도 보고되어 있는데[J. Sun et al J. Catal. 193(2000) 199], 이 반응의 경우 80 ℃에서 페놀/H2O2 몰비가 3일 때 전환율 23.1%, 카테콜+히드로퀴논 선택도 97.7%, 카테콜/히드로퀴논의 생성비=1.3을 보인다.In addition, a mixed metal compound represented by Bi 2 O 3 -V 2 O 5 -CuO-H 2 O has been reported as a catalyst applied to the hydroxylation reaction of phenol [J. Sun et al J. Catal. 193 (2000) 199], this reaction shows a conversion ratio of 23.1%, catechol + hydroquinone selectivity 97.7%, and catechol / hydroquinone production ratio = 1.3 when the phenol / H 2 O 2 molar ratio is 3 at 80 ° C.

이상에서 살펴본 종래 기술을 종합하면, 기술성, 경제성 및 환경성을 고려할 때 과산화수소를 산화제로 사용하는 페놀의 수산화반응이 바람직하게 진행되려면, ①다공성 담체에 담지된 활성금속이 반응도중 용액 중으로 용출되지 말아야 하며, ②유기용매 대신 물을 용매로 사용할 수 있어야 하며, ③고부가가치가 있는 카테콜과 히드로퀴논이 많이 생성될 수 있도록 전환율과 선택도가 우수하여야 하며, ④ 반응조건(특히, 온도)이 온화한 분위기가 바람직하며, ⑤촉매를 제조함에 있어 재현성이 있어야 한다. In summary, in view of the technical, economical and environmental aspects, in order to proceed with the hydration reaction of phenol using hydrogen peroxide as an oxidizing agent, the active metal supported on the porous carrier should not be eluted into the solution during the reaction. ② It should be able to use water as a solvent instead of organic solvent. ③ It should have good conversion and selectivity so that a lot of high value added catechol and hydroquinone can be produced. ⑤ should be reproducible in preparing the catalyst.

또한, 지금까지 다공성 물질을 촉매로 사용한 페놀의 수산화반응에서 생성되는 카테콜과 히드로퀴논의 비가 대부분 1 ∼ 1.2 범위내에 들어 있어, 아직까지 카테콜이나 히드로퀴논 각각에 대한 선택도가 높은 촉매가 개발되어 있지 않은 실정이며, 특히 과산화수소를 이용한 페놀의 수산화반응은 모두 50 ∼ 80 ℃에서 이루어지고 있어 실온에서 고활성을 보이는 촉매의 개발이 시급한 상황이다.In addition, until now, the ratio of catechol and hydroquinone produced by the hydroxylation reaction of phenol using a porous material as a catalyst is in the range of 1 to 1.2, and a catalyst having high selectivity for each of catechol and hydroquinone has not been developed until now. In particular, the hydroxide reaction of phenol using hydrogen peroxide is all 50 ~ 80 It is an urgent situation to develop a catalyst which is made at ℃ and shows high activity at room temperature.

이에 본 발명자들은 페놀의 수산화반응에 사용되어 높은 페놀 전환율과 카테콜의 선택도가 우수한 신규 촉매를 개발함으로써 본 발명을 완성하게 되었는 바, 본 발명의 신규 촉매를 사용하게 되면 물을 용매로 사용하여도 실온에서 전환율이 우수하고 카테콜/히드로퀴논의 생성비가 2.9 이상으로 카테콜에 대한 선택도가 우수한 결과를 나타낸다.Therefore, the present inventors have completed the present invention by developing a novel catalyst having excellent phenol conversion and catechol selectivity, which is used in the phenolic hydroxylation reaction. When using the novel catalyst of the present invention, water is used as a solvent. In addition, the conversion rate is excellent at room temperature and the production ratio of catechol / hydroquinone is 2.9 or more, and the selectivity with respect to catechol is shown.

따라서, 본 발명은 과산화수소를 산화제로 사용하는 페놀의 수산화반응에 촉매로 사용되어 실온에서도 활성이 우수하며 카테콜의 선택적 합성이 가능토록 하는 신규 나노촉매를 제공하는데 그 목적이 있다. Accordingly, an object of the present invention is to provide a novel nanocatalyst which is used as a catalyst for the hydroxylation reaction of phenol using hydrogen peroxide as an oxidizing agent and has excellent activity even at room temperature and enables selective synthesis of catechol.

본 발명은 물 용매에서 과산화수소 산화제를 이용하여 페놀로부터 이수산화벤젠을 합성하는 공정에 적용되는 촉매에 있어서, The present invention is a catalyst applied to a process for synthesizing benzene dioxide from phenol using a hydrogen peroxide oxidant in a water solvent,

상기 촉매는 양성자형 나노세공 분자체에, 철, 아연, 망간 및 코발트 중에서 선택된 2종 이상의 전이금속 이온과, 알칼리금속 이온이 동시에 이온 교환되어 있어 실온에서 고활성을 보이는 페놀의 수산화 반응용 나노촉매를 그 특징으로 한다.The catalyst is a nanocatalyst for the hydroxylation reaction of a phenol having a high activity at room temperature by ion-exchanging at least two transition metal ions selected from iron, zinc, manganese, and cobalt and proton-type nanoporous molecular sieves at the same time. It is characterized by.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 과산화수소 산화제를 사용하여 페놀을 수산화반응하여 이수산화벤젠을 제조하는 반응공정 중에 사용되는 신규 나노촉매에 관한 것으로서, 본 발명의 신규 나노촉매를 이용한 수산화반응은 실온에서도 반응 활성이 우수할 뿐만 아니라 이수산화벤젠 중의 카테콜에 대한 선택도가 현저하게 상승하는 결과를 나타내므로 카테콜의 선택적 합성이 가능하다.The present invention relates to a novel nanocatalyst used in the reaction process for the production of benzene dihydroxide by the hydration reaction of phenol using hydrogen peroxide oxidant, the hydroxide reaction using the novel nanocatalyst of the present invention is excellent in reaction activity even at room temperature However, selective selectivity of catechol is possible since the selectivity to catechol in benzene dihydrate is markedly increased.

본 발명에 따른 나노촉매를 제조하는데 사용되는 담체로서는 동공크기가 7 Å 이상 바람직하기로는 7∼200 Å으로 동공크기가 큰 다공성 분자체를 사용하는 바, 동공의 크기가 7 Å 보다 작으면 벤조퀴논의 선택도가 증가하는 경향을 보이므로 이수산화벤젠의 선택적 합성이 불가능해진다. 또한, 양성자형 나노세공 분자체의 Si/Al 비율이 1∼200 범위인 것이 고체산의 특성을 발휘할 수 있다는 면에서 바람직하다. 따라서, 본 발명에 적용될 수 있는 상용화된 양성자형 나노세공 분자체로는 HY, USHY, HBEA, MCM-41, MCM-48, SBA-15 등 중에서 선택된 것을 사용할 수 있다.As a carrier used to prepare the nanocatalyst according to the present invention, a porous molecular sieve having a large pore size of 7 to 200 mm 3 or more, preferably 7 to 200 mm 3, is used. As the selectivity tends to increase, selective synthesis of benzene dioxide is not possible. In addition, it is preferable that the Si / Al ratio of the proton-type nanoporous molecular sieve is in the range of 1 to 200 in that it can exhibit the properties of the solid acid. Therefore, commercially available proton-type nanopore molecular sieves applicable to the present invention may be selected from HY, USHY, HBEA, MCM-41, MCM-48, SBA-15 and the like.

본 발명에 따른 나노촉매는 상기한 양성자형 나노세공 분자체에 철, 아연, 망간 및 코발트 중에서 선택된 2종 이상의 전이금속과 알칼리 금속 이온이 동시에 이온 교환되어 있다. In the nanocatalyst according to the present invention, at least two transition metals and alkali metal ions selected from iron, zinc, manganese, and cobalt are ion-exchanged simultaneously in the proton-type nanoporous molecular sieve.

활성금속으로서 전이금속은 구체적으로 철(Fe), 아연(Zn), 망간(Mn), 코발트(Co) 등이 포함되며, 이들은 적어도 2종 이상이 함께 사용될 수 있다. 다공성 담체상에 이온 교환되는 전이금속의 이온교환율은 20 ∼ 70% 범위내로 유지하는 것이 바람직하다. 만약, 전이금속의 이온교환율이 70%를 초과하면 담체에 존재할 수 있는 활성성분이 금속 양이온(Ⅱ), 금속 산화물, 금속 수산화물 등과 같이 다양하여 반응경로가 복잡하게 됨과 동시에 원하지 않는 생성물이 다량 발생될 뿐만 아니라, 다양한 활성성분에 의해 과산화수소가 쉽게 분해되어 반응활성이 저조하게 된다. 반면에, 전이금속의 이온교환율 20% 미만이면 활성성분이 너무 적어 과산화수소를 활성화시키기 충분하지 못하여 활성이 저조한 단점이 있다.As the active metal, the transition metal specifically includes iron (Fe), zinc (Zn), manganese (Mn), cobalt (Co), and the like, and at least two or more kinds thereof may be used together. The ion exchange rate of the transition metal ion-exchanged on the porous carrier is preferably maintained in the range of 20 to 70%. If the ion exchange rate of the transition metal exceeds 70%, the active ingredient that may be present in the carrier is varied such as metal cations (II), metal oxides, and metal hydroxides, which leads to a complicated reaction path and a large amount of unwanted products. In addition, hydrogen peroxide is easily decomposed by various active ingredients, resulting in poor reaction activity. On the other hand, if the ion exchange rate of the transition metal is less than 20%, there are disadvantages in that the activity is low because the active ingredient is too small to activate hydrogen peroxide.

또 다른 활성금속으로서 담지되는 금속은 알칼리금속이 사용될 수 있다. 알칼리 금속은 다공성 담체상의 이온교환 자리 중 이온교환율 5∼20% 범위로 이온 교환하는 것이 바람직하다. 알칼리 금속의 이온교환율이 5% 미만이면 고체산으로서의 산성도를 중화시켜 주는 성질이 미약한 문제가 있고, 20%를 초과하면 고체산으로서의 산성도를 과다하게 중화시키는 문제가 있다. Alkali metal may be used as the metal supported as another active metal. The alkali metal is preferably ion exchanged in the range of 5-20% of the ion exchange rate among the ion exchange sites on the porous carrier. If the ion exchange rate of the alkali metal is less than 5%, there is a problem that the property of neutralizing the acidity as a solid acid is weak, and if it exceeds 20%, there is a problem of excessively neutralizing the acidity as a solid acid.

본 발명이 목적하는 불균일계 나노촉매의 제조방법은 통상의 이온교환 방법으로 이루어지며, 그 제조과정을 대표적으로 기술하면 다음과 같다. 즉, 10 g의 HBEA형 제올라이트와 0.1M NaNO3 수용액을 이용하여 80 ℃에서 3회 이온 교환시키고 110 ℃에서 완전 건조시킨다. 건조된 10 g의 HNaBEA를 0.001 ∼ 0.1M FeSO4·7H2O 수용액으로 실온에서 1회 이온 교환시킨다. 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 400 ∼ 500 ℃에서 5 시간 소성 시킴으로써 FeHNaBEA를 만든 후, 10 g의 FeHNaBEA를 0.001 ∼ 0.1M Co(NO3)2·6H2O 수용액으로 실온에서 1회 이온 교환시킨다. 건조된 시료는 수분이 3 ∼ 5% 함유된 공기 분위기에서 400 ∼ 500 ℃에서 5 시간 소성 시킴으로써 본 발명의 불균일계 나노촉매를 제조한다.The method for producing a heterogeneous nanocatalyst of the present invention is made of a conventional ion exchange method, and the manufacturing process thereof is as follows. That is, 10 g of an HBEA zeolite and 0.1 M NaNO 3 aqueous solution were ion-exchanged three times at 80 ° C. and completely dried at 110 ° C. Dried 10 g of HNaBEA is ion-exchanged once at room temperature with 0.001-0.1 M FeSO 4 .7H 2 O aqueous solution. The dried catalyst sample was calcined at 400 to 500 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to form FeHNaBEA, and then 10 g of FeHNaBEA was dissolved in 0.001 to 0.1M Co (NO 3 ) 2 · 6H 2 O solution. Ion exchange at room temperature once. The dried sample is calcined at 400 to 500 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to prepare a heterogeneous nanocatalyst of the present invention.

이상과 같은 방법으로 제조한 나노촉매 존재하에서 과산화수소 산화제를 사용하여 페놀을 수산화반응시키는 바, 수산화반응은 상압, 실온, 페놀/과산화수소의 몰비=3, 물을 용매로 사용하여 수행한다. 일반적인 페놀의 산화반응이 용매로서 산용액을 사용하므로 반응 후 폐산이 부산물로 배출되는 문제가 있는데 반하여, 본 발명에 따른 신규 나노촉매를 사용하면 반응용매로서 물을 사용하더라도 우수한 반응 전환율과 선택도를 보이므로 폐산 처리를 위한 별도 공정을 필요치 않는 등의 공정상의 우수성이 있다. 상기한 바와 같은 반응조건으로 페놀을 실온에서 산화 반응을 수행하면, 카테콜+히드로퀴논의 선택도가 적어도 95% 이상의 결과를 얻음으로써 여타 촉매와 비교하여 월등히 개선된 결과를 얻을 수 있었다.In the presence of the nanocatalyst prepared by the above method, the hydrogen peroxide oxidized by using a hydrogen peroxide oxidizing agent, the hydroxyl reaction is carried out using a solvent at atmospheric pressure, room temperature, phenol / hydrogen peroxide ratio = 3, water. In general, the oxidation reaction of phenol uses acid solution as a solvent, so waste acid is discharged as a by-product after the reaction. However, when using the new nanocatalyst according to the present invention, even when water is used as a reaction solvent, excellent reaction conversion and selectivity As it is seen, there are process superiorities such as not requiring a separate process for treating waste acid. When the phenol was oxidized at room temperature under the reaction conditions as described above, the selectivity of catechol + hydroquinone was obtained at least 95% or more, which resulted in much improved results compared to other catalysts.

이와 같은 본 발명은 다음 실시 예에 의거하여 더욱 구체화하겠는 바, 본 발명이 이러한 실시 예에 한정되지는 않는다.Such a present invention will be further embodied based on the following examples, but the present invention is not limited to these examples.

실시예 1Example 1

10 g의 HY형 제올라이트와 0.1M KNO3 수용액을 이용하여 80 ℃에서 3회 이온 교환시키고 110 ℃에서 완전 건조시켰다. 건조된 10 g의 HKY를 0.005M Mn(NO3)2·6H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 FeHKY를 만든 후, 10 g의 FeHKY를 0.005M FeSO4·7H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 MnFeHKY(이온교환율 : Mn 20%, Fe 30%, K 17%)를 제조하였다.10 g of HY zeolite and 0.1 M KNO 3 aqueous solution were ion exchanged three times at 80 ° C. and completely dried at 110 ° C. The dried 10 g of HKY was ion exchanged once at room temperature with 0.005 M Mn (NO 3 ) 2 .6H 2 O aqueous solution. The dried catalyst sample was calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% moisture, and then 10 g of FeHKY was ion-exchanged once with room temperature of 0.005 M FeSO 4 · 7H 2 O solution at room temperature. . MnFeHKY (ion exchange rate: Mn 20%, Fe 30%, K 17%) was prepared by baking the dried sample at 450 ° C. for 5 hours in an air atmosphere containing 3-5% moisture.

실시예 2Example 2

10 g의 HBEA형 제올라이트와 0.1M NaNO3 수용액을 이용하여 80 ℃에서 3회 이온 교환시키고 110 ℃에서 완전 건조시켰다. 건조된 10 g의 HNaBEA를 0.005M FeSO4·7H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 FeHNaBEA를 만든 후, 10 g의 FeHNaBEA를 0.005M Co(NO3)2·6H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 FeCoHNaBEA(이온교환율 : Fe 20%, Co 20%, Na 15%)를 제조하였다.10 g of HBEA zeolite and 0.1 M NaNO 3 aqueous solution were ion exchanged three times at 80 ° C. and completely dried at 110 ° C. Dried 10 g of HNaBEA was ion exchanged once at room temperature with 0.005 M FeSO 4 .7H 2 O aqueous solution. The dried catalyst sample was calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to form FeHNaBEA, and then 10 g of FeHNaBEA was dissolved in 0.005 M Co (NO 3 ) 2 · 6H 2 O solution at room temperature. Was ion exchanged twice. The dried samples were calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to prepare FeCoHNaBEA (ion exchange rate: Fe 20%, Co 20%, Na 15%).

실시예 3Example 3

10 g의 HBEA형 제올라이트와 0.1M NaNO3 수용액을 이용하여 80 ℃에서 3회 이온 교환시키고 110 ℃에서 완전 건조시켰다. 건조된 10 g의 HNaBEA를 0.005M Co(NO3)2·6H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 CoHNaBEA를 만든 후, 10 g의 FeHNaBEA를 0.005M FeSO4·7H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 CoFeHNaBEA를 제조하였다. 같은 방법으로, 10 g의 CoFeHNaBEA를 0.005M Zn(NO3)2·6H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 최종적으로 CoFeZnHNaBEA(이온교환율 : Co 10%, Fe 23%, Zn 7%, Na 8%)를 제조하였다.10 g of HBEA zeolite and 0.1 M NaNO 3 aqueous solution were ion exchanged three times at 80 ° C. and completely dried at 110 ° C. The dried 10 g of HNaBEA was ion exchanged once at room temperature with 0.005 M Co (NO 3 ) 2 .6H 2 O aqueous solution. The dried catalyst sample was calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to make CoHNaBEA, and 10 g of FeHNaBEA was ion-exchanged once at room temperature with 0.005 M FeSO 4 · 7H 2 O aqueous solution. . The dried sample was produced by CoFeHNaBEA by firing at 450 ℃ for 5 hours in an air atmosphere containing 3 to 5% moisture. In the same manner, 10 g of CoFeHNaBEA was ion exchanged once at room temperature with an aqueous 0.005 M Zn (NO 3 ) 2 .6H 2 O solution. The dried sample was calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to finally prepare CoFeZnHNaBEA (ion exchange rate: Co 10%, Fe 23%, Zn 7%, Na 8%).

실시예 4 Example 4

10 g의 HY형 제올라이트와 0.1M LiNO3 수용액을 이용하여 80 ℃에서 3회 이온 교환시키고 110 ℃에서 완전 건조시켰다. 건조된 10 g의 HLiY를 0.005M Ni(NO3)2·6H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 NiHLiY를 만든 후, 10 g의 NiHLiY를 0.005M Co(NO3)2·6H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 NiCoHLiY를 제조하였다. 같은 방법으로, 10 g의 NiCoHLiY를 0.005M FeSO4·7H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 최종적으로 NiCoFeHLiY(이온교환율 : Ni 10%, Co 13%, Fe 24%, Li 7%)를 제조하였다.10 g of HY zeolite and 0.1 M LiNO 3 aqueous solution were ion exchanged three times at 80 ° C. and completely dried at 110 ° C. The dried 10 g of HLiY was ion exchanged once at room temperature with 0.005 M Ni (NO 3 ) 2 .6H 2 O aqueous solution. The dried catalyst sample was calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to form NiHLiY, and then 10 g of NiHLiY was dissolved in 0.005M Co (NO 3 ) 2 · 6H 2 O aqueous solution at room temperature. Was ion exchanged twice. The dried sample was prepared by NiCoHLiY by firing at 450 ℃ for 5 hours in an air atmosphere containing 3 to 5% of moisture. In the same manner, 10 g of NiCoHLiY was ion exchanged once at room temperature with an aqueous 0.005 M FeSO 4 .7H 2 O solution. The dried sample was finally baked NiCoFeHLiY (ion exchange rate: Ni 10%, Co 13%, Fe 24%, Li 7%) by baking for 5 hours at 450 ℃ in an air atmosphere containing 3 to 5% moisture.

비교예 1Comparative Example 1

10 g의 HY형 제올라이트와 0.1M NaNO3 수용액을 이용하여 80 ℃에서 3회 이온 교환시키고 110 ℃에서 완전 건조시켰다. 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성시킴으로써 NaHY(이온교환율 : Na 87%) 촉매를 제조하였다.10 g of HY type zeolite and 0.1 M NaNO 3 aqueous solution were ion exchanged three times at 80 ° C. and completely dried at 110 ° C. The dried catalyst sample was calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to prepare a NaHY (ion exchange rate: Na 87%) catalyst.

비교예 2Comparative Example 2

10 g의 HBEA형 제올라이트와 0.1M NaNO3 수용액을 이용하여 80 ℃에서 3회 이온 교환시키고 110 ℃에서 완전 건조시켰다. 건조된 10 g의 HNaBEA를 0.005M FeSO4·7H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 FeHNaBEA(이온교환율 : Fe 25%, Na 15%)를 제조하였다.10 g of HBEA zeolite and 0.1 M NaNO 3 aqueous solution were ion exchanged three times at 80 ° C. and completely dried at 110 ° C. Dried 10 g of HNaBEA was ion exchanged once at room temperature with 0.005 M FeSO 4 .7H 2 O aqueous solution. The dried catalyst sample was calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to prepare FeHNaBEA (ion exchange rate: Fe 25%, Na 15%).

비교예 3Comparative Example 3

10 g의 HBEA형 제올라이트와 0.1M NaNO3 수용액을 이용하여 80 ℃에서 3회 이온 교환시키고 110 ℃에서 완전 건조시켰다. 건조된 10 g의 NaHBEA를 0.005M Co(NO3)2·6H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 CoNaHBEA (이온교환율 : Co 38%, Na 13%)를 제조하였다.10 g of HBEA zeolite and 0.1 M NaNO 3 aqueous solution were ion exchanged three times at 80 ° C. and completely dried at 110 ° C. Dried 10 g of NaHBEA was ion exchanged once at room temperature with 0.005 M Co (NO 3 ) 2 .6H 2 O aqueous solution. The dried catalyst sample was calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to prepare CoNaHBEA (ion exchange rate: Co 38%, Na 13%).

비교예 4Comparative Example 4

10 g의 TS-2 촉매를 110 ℃에서 완전 건조시킨 후, 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 TS-2를 준비하였다[J. S. Reddy, S. Sivasanker and P. Ratnasamy J. Mol. Catal. 1992, 71, 373에 기록된 방법으로 촉매를 제조함].After 10 g of the TS-2 catalyst was completely dried at 110 ° C., the dried catalyst sample was prepared by firing the dried catalyst sample at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture [JS Reddy, S Sivasanker and P. Ratnasamy J. Mol. Catal . To prepare a catalyst by the method recorded in 1992, 71 , 373.

비교예 5Comparative Example 5

10 g의 메조포러스 분자체 MCM-41를 0.005M Ni(NO3)2·6H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 NiMCM-41(이온교환율 : Ni 20%)를 제조하였다.10 g of mesoporous molecular sieve MCM-41 was ion exchanged once at room temperature with 0.005 M Ni (NO 3 ) 2 .6H 2 O aqueous solution. The dried catalyst sample was calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% of moisture to prepare NiMCM-41 (ion exchange rate: Ni 20%).

비교예 6Comparative Example 6

10 g의 HY형 제올라이트와 0.1M NaNO3 수용액을 이용하여 80 ℃에서 3회 이온 교환시키고 110 ℃에서 완전 건조시켰다. 건조된 10 g의 HNaY를 0.005M Zn(NO3)2·6H2O 수용액으로 실온에서 1회 이온 교환시켰다. 건조된 촉매시료는 수분이 3∼5% 함유된 공기 분위기에서 450 ℃에서 5 시간 소성 시킴으로써 ZnHNaY(이온교환율 : Zn 25%, Na 20%)를 제조하였다.10 g of HY type zeolite and 0.1 M NaNO 3 aqueous solution were ion exchanged three times at 80 ° C. and completely dried at 110 ° C. The dried 10 g of HNaY was ion exchanged once at room temperature with 0.005 M Zn (NO 3 ) 2 .6H 2 O aqueous solution. The dried catalyst sample was calcined at 450 ° C. for 5 hours in an air atmosphere containing 3 to 5% moisture to prepare ZnHNaY (ion exchange rate: Zn 25%, Na 20%).

실험예 : 페놀의 수산화반응에서의 촉매의 효과Experimental Example: Effect of Catalyst on the Hydroxylation of Phenol

교반 반응기에 0.1 g의 촉매를 가한 후, 30 ㎖의 증류수에 10.6 mmol의 페놀을 녹인 페놀수용액을 교반 반응기에 넣어 교반하면서 질소 분위기에서 10 분동안 0.4 ㎖의 30% H2O2를 첨가하고 실온(20 ℃)에서 3 시간 동안 교반하였다. 반응용액을 채취하여 메탄올 500 ㎖와 4-플루오로페놀 2.5 g을 녹인 표준물질과 채취된 용액을 6 : 4의 부피비로 섞은 후 ICI사의 LC 1200 UV/VIS 검출기와 Waters사의 Spherisorb 5 ㎛ ODS2 컬럼이 장착된 SHIMADZU사의 액체 크로마토그래프로 정량분석하였다. 그 결과는 다음 표 1에 나타내었다.After adding 0.1 g of catalyst to the stirred reactor, an aqueous phenol solution of 10.6 mmol of phenol dissolved in 30 ml of distilled water was added to the stirred reactor, followed by stirring, and 0.4 ml of 30% H 2 O 2 was added for 10 minutes in a nitrogen atmosphere. (20 Agitation) for 3 hours. The reaction solution was collected, a mixture of 500 ml of methanol and 2.5 g of 4-fluorophenol, and the sample solution were mixed at a volume ratio of 6: 4. Then, ICI LC 1200 UV / VIS detector and Waters Spherisorb 5 ㎛ ODS2 column were prepared. Quantification was carried out with a liquid chromatograph of SHIMADZU equipped. The results are shown in Table 1 below.

구 분division 촉매 종류Catalyst type 전환율, %Conversion rate,% 선 택 도, %Selectivity,% CATCAT HQHQ p-BQ p -BQ 실시예 1Example 1 MnFeHKYMnFeHKY 20.820.8 71.971.9 24.124.1 4.04.0 실시예 2Example 2 FeCoHNaBEAFeCoHNaBEA 21.321.3 71.671.6 24.724.7 3.73.7 실시예 3Example 3 CoFeZnHNaBEACoFeZnHNaBEA 21.221.2 71.671.6 24.624.6 3.83.8 실시예 4Example 4 NiCoFeHLiYNiCoFeHLiY 20.620.6 71.771.7 24.824.8 3.53.5 비교예 1Comparative Example 1 NaHYNahy 6.06.0 -- -- -- 비교예 2Comparative Example 2 FeHNaBEAFeHNaBEA 21.421.4 61.661.6 10.510.5 27.927.9 비교예 3Comparative Example 3 CoNaHBEACoNaHBEA 0.50.5 -- -- -- 비교예 4Comparative Example 4 TS-2TS-2 9.39.3 34.334.3 8.58.5 57.257.2 비교예 5Comparative Example 5 NiMCM-41NiMCM-41 9.09.0 30.430.4 13.413.4 56.256.2 비교예 6Comparative Example 6 ZnHNaYZnHNaY 5.25.2 35.135.1 16.216.2 48.748.7

상기 표 1에 따르면, 철, 아연, 망간, 코발트 중에서 선택된 하나 혹은 둘 이상의 전이금속과 알카리금속이 동시에 포함하는 본 발명의 나노촉매(실시예 1 ∼ 4)는 그렇지 않은 촉매(비교예 1 ∼ 6)에 비교하여 전환율이 우수하고 벤조퀴논에 대한 선택도가 현저하게 낮은 장점이 있다. 또한 전이금속(Fe)과 알카리금속(Na)를 동시에 포함한 나노촉매(비교예 2)도 실시예 1 ∼ 4 촉매와 유사한 우수한 촉매 활성을 보이지만 벤조퀴논의 선택도가 높아 상대적으로 카테콜과 히드로퀴논의 선택도가 저조한 단점이 있다.According to Table 1, the nanocatalyst of the present invention (Examples 1 to 4) simultaneously containing one or two or more transition metals and alkali metals selected from iron, zinc, manganese and cobalt is not a catalyst (Comparative Examples 1 to 6). Compared to), it has an advantage of excellent conversion and significantly lower selectivity to benzoquinone. In addition, the nanocatalyst (Comparative Example 2) containing a transition metal (Fe) and an alkali metal (Na) simultaneously shows excellent catalytic activity similar to those of Examples 1 to 4, but the selectivity of benzoquinone is relatively high. There is a disadvantage of poor selectivity.

한편, 비교예 3 및 비교예 6에서와 같이 전이금속(Co 또는 Zn)과 알카리금속(Na)를 동시에 포함한 촉매라 할지라도 2종 이상의 서로 다른 전이금속원소를 포함하지 않을 경우 전환율과 카테콜, 히드로퀴논의 선택도가 실시예 1 ∼ 4보다 현저하게 낮고, 벤조퀴논이 상대적으로 많이 생성되는 단점이 있다.On the other hand, even in the case of a catalyst including a transition metal (Co or Zn) and an alkali metal (Na) at the same time as in Comparative Example 3 and Comparative Example 6, if the conversion rate and catechol, The selectivity of hydroquinone is significantly lower than that of Examples 1 to 4, and a relatively large amount of benzoquinone is produced.

또한, 비교예 5에서와 같이 철, 구리, 망간, 코발트 중에서 선택된 하나의 전이금속을 포함한 메조포러스 물질 NiMCM-41은 실시예 1 ∼ 4보다 전환율과 카테콜, 히드로퀴논의 선택도가 현저하게 낮고, 벤조퀴논이 상대적으로 많이 생성되는 단점이 있다. 또한, 비교예 4의 TS-2는 전환율과 카테콜, 히드로퀴논의 선택도[J. S. Reddy, S. Sivasanker and P. Ratnasamy J. Mol. Catal. 1992, 71, 373에 기록된 실험결과를 이용함]가 실시예 1 ∼ 4보다 현저하게 낮고, 벤조퀴논이 상대적으로 높은 단점이 있다.In addition, as in Comparative Example 5, the mesoporous material NiMCM-41 including one transition metal selected from iron, copper, manganese and cobalt has significantly lower conversion and selectivity of catechol and hydroquinone than Examples 1 to 4, There is a disadvantage in that a relatively large amount of benzoquinone is produced. In addition, TS-2 of Comparative Example 4 had a conversion rate and selectivity for catechol and hydroquinone [JS Reddy, S. Sivasanker and P. Ratnasamy J. Mol. Catal . Using experimental results recorded in 1992, 71 , 373] is significantly lower than Examples 1 to 4, and benzoquinone is relatively high.

본 발명에 따른 신규 나노촉매 존재하에서 과산화수소 산화제를 사용하여 페놀의 수산화반응을 수행한 결과, 페놀의 전환율이 우수하였고, 카테콜과 히드로퀴논에 대한 선택도가 여타 생성물에 비하여 월등히 우수하였으며, 부산물의 일종인 벤조퀴논의 선택도가 크게 낮아졌다.Hydrolysis of phenol using hydrogen peroxide oxidizing agent in the presence of a novel nanocatalyst according to the present invention resulted in excellent conversion of phenol, and excellent selectivity for catechol and hydroquinone, compared to other products. The selectivity of phosphorus benzoquinone was significantly lowered.

따라서, 본 발명의 신규 나노촉매는 카테콜과 히드로퀴논의 선택적 합성반응에 유용하다.Therefore, the novel nanocatalysts of the present invention are useful for the selective synthesis of catechol and hydroquinone.

Claims (5)

물 용매에서 과산화수소 산화제를 이용하여 페놀로부터 이수산화벤젠을 합성하는 공정에 적용되는 촉매에 있어서, A catalyst applied to a process for synthesizing benzene dioxide from phenol using a hydrogen peroxide oxidant in a water solvent, 상기 촉매는 동공크기가 7 ∼ 100 Å이고, Si/Al 비율이 1 ∼ 200인 양성자형 나노세공 분자체에, 철, 아연, 망간 및 코발트 중에서 선택된 2종 이상의 전이금속 이온과 알칼리금속 이온이 동시에 이온 교환되어 있는 것임을 특징으로 하는 실온에서 고활성을 보이는 페놀의 수산화 반응용 나노촉매.The catalyst has two or more transition metal ions and alkali metal ions selected from iron, zinc, manganese and cobalt simultaneously in a proton-type nanoporous molecular sieve having a pore size of 7 to 100 GPa and a Si / Al ratio of 1 to 200. A nanocatalyst for the hydroxylation reaction of phenol that exhibits high activity at room temperature, characterized by being ion-exchanged. 제 1 항에 있어서, 상기 전이금속의 이온교환율이 20 ∼ 70%인 것임을 특징으로 하는 나노촉매.The nanocatalyst of claim 1, wherein an ion exchange rate of the transition metal is 20 to 70%. 제 1 항에 있어서, 상기 알칼리금속 이온교환율이 5 ∼ 20%인 것임을 특징으로 하는 나노촉매.The nanocatalyst according to claim 1, wherein the alkali metal ion exchange rate is 5 to 20%. 삭제delete 제 1 항에 있어서, 상기 분자체는 HY형, USHY형, HBEA형, MCM-41, MCM-48 및 SBA-15 중에서 선택된 양성자형 나노세공 분자체인 것임을 특징으로 하는 나노촉매.The nanocatalyst of claim 1, wherein the molecular sieve is a proton-type nanoporous molecular sieve selected from HY, USHY, HBEA, MCM-41, MCM-48, and SBA-15.
KR10-2002-0086980A 2002-12-30 2002-12-30 Highly active nano-catalyst for phenol hydroxylation at room temperature KR100501825B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0086980A KR100501825B1 (en) 2002-12-30 2002-12-30 Highly active nano-catalyst for phenol hydroxylation at room temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0086980A KR100501825B1 (en) 2002-12-30 2002-12-30 Highly active nano-catalyst for phenol hydroxylation at room temperature

Publications (2)

Publication Number Publication Date
KR20040061184A KR20040061184A (en) 2004-07-07
KR100501825B1 true KR100501825B1 (en) 2005-07-20

Family

ID=37352747

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0086980A KR100501825B1 (en) 2002-12-30 2002-12-30 Highly active nano-catalyst for phenol hydroxylation at room temperature

Country Status (1)

Country Link
KR (1) KR100501825B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169636A (en) * 1980-06-02 1981-12-26 Mitsubishi Chem Ind Ltd Preparation of catechol
US4578521A (en) * 1985-02-04 1986-03-25 Mobil Oil Corporation Shape-selective catalytic oxidation of phenol
JPH04215844A (en) * 1990-04-17 1992-08-06 Nkk Corp Catalyst for manufacturing phenols and manufacture of phenols
KR100366893B1 (en) * 1995-11-03 2003-02-19 삼성종합화학주식회사 Catalytic composition for preparing catechol and hydroquinone, and method for preparing catechol and hydroquinone using the same
KR20030064478A (en) * 2002-01-28 2003-08-02 한국화학연구원 Nano Porous Catalyst for the Selective Production of Catechol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169636A (en) * 1980-06-02 1981-12-26 Mitsubishi Chem Ind Ltd Preparation of catechol
US4578521A (en) * 1985-02-04 1986-03-25 Mobil Oil Corporation Shape-selective catalytic oxidation of phenol
JPH04215844A (en) * 1990-04-17 1992-08-06 Nkk Corp Catalyst for manufacturing phenols and manufacture of phenols
KR100366893B1 (en) * 1995-11-03 2003-02-19 삼성종합화학주식회사 Catalytic composition for preparing catechol and hydroquinone, and method for preparing catechol and hydroquinone using the same
KR20030064478A (en) * 2002-01-28 2003-08-02 한국화학연구원 Nano Porous Catalyst for the Selective Production of Catechol

Also Published As

Publication number Publication date
KR20040061184A (en) 2004-07-07

Similar Documents

Publication Publication Date Title
Barrault et al. Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays
Choudhary et al. Epoxidation of styrene by TBHP to styrene oxide using barium oxide as a highly active/selective and reusable solid catalyst
Kumar et al. Oxidative organic transformations catalyzed by titanium-and vanadium-silicate molecular sieves
Balavoine et al. The stereospecific epoxidation of olefins catalysed by ruthenium
JPH05194375A (en) Preparation of aryl alkyl hydroperoxide by catalysis of manganese complex
KR100443261B1 (en) Nano Porous Catalyst for the Selective Production of Catechol
US6191318B1 (en) Process for preparing hydroxylated aromatics by hydrogen and oxygen
Tagawa et al. Liquid-phase oxidation of benzene to phenol over supported iron salts
KR100501825B1 (en) Highly active nano-catalyst for phenol hydroxylation at room temperature
CN1050537C (en) Phenol hydroxylated synthetic o-dihydroxybenzene (catechol) and P-benzenediol (hydroquinone) catalyzer
CA2809564C (en) Process for industrial production of 2-methyl-1,4-naphthaquinone
CN102249860A (en) Method for preparing dichlorobenzalcohol diisopropyl benzene by diisopropyl benzene catalytic oxidation
KR101385020B1 (en) HETEROGENEOUS CATALYST FOR PREPARATION OF p-BENZOQUINONE AND CATECHOL, AND METHOD FOR PREPARATION USING THEREOF
US5874647A (en) Benzene hydroxylation catalyst stability by acid treatment
Galica et al. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
JPS60331B2 (en) Method for producing cyclohexanone
Jaimol et al. Selective propionylation of veratrole to 3, 4-dimethoxypropiophenone using zeolite H-beta catalysts
KR100411177B1 (en) Oxidation catalyst and the production of hydrocarbon compounds thereby
RU2286332C1 (en) Method for preparing adamantanol-1
JP2003062468A (en) Oxidation catalyst and method for manufacturing phenols using the same
US4317745A (en) Catalytic oxidation of phenols to 1,4-benzoquinones
CN103204775A (en) Oxidation method of acetophenone
WO1999064129A2 (en) Process for preparing hydroxylated aromatics by hydrogen and oxygen
JPH11511176A (en) Method for producing 1,4-butenediol
JP2687590B2 (en) Method for producing sec-butyltoluene hydroperoxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100621

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee