KR100494238B1 - Process for Manufacturing Copper Matrix Composite Sheets Reinforced with High Volume Fraction of Tungsten - Google Patents

Process for Manufacturing Copper Matrix Composite Sheets Reinforced with High Volume Fraction of Tungsten Download PDF

Info

Publication number
KR100494238B1
KR100494238B1 KR10-2002-0058010A KR20020058010A KR100494238B1 KR 100494238 B1 KR100494238 B1 KR 100494238B1 KR 20020058010 A KR20020058010 A KR 20020058010A KR 100494238 B1 KR100494238 B1 KR 100494238B1
Authority
KR
South Korea
Prior art keywords
powder
tungsten
composite material
thermal
thin plate
Prior art date
Application number
KR10-2002-0058010A
Other languages
Korean (ko)
Other versions
KR20040026503A (en
Inventor
강석봉
강현기
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR10-2002-0058010A priority Critical patent/KR100494238B1/en
Priority to JP2003329397A priority patent/JP2004124259A/en
Publication of KR20040026503A publication Critical patent/KR20040026503A/en
Application granted granted Critical
Publication of KR100494238B1 publication Critical patent/KR100494238B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • C23C4/185Separation of the coating from the substrate

Abstract

액상소결법과 함침법과 같은 분말야금법으로는 텅스텐 입자를 용융할 수 있는 온도까지 올릴 수 없으므로, 고온의 플라즈마 화염에 의해 텅스텐 입자가 약간 용융되는 경우보다 제품 내에는 보다 많은 기공이 존재하게 된다. 게다가, 기존의 분말야금법은 성형과 소결이 요구되는 복잡한 제조공정으로 인하여 제조원가가 상승될 뿐만 아니라 생산성이 떨어지는 단점이 있다. 특히, 활용되는 부분이 두께 1mm 이하의 박판 형상이면서 큰 면적일 경우, 이들 방법으로는 치수의 제한을 받게 된다. 따라서, 본 발명에서는 제조공정이 단순하면서 복잡한 형상을 만들 수 있는 구리분말과 텅스텐 분말을 혼합 또는 구상화된 W-Cu 복합재료를 용사용 분말로 제조하여, 대기 플라즈마 용사를 이용하는 구리 기지 복합재료 박판을 제조하는 방법을 제공한다.Powder metallurgy methods, such as liquid sintering and impregnation, cannot raise the temperature at which tungsten particles can be melted, so that more pores exist in the product than when tungsten particles are slightly melted by a hot plasma flame. In addition, the conventional powder metallurgy has a disadvantage in that not only the manufacturing cost is increased due to the complicated manufacturing process requiring molding and sintering but also the productivity is low. In particular, when the portion to be utilized is a thin plate shape having a thickness of 1 mm or less and a large area, these methods are limited in size. Therefore, in the present invention, a copper base composite material thin plate using atmospheric plasma spraying is produced by preparing a W-Cu composite material which is mixed or spheroidized with copper powder and tungsten powder which can make a complicated shape with a simple manufacturing process. It provides a method of manufacturing.

Description

W-Cu복합재료 박판의 제조방법{Process for Manufacturing Copper Matrix Composite Sheets Reinforced with High Volume Fraction of Tungsten}Process for Manufacturing Copper Matrix Composite Sheets Reinforced with High Volume Fraction of Tungsten}

본 발명은 금속기지 복합재료의 제조에 관한 것으로, 더욱 상세하게는 플라즈마 용사를 이용한 텅스텐 강화 구리 기지 복합재료 박판의 제조방법에 관한 것이다. The present invention relates to the manufacture of metal-based composites, and more particularly, to a method of manufacturing a tungsten-reinforced copper matrix composite sheet using plasma spraying.

텅스텐 강화 Cu기지 복합재료는 강화재의 종류와 분율에 따라 연성과 강도, 열팽창계수와 열전달계수의 제어가 용이하고, 텅스텐의 높은 용융온도를 갖는다. 이러한 점에서 W-Cu 복합재료는 전자패키지용 히트싱크(heat sink for electronic package) 소재와 같은 열 방산재료 뿐만 아니라, 텅스텐의 내아크성, 구리의 열·전기적 특성으로 고부하 전기접점재, 모터 구동기, 전극재료, 탄두재료(warhead material) 등에 널리 이용되고 있다.Tungsten-reinforced Cu-based composite materials can easily control ductility and strength, thermal expansion coefficient and heat transfer coefficient according to the type and fraction of reinforcing material, and have a high melting temperature of tungsten. In this regard, W-Cu composites are not only heat dissipating materials such as heat sink for electronic package materials, but also high load electrical contact materials and motor drivers due to the arc resistance of tungsten and the thermal and electrical properties of copper. It is widely used in electrode materials, warhead materials, and the like.

이러한 W-Cu 복합재료는 통상 액상소결법과 함침법과 같은 분말야금법으로 제조되고 있다. 액상소결법은 텅스텐 분말과 구리 분말을 혼합하여 성형한 후, 구리의 융점 이상의 온도에서 소결시키는 방법으로, 소결밀도를 높이기 위한 분말처리과정에 따라 볼밀링과 기계적 합금법, 그리고 미량원소(Co, Ni)를 이용한 활성소결법으로 구분된다. 상기 액상소결법에 의하면, 기공이 존재하는 텅스텐 소결체 내에 용융된 액상 구리가 모세관력으로 기공 내부에 들어가 모두 채워져 고밀도의 복합재료를 얻을 수 있다. 그러나, 이 방법에서는 연속적이면서 열린 기공으로만 이루어진 다공질의 텅스텐 예비 성형체를 제조하는 데 어려운 점이 있다. 특히, 액상소결법에 있어서는, 텅스텐(19.3g/㎤)과 구리(8.96g/㎤)의 밀도 차이에 의해 분말을 균일하게 혼합하는 것이 어렵기 때문에 소결후 텅스텐 입자의 불균일한 분포를 나타낸다. Such W-Cu composites are usually manufactured by powder metallurgy such as liquid sintering and impregnation. The liquid sintering method is a method of mixing and molding tungsten powder and copper powder, and then sintering at a temperature above the melting point of copper. The ball milling, mechanical alloying method, and trace elements (Co, Ni) are applied according to powder processing to increase the sinter density. It is divided into active sintering method using). According to the liquid sintering method, the liquid copper melted in the tungsten sintered body in which the pores exist can enter all the pores by capillary force, thereby obtaining a high density composite material. However, this method has a difficulty in producing a porous tungsten preform composed only of continuous and open pores. In particular, in the liquid phase sintering method, it is difficult to uniformly mix the powder due to the density difference between tungsten (19.3 g / cm 3) and copper (8.96 g / cm 3), resulting in uneven distribution of tungsten particles after sintering.

이러한 이유로, 미국의 AMETEK, SPECTRA MAT, POLSE, BRUSHWELLMANN 및 오스트리아의 PLANSEE 사와 같은 패키지용 히트싱크 공급업체들은 상기 액상소결법 대신 함침법을 채용하고 있다. 이들 제조업체들은 대부분 함침법을 통해 구리의 조성이 10~ 30중량%인 제품을 제조한 후, 정밀기계가공을 통하여 제품을 생산하고 있다. For this reason, package heat sink suppliers such as AMETEK, SPECTRA MAT, POLSE, BRUSHWELLMANN in the United States and PLANSEE in Austria employ impregnation instead of liquid sintering. Most of these manufacturers produce products with a copper composition of 10 to 30% by weight through impregnation and then produce them through precision machining.

그러나, 텅스텐 함량이 높은 구리 기지 복합재료를 제조할 경우 구리와 텅스텐이 고용도가 작아 많은 기공이 내포하게 되며, 특히 상기 액상소결이나 함침 등과 같은 분말야금법을 적용하는 경우, 텅스텐 입자를 용융온도(3410℃)까지 올릴 수 없어, 텅스텐 입자가 약간 용융되기 때문에 복합재료 내에는 더 많은 기공이 존재하게 된다. 또한, 미국의 Osram Sylvania사(미국 특허 제6,103,992)와 대한민국의 Korea Institute of Science and Technology(미국 특허 5,963,773)와 같은 분말야금법은 성형, 소결과 같은 복잡한 제조공정을 거치므로, 제조원가가 상승될 뿐만 아니라 생산성이 떨어지는 단점이 있다. 더욱이, 제조하고자 하는 제품이 두께 1mm 이하이면서 형상이 다양하거나 큰 면적일 경우 상기한 방법들은 치수의 제한을 받게 된다.However, when manufacturing a copper base composite material having a high tungsten content, copper and tungsten have small solid solubility, and thus many pores are contained. Particularly, when the powder metallurgy method such as liquid sintering or impregnation is applied, the melting temperature of tungsten particles is increased. It cannot be raised to (3410 ° C.) and there are more pores in the composite because the tungsten particles are slightly melted. In addition, powder metallurgy methods such as Osram Sylvania (US Pat. No. 6,103,992) and Korea Institute of Science and Technology (US Pat. No. 5,963,773) in the United States go through complex manufacturing processes such as molding and sintering, resulting in increased manufacturing costs. But there is a downside in productivity. Moreover, when the product to be manufactured has a thickness of 1 mm or less and varies in shape or a large area, the above methods are limited in dimensions.

본 발명은 상술한 종래기술의 문제점을 개선하고자 제안된 것으로, 그 목적은 플라즈마 용사를 이용하므로써, 복잡한 과정을 없애고 재료 내의 기공을 최소화하여 전자기기의 열관리 소자에 적합한 박판 형상의 W-Cu 복합재료를 제조할 수 있는 방법을 제공하는 데 있다.The present invention has been proposed to improve the above-mentioned problems of the prior art, and its purpose is to eliminate the complicated process and minimize the pores in the material by using plasma spraying, so that the thin plate-shaped W-Cu composite material suitable for the thermal management device of the electronic device. It is to provide a method for producing a.

상술한 목적을 달성하기 위한 본 발명에 따른 W-Cu 복합재료의 제조방법은, 금속기지 복합재료의 제조방법에 있어서, 구리 분말과 W 분말을 혼합하여 용사용 분말을 얻은 후, 상기 용사용 분말을 기판에 플라즈마 용사하여 박판을 형성하는 것을 포함하여 구성된다.W-Cu composite material manufacturing method according to the present invention for achieving the above object, in the manufacturing method of a metal-based composite material, after mixing the copper powder and W powder to obtain a thermal spray powder, the thermal spray powder And forming a thin plate by plasma spraying on the substrate.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 복합재료의 제조방법은, W 분말로 강화된 구리 기지 복합재료의 제조에 적합하다. 바람직하게는 그 두께가 0.2~ 2mm 크기의 두께를 갖는 다양한 형상의 W-Cu 복합재료 박판의 제조에 적합하다. 특히, 본 발명의 제조방법은 W 분말이 높은 체적분율로 함유된 구리 기지 복합재료, 더 바람직하게는, 구리 기지에 50~95체적%의 W가 함유된 박판의 복합재료의 제조에 더 적합하다. 이러한 복합재료는 전자패키지용 열관리 소자로서 매우 유용하다.The method for producing a composite material according to the present invention is suitable for producing a copper matrix composite material reinforced with W powder. Preferably the thickness is suitable for the production of a thin W-Cu composite sheet of various shapes having a thickness of 0.2 ~ 2mm size. In particular, the production method of the present invention is more suitable for the production of a copper matrix composite material containing a high volume fraction of W powder, more preferably a thin sheet composite material containing 50 to 95% by volume of W in a copper matrix. . Such a composite material is very useful as a thermal management device for electronic packages.

본 발명에 따른 복합재료의 제조를 위해서는, 우선 Cu 분말과 W 분말을 혼합하여 용사용 분말을 얻는다. 상기 용사용 분말은 상기한 범위로 혼합하는 것이 바람직하다. 분말의 혼합은 두 종류의 분말을 단순히 혼합하는 방식도 좋으나, 볼밀(ball mill)로 혼합한 후 분무건조(spray-drying) 공정에 의하여 구상화된 분말을 준비하는 것이 바람직하다. 이러한 구상화된 용사용 미세 분말은 고온의 플라즈마 화염에 구리와 텅스텐이 함께 녹아 기공을 줄이게 된다.In order to manufacture the composite material according to the present invention, first, Cu powder and W powder are mixed to obtain a thermal spray powder. It is preferable to mix the said thermal spraying powder in the said range. Mixing the powder may be a method of simply mixing the two kinds of powder, but it is preferable to prepare a powder spheroidized by a spray-drying process after mixing in a ball mill (ball mill). This spheroidized thermal spray fine powder melts copper and tungsten in a high temperature plasma flame to reduce pores.

이러한 용사용 분말은 적당히 건조한 후, 대기 플라즈마 용사를 통하여 박판으로 제조된다. Such thermal spray powder is dried into a thin sheet through atmospheric plasma spraying.

도1은 플라즈마 용사를 이용하여 상기 박판의 제조과정을 설명하기 위한 모식도를 보이고 있다. 본 발명의 복합재료 박판(1)은 도1에 도시된 바와 같이, 용사건(gun)(3)의 선단 쪽으로 분말 투입구(4)를 통하여 상기 용사용 분말이 공급되고, 상기 용사건(3)과 마주보고 일정 거리를 두고 떨어져 위치한 기판(2)에 용사용 분말을 화염과 함께 뿜어내면서 용사시킴으로써 제조된다.Figure 1 shows a schematic diagram for explaining the manufacturing process of the thin plate using a plasma spray. As shown in FIG. 1, the composite thin plate 1 of the present invention is supplied with the thermal spraying powder through the powder inlet 4 toward the tip of the thermal spray gun 3, and the thermal spray 3 It is produced by spraying the thermal spraying powder with a flame on a substrate 2 facing away from the predetermined distance.

용사에 사용되는 기판(2)으로는 Cu 혹은 Cu-Zn, Cu-Al, Cu-Sn과 같은 구리합금 또는 흑연기판이 바람직한데, 이는 상기 기판들이 복합재료와 젖음성이 좋지 않으면서 열팽창계수 차이가 커서 용사 후 박리가 용이하기 때문이다. 더욱 바람직하게는, 용사후 복합재료와 기판의 박리를 더욱 용이하도록 상기 기판(2)에 질화붕소(BN)를 분사하여 기판의 표면을 코팅하는 것이다. 상기 기판(2)은 그 크기를 늘여 박판의 크기를 조절할 수 있다. As the substrate 2 used for the thermal spraying, Cu or Cu-Zn, Cu-Al, Cu-Sn copper alloys or graphite substrates are preferable. This is because peeling after spraying is easy. More preferably, boron nitride (BN) is sprayed onto the substrate 2 to coat the surface of the substrate to facilitate peeling of the composite material and the substrate after the thermal spraying. The substrate 2 may increase its size to control the size of the thin plate.

상기 기판(2)은 고정대(미도시됨)에 위치되어 있으며, 상기 플라즈마 용사건(3)은 이동대(미도시됨)에 설치하여 프로그램을 통하여 일정한 속도로 이동될 수 있다. The substrate 2 is located on a fixed stand (not shown), and the plasma sprayed gun 3 may be installed on a moving table (not shown) to move at a constant speed through a program.

본 발명에서 플라즈마 용사를 할 때, 플라즈마 아크는 15~40kW 정도가 적당하다. 이는 플라즈마 아크가 15kW 이하이면 분말이 충분한 온도까지 가열되지 않아 기판에 적층이 어려워져 회수율이 감소하며, 반면에 플라즈마 아크가 40kW 이상이면 고온에서의 용사로 인하여 산화물 등의 결함이 증가하게 되어 바람직하지 않다.When plasma spraying in the present invention, the plasma arc is suitable about 15 ~ 40kW. If the plasma arc is 15 kW or less, the powder is not heated to a sufficient temperature, making it difficult to stack on the substrate, and the recovery rate is reduced. On the other hand, if the plasma arc is 40 kW or more, the defects such as oxides are increased due to the thermal spraying at high temperatures. not.

또한, 용사건(3)의 선단 노즐에서 기판까지의 거리는 50~110 mm가 적당하다. 이는 거리가 50mm 이하이면 플라즈마 아크에 의하여 기판의 온도가 너무 상승하므로 공정의 안정성이 저하되며, 반면에 거리가 110mm 이상이면 용융분말의 응고로 인한 회수율의 감소가 나타나므로 바람직하지 않다. Moreover, as for the distance from the front end nozzle of the thermal spraying 3 to a board | substrate, 50-110 mm is suitable. If the distance is 50 mm or less, the temperature of the substrate is too high due to the plasma arc, so the stability of the process is lowered. On the other hand, if the distance is 110 mm or more, the recovery rate due to the solidification of the molten powder is not preferable.

그리고, 용사용 분말의 이동속도(주입량)는 10~100 g/min의 범위로 설정하고, 1차 가스(Ar, N2 등)의 유속을 23~94ℓ/min의 범위로, 그리고 2차 가스(H2, He 등)의 유속을 1.5~50ℓ/min의 범위로 조절하는 것이 바람직하다. 이는 분말의 이송속도가 10g/min 이하이면 용사되는 분말의 양이 너무 적어 경제적으로 바람직하지 않고, 이송속도가 100g/min 이상이면 분말의 흐름이 원활하지 않아 고른 용사면을 얻기가 어렵기 때문이다. 또한, 1차, 2차 가스 유속이 상기 범위를 벗어나면 불충분한 조업조건으로 분말이 플라즈마 아크의 중심부가 아닌 외곽에서 이송되어 균일한 용사가 불가능하므로 바람직하지 않다.The moving speed (injection amount) of the thermal spray powder is set in the range of 10 to 100 g / min, and the flow rate of the primary gas (Ar, N 2, etc.) is in the range of 23 to 94 l / min, and the secondary gas. It is preferable to adjust the flow rate of (H 2 , He, etc.) in the range of 1.5-50 l / min. This is because if the feed rate of the powder is 10g / min or less, the amount of powder to be sprayed is too small and economically undesirable. If the feed rate is 100g / min or more, the powder flow is not smooth and it is difficult to obtain an even spray surface. . In addition, if the primary and secondary gas flow rate is out of the above range, it is not preferable because the powder is transferred outside the center of the plasma arc under insufficient operating conditions and uniform spraying is impossible.

이와 같은 조건하에서 플라즈마 용사를 이용하면, 종래의 기술로 제조하기 어려운 높은 강화재 분율의 복합재료 박판을 제조할 수 있다. 그리고, 이렇게 제조되는 복합재료 박판은 높은 열전달계수와 낮은 열팽창계수를 갖고 있어 전자기기의 열관리 소재 등에 매우 적합하다. 특히, 본 발명에서는 이러한 복합재료 박판을 제조할 때, 선택하는 강화재 분말의 종류와 체적 분율에 따라 원하는 물성을 설계할 수 있다.When plasma spraying is used under such conditions, it is possible to produce a composite thin plate having a high reinforcing material fraction, which is difficult to manufacture by conventional techniques. In addition, the composite sheet thus produced has a high coefficient of heat transfer and a low coefficient of thermal expansion, which is very suitable for thermal management materials of electronic devices. In particular, in the present invention, when manufacturing the composite sheet, the desired physical properties can be designed according to the type and volume fraction of the reinforcing material powder to be selected.

이하, 본 발명을 실시예를 통하여 구체적으로 설명하지만, 아래의 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 아래의 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in detail by way of examples, but the following examples are only for explaining the present invention, and according to the gist of the present invention, the scope of the present invention is not limited to the following examples. Will be evident to those of ordinary knowledge.

[실시예 1]Example 1

325mesh 이하의 구리 분말과 400mesh 이하의 텅스텐 분말을 체적 분율 28:72로 하여 교반기에서 건식혼합하여 용사용 분말을 제조하였다. 제조된 용사용 분말을 110℃에서 1시간 동안 건조시켜 수분을 제거하였다. 제조된 용사용 분말을 약 30kW의 플라즈마 아크로 주입시켜서 100×100×10㎣ 크기의 예열된 흑연 기판에 적층시켰다. 플라즈마 용사 조업 조건은 표 1과 같았다.Copper powder of 325 mesh or less and tungsten powder of 400 mesh or less were mixed at a volume fraction of 28:72 in a stirrer to prepare a thermal spray powder. The thermal sprayed powder was dried at 110 ° C. for 1 hour to remove moisture. The thermal sprayed powder was injected into a plasma arc of about 30 kW and laminated to a preheated graphite substrate having a size of 100 × 100 × 10 mm 3. Plasma spray operation conditions were as Table 1 below.

아크 전류Arc current 500A500 A 아크 전압Arc voltage 60V60 V 입력 전력Input power 30kW30 kW 1차 가스 유량(Ar)Primary gas flow rate (Ar) 75psi, 70ℓ/min75psi, 70ℓ / min 2차 가스 유량(H2)Secondary gas flow rate (H 2 ) 50psi, 1.98ℓ/min50 psi, 1.98 L / min 노즐에서 기판까지의 거리Distance from nozzle to substrate 100mm100 mm 용사건의 이동속도Movement Speed of the Champion Event 30mm/sec30 mm / sec 분말 주입량Powder dosage 40g/min40 g / min

상기 방법으로 제조한 W-Cu 복합재료 박판의 형상을 도 2에, 박판의 미세조직을 도 3에 나타내었다. The shape of the thin W-Cu composite sheet produced by the above method is shown in FIG. 2 and the microstructure of the thin plate is shown in FIG. 3.

도 2에서 볼 수 있듯이, 본 발명에 따라 길이 100mm, 폭 100mm, 두께 약 1mm 이하 크기의 박판형상의 W-Cu 복합재료를 제조할 수 있으며, 도 3에서 볼 수 있듯이 W 입자의 체적분율이 약 70% 정도로 고르게 분포되어 있었다. As can be seen in Figure 2, according to the present invention it can be produced a thin plate-shaped W-Cu composite material having a length of 100mm, width 100mm, thickness of about 1mm or less, as shown in Figure 3 the volume fraction of the W particles is about Evenly distributed around 70%.

또한, 표 2에 본 발명으로 제조한 W-Cu 복합재료의 실제 측정한 열팽창계수 값과 열전도도를 나타내었다. 복합재료의 경우 열팽창계수와 열전도도는 강화상과 기지금속의 분율에 따라 이론적으로 계산될 수 있는 데, 본 발명의 복합재료에 대한 이론적인 열팽창계수와 열전도도 값과 비교하였다. Table 2 also shows the actual measured coefficient of thermal expansion and thermal conductivity of the W-Cu composites prepared by the present invention. In the case of the composite material, the coefficient of thermal expansion and thermal conductivity can be calculated theoretically according to the fraction of the reinforcing phase and the base metal, and compared with the theoretical coefficient of thermal expansion and the thermal conductivity of the composite material of the present invention.

구분division 실시예 1Example 1 이론치 1Theory 1 이론치 2Theory 2 열팽창계수 (ppm/℃)Coefficient of thermal expansion (ppm / ℃) 7.27.2 6.4(Kengery & Turner's model)6.4 (Kengery & Turner's model) 8.1(Rule of Mixture)8.1 (Rule of Mixture) 열전도도 (W/mK)Thermal Conductivity (W / mK) 210210 220(Landauer's model)220 (Landauer's model) 225(Maxwell model)225 (Maxwell model)

표 2에서 볼 수 있듯이, 본 발명의 복합재료에 대하여 실제 측정한 열팽창계수와 열전도도는 이론치의 값과 유사한 것을 알 수 있다.As can be seen from Table 2, it can be seen that the coefficient of thermal expansion and thermal conductivity actually measured for the composite material of the present invention are similar to the theoretical values.

[실시예 2]Example 2

평균 입경 2㎛의 텅스텐 분말과 평균 입경 26㎛의 구리 분말을 체적분율 90:10으로 하여 스테인레스강 볼밀장치에 장입한 후, 초경(cemented tungsten carbide) 볼을 첨가하였다. 이때, 분말과 볼의 무게비는 1:1로 하였으며, 단순 회전방법으로 100rpm의 속도로 약 24시간 동안 혼합한 후, 그 혼합된 분말을 물에 분산시킨 다음, 바인더로서 폴리비닐알콜(polyvinyl alcohol)을 0.5% 첨가하고, 100℃의 질소가스 중에서 회전 원반속도를 20,000rpm으로 하여 구상화된 용사용 분말을 제조하였다. 상기 구상화 용사용 분말은 건조한 후, 200mesh 체로 조대한 분말을 제거하였다. Tungsten powder with an average particle diameter of 2 mu m and copper powder with an average particle diameter of 26 mu m were charged into a stainless steel ball mill with a volume fraction of 90:10, and then cemented tungsten carbide balls were added. At this time, the weight ratio of the powder and the ball was 1: 1, and after mixing for about 24 hours at a speed of 100 rpm by a simple rotation method, the mixed powder was dispersed in water, and then polyvinyl alcohol as a binder. 0.5% was added, and spheroidized thermal spray powder was prepared by making the rotating disk speed into 20,000 rpm in 100 degreeC nitrogen gas. The spheroidized thermal spray powder was dried and then coarse powder was removed with a 200mesh sieve.

상기 방법으로 준비된 용사용 분말을 이용하여 25kW의 플라즈마 아크에서 120×100×10㎣ 크기의 무산소동 기판에 플라즈마 용사를 한 후, 120×100×1㎣ 크기의 W-Cu 복합재료 박판을 제조하였다. 상기 방법으로 제조한 W-Cu 복합재료 박판의 미세조직을 도 4에 나타내었다.Plasma spraying was performed on an oxygen-free copper substrate having a size of 120 × 100 × 10 μs in a 25 kW plasma arc using the thermal spray powder prepared by the above method, and then a 120 × 100 × 1 μ size W-Cu composite plate was prepared. . The microstructure of the thin W-Cu composite sheet produced by the above method is shown in FIG. 4.

도 4에 도시된 바와 같이, 본 발명의 복합재료 박판은, W의 체적분율이 약 90%로 고른 분포를 갖고 있었다. As shown in FIG. 4, the composite thin plate of the present invention had an even distribution in which the volume fraction of W was about 90%.

또한, 상기 복합재료의 열팽창계수를 측정한 결과, 이론치(Kengery & Turner's model; 6ppm/℃)보다 약간 낮은 6.3ppm/℃를 나타내었으며, 열전도도는 이론치(Maxwell Model; 205W/mK)보다 낮은 195W/mK 값을 보였다. 이론치와 차이가 발생한 것은 이론에서 강화재가 독립적인 입자로 존재하면서 방향성을 나타내기 때문이다. 실제 시편에서는 거의 등방향성을 나타내며, 구리와 텅스텐 사이에 고용도가 없고, 텅스텐 체적분율의 증가로 입자들간의 접촉이 많아져 독립적인 입자로 존재하는 비율이 낮기 때문이다.In addition, as a result of measuring the thermal expansion coefficient of the composite material, it showed a slightly lower than the theoretical value (Kengery & Turner's model; 6ppm / ℃), 6.3ppm / ℃, the thermal conductivity is 195W lower than the theoretical value (Maxwell Model; 205W / mK) / mK was shown. The difference with the theoretical value is because the reinforcement in the theory is oriented as an independent particle. In actual specimens, it is almost isotropic, there is no solid solution between copper and tungsten, and the increase of tungsten volume fraction increases the contact between particles, resulting in low ratio of independent particles.

상술한 바와 같이, 본 발명의 제조방법에 따르면, 종래의 분말야금기술에서 필수적인 공정, 즉 성형과 소결공정을 거치지 않아서, 제조공정이 간단하기 때문에 제품의 생산단가를 줄일 수 있다. 또한, 본 발명에서는 고온의 플라즈마를 이용하기 때문에 텅스텐과 구리를 동시에 용융시킬 수 있어 높은 밀도의 박판을 얻을 수 있으며, 이렇게 제조되는 복합재료 박판은 높은 열전달계수와 낮은 열팽창계수를 갖고 있어 전자기기의 열관리 소재 등에 매우 유용하다. 또한, 본 발명에서는 선택하는 강화재 분말의 종류와 체적분율에 따라 원하는 물성을 설계할 수 있다. 특히, 분말야금법으로는 큰 면적(100×100㎟ 이상)이면서 박판(두께: 1mm 이하)의 복합재료를 제조하는데 있어서 치수 및 강화재의 체적분율을 점차적으로 조절하는데(functionally graded) 제한이 있으나, 본 발명에서는 플라즈마 용사를 이용하므로, 이들 치수에 제약을 받지 않으면서 얇은 박판에서도 강화재의 체적 분율을 선택적으로 조절할 수 있다. As described above, according to the manufacturing method of the present invention, since the manufacturing process is simple, without undergoing an essential process in the conventional powder metallurgy, that is, a molding and a sintering process, the production cost of the product can be reduced. In addition, in the present invention, since a high temperature plasma is used, tungsten and copper can be simultaneously melted to obtain a high density thin plate, and the composite thin plate thus manufactured has a high heat transfer coefficient and a low coefficient of thermal expansion. Very useful for thermal management materials. In addition, in the present invention, the desired physical properties can be designed according to the type and volume fraction of the reinforcing material powder to be selected. Particularly, the powder metallurgy method has limitations for gradually adjusting the volume fraction of dimensional and reinforcing materials in the manufacture of composite materials having a large area (100 × 100 mm 2 or more) and thin plates (thickness: 1 mm or less). In the present invention, since plasma spraying is used, the volume fraction of the reinforcing material can be selectively adjusted even in thin thin plates without being restricted by these dimensions.

도1은 본 발명의 W-Cu 복합재료 박판 제조과정을 설명하기 위한 모식도이다. Figure 1 is a schematic diagram for explaining the W-Cu composite sheet manufacturing process of the present invention.

도 2는 본 발명의 제1 실시예에 따라 제조된 W-Cu 복합재료 박판의 형상이다.2 is a shape of the W-Cu composite thin plate prepared according to the first embodiment of the present invention.

도 3은 본 발명의 제1 실시예에 따라 제조된 복합재료의 미세조직 사진이다.3 is a microstructure photograph of a composite material prepared according to the first embodiment of the present invention.

도 4는 본 발명의 제2 실시예에 따라 제조된 복합재료의 미세조직 사진이다.Figure 4 is a microstructure photograph of the composite material prepared according to the second embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on main parts of the drawing

1 ..... 박판 2 ..... 기판1 ..... lamination 2 ..... Substrate

3 ..... 용사건 4 ..... 분말 투입구3 ..... Spraying 4 ..... Powder inlet

Claims (6)

금속기지 복합재료의 제조방법에 있어서,In the manufacturing method of a metal base composite material, 구리 분말과 텅스텐 분말을 혼합하여 용사용 분말을 얻은 후, 상기 용사용 분말을 흑연기판에 플라즈마 용사하여 박판을 형성하고, 상기 박판을 흑연기판과의 열팽창계수의 차이를 이용하여 상기 기판으로부터 박리하는 것을 포함하여 구성됨을 특징으로 하는 W-Cu 복합재료 박판의 제조방법.After the copper powder and tungsten powder are mixed to obtain a thermal spray powder, the thermal spray powder is plasma-sprayed on a graphite substrate to form a thin plate, and the thin plate is peeled off from the substrate using a difference in thermal expansion coefficient from the graphite substrate. W-Cu composite material thin plate manufacturing method comprising a. 제1항에 있어서, The method of claim 1, 상기 용사용 분말은 체적%로, 구리 분말에 50~95%의 텅스텐 분말을 혼합하는 것을 특징으로 하는 W-Cu 복합재료 박판의 제조방법.The thermal spraying powder is a volume%, the method for producing a thin sheet of W-Cu composite material, characterized in that 50 to 95% tungsten powder is mixed with the copper powder. 제1항에 있어서, The method of claim 1, 상기 용사용 분말은 볼밀에 의해 혼합한 후, 분무건조를 통해 구상화된 분말인 것을 특징으로 하는 W-Cu 복합재료 박판의 제조방법. The thermal spraying powder is mixed with a ball mill, and then a powder spheroidized by spray drying characterized in that the manufacturing method of the thin plate composite. 제1항에 있어서, The method of claim 1, 상기 플라즈마 용사는 용사 노즐에서 기판까지 거리를 50~110 mm 범위로 하고, 용사용 분말의 이동속도를 10~100 g/min의 범위로 설정하여, 1차 가스의 유속을 23~94 ℓ/min의 범위로 조절하고, 2차 가스의 유속을 1.5~50 ℓ/min한 다음, 15~ 40kW의 플라즈마 아크 범위에서 수행하는 것을 특징으로 하는 W-Cu 복합재료 박판의 제조방법.The plasma spraying has a distance from the thermal spray nozzle to the substrate in the range of 50 to 110 mm, the moving speed of the thermal spraying powder is set in the range of 10 to 100 g / min, and the flow rate of the primary gas is 23 to 94 l / min. It is adjusted to the range of, the flow rate of the secondary gas 1.5 to 50 l / min, and then the method of producing a thin sheet of W-Cu composite material, characterized in that carried out in the plasma arc range of 15 to 40kW. 삭제delete 제1항에 있어서,The method of claim 1, 상기 기판의 표면은 질화붕소(BN)로 코팅하여 박리의 용이성을 증가시키는 것을 특징으로 하는 W-Cu 복합재료 박판의 제조방법.The surface of the substrate is coated with boron nitride (BN) to increase the ease of peeling, characterized in that the manufacturing method of W-Cu composite sheet.
KR10-2002-0058010A 2002-09-25 2002-09-25 Process for Manufacturing Copper Matrix Composite Sheets Reinforced with High Volume Fraction of Tungsten KR100494238B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2002-0058010A KR100494238B1 (en) 2002-09-25 2002-09-25 Process for Manufacturing Copper Matrix Composite Sheets Reinforced with High Volume Fraction of Tungsten
JP2003329397A JP2004124259A (en) 2002-09-25 2003-09-22 METHOD FOR PRODUCING W-Cu COMPOSITE MATERIAL THIN SHEET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0058010A KR100494238B1 (en) 2002-09-25 2002-09-25 Process for Manufacturing Copper Matrix Composite Sheets Reinforced with High Volume Fraction of Tungsten

Publications (2)

Publication Number Publication Date
KR20040026503A KR20040026503A (en) 2004-03-31
KR100494238B1 true KR100494238B1 (en) 2005-06-13

Family

ID=32291676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0058010A KR100494238B1 (en) 2002-09-25 2002-09-25 Process for Manufacturing Copper Matrix Composite Sheets Reinforced with High Volume Fraction of Tungsten

Country Status (2)

Country Link
JP (1) JP2004124259A (en)
KR (1) KR100494238B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101395316B (en) * 2006-03-03 2012-01-18 东邦泰纳克丝欧洲有限公司 Method for producing reinforced placed structures
CZ2013113A3 (en) * 2013-02-15 2014-01-08 Technická univerzita v Liberci Method of low-pressure surface treatment of powder materials and apparatus for making the same
CN103882423B (en) * 2013-12-25 2016-08-17 华侨大学 A kind of method at Cu matrix surface microwave cladding CuW alloy
CN113355627A (en) * 2021-06-16 2021-09-07 北京理工大学 Method for preparing conductive coating on surface of composite material by plasma spraying

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147551A (en) * 1982-02-25 1983-09-02 Hitachi Metals Ltd Composite material for hot working tool and its manufacture
JPS58147552A (en) * 1982-02-25 1983-09-02 Hitachi Metals Ltd Composite jig and tool material and its manufacture
JPS61163259A (en) * 1985-01-11 1986-07-23 Hitachi Ltd Thermal spraying material
US5988488A (en) * 1997-09-02 1999-11-23 Mcdonnell Douglas Corporation Process of bonding copper and tungsten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147551A (en) * 1982-02-25 1983-09-02 Hitachi Metals Ltd Composite material for hot working tool and its manufacture
JPS58147552A (en) * 1982-02-25 1983-09-02 Hitachi Metals Ltd Composite jig and tool material and its manufacture
JPS61163259A (en) * 1985-01-11 1986-07-23 Hitachi Ltd Thermal spraying material
US5988488A (en) * 1997-09-02 1999-11-23 Mcdonnell Douglas Corporation Process of bonding copper and tungsten

Also Published As

Publication number Publication date
JP2004124259A (en) 2004-04-22
KR20040026503A (en) 2004-03-31

Similar Documents

Publication Publication Date Title
KR100494239B1 (en) Process for Manufacturing Aluminium Matrix Composite Sheets Reinforced with High Volume Fraction of SiC
US4595663A (en) Sintered ceramic shaped article wholly or predominantly of eutectic microstructure constituents
KR101554047B1 (en) Metal Powder
CN108179302A (en) A kind of preparation method of high heat-conductive diamond/carbon/carbon-copper composite material
US4613371A (en) Method for making ultrafine metal powder
CN112828298B (en) Preparation method of high-temperature molybdenum alloy spherical powder
CN106270490B (en) Surface layer is TiC-Ni-10TaC-10Mo2Hard alloy of C cermet coatings and preparation method thereof
CN113165984A (en) Cr-Si based sintered compact
CN112111684B (en) 3D prints ternary boride Mo2NiB2Alloy powder and production process thereof
JPH0387301A (en) Material processing and manufacture
KR20080065480A (en) Method for coating with copper-tungsten composite material by using cold spraying process
KR100494238B1 (en) Process for Manufacturing Copper Matrix Composite Sheets Reinforced with High Volume Fraction of Tungsten
JP6037422B2 (en) Method for producing sputtering target made of Ni-P alloy or Ni-Pt-P alloy
Jeandin et al. Liquid phase sintering of nickel base superalloys
Khor et al. Plasma spraying of titanium aluminide coatings: process parameters and microstructure
CN109694969B (en) Pre-alloyed powder, TiCN-based metal ceramic composite material added with pre-alloyed powder and preparation method of TiCN-based metal ceramic composite material
JPH10280082A (en) Composite alloy member, and its production
Jiang et al. Parameters investigation during simultaneous synthesis and densification WC–Ni composites by field-activated combustion
KR970001558B1 (en) Method for composite powder
JPH07502072A (en) Boron carbide-copper cermet and its manufacturing method
KR100413279B1 (en) Manufacturing method of high heat-resistance and high wear-resistance aluminum alloys
JP3600278B2 (en) Conductive alumina-based composite ceramics and method for producing the same
CN114990541A (en) High-hardness material coating structure and preparation method thereof
KR20140119859A (en) method of manufacturing Al-Si(Cu) sputtering target for semiconductor metallization
JPH05320814A (en) Composite member and its production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120514

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee