KR100491243B1 - Car bumper core material - Google Patents

Car bumper core material Download PDF

Info

Publication number
KR100491243B1
KR100491243B1 KR1019970068347A KR19970068347A KR100491243B1 KR 100491243 B1 KR100491243 B1 KR 100491243B1 KR 1019970068347 A KR1019970068347 A KR 1019970068347A KR 19970068347 A KR19970068347 A KR 19970068347A KR 100491243 B1 KR100491243 B1 KR 100491243B1
Authority
KR
South Korea
Prior art keywords
weight
parts
core material
crosslinking
polyethylene
Prior art date
Application number
KR1019970068347A
Other languages
Korean (ko)
Other versions
KR19990049407A (en
Inventor
김영원
김석원
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1019970068347A priority Critical patent/KR100491243B1/en
Publication of KR19990049407A publication Critical patent/KR19990049407A/en
Application granted granted Critical
Publication of KR100491243B1 publication Critical patent/KR100491243B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/34Chemical features in the manufacture of articles consisting of a foamed macromolecular core and a macromolecular surface layer having a higher density than the core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/03Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by material, e.g. composite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 싱글사이트 촉매에 의해 중합된 폴리에틸렌계 무정형 수지를 기본수지로 하여 이를 발포제, 가교제, 가교조제, 이형제등의 첨가제와 함께 혼합하여 용융혼련한 후 1차 가교발포성형체를 성형하고, 성형된 1차 가교발포성형체를 냉각한 다음 가온 2차 압축성형하여 제조되는 자동차 범퍼용 심재에 관한 것이다.The present invention is a polyethylene-based amorphous resin polymerized by a single-site catalyst as a base resin and mixed with additives such as foaming agent, crosslinking agent, crosslinking aid, release agent and the like by melt-kneading to form a primary crosslinked foamed molded article, The present invention relates to a core material for an automobile bumper manufactured by cooling a first crosslinked foamed molded product and then heating and compressing the second molded product.

본 발명의 자동차 범퍼용 심재는 수분에 대해 안정하고 반복충격시 탁월한 충격에너지 흡수능을 갖는다.The bumper core material of the present invention is stable against moisture and has an excellent impact energy absorption capacity at repeated shocks.

Description

자동차 범퍼용 심재Core material for automobile bumper

본 발명은 자동차 범퍼용 심재(CORE)에 관한 것으로, 특히 승용차에 적용시 내수성 및 반복충격에도 우수한 충격에너지 흡수능을 갖는 범퍼용 심재에 관한 것이다.The present invention relates to a bumper core material (CORE), and more particularly to a bumper core material having an excellent impact energy absorption capacity even in water resistance and repeated impact when applied to a passenger car.

승용차용 범퍼의 주요 기능은 크고 작은 사고로부터 차량과 인명에 전달되는 충격을 흡수하는 것으로서 충격흡수능이 우수해야 한다. 이러한 관점에서 최근 범퍼용 심재로는 각종 성형물이 사용되고 있는데, 그중 대표적인 범퍼용 심재로는 폴리우레탄 발포체(일본 특개 소63-112475, 소63-00071), 에틸렌비닐아세테이트의 사출 성형물(하니컴 : HONEY COMB), 플라스틱 블로우(BLOW)성형물, 폴리프로필렌의 발포비즈(BEADS) 성형품(KR 90-7527) 등이 있다.The main function of the bumper for passenger cars is to absorb shocks transmitted to the vehicle and life from big and small accidents. In view of this, in recent years, various moldings have been used as bumper core materials. Among them, polyurethane foams (Japanese Patent Application Laid-Open No. 63-112475, Small 63-00071) and injection molding products of ethylene vinyl acetate (Honeycomb: HONEY COMB) ), Plastic blow moldings, polypropylene foam beads (BEADS) molded articles (KR 90-7527), and the like.

그러나 상기의 범퍼용 심재중 폴리우레탄 발포체는 그 성질상 공기중의 수분에 의한 가수분해로 인하여 점차적으로 그 품질이 떨어져 자동차 범퍼로서의 충격 흡수 성능과 칫수 안정성이 떨어지는 단점이 있고, 또한 최근에는 환경문제에 대한 관심이 증가하는 가운데 점차 사용이 규제되고 있는 실정이고, 에틸렌비닐아세테이트(ETHYLENE VINYL ACETATE)의 사출성형물은 벌집모양의 구조재로서 충격흡수재로서의 기능 보다는 범퍼용 카버를 지지하는 구조재로서 사용되므로 실질적인 충격흡수능이 발포 성형물에 비하여 현저히 떨어지는 문제가 있다.However, the polyurethane foam in the bumper core material has a disadvantage in that its quality is gradually degraded due to its hydrolysis by moisture in the air, thereby degrading shock absorption performance and dimensional stability as an automobile bumper. Increasing interest has been increasingly regulated, and injection molding of ethylene vinyl acetate is used as a structural material to support the bumper carver rather than as a shock absorber as a honeycomb structural material. There is a problem that it is remarkably inferior to this foam molding.

또한 블로우 성형에 의한 범퍼용 심재는 가운데가 텅빈 풍선과 같은 형상이므로 한번 충격을 받으면 찌그러져 다시 복원이 안되고 또한 블로우 성형의 특성상 성형품 각 부위의 두께가 고르게 형성되지 않는다. 따라서 자동차의 충격시 블로우 성형품의 두께가 얇은 쪽이 파열되기 쉽다는 단점이 있다.In addition, since the bumper core material by blow molding is shaped like a hollow balloon in the middle, it is crushed once it is impacted and cannot be restored again, and the thickness of each part of the molded article is not formed evenly due to the characteristics of blow molding. Therefore, there is a disadvantage that the thinner the blow molded article tends to rupture during impact of the automobile.

그리고 폴리프로필렌 발포비즈 성형품은 폴리프로필렌 예비발포입자를 금형에 주입한 다음 가압수증기를 금형에 주입하여 성형하는 형내발포성형방법을 이용하여 제조되는데 전술한 심재와는 달리 내수성도 우수하고 충격흡수능도 우수하지만 한번 충격받은 부위가 복원이 되지 않으므로 재충격시 충격흡수능이 떨어진다는 단점이 있다.In addition, the polypropylene foam beads molded article is manufactured by using a mold-resistant foam molding method in which polypropylene pre-expanded particles are injected into a mold and then pressurized water vapor is molded into the mold. Unlike the core material described above, it has excellent water resistance and excellent shock absorption ability. However, once the impacted area is not restored, there is a disadvantage that the shock absorbing capacity is lowered when re-impacted.

한편 본 발명자는 본 발명에 앞서 에틸렌비닐아세테이트를 주성분으로 하는 가교발포 성형체로 이루어진 범퍼용 심재에 관한 특허를 출원(대한민국 특허출원 제95-13738호)한 바 있다. 그러나 에틸렌비닐아세테이트를 주성분으로 하는 범퍼용 심재는 에틸렌비닐아세테이트 자체의 비중이 폴리에틸렌계 무정형 수지에 비해 높아 동일한 발포밀도체의 경우 무겁다는 단점이 있으며, 또한 범퍼용 심재의 가장 중요한 특성인 반복충격시 에너지 흡수능이 떨어진다는 단점이 있었다.On the other hand, the present inventor has applied for a bumper core material made of a crosslinked foamed molded article having ethylene vinyl acetate as a main component (Korean Patent Application No. 95-13738) prior to the present invention. However, the bumper core material containing ethylene vinyl acetate as a main component has the disadvantage that the specific density of ethylene vinyl acetate itself is higher than that of polyethylene-based amorphous resins, so that it is heavy in the same foam density body, and at the time of repeated impact, which is the most important characteristic of the bumper core material There was a disadvantage of poor energy absorption.

본 발명자는 상기한 종래기술의 단점을 보완하기 위해 연구한 결과, 싱글사이트 촉매를 이용하여 중합된 폴리에틸렌계 무정형 수지를 주성분으로 하는 가교발포 성형체를 범퍼용 심재로서 적용시 공기중의 수분으로부터 안정하고, 압축복원력이 우수하여 반복되는 충격에도 충격흡수능이 우수하다는 점을 밝혀내어 본 발명을 완성하게 되었다.The present inventors have studied to supplement the above-mentioned disadvantages of the prior art, and as a result, when the crosslinked foamed molded article mainly containing a polyethylene-based amorphous resin polymerized using a single-site catalyst is applied as a bumper core material, it is stable from moisture in the air. In addition, the present invention has been found to be excellent in compressive restoring force and excellent shock absorbing ability even in repeated shocks.

본 발명에 따른 범퍼용 심재는 기본수지로서 싱글사이트 촉매에 의해 중합된 폴리에틸렌계 무정형수지를 첨가제와 용융혼련한 후 1차 가교발포성형한 다음 2차 압축성형함으로써 제조되는 것을 특징으로 한다. 보다 상세하게는 본 발명의 범퍼용 심재는 싱글사이트 촉매에 의해 중합된 폴리에틸렌계 무정형수지를 포함하는 기본수지 100중량부에 대해서, 발포제 4~6중량부, 가교제 0.5~0.7중량부, 가교조제 0.2~0.3중량부, 이형제 0.9~1.1 중량부를 혼합하여 용융 혼련한 후, 이 혼련물을 금형에 투입한 다음 압축발포성형법으로 1차 가교발포성형체를 성형하고, 이와 같이 제조된 1차 가교발포성형체를 냉각한 다음 가온 2차 압축성형하여 제조되는 것을 특징으로 한다.Bumper core material according to the present invention is characterized in that the polyethylene-based amorphous resin polymerized by a single-site catalyst as the primary resin is melt-kneaded with the additive, and then produced by primary crosslinking foam molding and then secondary compression molding. More specifically, the bumper core of the present invention is based on 100 parts by weight of the base resin containing polyethylene-based amorphous resin polymerized by a single-site catalyst, 4 to 6 parts by weight of blowing agent, 0.5 to 0.7 parts by weight of crosslinking agent, 0.2 for crosslinking aid 0.2 ~ 0.3 parts by weight, 0.9 to 1.1 parts by weight of the release agent is mixed and melt kneaded, and then the kneaded product is put into a mold, and then the primary crosslinked foamed molded product is formed by compression foam molding, and the primary crosslinked foamed molded product thus prepared is It is characterized in that it is prepared by cooling the secondary compression molding after cooling.

이하 각 공정별로 본 발명의 자동차 범퍼용 심재의 제조방법을 더욱 상세히 설명한다.Hereinafter, the manufacturing method of the bumper core material of the present invention for each process will be described in more detail.

먼저 1차 가교발포성형체 제조를 위해 기초 원료인 싱글사이트 촉매에 의해 중합된 폴리에틸렌계 무정형 수지를 포함하는 기본 수지에 발포제와 가교제, 이형제, 가교조제 및 기타 첨가제를 혼합한 다음 니더(KNEADER) 및 롤밀(ROLL MILL)을 이용하여 용융 혼련한다.First, a foaming agent and a crosslinking agent, a releasing agent, a crosslinking aid and other additives are mixed with a base resin including a polyethylene-based amorphous resin polymerized by a single-site catalyst as a basic raw material for preparing a primary crosslinked foamed molded product, and then KNEADER and roll mill Melt kneading using (ROLL MILL).

이때 기본수지로는 싱글사이트 촉매에 의해 중합된 폴리에틸렌계 무정형 수지를 단독으로 사용하여도 되고, 또는 싱글사이트 촉매에 의해 중합된 폴리에틸렌계 무정형수지에 저밀도폴리에틸렌, 고밀도폴리에틸렌, 선형저밀도폴리에틸렌, 폴리프로필렌, 에틸렌프로필렌고무, 에틸렌프로필렌디엔고무, 천연고무, 이소부틸고무, 스틸렌부타디엔고무 중에서 선택되는 1종 이상이 혼합된 수지를 사용할 수도 있다.The basic resin may be a polyethylene amorphous resin polymerized with a single-site catalyst alone, or a low density polyethylene, a high density polyethylene, a linear low density polyethylene, a polypropylene, or a polyethylene amorphous resin polymerized with a single-site catalyst. A resin in which at least one selected from ethylene propylene rubber, ethylene propylene diene rubber, natural rubber, isobutyl rubber and styrene butadiene rubber is mixed may be used.

싱글사이트 촉매에 의해 중합된 폴리에틸렌계 무정형수지는 상업적으로 구입가능하며, 예로서 Dow Plastics 사의 Engage Series(Grade 8180, 8100, 8200 등)를 들 수 있다.Polyethylene-based amorphous resins polymerized by single-site catalysts are commercially available, such as Engage Series (Grade 8180, 8100, 8200, etc.) by Dow Plastics.

발포제로는 통상의 분해성 발포제가 사용 가능한데, 예를 들어 아조디카본아미드(azodicarbonamide)를 사용할 수 있다. 발포제의 첨가량은 발포체의 비중을 결정하는 요소로서 첨가량이 증가할수록 발포배율이 증가하여 발포체의 비중이 작아지는데 4~6중량부가 적합하다.As the blowing agent, a conventional degradable blowing agent can be used, for example azodicarbonamide. The addition amount of the foaming agent is a factor that determines the specific gravity of the foam. 4 to 6 parts by weight is suitable for increasing the expansion ratio and decreasing the specific gravity of the foam.

일반적으로 가교도는 가교제의 첨가량과 가교시간, 가교반응온도에 영향을 받는데 가교제의 첨가량이 증가할수록, 온도가 높을수록, 시간이 길수록 가교도는 증가한다. 그러나 충분한 가교온도와 시간에서는 일정량 이상의 가교제가 첨가될 경우 과량 첨가된 만큼의 가교도를 기대하기는 어렵다. 따라서 주어진 가공조건에 따라 적합한 첨가량을 결정할 필요가 있다. 본 발명에서는 가교제로는 통상의 가교제, 예를 들어 디큐밀퍼옥사이드(dicumyl peroxide)를 사용할 수 있으며, 가교제의 양은 0.5~0.7중량부가 적합하다.Generally, the degree of crosslinking is affected by the amount of crosslinking agent added, the crosslinking time and the crosslinking reaction temperature. The crosslinking degree increases as the amount of the crosslinking agent is increased, the higher the temperature and the longer the time. However, at a sufficient crosslinking temperature and time, when a certain amount of crosslinking agent is added, it is difficult to expect as much crosslinking as added. Therefore, it is necessary to determine the appropriate amount of addition according to the given processing conditions. In the present invention, as a crosslinking agent, a conventional crosslinking agent, for example, dicumyl peroxide, may be used, and the amount of the crosslinking agent is 0.5 to 0.7 parts by weight.

가교조제로는 산화아연(ZnO)을 예로 들수 있으며 사용량은 0.2~0.3중량부가 적당하며, 이형제로는 스테아린산(stearic acid)을 예로 들수 있고 사용량은 0.9~1.1중량부가 적당하다.Examples of the crosslinking aid include zinc oxide (ZnO), and suitable amounts of 0.2 to 0.3 parts by weight, and suitable release agents include stearic acid and 0.9 to 1.1 parts by weight.

1차 가교발포성형체 성형시 용융 및 혼련시간이 너무 길거나 또는 가공온도가 너무 높을 경우 발포제 및 가교제의 조기분해현상이 발생할 우려가 있고, 반대로 혼련시의 온도가 너무 낮거나 혼련시간이 짧은 경우 첨가제가 미분산되어 기포구조가 양호한 발포체를 얻기 어렵다. 따라서 니더와 롤밀의 온도는 100~130℃ 범위에서 제어하고 혼련시간은 각 공정에서 10~15분간 혼련하는 것이 바람직하였다.If the melting and kneading time is too long or the processing temperature is too high when forming the first crosslinked foamed molded product, there is a possibility of premature decomposition of the blowing agent and the crosslinking agent. On the contrary, when the temperature is too low or the kneading time is short, It is difficult to obtain a foam having fine dispersion and good bubble structure. Therefore, it is preferable that the temperature of the kneader and the roll mill is controlled in the range of 100 to 130 ° C., and the kneading time is kneaded for 10 to 15 minutes in each step.

이와같이 제조된 1차 가교발포성형체를 급냉 또는 수냉시킨 후 금형에 투입하여 가온 2차 압축성형함으로써 본 발명의 범퍼용 심재의 제조가 완성된다.The primary crosslinked foamed molded product thus prepared is quenched or cooled in water, and then charged into a mold and heated to second compression molding to complete the manufacture of the bumper core material of the present invention.

통상 발포가공의 최대 단점은 발포가공의 특성상 수지의 3차원적 팽창으로 인하여 발포제품의 칫수 관리가 어렵다는 것인데, 본 발명에서는 1차 가교발포가공한 발포체를 2차 가압금형을 이용하여 압축성형하므로써 이 문제를 해결하였다. 일반적으로 가교발포체는 2차 성형이 불가능하나 본 발명에서는 1차 가교발포체의 가교율을 제어하므로써 2차 성형불량 문제를 해결할 수 있었다.In general, the biggest disadvantage of foaming is that it is difficult to manage the dimensions of the foamed product due to the three-dimensional expansion of the resin due to the characteristics of the foaming process. In the present invention, the primary crosslinked foamed foam is compressed by using a secondary press mold. Solved the problem. In general, crosslinked foams are not secondary molding, but in the present invention, the secondary molding defect problem can be solved by controlling the crosslinking ratio of the primary crosslinked foams.

즉, 본 발명의 핵심기술은 전술한 1차 가교발포성형체의 가교율을 조절하여 2차 압축성형이 가능한 상태로 발포가공하는 것으로서 1차 가교발포성형체의 가교율은 40~60%가 적합하였다. 1차 가교발포성형체의 가교율이 40% 이하일 경우 균일한 기포구조를 형성하기 어려우며, 60% 이상일 경우 복잡한 구조의 금형에서는 2차 압축성형이 용이치 않았다. 상기의 1차 가교발포성형체를 공냉 또는 수냉한 다음 2차 압축성형을 위한 금형에 투입가능한 적당한 형태로 절단하고 금형에 투입하여 가열압축성형을 실시하였다. 이때 얻어진 발포체를 2차 가교발포체라고 하며, 가교율은 70% 이상이 적당하다. 2차 가교발포체의 가교율이 70% 보다 낮을 경우 내열 특성을 저해한다.That is, the core technology of the present invention is to control the crosslinking rate of the above-described primary crosslinked foamed molding to foam processing in a state capable of secondary compression molding, and the crosslinking ratio of the primary crosslinked foamed molded product is suitable for 40 to 60%. When the crosslinking rate of the primary crosslinked foamed molded product is 40% or less, it is difficult to form a uniform bubble structure, and when 60% or more, secondary compression molding is not easy in a mold having a complicated structure. The primary crosslinked foamed molded article was air-cooled or water-cooled, cut into a suitable shape to be put into a mold for secondary compression molding, and put into a mold to perform heat compression molding. The foam obtained at this time is called a secondary crosslinked foam, and the crosslinking rate is 70% or more. When the crosslinking rate of the secondary crosslinked foam is lower than 70%, the heat resistance is inhibited.

본 발명을 다음의 실시예에 의거 더욱 상세히 설명한다. 그러나 이러한 실시예들로 본 발명의 범위가 한정되는 것은 아니다.The present invention is explained in more detail based on the following examples. However, the scope of the present invention is not limited to these embodiments.

실시예 1Example 1

폴리에틸렌계 무정형 수지(Dow Plastics 사제, Engage Series 8180, 이하 동일) 100중량부에 대해서 아조디카본아미드 4중량부, 가교제 디큐밀퍼옥사이드 0.6중량부, 가교조제 산화아연(ZnO) 0.3중량부 및 이형제 스테아린산 1 중량부를 용융혼합시켜 145℃에서 25분간 1차 가교 발포시키고, 1차 가교발포체를 냉각시킨 후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.4 parts by weight of azodicarbonamide, 0.6 parts by weight of crosslinker dicumyl peroxide, 0.3 parts by weight of crosslinking aid zinc oxide (ZnO) and release agent stearic acid based on 100 parts by weight of polyethylene-based amorphous resin (manufactured by Dow Plastics, Engage Series 8180, hereinafter identical) 1 part by weight was melt-mixed and primary crosslinked foamed at 145 ° C. for 25 minutes, the primary crosslinked foam was cooled, and secondly compression molded at 160 ° C. for 20 minutes to prepare a core material for an automobile bumper.

제조된 범퍼용 심재에 대한 특성 평가는 다음과 같이 실시하였다.Characterization of the manufactured bumper core material was carried out as follows.

1) 내열성 평가는 가로(100mm)×세로(100mm)×두께(3mm)의 시편을 고온 챔버에 넣고 6시간 방치 후 시편을 꺼내어 공기중에서 2시간 냉각한 다음 시편의 수축율(%)을 측정하는 방법을 사용하였다. 이때 고온 챔버의 온도는 150℃ 였다.1) Heat resistance evaluation is a method of measuring the shrinkage (%) of the specimen after placing the specimen of width (100mm) × length (100mm) × thickness (3mm) in a high-temperature chamber, leaving it for 6 hours, cooling it in air for 2 hours Was used. At this time, the temperature of the high temperature chamber was 150 degreeC.

평가기준은 합격 : 수축율 < 3(%) 불합격 : 수축율 ≥ 3(%) 이다.The evaluation criteria are Pass: Shrinkage <3 (%) Fail: Shrinkage ≥ 3 (%).

2) 1차 가교발포체의 2차 압축성형성은 외관평가를 실시하였다.2) The secondary compressive formation of the primary crosslinked foam was evaluated for appearance.

3) 시험편의 가교율은 시혐편을 2~3mm2 정도의 크기로 절단한 다음 메쉬(100mesh)에 약 3g을 평량하여 담은 다음 크실렌(Xylene)을 이용하여 6시간 추출하였으며, 이때 시편의 초기 무게와 추출후의 메쉬에 남은 시편의 무게비로서 가교율을 산출하였다. 산출식은 다음과 같다.3) The cross-linking rate of the test piece was cut into 2 ~ 3mm 2 and then weighed about 3g in a mesh (100mesh) and extracted for 6 hours using xylene. At this time, the initial weight of the test piece The crosslinking ratio was calculated as the weight ratio of the specimen remaining in the mesh after extraction. The formula is as follows.

Figure pat00005
Figure pat00005

4) 2차 가교발포체의 기포 균일도는 1차 발포체의 단면을 현미경으로 촬영한 다음 발포체의 내부기포(표피로부터 23~25mm)의 직경(Ⅰ)과 외부기포(표피로부터 3~5mm)의 직경(0)을 각 10회 이상 측정하여 그 평균을 구하고 내부와 외부 기포의 평균직경비(Ⅰ/0)가 2미만인 경우 : 합격, 2이상인 경우 불합격으로 판정하였다. 이때 기포직경측정을 위해서는 현미경(배율 : 100 이상)을 사용하였다.4) The bubble uniformity of the secondary crosslinked foam is obtained by taking a cross-section of the primary foam under a microscope and measuring the diameter (I) of the inner foam (23-25 mm from the epidermis) and the outer bubble (3-5 mm from the epidermis) of the foam ( 0) was measured 10 times or more, and the average was calculated. When the average diameter ratio (I / 0) of the inner and outer bubbles was less than 2: Passed, and when it was 2 or more, it was determined to fail. At this time, a microscope (magnification: 100 or more) was used for measuring the bubble diameter.

실시예 1의 실험결과는 표 1에 나타내었다.The experimental results of Example 1 are shown in Table 1.

실시예 2Example 2

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 5중량부, 가교제 디큐밀퍼옥사이드 0.6중량부, 가교조제 산화아연(ZnO) 0.3중량부 및 이형제 스테아린산 1중량부를 용융 혼련시켜 145℃에서 25분간 1차 가교 발포시키고 1차 가교 발포체를 냉각시킨 후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.5 parts by weight of blowing agent azodicarbonamide, 0.6 parts by weight of crosslinking agent dicumyl peroxide, 0.3 parts by weight of crosslinking aid zinc oxide (ZnO) and 1 part by weight of release agent stearic acid were melt-kneaded with respect to 100 parts by weight of polyethylene-based amorphous resin for 25 minutes at 145 ° C. After primary crosslinked foaming and cooling of the primary crosslinked foam, the core material for an automobile bumper was manufactured by second compression molding at 160 ° C. for 20 minutes.

실시예 1과 동일하게 평가하여 실험한 결과는 표 1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

실시예 3Example 3

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 6중량부, 가교제 디큐밀퍼옥사이드 0.6중량부, 가교조제 산화아연(ZnO) 0.3 중량부 및 이형제 스테아린산 1중량부를 용융 혼련시켜 145℃에서 25분간 1차 가교발포시키고, 1차 가교발포체를 냉각 시킨후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.6 parts by weight of blowing agent azodicarbonamide, 0.6 parts by weight of crosslinking agent dicumyl peroxide, 0.3 parts by weight of crosslinking aid zinc oxide (ZnO) and 1 part by weight of release agent stearic acid were melt-kneaded with respect to 100 parts by weight of polyethylene-based amorphous resin for 25 minutes at 145 ° C. After primary crosslinking foaming, the first crosslinking foam was cooled, and then compression molding was performed for 2 minutes at 160 ° C. for 20 minutes to prepare a bumper core material.

실시예 1과 동일하게 평가하여 실험한 결과는 표1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

실시예 4Example 4

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 5중량부, 가교제 디큐밀퍼옥사이드 0.5중량부, 가교조제 산화아연(ZnO) 0.3중량부 및 이형제 스테아린산 1중량부를 용융혼련시켜 145℃에서 25분간 1차 가교 발포시키고, 1차 가교발포체를 냉각시킨후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.5 parts by weight of blowing agent azodicarbonamide, 0.5 parts by weight of crosslinking agent dicumyl peroxide, 0.3 parts by weight of crosslinking aid zinc oxide (ZnO) and 1 part by weight of release agent stearic acid were melt-kneaded with respect to 100 parts by weight of polyethylene-based amorphous resin for 25 minutes at 145 ° C. After primary crosslinking foaming, the primary crosslinked foamed product was cooled, and further compression molded at 160 ° C. for 20 minutes to prepare a core material for an automobile bumper.

실시예 1과 동일하게 평가하여 실험한 결과는 표1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

실시예 5Example 5

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 5중량부, 가교제 디큐밀퍼옥사이드 0.7중량부, 가교조제 산화아연(ZnO) 0.3중량부 및 이형제 스테아린산 1중량부를 용융 혼련시켜 145℃에서 25분간 1차 가교 발포시키고, 1차 가교 발포체를 냉각시킨 후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.5 parts by weight of blowing agent azodicarbonamide, 0.7 parts by weight of crosslinking agent dicumyl peroxide, 0.3 parts by weight of crosslinking aid zinc oxide (ZnO) and 1 part by weight of release agent stearic acid were melt-kneaded with respect to 100 parts by weight of polyethylene-based amorphous resin for 25 minutes at 145 ° C. After primary crosslinking foaming, the primary crosslinked foam was cooled, and second compression molding was performed at 160 ° C. for 20 minutes to prepare a core material for an automobile bumper.

실시예 1과 동일하게 평가하여 실험한 결과는 표 1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

실시예 6Example 6

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 5중량부, 가교제 디큐밀퍼옥사이드 0.6중량부, 가교조제 산화아연(ZnO) 0.2중량부 및 이형제 스테아린산 1중량부를 용융 혼련시켜 145℃에서 25분간 1차 가교 발포시키고, 1차 가교 발포체를 냉각시킨 후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.5 parts by weight of blowing agent azodicarbonamide, 0.6 parts by weight of crosslinking agent dicumyl peroxide, 0.2 parts by weight of crosslinking aid zinc oxide (ZnO) and 1 part by weight of release agent stearic acid were melt-kneaded with respect to 100 parts by weight of polyethylene-based amorphous resin for 25 minutes at 145 ° C. After primary crosslinking foaming, the primary crosslinked foam was cooled, and second compression molding was performed at 160 ° C. for 20 minutes to prepare a core material for an automobile bumper.

실시예 1과 동일하게 평가하여 실험한 결과는 표 1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

비교예 1Comparative Example 1

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 3 중량부, 가교제 디큐밀퍼옥사이드 0.6중량부, 가교조제 산화아연(ZnO) 0.3중량부 및 이형제 스테아린산 1중량부를 용융 혼련시켜 145℃에서 25분간 1차 가교 발포시키고, 1차 가교 발포체를 냉각시킨 후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.3 parts by weight of blowing agent azodicarbonamide, 0.6 parts by weight of crosslinking agent dicumyl peroxide, 0.3 parts by weight of crosslinking aid zinc oxide (ZnO) and 1 part by weight of release agent stearic acid were melt-kneaded with respect to 100 parts by weight of polyethylene-based amorphous resin for 25 minutes at 145 ° C. After primary crosslinking foaming, the primary crosslinked foam was cooled, and second compression molding was performed at 160 ° C. for 20 minutes to prepare a core material for an automobile bumper.

실시예 1과 동일하게 평가하여 실험한 결과는 표 1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

비교예 2Comparative Example 2

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 7중량부, 가교제 디큐밀퍼옥사이드 0.6중량부, 가교조제 산화아연(ZnO) 0.3중량부 및 이형제 스테아린산 1중량부를 용융 혼련시켜 145℃에서 25분간 1차 가교 발포시키고, 1차 가교 발포체를 냉각시킨 후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.7 weight part of blowing agent azodicarbonamide, 0.6 weight part of crosslinking agent dicumyl peroxide, 0.3 weight part of crosslinking aid zinc oxide (ZnO), and 1 weight part of release agent stearic acid were melt-kneaded with respect to 100 weight part of polyethylene-type amorphous resins, for 25 minutes at 145 degreeC After primary crosslinking foaming, the primary crosslinked foam was cooled, and second compression molding was performed at 160 ° C. for 20 minutes to prepare a core material for an automobile bumper.

실시예 1과 동일하게 평가하여 실험한 결과는 표 1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

비교예 3Comparative Example 3

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 5중량부, 가교제 디큐밀퍼옥사이드 0.4중량부, 가교조제 산화아연(ZnO) 0.3중량부 및 이형제 스테아린산 1중량부를 용융 혼련시켜 145℃에서 25분간 1차 가교 발포시키고, 1차 가교 발포체를 냉각시킨 후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.5 parts by weight of blowing agent azodicarbonamide, 0.4 parts by weight of crosslinking agent dicumylperoxide, 0.3 parts by weight of crosslinking aid zinc oxide (ZnO) and 1 part by weight of release agent stearic acid were melt-kneaded with respect to 100 parts by weight of polyethylene-based amorphous resin for 25 minutes at 145 ° C. After primary crosslinking foaming, the primary crosslinked foam was cooled, and second compression molding was performed at 160 ° C. for 20 minutes to prepare a core material for an automobile bumper.

실시예 1과 동일하게 평가하여 실험한 결과는 표 1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

비교예 4Comparative Example 4

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 5중량부, 가교제 디큐밀퍼옥사이드 0.8중량부, 가교조제 산화아연(ZnO) 0.3중량부 및 이형제 스테아린산 1중량부를 용융 혼련시켜 145℃에서 25분간 1차 가교 발포시키고, 1차 가교 발포체를 냉각시킨 후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.5 parts by weight of blowing agent azodicarbonamide, 0.8 parts by weight of crosslinking agent dicumyl peroxide, 0.3 parts by weight of crosslinking aid zinc oxide (ZnO) and 1 part by weight of release agent stearic acid were melt-kneaded with respect to 100 parts by weight of polyethylene-based amorphous resin for 25 minutes at 145 ° C. After primary crosslinking foaming, the primary crosslinked foam was cooled, and second compression molding was performed at 160 ° C. for 20 minutes to prepare a core material for an automobile bumper.

실시예 1과 동일하게 평가하여 실험한 결과는 표 1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

비교예 5Comparative Example 5

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 5중량부, 가교제 디큐밀퍼옥사이드 0.6중량부, 가교조제 산화아연(ZnO) 0.1중량부 및 이형제 스테아린산 1중량부를 용융 혼련시켜 145℃에서 2분간 1차 가교 발포시키고, 1차 가교 발포체를 냉각시킨 후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.5 parts by weight of blowing agent azodicarbonamide, 0.6 parts by weight of crosslinking agent dicumyl peroxide, 0.1 parts by weight of crosslinking aid zinc oxide (ZnO) and 1 part by weight of release agent stearic acid were melt-kneaded with respect to 100 parts by weight of polyethylene-based amorphous resin for 2 minutes at 145 ° C. After primary crosslinking foaming, the primary crosslinked foam was cooled, and second compression molding was performed at 160 ° C. for 20 minutes to prepare a core material for an automobile bumper.

실시예 1과 동일하게 평가하여 실험한 결과는 표1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

비교예 6Comparative Example 6

폴리에틸렌계 무정형 수지 100중량부에 대해서 발포제 아조디카본아미드 5중량부, 가교제 디큐밀퍼옥사이드 0.6중량부, 가교조제 산화아연(ZnO) 0.4중량부 및 이형제 스테아린산 1중량부를 용융 혼련시켜 145℃에서 25분간 1차 가교 발포시키고, 1차 가교 발포체를 냉각시킨 후 다시 160℃에서 20분간 2차로 압축성형시켜 자동차 범퍼용 심재를 제조하였다.5 parts by weight of blowing agent azodicarbonamide, 0.6 parts by weight of crosslinking agent dicumylperoxide, 0.4 parts by weight of crosslinking aid zinc oxide (ZnO) and 1 part by weight of release agent stearic acid were melt-kneaded with respect to 100 parts by weight of polyethylene-based amorphous resin for 25 minutes at 145 ° C. After primary crosslinking foaming, the primary crosslinked foam was cooled, and second compression molding was performed at 160 ° C. for 20 minutes to prepare a core material for an automobile bumper.

실시예 1과 동일하게 평가하여 실험한 결과는 표 1에 나타내었다.The results of experiments evaluated in the same manner as in Example 1 are shown in Table 1.

표 1. 범퍼용 심재 물성 평가Table 1. Bumper Core Property Evaluation

Figure pat00006
Figure pat00006

실험예Experimental Example

실시예 1에서 제조된 범퍼용 심재와 종래의 폴리프로필렌 비즈 발포체, 폴리스틸렌 비즈 발포체, 에틸렌비닐아세테이트 하니컴과의 충격에너지 흡수율을 측정하였고, 또한 에틸렌아세테이트 가교발포체와 본 발명의 발포체와의 밀도를 다음 방법에 의해 측정하였다.The impact energy absorption rate of the bumper core prepared in Example 1, the conventional polypropylene beads foam, the polystyrene beads foam, and the ethylene vinyl acetate honeycomb was measured, and the density of the ethylene acetate crosslinked foam and the foam of the present invention was measured in the following method. Measured by

충격에너지 흡수능력은 다음식에 의해 에너지 흡수율(a)로서 표현되며, 에너지 흡수율 측정 시편은 가로(50mm)×세로(50mm)×두께(40mm)의 시편을 사용하였고, 시험장비로는 UTM(UNIVERSAL TESTING MACHINE)을 사용하였으며, 시험편을 200mm/sec의 속도로 시편두께의 80%를 압축하여 도 1 및 도 2에서와 같은 압축응력-변형율 곡선을 얻어 에너지 흡수율을 계산하였다. 반복 충격흡수능력은 a와 a'와의 비율(Ra)로서 나타낸다. 다음 식에서는 도 1 및 도 2에 도시된 면적 A 또는 A', S 또는 S'가 인자로서 사용된다.The impact energy absorption capacity is expressed as the energy absorption rate (a) by the following equation, and the energy absorption rate measurement specimens were used for the width (50 mm) × length (50 mm) × thickness (40 mm) specimens, and UTM (UNIVERSAL) as the test equipment. TESTING MACHINE) was used, and the test piece was compressed at 80% of the specimen thickness at a speed of 200 mm / sec to obtain a compressive stress-strain curve as shown in FIGS. 1 and 2 to calculate energy absorption. The repeated shock absorbing ability is expressed as the ratio Ra between a and a '. In the following equation, the area A or A ', S or S' shown in Figs. 1 and 2 is used as a factor.

Figure pat00007
Figure pat00007

단, a = 1회 압축시 에너지 흡수율Where a = energy absorption rate in one compression

a' = 2회 압축시 에너지 흡수율    a '= energy absorption after 2 compressions

A, A', S, S' = 면적    A, A ', S, S' = Area

Ra = 반복 충격 에너지 흡수율    Ra = repeated impact energy absorption

평가기준은, 1차 압축시 에너지 흡수율 : ○ : a≥70 × : a < 70The evaluation criteria are the energy absorption rate during the first compression: ○: a≥70 ×: a <70

2차 압축시 에너지 흡수율 : ○ : a'≥63 × : a' < 63Energy absorption rate at 2nd compression: ○: a'≥63 ×: a '<63

반복 압축시 충격에너지 흡수율 : ○ : Ra≥90 × : Ra < 90Impact energy absorption rate at repeated compression: ○: Ra≥90 ×: Ra <90

으로 판정하였다.Was determined.

그 결과를 표 2에 나타내었다.The results are shown in Table 2.

표 2. 충격에너지 흡수율 시험Table 2. Impact energy absorption test

Figure pat00008
Figure pat00008

발포체의 밀도는 수중치환법에 의해 측정하였고, 기포의 평균직경이 동일한 비교시편을 설정하여 1개 시편에 대해 3회 이상 측정하여 평균 밀도값을 비교하였으며 결과는 표3에 나타내었다.The density of the foam was measured by the submerged method, and the average density value was compared three times for one specimen by setting a comparison specimen having the same average diameter of bubbles, and the results are shown in Table 3.

평가기준은, 상대비교시 평균 밀도값이 작은 시편을 합격으로 판정하였다.Evaluation criteria judged the test piece with the small average density value at the time of relative comparison as the pass.

표 3. 발포체의 밀도 측정 시험Table 3. Density Testing of Foams

Figure pat00009
Figure pat00009

* 에틸렌비닐아세테이트 가교발포체는 실시예 1의 조성에서 폴리에틸렌계 무정형 수지 대신에 에틸렌비닐아세테이트를 사용한 것을 제외하고는 실시예 1과 동일하게 제조된 것임.* Ethylene vinyl acetate crosslinked foam is prepared in the same manner as in Example 1 except for using ethylene vinyl acetate in place of the polyethylene-based amorphous resin in the composition of Example 1.

이상에서와 같이, 본 발명에 의하면 내열성, 성형성, 밀도균일성 및 충격에너지 흡수능력이 우수한 자동차 범퍼용 심재가 제공된다.As mentioned above, according to this invention, the core material for automobile bumpers excellent in heat resistance, moldability, density uniformity, and impact energy absorption capability is provided.

도 1 및 도 2는 본 발명의 실험예에서 실시한 범퍼용 심재의 충격흡수능시험에서 에너지 흡수율 계산을 위한 1차 및 2차 압축시의 압축응력-변형율 곡선의 예를 나타낸 것이다.1 and 2 show examples of compressive stress-strain curves at the time of primary and secondary compression for the calculation of energy absorption in the shock absorption capacity test of the bumper core material carried out in the experimental example of the present invention.

Claims (3)

싱글사이트 촉매에 의해 중합된 폴리에틸렌계 무정형 수지로 된 기본수지와, 첨가제로서 상기 기본수지 100중량부에 대해서 발포제 4~6중량부, 가교제 0.5~0.7중량부, 가교조제 0.2~0.3중량부 및 이형제 0.9~1.1 중량부를 혼합하여 용융혼련한 후, 40~60%의 가교율을 갖는 1차 가교발포성형체를 성형하고, 성형된 1차 가교발포성형체를 냉각한 후 가온 2차 압축성형하여 제조됨을 특징으로 하는 자동차 범퍼용 심재.4 to 6 parts by weight of foaming agent, 0.5 to 0.7 part by weight of crosslinking agent, 0.2 to 0.3 part by weight of crosslinking aid and release agent based on 100 parts by weight of the base resin of polyethylene-based amorphous resin polymerized by single-site catalyst and additives. After mixing 0.9-1.1 parts by weight to melt-kneading, to form a primary crosslinked foamed molding having a cross-linking rate of 40 to 60%, and to cool the molded primary crosslinked foamed molded product after heating to secondary compression molding Core material for automobile bumpers. 제 1 항에 있어서, 상기 기본수지는 저밀도폴리에틸렌, 고밀도폴리에틸렌, 선형저밀도폴리에틸렌, 폴리프로필렌, 에틸렌프로필렌고무, 에틸렌프로필렌디엔고무, 천연고무, 이소부틸고무 및 스틸렌부타디엔고무 중에서 선택되는 1종 이상을 더 포함하는 것을 특징으로 하는 자동차 범퍼용 심재.The method of claim 1, wherein the base resin is at least one selected from among low density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, ethylene propylene rubber, ethylene propylene diene rubber, natural rubber, isobutyl rubber and styrene butadiene rubber Car bumper core material comprising a. 제 1 항에 있어서, 2차 압축성형된 최종 발포체의 가교율은 70% 이상임을 특징으로 하는 자동차 범퍼용 심재.2. The bumper core material according to claim 1, wherein the second compression molded final foam has a crosslinking rate of 70% or more.
KR1019970068347A 1997-12-12 1997-12-12 Car bumper core material KR100491243B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970068347A KR100491243B1 (en) 1997-12-12 1997-12-12 Car bumper core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970068347A KR100491243B1 (en) 1997-12-12 1997-12-12 Car bumper core material

Publications (2)

Publication Number Publication Date
KR19990049407A KR19990049407A (en) 1999-07-05
KR100491243B1 true KR100491243B1 (en) 2005-09-02

Family

ID=37304468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970068347A KR100491243B1 (en) 1997-12-12 1997-12-12 Car bumper core material

Country Status (1)

Country Link
KR (1) KR100491243B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586487B1 (en) * 2000-07-12 2003-07-01 Bayer Corporation Low-density, water blown polyurethane foams for energy-absorbing applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363885A (en) * 1980-09-22 1982-12-14 Ube Industries, Ltd. Propylene polymer composition useful for bumpers
KR900007527A (en) * 1988-11-10 1990-06-01 랜자이드 테크놀로지 컴패니, 엘피 Method for producing directional solidified metal matrix composite
JPH0559251A (en) * 1991-08-30 1993-03-09 Ube Ind Ltd Resin composition for bumper
KR100204755B1 (en) * 1997-07-09 1999-06-15 이영일 Resin composition for bumper core
KR100266384B1 (en) * 1996-02-12 2000-10-02 김종목 Method for manufacturing automobile bumper using foamed crosslinked polyethylene foam scrap
KR100379673B1 (en) * 1995-05-30 2003-05-17 삼성종합화학주식회사 Core material used for car bumper
KR20030079673A (en) * 2002-04-02 2003-10-10 루치아노 미글리오리 Clamping device for laser welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363885A (en) * 1980-09-22 1982-12-14 Ube Industries, Ltd. Propylene polymer composition useful for bumpers
KR900007527A (en) * 1988-11-10 1990-06-01 랜자이드 테크놀로지 컴패니, 엘피 Method for producing directional solidified metal matrix composite
JPH0559251A (en) * 1991-08-30 1993-03-09 Ube Ind Ltd Resin composition for bumper
KR100379673B1 (en) * 1995-05-30 2003-05-17 삼성종합화학주식회사 Core material used for car bumper
KR100266384B1 (en) * 1996-02-12 2000-10-02 김종목 Method for manufacturing automobile bumper using foamed crosslinked polyethylene foam scrap
KR100204755B1 (en) * 1997-07-09 1999-06-15 이영일 Resin composition for bumper core
KR20030079673A (en) * 2002-04-02 2003-10-10 루치아노 미글리오리 Clamping device for laser welding

Also Published As

Publication number Publication date
KR19990049407A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US4504534A (en) Core material for automobile bumpers
JP3782454B2 (en) Polypropylene homopolymer expanded particles and expanded molded articles
CA1247816A (en) Lightly crosslinked linear olefinic polymer foams and process for making
US5895614A (en) Method of forming a microcellular foam plank
US20030032731A1 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
WO2007099833A1 (en) Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
EP0155558B2 (en) Core material for an automobile bumper
EP0887371B1 (en) Process for preparing composite polymeric materials having high resistance to impact energy
JP2018076464A (en) Foam particle and molding thereof
EP1055701B1 (en) Polycarbonate resin foam and shock absorber using the same
JPH07503269A (en) Dimensionally stable polypropylene foam expanded using inorganic blowing agents
KR100491243B1 (en) Car bumper core material
KR100379673B1 (en) Core material used for car bumper
JP5577332B2 (en) Polypropylene resin pre-expanded particles and method for producing the same
JPS6097833A (en) Manufacture of expanded crosslinked ethylene polymer molded shape
KR101928925B1 (en) Polyolefin foam particle with excellent impact resistance
JP4202716B2 (en) Thermoplastic resin foam molding and method for producing the same
JPH07278365A (en) Low-density polyolefin foam, foamable polyolefin compositionand their production
JP3281904B2 (en) Expanded polypropylene resin particles and molded article thereof
EP0359032B1 (en) Method for manufacturing pre-expanded particles of polyolefin resin
JPH07330935A (en) Crystalline polyolefin foam
JP7382145B2 (en) Polyolefin resin particles and their use
KR101928927B1 (en) Olefin block copolymer foam particle with excellent impact resistance
JPH0739500B2 (en) Pre-expanded polypropylene resin particles
JP3126449B2 (en) Polyolefin resin foam particles

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150303

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160329

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 13

EXPY Expiration of term