KR100490838B1 - Praparation of gamma-butyrolactone using noble metal catalyst - Google Patents

Praparation of gamma-butyrolactone using noble metal catalyst Download PDF

Info

Publication number
KR100490838B1
KR100490838B1 KR10-2002-0051755A KR20020051755A KR100490838B1 KR 100490838 B1 KR100490838 B1 KR 100490838B1 KR 20020051755 A KR20020051755 A KR 20020051755A KR 100490838 B1 KR100490838 B1 KR 100490838B1
Authority
KR
South Korea
Prior art keywords
palladium
catalyst
tin
hydrogenation
precursor
Prior art date
Application number
KR10-2002-0051755A
Other languages
Korean (ko)
Other versions
KR20040020227A (en
Inventor
정승문
최정욱
박광천
정상윤
에릭고다
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR10-2002-0051755A priority Critical patent/KR100490838B1/en
Publication of KR20040020227A publication Critical patent/KR20040020227A/en
Application granted granted Critical
Publication of KR100490838B1 publication Critical patent/KR100490838B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • B01J35/61
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form

Abstract

본 발명은 귀금속 촉매를 이용한 감마부티로락톤의 제조방법에 관한 것으로, 특히 실리카 지지체 상에 팔라듐과 주석이 담지된 귀금속 촉매를 이용한 감마부티로락톤의 제조방법에 관한 것이다.The present invention relates to a method for producing gamma butyrolactone using a noble metal catalyst, and more particularly, to a method for producing gamma butyrolactone using a noble metal catalyst having palladium and tin supported on a silica support.

본 발명에 따른 수소화 반응촉매는 팔라듐과 주석이 포함된 복합체를 활성성분으로 사용하여 종래 팔라듐 단일성분의 활성성분보다 동일 조건에서 무수말레인산(MAN)의 수소화에 있어서 높은 반응속도와 수율을 나타내며 촉매의 수명이 연장되어 경제적으로 높은 수율의 감마부티로락톤을 얻을 수 있다.The hydrogenation reaction catalyst according to the present invention exhibits a higher reaction rate and yield in hydrogenation of maleic anhydride (MAN) under the same conditions than the active ingredient of conventional palladium monocomponent by using a complex containing palladium and tin as an active ingredient. The service life is extended to obtain economically high yield of gamma butyrolactone.

Description

귀금속 촉매를 이용한 감마부티로락톤의 제조방법{PRAPARATION OF GAMMA-BUTYROLACTONE USING NOBLE METAL CATALYST}Production Method of Gamma Butyrolactone Using Precious Metal Catalysts {PRAPARATION OF GAMMA-BUTYROLACTONE USING NOBLE METAL CATALYST}

본 발명은 귀금속 촉매를 이용한 감마부티로락톤의 제조방법에 관한 것으로, 더욱 상세하게는 활성성분으로는 팔라듐과 주석을 주성분으로 하고, 실리카를 지지체로 사용하여 얻어진 촉매하에서 무수 말레인산(이하, MAN)으로부터 감마부티로락톤(이하, GBL)을 효과적으로 액상 환원하여 조업조건에 대한 광범위한 적용성을 나타내어 상업화 공정에 적용하기에 적합한 감마부티로락톤 제조용 수소화 반응촉매와 그 제조방법, 및 이를 이용한 감마부티로락톤의 제조방법에 관한 것이다.The present invention relates to a method for producing gamma butyrolactone using a noble metal catalyst, and more particularly, maleic anhydride (man, hereinafter) under a catalyst obtained by using palladium and tin as main components and silica as a support. Hydrogenation reaction catalyst for producing gamma butyrolactone suitable for the commercialization process by effectively reducing the gamma-butyrolactone (hereinafter referred to as GBL) from the liquid phase and exhibiting broad applicability to operating conditions, and a method for producing the same, and gamma-butyro using the same It relates to a method for producing lactones.

GBL은 다양한 합성방법에서 출발 물질로 사용된다. 실제로 부틸산과 유도체의 생산, 테트라하이드로퓨란 및 N-메틸피롤리돈 등과 같은 물질의 생산에 있어 중요한 역할을 한다. 또한, GBL 자체는 아크릴레이트, 폴리머, 합성수지의 제조에 있어 중요한 용매로도 알려져 있다.GBL is used as a starting material in various synthetic methods. In fact, it plays an important role in the production of butyric acid and derivatives, and the production of substances such as tetrahydrofuran and N-methylpyrrolidone. GBL itself is also known as an important solvent in the production of acrylates, polymers and synthetic resins.

현재, 상기 GBL의 제조방법은 주로 MAN으로부터 일차 수소화된 호박 무수산 (이하, SAN)을 이차 수소화 방법을 통해 촉매 존재하에서 GBL로 전환시킨다.At present, the method of preparing GBL mainly converts primary hydrogenated amber anhydrous acid (hereinafter, SAN) from MAN to GBL in the presence of a catalyst through a secondary hydrogenation method.

상기 MAN으로부터 효과적으로 수소화를 통해 GBL을 얻기 위해 다양한 촉매의 적용사례가 알려져 있다. 지금까지 알려진 효과적인 촉매로는 팔라듐을 중심으로 하는 귀금속류와 전이금속으로 이루어진 다성분계 촉매가 알려져 있다. 예를 들어, 미국특허 제5,536,849호는 구리를 주성분으로 하여 크롬과 실리카를 보조성분으로 하는 촉매를 제안하였으며, 이러한 촉매는 지금까지 문제가 되던 다량의 SAN의 미 환원의 문제점을 개선하였다. 그러나 크롬의 환경적인 치명적인 단점은 폐 촉매의 처리에 있어 문제점을 나타내었다. 최근에는 미국특허 제6,008,375호에서 크롬대신에 알루미늄과 흑연(graphite)으로 대치된 촉매를 소개하였다.There are known applications of various catalysts to effectively obtain GBL through hydrogenation from the MAN. As an effective catalyst known to date, a multicomponent catalyst composed of noble metals and transition metals based on palladium is known. For example, U.S. Patent No. 5,536,849 proposed a catalyst having chromium and silica as a main component of copper as a main component, and this catalyst improves the problem of unreduction of a large amount of SAN, which has been a problem until now. However, the environmentally fatal disadvantage of chromium presents a problem in the treatment of spent catalysts. Recently, US Pat. No. 6,008,375 introduced a catalyst substituted with aluminum and graphite instead of chromium.

귀금속류의 수소화 촉매로는 팔라듐이 매우 효과적임이 Hermann과 Emig [Ind.Eng. Chem. Res., 36, 2885 (1997)]에 의해 보고되어 있다. 그러나, 단일 성분의 팔라듐은 MAN으로부터 SAN으로 매우 효과적으로 사용될 수 있지만, SAN으로부터 GBL로의 환원 과정에서 충분한 활성을 보이지 못한다. 더욱이, 팔라듐에 의한 MAN의 수소화 반응에 있어서 중합체의 생성은 촉매 수명을 단축시키는 원인이 되었다. 이를 개선하기 위해, 팔라듐 수소화 촉매는 미국특허 제4,052,335호와 제4,006,165에 나타난 것과 같이 니켈, 코발트, 크롬 등의 성분과 복합 활성성분을 이루어 사용되어 왔다. 90년대 초에 미국특허 제5,118,821호는 Pd/Ni의 활성 성분으로 하여 향상된 수소화 반응 결과를 나타내었다. 최근에는 몰리브데늄을 제 3성분으로 추가하여 활성 및 선택도를 향상시킨 경우가 보고된 바 있다(미국특허 제 6,380,402 B2). 그러나, 니켈과 같은 전이금속의 사용은 활성에 있어서는 효과적이나 반응 중에 필연적으로 생성되는 유기산에 의해 비활성화가 쉽게 진행된다. 이러한 단점은 지금까지, 팔라듐을 주요 활성성분으로 가지는 촉매를 가지는 실제 공정을 불가능하게 하였다.Palladium is a very effective catalyst for the hydrogenation of precious metals. Hermann and Emig [Ind. Eng. Chem. Res., 36, 2885 (1997). However, single component palladium can be used very effectively from MAN to SAN, but does not show sufficient activity in the reduction process from SAN to GBL. Moreover, the formation of polymers in the hydrogenation of MAN with palladium has been a cause of shortening the catalyst life. To improve this, palladium hydrogenation catalysts have been used in combination with components such as nickel, cobalt, chromium and the like as shown in US Pat. Nos. 4,052,335 and 4,006,165. In the early nineties, U.S. Patent No. 5,118,821 showed improved hydrogenation results with Pd / Ni as an active ingredient. Recently, it has been reported that the addition of molybdenum as a third component improves the activity and selectivity (US Pat. No. 6,380,402 B2). However, the use of transition metals such as nickel is effective in activity, but inactivation is easily proceeded by the organic acid inevitably generated during the reaction. These drawbacks have, to date, rendered the practical process impossible with catalysts having palladium as the main active ingredient.

상기와 같은 종래 기술에서의 문제점을 고려하여, 본 발명은 무수말레인산(MAN)을 액상수소화하여 감마부티로락톤(GBL)을 제조하기 위한 방법에서 주석의 첨가로 변형된 성질을 갖는 팔라듐 금속촉매의 적용을 통해 가혹 조건에서 향상된 활성과 선택도를 가지고 충분한 촉매 수명을 가지는 감마부티로락톤 제조용 수소화 반응촉매 및 그 제조방법을 제공하는 것을 목적으로 한다.In view of the above problems in the prior art, the present invention provides a palladium metal catalyst having a property modified by the addition of tin in the method for producing gamma butyrolactone (GBL) by liquid-hydrogenating maleic anhydride (MAN). It is an object of the present invention to provide a hydrogenation catalyst for producing gamma butyrolactone and a method for producing the same, which have an improved activity and selectivity under severe conditions and a sufficient catalyst life.

본 발명의 다른 목적은 상기 수소화 반응촉매를 이용하여 촉매의 수명을 최대화하여 반응물에 대한 촉매의 사용량을 최소화함으로서 경제적으로 감마부티로락톤을 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for economically preparing gamma butyrolactone by maximizing the life of the catalyst using the hydrogenation reaction catalyst to minimize the amount of the catalyst used for the reactants.

본 발명은 상기 목적을 달성하기 위하여, 실리카 지지체 상에 팔라듐과 주석이 담지된 감마부티로락톤 제조용 수소화 반응촉매를 제공한다.The present invention provides a hydrogenation catalyst for preparing gamma butyrolactone in which palladium and tin are supported on a silica support to achieve the above object.

또한, 본 발명은 실리카 지지체를 팔라듐의 전구체 및 주석의 전구체가 용해된 수용액에 담지하고 교반한 후, 용매를 제거하고 건조 및 300 내지 400 ℃에서 소성시키는 단계를 포함하는 감마부티로락톤 제조용 수소화 반응촉매의 제조방법을 제공한다.In addition, the present invention is a hydrogenation reaction for preparing gamma butyrolactone comprising the step of supporting the silica support in an aqueous solution in which a precursor of palladium and a precursor of tin is dissolved and stirred, followed by removing the solvent, drying and firing at 300 to 400 ℃ Provided are methods for preparing a catalyst.

또한, 본 발명은 실리카 지지체 상에 팔라듐과 주석이 담지된 수소화 반응촉매하에 액상에서 무수말레인산을 수소화 반응시키는 단계를 포함하는 감마부티로락톤의 제조방법을 제공한다.The present invention also provides a method for preparing gamma butyrolactone, comprising the step of hydrogenating maleic anhydride in a liquid phase under a hydrogenation catalyst having palladium and tin supported on a silica support.

이하에서 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 실리카 지지체를 사용하여 제조된 감마부티로락톤 제조용 수소화 반응촉매 및 그의 제조방법과, 이를 이용하여 무수말레인산(MAN)으로부터 감마부티로락톤을 제조하는 방법에 관한 것이다.The present invention relates to a hydrogenation catalyst for preparing gamma butyrolactone prepared using a silica support, and a method for preparing the same, and a method for producing gamma butyrolactone from maleic anhydride (MAN) using the same.

본 발명의 수소화 반응촉매의 제조방법은 실리카 지지체를 사용하여 팔라듐과 주석을 담지하는 과정으로 이루어진다. 본 발명에서 사용하는 수소화 반응촉매는 주석이 첨가된 활성성분을 사용하여 종래 단일성분 또는 전이금속이 포함된 촉매보다 동일 조건에서 무수말레인산(MAN)의 수소화에 있어서 높은 반응속도와 수율 및 향상된 촉매수명을 나타내는 특징이 있다.The method for producing a hydrogenation catalyst of the present invention consists of a process of supporting palladium and tin using a silica support. The hydrogenation reaction catalyst used in the present invention has a higher reaction rate, yield and improved catalyst life in hydrogenation of maleic anhydride (MAN) under the same conditions than a catalyst containing a conventional single component or transition metal using an active ingredient added with tin. There is a characteristic that represents.

본 발명의 수소화 반응촉매는 실리카 지지체 표면 위에 팔라듐의 전구체와 주석의 전구체 수용액을 담지하고 소성함으로써 제조한다. 상기 팔라듐과 주석의 담지 방법은 팔라듐과 주석을 포함하는 수용액을 상온에서 제조한 이후에 실리카 지지체에 첨가하여 혼합하고, 용매인 물을 120 ℃에서 제거한다. 이후, 얻어진 고체를 500 ℃ 미만의 온도, 바람직하게는 300 내지 400 ℃의 온도에서 소성시킨다. 이러한 과정으로 얻어진 촉매는 수소화 반응 전에 500 ℃ 미만, 바람직하게는 150 내지 500 ℃의 온도에서 수소 존재하에서 환원시킨 후 사용하는 것이 바람직하다. 이때, 상기 팔라듐의 전구체는 팔라듐의 질산염, 팔라듐의 염산염 등을 사용할 수 있고, 상기 주석의 전구체는 주석의 질산염, 주석의 염산염 등을 사용할 수 있다.The hydrogenation catalyst of the present invention is prepared by supporting and firing an aqueous solution of a precursor of palladium and a precursor of tin on the surface of a silica support. In the method of supporting palladium and tin, an aqueous solution containing palladium and tin is prepared at room temperature, and then added to the silica support and mixed, and water, which is a solvent, is removed at 120 ° C. The solid obtained is then calcined at a temperature below 500 ° C., preferably at a temperature of 300 to 400 ° C. The catalyst obtained by this process is preferably used after reducing in the presence of hydrogen at a temperature of less than 500 ℃, preferably 150 to 500 ℃ before the hydrogenation reaction. In this case, the precursor of palladium may be used nitrate of palladium, hydrochloride of palladium, etc., the precursor of tin may be used nitrate of tin, hydrochloride of tin and the like.

본 발명에서 지지체로 사용되는 실리카는 200 내지 1500 ㎡의 표면적과 2 내지 50 nm의 세공조건을 가진 중간세공(mesoporous)의 실리카를 사용하는 것이 바람직하다.As the silica used as the support in the present invention, it is preferable to use mesoporous silica having a surface area of 200 to 1500 m 2 and pore conditions of 2 to 50 nm.

또한, 본 발명의 촉매에서 활성 성분으로 사용되는 팔라듐은 전체 촉매 중량에 대하여 0.1 내지 5 중량%, 바람직하게는 0.5 내지 3 중량%로 사용한다. 상기 팔라듐의 사용량이 0.1 중량% 미만이면 수소화 능력이 미미해 활성이 떨어지는 문제가 있고, 5 중량%를 초과하면 활성증가는 거의 없으면서도 귀금속사용에 의한 촉매생산 비가 증가하는 문제가 있다.In addition, palladium used as the active ingredient in the catalyst of the present invention is used at 0.1 to 5% by weight, preferably 0.5 to 3% by weight based on the total catalyst weight. If the amount of palladium is less than 0.1% by weight, there is a problem in that the activity is inferior due to insignificant hydrogenation ability, and when the amount of the palladium is used in excess of 5% by weight, there is a problem in that the catalyst production ratio due to the use of precious metal is increased while there is little increase in activity.

상기 주석의 함량은 전체 촉매 중량에 대하여 0.1 내지 3 중량%로 사용하며, 바람직하게는 0.2 내지 2 중량%로 사용한다. 상기 주석의 사용량이 0.1 중량% 미만이면 주석의 효과가 나타나지 않는 문제가 있고, 3 중량%를 초과하면 팔라듐의 활성을 저하시키는 역할을 한다.The content of tin is used in an amount of 0.1 to 3% by weight based on the total catalyst weight, preferably 0.2 to 2% by weight. If the amount of tin used is less than 0.1% by weight, there is a problem in that the effect of tin does not appear, and if it exceeds 3% by weight, it serves to lower the activity of palladium.

한편, 본 발명은 상기에서 얻은 수소화 반응촉매를 이용하여 수소화 반응을 통해 감마부티로락톤(GBL)을 제조할 수 있다.On the other hand, the present invention can produce gamma butyrolactone (GBL) through the hydrogenation reaction using the hydrogenation reaction catalyst obtained above.

본 발명에서 GBL을 수득하기 위한 무수말레인산(MAN)의 수소화 반응은 180 내지 250 ℃의 온도, 200 내지 1000 psig의 압력, 및 반응시간 4시간 정도의 조건하에 실시되는 것이 바람직하다.Hydrogenation of maleic anhydride (MAN) to obtain GBL in the present invention is preferably carried out under conditions of temperature of 180 to 250 ℃, pressure of 200 to 1000 psig, and reaction time of about 4 hours.

특히, 본 발명의 수소화 반응촉매의 사용량은 3 내지 15 중량%로 사용하는 것이 바람직하며, 보다 바람직하게는 촉매의 높은 활성에 기인하여 반응물인 무수말레인산에 대하여 7 내지 12 중량%로 사용한다. 상기 촉매의 사용량이 3 중량% 미만이면 반응시간의 증가로 인한 중합물의 증가 문제가 있고, 15 중량%를 초과하면 전체 탄소 함량이 급격히 감소하는 문제가 있다.In particular, the amount of the hydrogenation catalyst of the present invention is preferably used in 3 to 15% by weight, more preferably 7 to 12% by weight based on the maleic anhydride as a reactant due to the high activity of the catalyst. If the amount of the catalyst is less than 3% by weight, there is a problem of increasing the polymer due to the increase of the reaction time, and if the amount of the catalyst exceeds 15% by weight, the total carbon content is sharply reduced.

이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이며 이들만으로 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, an Example is for illustrating this invention and is not limited only to these.

[실시예 1]Example 1

팔라듐 클로라이드 0.34g과 주석클로라이드 0.17g의 전구체를 16g의 수용액에 넣고 녹인 후에 건조된 20g의 실리카 지지체 (300 ㎡/g, Darko.Co.)와 섞어 주었다. 이후, 120 ℃의 온도에서 3시간 동안 건조한 후에 350 ℃에서 수소를 이용하여 촉매를 환원시켰다. 촉매상에서의 팔라듐과 주석의 최종 조성은 각각 1.0 중량%과 0.5 중량%이었다.0.34 g of palladium chloride and 0.17 g of tin chloride were dissolved in 16 g of an aqueous solution, and then mixed with 20 g of a silica support (300 m 2 / g, Darko. Co.) dried. Thereafter, the catalyst was reduced by using hydrogen at 350 ° C. after drying at a temperature of 120 ° C. for 3 hours. The final compositions of palladium and tin on the catalyst were 1.0% and 0.5% by weight, respectively.

300 ml의 고압반응기에, 7.5g의 무수말레인산(MAN), 142.5 g의 다이옥산과 1.5g의 상기 촉매를 투입한 후에, 750 psig의 압력 조건에서 20 ℃/min의 승온 속도로 240 ℃로 온도를 올려 반응을 진행하였다. 반응물 분석은 불꽃이온화 검출기가 부착된 가스크로마토그래피로 분석하였으며, 반응후 4시간 경과후에, 무수말레인산(MAN)의 전환율은 100%이었으며, 감마부티로락톤(GBL)의 수율은 78.7%를 나타내었다.Into a 300 ml high-pressure reactor, 7.5 g of maleic anhydride (MAN), 142.5 g of dioxane and 1.5 g of the catalyst were charged, and then the temperature was increased to 240 ° C. at a temperature rising rate of 20 ° C./min at a pressure of 750 psig. Raised the reaction. The reactants were analyzed by gas chromatography with a flame ionization detector. After 4 hours, the conversion of maleic anhydride (MAN) was 100% and the yield of gamma butyrolactone (GBL) was 78.7%. .

[실시예 2]Example 2

실시예 1과 동일한 방법으로 촉매를 제조하되, 200 ℃의 온도에서 촉매의 환원을 실시하였다. 반응 조건은 실시예 1과 동일하게 실시하였다. 4시간 반응 후에 무수말레인산(MAN)의 전환율은 100%이었으며, GBL의 수율은 54%를 나타내었다.A catalyst was prepared in the same manner as in Example 1, but the catalyst was reduced at a temperature of 200 ° C. Reaction conditions were performed similarly to Example 1. After 4 hours, the maleic anhydride (MAN) conversion was 100% and the GBL yield was 54%.

[비교예 1]Comparative Example 1

본 비교예는 활성성분에 첨가된 주석의 효과를 나타내기 위해 이루어졌다. 주석을 첨가하지 않고, 실시예 1에 기술된 방법과 같이 팔라듐을 실리카에 담지하여 촉매를 제조하였다. 촉매상에서의 팔라듐의 조성은 1.0 중량% 이었다.This comparative example was made to show the effect of tin added to the active ingredient. The catalyst was prepared by supporting palladium on silica as in the method described in Example 1 without adding tin. The composition of palladium on the catalyst was 1.0% by weight.

실시예 1과 동일조건에서 4시간 반응후에 MAN의 전환율은 100%이었으며, GBL의 수율은 50.9%를 나타내었다.After 4 hours under the same conditions as in Example 1, the conversion of MAN was 100% and the yield of GBL was 50.9%.

[비교예 2]Comparative Example 2

본 비교예에서는 지지체에 사용된 실리카 지지체의 효과를 나타내기 위해 이루어졌다. 카아본(Darko Co.)를 사용하여, 실시예 1에 기술된 방법과 같이 팔라듐과 주석을 담지하여 촉매를 제조하였다. 촉매상에서의 팔라듐과 주석의 조성은 각각 1.0 중량%과 0.5 중량%이었다.In this comparative example, it was made to show the effect of the silica support used in the support. Catalysts were prepared using Darko Co. by supporting palladium and tin as in the method described in Example 1. The compositions of palladium and tin on the catalyst were 1.0% and 0.5% by weight, respectively.

실시예 1과 동일조건에서 4시간 반응후에, MAN의 전환율은 100%이었으며, GBL의 수율은 26%를 나타내었다.After 4 hours under the same conditions as in Example 1, the conversion of MAN was 100% and the yield of GBL was 26%.

[실시예 3]Example 3

본 실시예에서는 팔라듐-주석으로 이루어진 촉매 수명의 효과를 나타내기 위해 이루어졌다. 실시예 1과 동일한 방법으로 실시하되, 반응 후 동일 촉매를 여과한 후 재사용하여 4차례의 수소화 반응을 반복하여 실시하였다. 각 반응에 있어 4시간 반응후에 무수말레인산(MAN)의 전환율은 100%이었으며, GBL의 수율은 79.0%, 74.0%, 73.0%, 70.0%를 나타내었다.In this example it was made to show the effect of catalyst life consisting of palladium-tin. The same process as in Example 1 was carried out, but after the reaction, the same catalyst was filtered and reused to repeat four hydrogenation reactions. In each reaction, the conversion of maleic anhydride (MAN) was 100% after 4 hours, and the yields of GBL were 79.0%, 74.0%, 73.0%, and 70.0%.

[비교예 3]Comparative Example 3

본 비교예에서는 주석의 촉매 수명에 미치는 효과를 나타내기 위해 이루어졌다. 실시예 1과 동일한 방법으로 실시하되, 주석은 첨가하지 않고 팔라듐을 실리카에 담지하여 촉매를 제조하였다. 촉매상에서의 팔라듐의 조성은 1.0 중량% 이었다. 실시예 3과 동일조건에서 4차례의 수소화 반응을 실시하였다. 4시간 반응후에 MAN의 전환율은 100%이었으며, GBL의 수율은 각각, 50.9%, 28.9%, 25.2%, 18.4%를 나타내었다.This comparative example was made to show the effect on the catalyst life of tin. The catalyst was prepared in the same manner as in Example 1 except that palladium was supported on silica without adding tin. The composition of palladium on the catalyst was 1.0% by weight. Four hydrogenation reactions were carried out under the same conditions as in Example 3. After 4 hours, the conversion of MAN was 100% and the yield of GBL was 50.9%, 28.9%, 25.2% and 18.4%, respectively.

이상에서 설명한 바와 같이, 본 발명에 따른 수소화 반응촉매는 실리카 지지체상에 담지된 팔라듐과 주석의 성분으로 이루어진 촉매를 사용하여 종래 단일성분의 촉매보다 동일 조건에서 무수말레인산(MAN)의 수소화에 있어서 높은 반응속도와 수율을 나타내며 비활성화 속도의 감소로 인해 촉매 수명을 연장함으로써 경제적으로 높은 수율의 감마부티로락톤을 얻을 수 있다.As described above, the hydrogenation reaction catalyst according to the present invention is higher in the hydrogenation of maleic anhydride (MAN) under the same conditions than the conventional monocomponent catalyst by using a catalyst composed of palladium and tin supported on a silica support. Economically high yields of gamma butyrolactone can be obtained by extending the catalyst life due to the reduction of the deactivation rate and the reaction rate and yield.

Claims (10)

실리카 지지체 상에 팔라듐과 주석이 담지되며, 상기 팔라듐의 함량은 전체 촉매에 대하여 0.1 내지 5 중량%이고, 주석의 함량은 전체 촉매에 대하여 0.1 내지 3.0 중량%인 감마부티로락톤 제조용 수소화 반응촉매.Palladium and tin is supported on a silica support, the content of the palladium is 0.1 to 5% by weight based on the total catalyst, the content of tin is 0.1 to 3.0% by weight relative to the total catalyst hydrogenation reaction catalyst for producing gamma butyrolactone. 삭제delete 제 1 항에 있어서, 상기 실리카는 표면적이 200 내지 1000 ㎡/g이고, 세공크기가 2 내지 50 nm인 감마부티로락톤 제조용 수소화 반응촉매.The hydrogenation catalyst of claim 1, wherein the silica has a surface area of 200 to 1000 m 2 / g and a pore size of 2 to 50 nm. 실리카 지지체를 팔라듐의 전구체 및 주석의 전구체가 용해된 수용액에 담지하고 교반하는 단계;Supporting and stirring the silica support in an aqueous solution in which a precursor of palladium and a precursor of tin are dissolved; 상기 수용액의 용매를 제거하고 건조시키는 단계; 및Removing the solvent of the aqueous solution and drying the solvent; And 상기 건조된 실리카 지지체, 팔라듐의 전구체, 및 주석의 전구체를 300 내지 400 ℃에서 소성시키는 단계Calcining the dried silica support, the precursor of palladium, and the precursor of tin at 300 to 400 ° C. 를 포함하는 감마부티로락톤 제조용 수소화 반응촉매의 제조방법.Method for producing a hydrogenation catalyst for producing gamma butyrolactone comprising a. 제 4 항에 있어서, 상기 팔라듐의 전구체는 팔라듐의 질산염, 또는 팔라듐의 염산염인 감마부티로락톤 제조용 수소화 반응촉매의 제조방법.The method of claim 4, wherein the precursor of palladium is nitrate of palladium or hydrochloride of palladium. 제 4 항에 있어서, 상기 주석의 전구체는 주석의 질산염, 또는 주석의 염산염인 감마부티로락톤 제조용 수소화 반응촉매의 제조방법.5. The method of claim 4, wherein the precursor of tin is nitrate of tin or hydrochloride of tin. 제1항 및 제3항 중 어느 한 항에 따른 수소화 반응 촉매, 및 무수말레인산을 용매와 혼합하는 단계; 및Mixing the hydrogenation catalyst according to any one of claims 1 and 3, and maleic anhydride with a solvent; And 상기 혼합물을 압력 200 내지 1000 psig인 조건하에서 180 내지 250 ℃로 가열하여 무수말레인산을 수소화 반응시키는 단계Hydrogenating maleic anhydride by heating the mixture to 180-250 ° C. under a pressure of 200-1000 psig. 를 포함하는 감마부티로락톤의 제조방법.Gamma-butyrolactone production method comprising a. 제 7 항에 있어서, 상기 수소화 반응촉매는 사용량이 무수말레인산(MAN)에 대하여 3 내지 15 중량%인 감마부티로락톤의 제조방법.The method of claim 7, wherein the hydrogenation reaction catalyst is used in an amount of 3 to 15 wt% based on maleic anhydride (MAN). 제 7 항에 있어서, 상기 수소화 반응촉매는 수소화 반응 전에 150 내지 500 ℃의 온도에서 환원제로 활성화시키는 단계를 포함하는 감마부티로락톤의 제조방법.The method of claim 7, wherein the hydrogenation catalyst comprises activating a reducing agent at a temperature of 150 to 500 ° C. before the hydrogenation reaction. 삭제delete
KR10-2002-0051755A 2002-08-30 2002-08-30 Praparation of gamma-butyrolactone using noble metal catalyst KR100490838B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0051755A KR100490838B1 (en) 2002-08-30 2002-08-30 Praparation of gamma-butyrolactone using noble metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0051755A KR100490838B1 (en) 2002-08-30 2002-08-30 Praparation of gamma-butyrolactone using noble metal catalyst

Publications (2)

Publication Number Publication Date
KR20040020227A KR20040020227A (en) 2004-03-09
KR100490838B1 true KR100490838B1 (en) 2005-05-19

Family

ID=37324712

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0051755A KR100490838B1 (en) 2002-08-30 2002-08-30 Praparation of gamma-butyrolactone using noble metal catalyst

Country Status (1)

Country Link
KR (1) KR100490838B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052335A (en) * 1974-06-18 1977-10-04 Deutsche Texaco Aktiengesellschaft Catalyst for the production of gamma-butyrolactone and a method for preparing the catalyst
JPH029873A (en) * 1988-04-22 1990-01-12 Ucb Sa Production of gamma-butyrolactone
US5792875A (en) * 1994-03-29 1998-08-11 Council Of Scientific & Industrial Research Catalytic production of butyrolactone or tetrahydrofuran
US5985789A (en) * 1997-03-27 1999-11-16 E. I. Du Pont De Nemours And Company Ru, Sn/oxide catalyst and process for hydrogenation in acidic aqueous solution
KR20010042926A (en) * 1998-04-23 2001-05-25 스타르크, 카르크 Method for Producing Mixtures of 1,4-Butanediol, Tetrahydrofuran and γ-Butyrolactone
KR101278656B1 (en) * 2013-04-22 2013-06-25 전은희 System and method for distinguishing minor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052335A (en) * 1974-06-18 1977-10-04 Deutsche Texaco Aktiengesellschaft Catalyst for the production of gamma-butyrolactone and a method for preparing the catalyst
JPH029873A (en) * 1988-04-22 1990-01-12 Ucb Sa Production of gamma-butyrolactone
US5792875A (en) * 1994-03-29 1998-08-11 Council Of Scientific & Industrial Research Catalytic production of butyrolactone or tetrahydrofuran
US5985789A (en) * 1997-03-27 1999-11-16 E. I. Du Pont De Nemours And Company Ru, Sn/oxide catalyst and process for hydrogenation in acidic aqueous solution
KR20010042926A (en) * 1998-04-23 2001-05-25 스타르크, 카르크 Method for Producing Mixtures of 1,4-Butanediol, Tetrahydrofuran and γ-Butyrolactone
KR101278656B1 (en) * 2013-04-22 2013-06-25 전은희 System and method for distinguishing minor

Also Published As

Publication number Publication date
KR20040020227A (en) 2004-03-09

Similar Documents

Publication Publication Date Title
WO1999038856A2 (en) Process for the production of gamma-butyrolactone
KR100264544B1 (en) Process for the hydrogenation of maleic acid to 1,4-butanediol
JPH01168346A (en) Hydrogenating catalyst, production thereof and catalytic method using said catalyst
JPS63255253A (en) Production of amines
JP2543929B2 (en) Method for hydrogenating citric acid and substituted citric acid to 3-substituted tetrahydrofuran, 3- and 4-substituted butyrolactone and mixtures thereof
JP4123525B2 (en) Method for producing gamma-butyrolactone
EP1047687B1 (en) Process for the production of gamma-butyrolactone
EP1636203B1 (en) Production of 5-methyl-dihydro-furan-2-one from levulinic acid in supercritical media
US5990323A (en) Preparation of amines
JPS646183B2 (en)
KR100490838B1 (en) Praparation of gamma-butyrolactone using noble metal catalyst
KR100344962B1 (en) Preparation method of gamma butyrolactone using maleic anhydride
KR0131203B1 (en) Process for the production of ñò-butyrolactone
JPS5941974B2 (en) Hydrogenation method for α,β-unsaturated aldehydes
JP4312334B2 (en) Indan manufacturing method
KR100446655B1 (en) Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same
JPH01121228A (en) Production of 1,4-butylene glycol
JP2005530755A (en) Method for producing γ-butyrolactone
CN109046363A (en) A kind of method that supported bimetal catalyst efficiently synthesizes DBE
KR100710543B1 (en) Continuous Process for the Production of Optically Pure S- ?-hydroxy- ?-butyrolactone
KR100230831B1 (en) A process for preparing gamma-butyrolactone
JP2004505071A (en) Continuous production method of optically pure (S) -β-hydroxy-γ-butyrolactone
EP1558597B1 (en) Continuous process for the production of optically pure (s)-beta hydroxy-gamma-butyrolactone
KR20050024230A (en) Method for Preparing Sugar Alcohols by Catalytic Hydrogenation of Sugars
JPH06107654A (en) Production of lactones

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090506

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee