KR100490831B1 - METHOD OF PREPARING CATALYST FOR REMOVAL OF NOx - Google Patents

METHOD OF PREPARING CATALYST FOR REMOVAL OF NOx Download PDF

Info

Publication number
KR100490831B1
KR100490831B1 KR10-2002-0053428A KR20020053428A KR100490831B1 KR 100490831 B1 KR100490831 B1 KR 100490831B1 KR 20020053428 A KR20020053428 A KR 20020053428A KR 100490831 B1 KR100490831 B1 KR 100490831B1
Authority
KR
South Korea
Prior art keywords
pitch
vanadium
molybdenum
organic solvent
catalyst
Prior art date
Application number
KR10-2002-0053428A
Other languages
Korean (ko)
Other versions
KR20040021849A (en
Inventor
홍익표
박양덕
Original Assignee
(주)카보닉스
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)카보닉스, 재단법인 포항산업과학연구원 filed Critical (주)카보닉스
Priority to KR10-2002-0053428A priority Critical patent/KR100490831B1/en
Publication of KR20040021849A publication Critical patent/KR20040021849A/en
Application granted granted Critical
Publication of KR100490831B1 publication Critical patent/KR100490831B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 활성 탄소 섬유계 질소 산화물 제거용 촉매의 제조방법에 관한 것으로, 바나듐 또는 몰리브덴 함유 유기 금속 화합물을 제1 유기 용매에 용해시켜 제조한 유기 금속 화합물 용액과 핏치를 제2 유기 용매에 용해시켜 제조한 핏치 용액을 혼합하고; 상기 혼합 용액으로부터 유기 용매를 제거하여 바나듐 또는 몰리브덴 함유 핏치를 제조하고; 상기 바나듐 또는 몰리브덴 함유 핏치를 방사하여 핏치 섬유를 제조하고; 상기 핏치 섬유를 열안정화하고; 상기 열안정화된 핏치 섬유를 활성화하는 공정을 포함하는 질소산화물 분해용 촉매의 제조 방법을 제공한다.The present invention relates to a method for preparing an activated carbon fiber-based nitrogen oxide removal catalyst, wherein an organic metal compound solution and pitch prepared by dissolving a vanadium or molybdenum-containing organometallic compound in a first organic solvent are dissolved in a second organic solvent. Mixing the prepared pitch solution; Removing the organic solvent from the mixed solution to produce a vanadium or molybdenum containing pitch; Spinning the vanadium or molybdenum containing pitch to produce pitch fibers; Thermally stabilizing the pitch fibers; It provides a method for producing a catalyst for nitrogen oxide decomposition comprising the step of activating the heat stabilized pitch fiber.

본 발명의 질소산화물 제거용 촉매는 일반적인 활성탄소섬유보다 향상된 질소산화물 분해성능을 가지므로 탈질공정에서의 촉매로 활용이 가능하다.Nitrogen oxide removal catalyst of the present invention has improved nitrogen oxide decomposition performance than the general activated carbon fiber can be utilized as a catalyst in the denitrification process.

Description

질소산화물 제거용 촉매의 제조방법{METHOD OF PREPARING CATALYST FOR REMOVAL OF NOx}METHODS OF PREPARING CATALYST FOR REMOVAL OF NOx}

[산업상 이용 분야][Industrial use]

본 발명은 질소 산화물 제거용 촉매의 제조방법에 관한 것으로, 보다 상세하게는 바나듐 또는 몰리브덴이 매우 균일하게 분산된 활성 탄소 섬유계 질소 화합물 제거용 촉매를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing a catalyst for removing nitrogen oxides, and more particularly, to a method for preparing a catalyst for removing activated carbon fiber-based nitrogen compounds in which vanadium or molybdenum is very uniformly dispersed.

[종래 기술][Prior art]

NOx로 대표되는 질소 산화물은 황 산화물과 함께 산업화에 따라 각종 연소 공정 및 열분해 공정 등에서 배출되는 대표적인 대기 오염 물질로서, 환경에 미치는 위해성으로 인하여 일정한 농도 이하로 제거되어 배출되어야 한다.Nitrogen oxide, represented by NOx, is a representative air pollutant emitted from various combustion processes and pyrolysis processes along with sulfur oxide, and has to be removed and discharged below a certain concentration due to the danger to the environment.

이러한 질소 산화물을 제거하는 방법으로는 일반적으로 선택적 촉매 환원법(SCR: Selective Catalyst Reduction)이 이용되고 있으며 사용되는 대표적인 촉매로는 G. Ramis, J. Gatal., 157, 523(1995) 및 G. Centi, Appli. Catal. A, 132, 179(1995) 등과 같이 금속 산화물계 촉매를 들 수 있고, L. Pinoy, Catalyst Today, 17, 151(1993) 및 G. D대, J. Catal., 146, 334(1994) 등이 연구한 바와 같이 V2O5/TiO2 촉매가 특히 우수한 것으로 발표되고 있다. 이 방법은 금속 산화물의 촉매를 이용하여 300 내지 350℃ 정도의 고온에서 암모니아 등의 환원제를 투입하면서 반응시켜서 분해시키는 방법이다. 이 방법은 비교적 효율이 우수하나, 반응 온도가 상기와 같이 최소 300℃ 이상의 고온인 단점이 있다.Selective Catalyst Reduction (SCR) is generally used to remove such nitrogen oxides, and representative catalysts used are G. Ramis, J. Gatal., 157, 523 (1995) and G. Centi. , Appli. Catal. Metal oxide catalysts such as A, 132, 179 (1995), and the like, L. Pinoy, Catalyst Today, 17, 151 (1993) and G. D, J. Catal., 146, 334 (1994) and the like. As studied, V 2 O 5 / TiO 2 catalysts are reported to be particularly good. This method is a method of reacting and decomposing a metal oxide catalyst while introducing a reducing agent such as ammonia at a high temperature of about 300 to 350 ° C. This method is relatively excellent in efficiency, but the disadvantage is that the reaction temperature is at least 300 ℃ high temperature as described above.

이러한 단점을 해결하기 위한 방법으로 I. Mochida, 일본화학회지, No. 6, 885(1991) 및 I. Mochida, 일본 화학회지 No. 6, p. 694(1993) 등에 활성탄이나 활성 탄소 섬유를 이용하여 100℃ 정도의 낮은 온도에서도 질소 산화물을 분해할 수 있는 방법을 제시하고 있다. 그러나 이 방법은 반응 온도는 낮출 수 있으나, 반응 효율이 낮은 단점이 있다.I. Mochida, Japan Chemical Society, No. 6, 885 (1991) and I. Mochida, Japanese Chemical Society. 6, p. 694 (1993) and the like have proposed a method for decomposing nitrogen oxides using activated carbon or activated carbon fibers even at a temperature as low as 100 ° C. However, this method can lower the reaction temperature, but the disadvantage of low reaction efficiency.

또한 본 발명자가 출원한 대한 민국 특허 출원 제 2000-0080303 호에는 용융된 핏치에 V2O5/TiO2의 분말을 분산시키고 이것을 방사하여 V2 O5/TiO2이 균일하게 분산되어 함유된 핏치 섬유를 제조한 후, 안정화, 탄화 및 활성화하여 질소산화물의 분해 능력이 우수한 활성 탄소 섬유 촉매를 제조하는 방법을 제시하고 있다. 이 방법은 I. Mochida 등의 일반 활성탄 또는 일반 활성 탄소 섬유를 이용하는 방법에 비하여 질소산화물의 분해능력이 우수한 촉매를 제조하는 방법을 제시하고 있으나 300℃ 이상의 고온에서 직접 반응시키는 선택적 촉매 환원법과는 반응 전환율 면에서 많이 떨어지는 단점을 가지고 있다.In addition, the Korean Patent Application No. 2000-0080303 filed by the present inventors disperses the powder of V 2 O 5 / TiO 2 in a molten pitch and spins it to uniformly dispersed V 2 O 5 / TiO 2. After preparing the fiber, a method of stabilizing, carbonizing and activating to prepare an activated carbon fiber catalyst having excellent decomposition ability of nitrogen oxides is proposed. This method suggests a method for producing a catalyst having excellent decomposition ability of nitrogen oxides compared to a method using general activated carbon or general activated carbon fibers such as I. Mochida, but reacts with a selective catalytic reduction method which reacts directly at a high temperature of 300 ° C. or higher. It has a downside in terms of conversion rate.

본 발명은 상술한 문제점을 해결하기 위한 방법으로 우수한 탈질 성능을 갖는 바나듐 또는 몰리브덴이 보다 균일하게 분산되어 포함된 활성 탄소 섬유계 질소 산화물 제거용 촉매의 제조 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing an activated carbon fiber-based nitrogen oxide removal catalyst containing vanadium or molybdenum having more excellent denitrification performance as a method for solving the above problems.

상기 목적을 달성하기 위하여, 본 발명은 바나듐 또는 몰리브덴 함유 유기 금속 화합물을 제1 유기 용매에 용해시켜 제조한 유기 금속 화합물 용액과 핏치를 제2 유기 용매에 용해시켜 제조한 핏치 용액을 혼합하고; 상기 혼합 용액으로부터 유기 용매를 제거하여 바나듐 또는 몰리브덴 함유 핏치를 제조하고; 상기 바나듐 또는 몰리브덴 함유 핏치를 방사하여 핏치 섬유를 제조하고; 상기 핏치 섬유를 열안정화하고; 상기 열안정화된 핏치 섬유를 활성화하는 공정을 포함하는 질소산화물 분해용 촉매의 제조 방법을 제공한다.In order to achieve the above object, the present invention is an organic metal compound solution prepared by dissolving a vanadium or molybdenum-containing organometallic compound in a first organic solvent and a pitch solution prepared by dissolving pitch in a second organic solvent; Removing the organic solvent from the mixed solution to produce a vanadium or molybdenum containing pitch; Spinning the vanadium or molybdenum containing pitch to produce pitch fibers; Thermally stabilizing the pitch fibers; It provides a method for producing a catalyst for nitrogen oxide decomposition comprising the step of activating the heat stabilized pitch fiber.

이하 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 바나듐 또는 몰리브덴을 포함하는 질소 산화물 제거용 촉매의 제조 방법에 관한 것이다. 이 제조 방법은 먼저, 바나듐 또는 몰리브덴 함유 유기 금속 화합물을 제1 유기 용매에 용해시켜 제조한 유기 금속 화합물 용액과 핏치를 제2 유기 용매에 용해시켜 제조한 핏치 용액을 혼합한다.The present invention relates to a method for producing a catalyst for removing nitrogen oxides including vanadium or molybdenum. In this production method, first, an organic metal compound solution prepared by dissolving a vanadium or molybdenum-containing organometallic compound in a first organic solvent and a pitch solution prepared by dissolving pitch in a second organic solvent are mixed.

상기 제1 및 제2 유기 용매로는 상기 유기 금속 화합물과 핏치를 완전히 용해할 수 있는 것이면 어떠한 것도 사용가능하나, 제거가 용이하도록 휘발성이 높고 비점이 낮은 것을 사용하는 것이 바람직하다. 이러한 제1 및 제2 유기 용매로는 테트라하이드로퓨란, 아세톤, 헥산, 알콜류, 퀴놀린 또는 피리딘을 사용할 수 있다. 이중에서 퀴놀린이나 피리딘은 높은 온도의 연화점을 갖는 핏치를 잘 용해시킬 수 있으나 상대적으로 분리 제거가 다소 곤란하며, 헥산이나 알콜류는 제거는 용이하나 고연화점 핏치의 용해가 다소 곤란하다. 가장 바람직한 용매는 테트라하이드로퓨란이나 아세톤이 비교적 높은 연화점을 갖는 핏치를 잘 용해시킬 수 있고, 휘발성이 강하고 비점이 낮아 제거가 용이하여 보다 바람직하다. As the first and second organic solvents, any one can be used as long as it can completely dissolve the organometallic compound and the pitch, but it is preferable to use one having high volatility and low boiling point for easy removal. Tetrahydrofuran, acetone, hexane, alcohols, quinoline or pyridine may be used as the first and second organic solvents. Of these, quinoline and pyridine can dissolve pitches having a softening point of high temperature, but are relatively difficult to separate and remove, and hexane or alcohols are easy to remove, but difficult to dissolve high softening pitch. The most preferred solvent is tetrahydrofuran or acetone, which can dissolve pitches having a relatively high softening point, and is more preferable because of its high volatility and low boiling point for easy removal.

상기 제1 및 제2 유기 용매로는 동일한 것을 사용할 수도 있고, 서로 상용성이 있는 다른 유기 용매를 사용할 수도 있다.As said 1st and 2nd organic solvent, the same thing may be used and another organic solvent compatible with each other may be used.

상기 유기 금속 화합물 용액은 바나듐 또는 몰리브덴 함유 유기 금속 화합물을 제1 유기 용매에 첨가하고 용해하여 제조한다. 용해 공정은 상온에서 실시할 수도 있고, 사용하는 화합물 종류에 따라 상온에서 잘 용해되지 않는 화합물을 사용할 경우에는 제1 유기 용매의 비등점 또는 사용되는 핏치의 연화점 중 낮은 온도까지 가열하면서 실시할 수도 있다. The organometallic compound solution is prepared by adding and dissolving a vanadium or molybdenum-containing organometallic compound in a first organic solvent. The dissolution step may be carried out at room temperature, or in the case of using a compound that does not dissolve well at room temperature depending on the kind of the compound to be used, it may be carried out while heating to the lower temperature of the boiling point of the first organic solvent or the softening point of the pitch used.

상기 바나듐 함유 유기 금속 화합물로는 바나듐(IV) 옥시아세틸아세테이트(Vanadium(IV) oxyacetylacetate[VO(C5H7O2) 2]), 바나듐(V) 옥시트리에톡사이드(Vanadium(V) oxytriethoxide[VO(C2H5)3], 바나듐(V) 옥시트리이소프로폭사이드(Vanadium(V) oxytriisopropoxide[(C3H7O)3VO]) 및 바나듐(V) 옥시트리프로폭사이드(Vanadium(V) oxytripropoxide[VO(OC3H7)3]로 이루어진 군에서 선택되는 것을 사용할 수 있고, 상기 몰리브덴 함유 유기 금속 화합물로는 비스(2,4-펜탄디오네이토) 몰리브데늄(VI) 디옥사이드(Bis(2,4-pentanedionato) molybdenum(VI) dioxide[MoO2(C5H7O2)2]) 또는 몰리브데늄(II) 아세테이트 다이머(Molybdemum(II) acetate dimer[CH3(CO2)2Mo]2)를 사용할 수 있다. 그러나 본 발명에서 사용가능한 바나듐 또는 몰리브덴 함유 유기 금속 화합물이 이에 한정되지 않음을 당해 분야에 종사하는 사람들에게는 이해될 수 있을 것이다.The vanadium-containing organometallic compound may be vanadium (IV) oxyacetylacetate (Vanadium (IV) oxyacetylacetate [VO (C 5 H 7 O 2 ) 2 ]), vanadium (V) oxytriethoxide (Vanadium (V) oxytriethoxide [VO (C 2 H 5 ) 3 ], vanadium (V) oxytriisopropoxide (Vanadium (V) oxytriisopropoxide [(C 3 H 7 O) 3 VO]) and vanadium (V) oxytripropoxide ( Vanadium (V) oxytripropoxide [VO (OC 3 H 7 ) 3 ] can be selected from the group consisting of, as the molybdenum-containing organometallic compound bis (2,4-pentanedioneto) molybdenum (VI) Dioxide (Bis (2,4-pentanedionato) molybdenum (VI) dioxide [MoO 2 (C 5 H 7 O 2 ) 2 ] or molybdenum (II) acetate dimer [CH 3 (CO 2 ) 2 Mo] 2 ), but the vanadium or molybdenum-containing organometallic compounds usable in the present invention are not limited thereto. It can be understood by the people.

상기 유기 금속 화합물을 핏치 중량에 대하여 화합물 중 바나듐 또는 몰리브덴의 원자 무게를 기준으로 하여 0.01 내지 5 중량%의 양으로 첨가한다. 바나듐 또는 몰리브덴 원자 기준의 첨가량이 0.01 중량% 미만일 경우에는 공정의 복잡성에 비하여 최종 활성 탄소 섬유의 탈질 성능 향상에 크게 영향을 주지 못하므로 바람직하지 않으며, 5 중량%를 초과하여 첨가할 경우에는 핏치 용액과 혼합할 때 핏치의 점결성을 저하시켜 방사되기 곤란하므로 바람직하지 않다.The organometallic compound is added in an amount of 0.01 to 5% by weight based on the atomic weight of vanadium or molybdenum in the compound relative to the pitch weight. If the amount added based on vanadium or molybdenum atoms is less than 0.01% by weight, it is not preferable because it does not significantly affect the denitrification performance of the final activated carbon fiber compared to the complexity of the process, and when added in excess of 5% by weight, the pitch solution It is not preferable because it is difficult to spin by lowering the caking property of the pitch when mixed with.

상기 핏치 용액은 핏치를 제2 유기 용매에 첨가하고 용해하여 제조한다. 핏치로는 연화점이 200℃ 이상의 것을 사용하는 것이 바람직하고, 등방성 탄소 또는 이방성 탄소, 또는 석탄계 또는 석유계 등 모두 사용할 수 있다. 연화점이 200℃ 미만인 핏치를 사용하는 경우에는 방사된 섬유를 안정화할 때 서로 용융되어 섬유상을 유지하기가 어려우며 공기와의 효과적인 접촉이 어려우므로 안정화 반응이 곤란해지므로 바람직하지 않다.The pitch solution is prepared by adding and dissolving pitch in a second organic solvent. As pitch, it is preferable to use a softening point of 200 degreeC or more, and can use both isotropic carbon or anisotropic carbon, coal type, or petroleum type. When a pitch having a softening point of less than 200 ° C. is used, it is not preferable because the stabilized reaction is difficult because it is difficult to maintain the fibrous phase by melting each other when stabilizing the spun fibers and effective contact with air.

상기 용해 공정은 상온에서 실시할 수도 있고, 상기 제2 유기 용매의 비등점 또는 핏치의 연화점 중 낮은 온도까지 가열하면서 실시할 수도 있다. 제2 용매의 사용량은 핏치를 완전히 용해시킬 수 있는 양보다 과량으로 사용하면 된다.  The said dissolution process may be performed at normal temperature, and may be performed, heating to the low temperature among the boiling point of the said 2nd organic solvent, or the softening point of a pitch. The usage-amount of a 2nd solvent should just be used in excess rather than the quantity which can fully dissolve a pitch.

상기 유기 금속 화합물 용액과 핏치 용액의 혼합 용액에서 제1 및 제2 유기 용매를 제거하여 바나듐 또는 몰리브덴 함유 핏치를 제조한다. 상기 제거 공정으로는 분별 증류, 감압 증류 등의 통상적인 유기 용매 제거 방법은 어떠한 방법도 사용할 수 있다. 유기 용매가 잔류하는 경우, 추후 방사 공정을 실시하는 온도에서 기포가 형성되어, 생성되는 섬유를 자르는 현상이 발생되므로, 유기 용매 제거 공정은 가급적이면 전체 중량에 대하여 0.1 중량% 이하의 유기 용매가 잔류되도록, 실질적으로 완전하게 제거하는 것이 좋다.A vanadium or molybdenum-containing pitch is prepared by removing the first and second organic solvents from the mixed solution of the organometallic compound solution and the pitch solution. As the removal step, any conventional organic solvent removal method such as fractional distillation or vacuum distillation can be used. When the organic solvent remains, bubbles are formed at a temperature at which the spinning process is performed later, so that a phenomenon of cutting the generated fibers occurs, so that the organic solvent removal process preferably has 0.1% by weight or less of the organic solvent relative to the total weight. If possible, it should be removed substantially completely.

얻어진 바나듐 또는 몰리브덴 함유 핏치를 방사하여 핏치 섬유를 제조한다. 방사 공정은 일반적인 핏치의 방사 방법인 용융 방사법, 멜트 블로잉법, 원심 방사법 또는 기타 섬유상의 핏치를 제조할 수 있는 방법을 사용하면 되며 핏치의 연화점보다 10 내지 70℃ 높은 온도에서 방사하는 통상적인 조건을 사용하면 된다.Pitch fibers are produced by spinning the obtained vanadium or molybdenum containing pitch. The spinning process may be performed using melt spinning, melt blowing, centrifugal spinning, or other fibrous pitch, which is a general pitch spinning method. The spinning process may be performed at a temperature of 10 to 70 ° C. above the softening point of the pitch. You can use

얻어진 핏치 섬유를 이후의 공정인 탄화, 활성화 공정에서의 더욱 온도에서, 즉 이후 공정에서 용융되지 않도록 안정화 처리를 실시한다. 상기 안정화 처리 공정은 공기 분위기에서 200 내지 350℃에서 열처리하여 실시하며, 이외에도 통상적인 핏치 안정화 방법은 어떠한 방법도 사용할 수 있다.The obtained pitch fiber is subjected to stabilization treatment so as not to melt at a further temperature in the subsequent carbonization and activation process, that is, in the subsequent process. The stabilization treatment step is carried out by heat treatment at 200 to 350 ℃ in an air atmosphere, in addition to the conventional pitch stabilization method may be used any method.

상기 안정화된 핏치 섬유를 활성화처리 전에 탄화처리를 더욱 실시할 수도 있다. 탄화처리는 불활성 분위기에서 500 내지 1000℃의 온도에서 5분 내지 5시간 실시하는 것이 바람직하며, 탄화처리로 최종 활성 탄소섬유의 탄소 수율을 증가시킬 수 있다. 탄화처리를 하지 않는 경우에도 활성화 과정의 초기 단계에서 탄화가 일어나므로 활성 탄소 섬유의 제조는 가능하나 탄소 수율은 상대적으로 저하된다. 탄화처리 온도가 1000℃를 초과할 경우에는 핏치의 결정화가 진행되어 활성화를 저해하며 500℃ 미만에서는 탄화시간을 오래 유지시켜도 탄화가 잘 진행되지 않으므로 바람직하지 않다.The stabilized pitch fibers may be further carbonized before activation. The carbonization treatment is preferably carried out at a temperature of 500 to 1000 ° C. for 5 minutes to 5 hours in an inert atmosphere, and the carbonization treatment may increase the carbon yield of the final activated carbon fiber. Even when carbonization is not performed, carbonization occurs at an early stage of the activation process, so that production of activated carbon fibers is possible, but the carbon yield is relatively low. If the carbonization temperature exceeds 1000 ° C., crystallization of the pitch progresses and inhibits activation. If the carbonization temperature is lower than 500 ° C., the carbonization does not proceed well even if the carbonization time is maintained for a long time.

본 발명의 활성화 단계는 통상의 방법인 수증기, 이산화탄소 또는 공기분위기에서 열처리하는 방법이 바람직하며, 활성화 온도는 600 내지 1100℃인 것이 바람직하다. 활성화 온도가 600℃ 미만인 경우 장시간 열처리하여도 활성화 반응이 매우 늦게 진행되며, 활성화 온도가 1100℃를 초과하는 경우 반응 속도가 너무 빨라서 성형체의 분해가 급속히 일어나 수율이 저하되게 되므로 바람직하지 않다.The activation step of the present invention is preferably a method of heat treatment in a conventional method of steam, carbon dioxide or air atmosphere, the activation temperature is preferably 600 to 1100 ℃. If the activation temperature is less than 600 ℃ activating reaction proceeds very late even if the heat treatment for a long time, if the activation temperature exceeds 1100 ℃ reaction rate is too fast to cause the decomposition of the molded article is rapidly reduced yield is not preferred.

이와 같이 제조된 핏치계 활성 탄소 섬유는 탄소 자체의 탈질 촉매 성능 및 바나듐 또는 몰리브덴에 의한 탄소의 탈질 촉매 성능을 향상시키는 작용에 의하여 탈질 반응의 전환율을 향상시키는 효과가 있으므로 활성탄을 이용한 탈질 반응 공정에서의 촉매로서 이용이 가능하다.Pitch-based activated carbon fibers prepared as described above have an effect of improving the conversion rate of the denitrification reaction by the action of improving the denitrification catalyst performance of carbon itself and the denitrification catalyst performance of carbon by vanadium or molybdenum. It can be used as a catalyst.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다. Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are provided only to more easily understand the present invention, and the present invention is not limited to the following examples.

[실시예 1]Example 1

연화점 258℃의 석유계 등방성 핏치를 상온에서 전량 용해될 때까지 테트라하이드로퓨란 유기 용매에 상온에서 첨가하고 용해하여 핏치 용액을 제조하였다. A pitch solution was prepared by adding and dissolving a petroleum-based isotropic pitch at a softening point of 258 ° C. in an organic solvent of tetrahydrofuran at room temperature until the total amount was dissolved at room temperature.

바나듐 원자만으로 환산하여 핏치 중량에 대하여 0.1 중량%만큼의 바나듐(IV) 옥시아세틸아세테이트(VO(C5H7O2)2)를 테트라하이드로퓨란 유기 용매에 상온에서 첨가하고 전량 용해시켜 바나듐 함유 유기 금속 화합물 용액을 제조하였다.0.1% by weight of vanadium (IV) oxyacetylacetate (VO (C 5 H 7 O 2 ) 2 ) is added to tetrahydrofuran organic solvent at room temperature in total and dissolved in vanadium. Metal compound solutions were prepared.

상기 핏치 용액과 상기 바나듐 함유 유기 금속 화합물 용액을 상온에서 1시간동안 교반하여 혼합하고 감압 증류기에서 테트라하이드로퓨란이 완전히 제거될 때까지 감압가열하여 분리하였다. 잔류된 핏치를 310℃에서 용융방사하여 지름 15∼30㎛ 크기의 핏치 섬유를 제조하였다. 상기 핏치 섬유를 공기를 유입시키면서 230℃에서 10시간 열안정화하고, 질소 분위기에서 800℃에서 30분간 탄화하여 탄소섬유를 제조하였다. 이 탄소 섬유를 계속하여 포화 수증기 분위기에서 850℃로 1시간동안 활성화하여 바나듐 함유 활성 탄소 섬유를 제조하였다.The pitch solution and the vanadium-containing organometallic compound solution were mixed by stirring at room temperature for 1 hour and separated by heating under reduced pressure until tetrahydrofuran was completely removed in a vacuum distillation. The remaining pitch was melt spun at 310 ° C. to obtain pitch fibers having a diameter of 15 to 30 μm. The pitch fibers were thermally stabilized at 230 ° C. for 10 hours while introducing air, and carbonized at 800 ° C. for 30 minutes in a nitrogen atmosphere to prepare carbon fibers. The carbon fiber was subsequently activated at 850 ° C. for 1 hour in a saturated steam atmosphere to produce vanadium-containing activated carbon fiber.

상기 활성 탄소 섬유를 컬럼형의 반응기에 충진하고, 100℃에서 부피 기준으로 400ppm의 NO, 10%의 산소, 400 ppm의 암모니아 및 잔여부분은 질소로 구성된 기체를 1g당 24 L/hr로 통과시키면서 배출되는 기체의 NO의 농도를 연속적으로 측정하였다. 그 결과 상기 바나듐 함유 활성 탄소 섬유 촉매에 의한 NO의 연속분해율은 64%를 나타내었다.The activated carbon fiber was charged into a columnar reactor, and 400 ppm of NO, 10% of oxygen, 400 ppm of ammonia and the remainder were passed through a gas composed of nitrogen at 24 L / hr per 1g at 100 ° C. The concentration of NO in the vented gas was measured continuously. As a result, the continuous decomposition rate of NO by the vanadium-containing activated carbon fiber catalyst was 64%.

(비교예 1)(Comparative Example 1)

연화점 258℃의 석유계 등방성 핏치만을 사용하여 상기 실시예 1과 동일한 조건으로 용융방사하고 열안정화, 탄화, 활성화하여 활성 탄소 섬유를 제조하였다. 그 결과 제조된 활성 탄소 섬유의 BET 방법에 의해 측정한 비표면적은 1350m2/g이었다. 이와 같이 제조된 활성 탄소 섬유를 실시예 1과 같은 조건의 배연 모델 가스를 통과시키고 배출된 기체의 NO 농도를 연속적으로 측정한 결과 연속분해율은 40%를 나타내었다.Using only the petroleum isotropic pitch of 258 ℃ softening point was melt-spun and heat stabilized, carbonized, activated under the same conditions as in Example 1 to prepare an activated carbon fiber. As a result, the specific surface area measured by the BET method of the produced activated carbon fiber was 1350 m 2 / g. The activated carbon fiber thus produced was passed through the flue gas model gas under the same conditions as in Example 1, and the continuous concentration was 40% as a result of continuously measuring the NO concentration of the discharged gas.

[실시예 2]Example 2

바나듐 원자만으로 환산하여 핏치에 대하여 무게비로 0.2% 만큼의 바나듐(IV) 옥시아세틸아세테이트[VO(C5H7O2)2]를 테트라하이드로퓨란 유기 용매에 첨가하고 상온에서 용해시켜 제조한 바나듐 함유 유기 금속 화합물을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 바나듐 함유 활성 탄소 섬유를 제조하였다.Vanadium-containing vanadium (IV) oxyacetylacetate [VO (C 5 H 7 O 2 ) 2 ] is added to tetrahydrofuran organic solvent in a weight ratio of pitch to vanadium atoms and dissolved at room temperature. Vanadium-containing activated carbon fibers were prepared in the same manner as in Example 1, except that the organometallic compound was used.

상기 활성 탄소 섬유를 실시예 1과 동일한 조건으로 NO 기체를 통과시키면서 배출되는 기체의 NO의 농도를 연속적으로 측정하였다. 그 결과 상기의 바나듐 함유 활성탄소섬유 촉매에 의한 NO의 연속분해율은 70%를 나타내었다.The concentration of NO of the gas discharged while the activated carbon fiber was passed through the NO gas under the same conditions as in Example 1 was continuously measured. As a result, the continuous decomposition rate of NO by the vanadium-containing activated carbon fiber catalyst was 70%.

[실시예 3]Example 3

바나듐 원자만으로 환산하여 핏치에 대하여 무게비로 0.05% 만큼의 바나듐(IV) 옥시아세틸아세테이트[VO(C5H7O2)2]를 테트라하이드로퓨란 유기 용매에 첨가하고 상온에서 전량 용해시켜 제조한 바나듐 함유 유기 금속 화합물 용액을 제조한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 바나듐 함유 활성 탄소 섬유를 제조하였다.Vanadium prepared by adding only vanadium (IV) oxyacetylacetate [VO (C 5 H 7 O 2 ) 2 ] in a tetrahydrofuran organic solvent in a weight ratio of pitch to vanadium atoms alone, and dissolving it entirely at room temperature. A vanadium-containing activated carbon fiber was prepared in the same manner as in Example 1 except that a solution containing the organometallic compound was prepared.

상기 활성 탄소 섬유를 실시예 1과 동일한 조건으로 NO 기체를 통과시키면서 배출되는 기체의 NO의 농도를 연속적으로 측정하였다. 그 결과 상기 바나듐 함유 활성 탄소 섬유 촉매에 의한 NO의 연속분해율은 58%를 나타내었다.The concentration of NO of the gas discharged while the activated carbon fiber was passed through the NO gas under the same conditions as in Example 1 was continuously measured. As a result, the continuous decomposition rate of NO by the vanadium-containing activated carbon fiber catalyst was 58%.

[실시예 4]Example 4

상기 실시예 1에서 사용한 것과 동일한 핏치를 테트라하이드로퓨란 유기 용매에 상온에서 첨가하고 전량 용해시켜 핏치 용액을 제조하였다. The same pitch as used in Example 1 was added to a tetrahydrofuran organic solvent at room temperature and dissolved in a total amount to prepare a pitch solution.

몰리브덴 원자만으로 환산하여 핏치에 대하여 무게비로 0.1% 만큼의 비스(2,4-펜타디오네이토) 몰리브데늄(VI) 디옥사이드[MoO2(C5H7O 2)2]를 테트라하이드로퓨란 유기 용매에 상온에서 첨가하고 전량 용해시켜 몰리브덴 함유 유기 용액을 제조하였다. 상기 몰리브덴 함유 유기 용액을 이용하여 상기 실시예 1과 동일한 조건으로 혼합, 감압분리, 용융방사, 열안정화, 탄화 및 활성화 처리하여 몰리브덴 함유 활성 탄소 섬유를 제조하였다.Tetrahydrofuran organic solvent containing as much as 0.1% of bis (2,4-pentadioneto) molybdenum (VI) dioxide [MoO 2 (C 5 H 7 O 2 ) 2 ] in terms of weight ratio based on molybdenum atoms alone The molybdenum-containing organic solution was prepared by adding at room temperature and dissolving entirely. Molybdenum-containing activated carbon fibers were prepared by mixing, depressurizing, melting, thermally stabilizing, carbonizing, and activating the same conditions as in Example 1 using the molybdenum-containing organic solution.

상기 활성 탄소 섬유를 실시예 1과 동일한 조건으로 NO기체를 통과시키면서 배출되는 기체의 NO의 농도를 연속적으로 측정하였다. 그 결과 상기의 몰리브덴 함유 활성 탄소 섬유 촉매에 의한 NO의 연속분해율은 52%를 나타내었다.The concentration of NO of the gas discharged while the activated carbon fiber was passed through the NO gas under the same conditions as in Example 1 was continuously measured. As a result, the continuous decomposition rate of NO by the above molybdenum-containing activated carbon fiber catalyst was 52%.

이와 같이, 실시예 1 내지 4의 방법으로 제조된 활성 탄소 섬유의 질소산화물의 분해율이 각각 64%, 70%, 58% 및 52%로 비교예 1의 40%보다 매우 우수하게 나타났으므로 탈질 공정에서의 촉매로 유용함을 알 수 있다.As such, the decomposition rate of the nitrogen oxides of the activated carbon fibers prepared by the methods of Examples 1 to 4 was 64%, 70%, 58%, and 52%, respectively, which was much better than that of 40% of Comparative Example 1. It can be seen that it is useful as a catalyst in.

상술한 바와 같이, 본 발명의 실시에 따라 바나듐 또는 몰리브덴을 포함하는 활성 탄소 섬유는 상기 원소를 포함하지 않는 활성 탄소 섬유보다 질소산화물 분해용 촉매로 사용시의 분해성능은 최종 연속 전환율이 크게 향상된 결과를 나타내고 있다. 따라서 본 발명에 의한 핏치계 활성 탄소 섬유를 이용하여 탈질 공정에서의 촉매로 활용이 가능하다.As described above, the activated carbon fiber containing vanadium or molybdenum in accordance with the practice of the present invention has a significantly improved final continuous conversion rate when used as a catalyst for decomposing nitrogen oxides than the activated carbon fiber containing no such element. It is shown. Therefore, the pitch-based activated carbon fiber according to the present invention can be utilized as a catalyst in the denitrification process.

Claims (6)

(a) 바나듐 또는 몰리브덴이 함유된 유기 금속 화합물을 핏치 중량에 대하여 0.01 내지 5 중량%의 원자 중량을 포함하도록 유기용매에 용해시켜 얻어진 유기 금속 화합물 용액과, 유기용매에 용해시켜 얻어진 핏치 용액을 혼합하여 혼합 용액을 제조하는 단계;(a) Mixing an organometallic compound solution obtained by dissolving an organometallic compound containing vanadium or molybdenum in an organic solvent so as to contain an atomic weight of 0.01 to 5% by weight with respect to the pitch, and a pitch solution obtained by dissolving in an organic solvent To prepare a mixed solution; (b) 상기 혼합 용액으로부터 유기용매를 제거하여 바나듐 또는 몰리브덴 함유 핏치를 제조하는 단계;(b) removing the organic solvent from the mixed solution to prepare a vanadium or molybdenum-containing pitch; (c) 얻어진 바나듐 또는 몰리브덴 함유 핏치를 방사하여 핏치 섬유를 제조하는 단계;(c) spinning the obtained vanadium or molybdenum containing pitch to produce pitch fibers; (d) 얻어진 핏치 섬유를 200 내지 350 ℃에서 열처리하여 안정화하는 단계;(d) heat treating the obtained pitch fiber at 200 to 350 ° C. to stabilize it; (e) 열안정화된 핏치 섬유를 600 내지 1100 ℃에서 열처리하여 활성화하는 단계를 포함하는 질소 산화물 분해용 촉매의 제조 방법.(e) a method of preparing a catalyst for decomposing nitrogen oxides, comprising the step of activating a heat stabilized pitch fiber at 600 to 1100 ° C. to activate it. 삭제delete 제 1 항에 있어서, 바나듐 함유 유기 금속 화합물은 바나듐(IV) 옥시아세틸아세테이트(VO(C5H7O2)2), 바나듐(V) 옥시트리에톡사이드(VO(OC 2H5)3), 바나듐(V) 옥시트리이소프로폭사이드((C3H7O)3VO) 및 바나듐(V) 옥시트리이소프로폭사이드(VO(OC3H7)3)으로 이루어진 군에서 선택되는 것이고,The method of claim 1, wherein the vanadium-containing organometallic compound is vanadium (IV) oxyacetyl acetate (VO (C 5 H 7 O 2 ) 2 ), vanadium (V) oxytriethoxide (VO (OC 2 H 5 ) 3 ), Vanadium (V) oxytriisopropoxide ((C 3 H 7 O) 3 VO) and vanadium (V) oxytriisopropoxide (VO (OC 3 H 7 ) 3 ) Will, 상기 몰리브덴 함유 유기 금속 화합물은 비스(2,4-펜탄디오네이토) 몰리브데늄(VI) 디옥사이드(MoO2(C5H7O2)2) 및 몰리브데늄(II) 아세테이트 다이머(CH3(CO2)2Mo)2)로 이루어진 군에서 선택되는 것인 제조 방법.The molybdenum-containing organometallic compound includes bis (2,4-pentanedionate) molybdenum (VI) dioxide (MoO 2 (C 5 H 7 O 2 ) 2 ) and molybdenum (II) acetate dimer (CH 3 ( CO 2 ) 2 Mo) 2 ) The manufacturing method selected from the group consisting of. 제 1 항에 있어서, 상기 핏치는 200℃ 이상의 연화점을 갖는 것인 제조 방법.The method of claim 1, wherein the pitch has a softening point of 200 ° C. or higher. 제 1 항에 있어서, 상기 활성화 공정 전에, 상기 안정화된 핏치 섬유를 500 내지 1000℃에서 탄화 처리하는 공정을 더욱 실시하는 것인 제조 방법.The method according to claim 1, further comprising carbonizing the stabilized pitch fiber at 500 to 1000 ° C before the activation step. 제 1 항에 있어서, 상기 단계 a)의 유기용매는 서로 같거나 다르며, 테트라하이드로퓨란, 아세톤, 헥산, 알코올류, 퀴놀린 및 피리딘으로 이루어진 그룹 중에서 선택된 1종 이상의 용매인 것을 특징으로 하는 제조 방법.The method of claim 1, wherein the organic solvents of step a) are the same as or different from each other, and are at least one solvent selected from the group consisting of tetrahydrofuran, acetone, hexane, alcohols, quinoline and pyridine.
KR10-2002-0053428A 2002-09-05 2002-09-05 METHOD OF PREPARING CATALYST FOR REMOVAL OF NOx KR100490831B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0053428A KR100490831B1 (en) 2002-09-05 2002-09-05 METHOD OF PREPARING CATALYST FOR REMOVAL OF NOx

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0053428A KR100490831B1 (en) 2002-09-05 2002-09-05 METHOD OF PREPARING CATALYST FOR REMOVAL OF NOx

Publications (2)

Publication Number Publication Date
KR20040021849A KR20040021849A (en) 2004-03-11
KR100490831B1 true KR100490831B1 (en) 2005-05-19

Family

ID=37325828

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0053428A KR100490831B1 (en) 2002-09-05 2002-09-05 METHOD OF PREPARING CATALYST FOR REMOVAL OF NOx

Country Status (1)

Country Link
KR (1) KR100490831B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222032B1 (en) 2006-12-19 2013-01-15 재단법인 포항산업과학연구원 Cabon Electrode For Organic Electrolytic Device And Manufacturing Method Thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080057449A (en) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 Preparation method of activated carbon fiber based catalyst for removal of nox and activated carbon fiber based catalyst repared thereby

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259957A (en) * 1995-03-27 1996-10-08 Osaka Gas Co Ltd Production of metal-containing pitch for production of activated carbon fiber, production of activated carbon fiber and activated carbon fiber
JPH1112577A (en) * 1990-06-04 1999-01-19 Conoco Inc Direct production of organometallic compound-containing pitch for spinning pitch carbon fiber
JPH1112576A (en) * 1990-12-14 1999-01-19 Conoco Inc Meso phase pitch containing organometallic compound for spinning pitch carbon fiber
KR20010016595A (en) * 2000-12-23 2001-03-05 유승곤 Preparation method and use of Metal(Cu, Zn, Cr, v, Mo, Ti, Fe etc)-Impregnated activated carbon fiber for removal of toxicity, noxious gas
KR20020050986A (en) * 2000-12-22 2002-06-28 신현준 CATALYST FOR NOx DECOMPOSITION AND PREPARATION METHOD OF THE SAME
KR100407806B1 (en) * 2001-07-20 2003-11-28 재단법인 포항산업과학연구원 ACTIVATED CARBON FIBER CATALYST FOR REMOVAL OF SOx AND PREPARATION METHOD OF THE SAME

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112577A (en) * 1990-06-04 1999-01-19 Conoco Inc Direct production of organometallic compound-containing pitch for spinning pitch carbon fiber
JPH1112576A (en) * 1990-12-14 1999-01-19 Conoco Inc Meso phase pitch containing organometallic compound for spinning pitch carbon fiber
JPH08259957A (en) * 1995-03-27 1996-10-08 Osaka Gas Co Ltd Production of metal-containing pitch for production of activated carbon fiber, production of activated carbon fiber and activated carbon fiber
KR20020050986A (en) * 2000-12-22 2002-06-28 신현준 CATALYST FOR NOx DECOMPOSITION AND PREPARATION METHOD OF THE SAME
KR20010016595A (en) * 2000-12-23 2001-03-05 유승곤 Preparation method and use of Metal(Cu, Zn, Cr, v, Mo, Ti, Fe etc)-Impregnated activated carbon fiber for removal of toxicity, noxious gas
KR100407806B1 (en) * 2001-07-20 2003-11-28 재단법인 포항산업과학연구원 ACTIVATED CARBON FIBER CATALYST FOR REMOVAL OF SOx AND PREPARATION METHOD OF THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222032B1 (en) 2006-12-19 2013-01-15 재단법인 포항산업과학연구원 Cabon Electrode For Organic Electrolytic Device And Manufacturing Method Thereof

Also Published As

Publication number Publication date
KR20040021849A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
Laine et al. Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid
US3969268A (en) Process for preparing active carbon fibers
DE2450659B2 (en) METHOD OF REMOVING AMMONIA FROM GASES CONTAINING AMMONIA
CN104096585A (en) Carbon-based desulfurization catalyst for catalyzing and oxidating sulfur dioxide at low temperature as well as preparation and application thereof
KR100490831B1 (en) METHOD OF PREPARING CATALYST FOR REMOVAL OF NOx
CN105214738B (en) A kind of nanofiber-based catalyst of efficient carbon and its wet dip preparation method
JP3062247B2 (en) Direct production method of organic metal-containing pitch for pitch carbon fiber spinning
KR100490832B1 (en) Method of preparing catalyst for removal of nox
KR100495789B1 (en) CATALYST FOR NOx DECOMPOSITION AND PREPARATION METHOD OF THE SAME
KR20080057449A (en) Preparation method of activated carbon fiber based catalyst for removal of nox and activated carbon fiber based catalyst repared thereby
KR100407806B1 (en) ACTIVATED CARBON FIBER CATALYST FOR REMOVAL OF SOx AND PREPARATION METHOD OF THE SAME
DE60225158T2 (en) Zirconia containing inorganic fiber and method for making same
CN102500412A (en) Method for preparing duplex metal phosphide by based mechanical mixture based on hypophosphite and metal salt
JP3810521B2 (en) Nitrogen oxide removing material and method for producing the same
KR102257706B1 (en) Biomass-based porous carbon-supported metal catalyst, method for preparing the same, and method for preparing tetrahydrofuran from furan using the catalyst
DK169537B1 (en) Process for the removal of nitrogen oxides from waste gases resulting from the combustion of coal
JPH06306710A (en) Production of active carbon fiber
KR100426125B1 (en) Mesoporous activated carbon fiber and preparation method of the same
KR19990012606A (en) Manufacturing Method of High Softening Point Optical Isotropic Pitch
JP3825139B2 (en) Ozone decomposition material and method for producing the same
JPS5833910B2 (en) Manufacturing method of pitch for carbon material production
JP3167467B2 (en) Manufacturing method of carbon filler
JP3125062B2 (en) Carbon fiber production method
JPS59147081A (en) Pitch as starting material of carbon fiber
JP2535582B2 (en) Method for producing pitch-based carbon fiber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee