KR100485055B1 - Gamma-glutamylcysteine synthetase and gene coding for the same - Google Patents

Gamma-glutamylcysteine synthetase and gene coding for the same Download PDF

Info

Publication number
KR100485055B1
KR100485055B1 KR10-2002-0073219A KR20020073219A KR100485055B1 KR 100485055 B1 KR100485055 B1 KR 100485055B1 KR 20020073219 A KR20020073219 A KR 20020073219A KR 100485055 B1 KR100485055 B1 KR 100485055B1
Authority
KR
South Korea
Prior art keywords
glutathione
gene
leu
gamma
glu
Prior art date
Application number
KR10-2002-0073219A
Other languages
Korean (ko)
Other versions
KR20040045180A (en
Inventor
강현아
이상기
손민정
안드레이시브르니
비라엠.유비보크
Original Assignee
한국생명공학연구원
인스티튜트 오브 셀 바이알러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원, 인스티튜트 오브 셀 바이알러지 filed Critical 한국생명공학연구원
Priority to KR10-2002-0073219A priority Critical patent/KR100485055B1/en
Publication of KR20040045180A publication Critical patent/KR20040045180A/en
Application granted granted Critical
Publication of KR100485055B1 publication Critical patent/KR100485055B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/02Acid—amino-acid ligases (peptide synthases)(6.3.2)
    • C12Y603/02003Glutathione synthase (6.3.2.3)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 글루타치온 생합성에 관여하는 효소 및 이를 코딩하는 유전자에 관한 것으로, 보다 구체적으로는 메탄올자화 효모인 한세눌라 폴리모르파로부터 분리한 글루타치온 생합성에 관여하는 감마-글루타밀시스테인 합성 효소 및 이를 코딩하는 유전자에 관한 것이다. 본 발명의 유전자가 글루타치온 생합성 결손 변이주에 도입되면 글루타치온 생합성 기능과 더불어 중금속 내성 및 세포 증식 기능을 회복 및 증가시킬 수 있으므로, 글루타치온을 이용한 중금속 흡착, 보조 효소의 생산, 간기능 강화제 및 탈독성화제의 제조에 유용하게 사용할 수 있다.The present invention relates to enzymes involved in glutathione biosynthesis and genes encoding the same, and more specifically gamma-glutamylcysteine synthase and enzymes involved in glutathione biosynthesis isolated from methanolentic yeast Hanshenula polymorpha. It's about genes. When the gene of the present invention is introduced into a glutathione biosynthetic deficiency strain, the glutathione biosynthesis function can restore and increase the heavy metal resistance and the cell proliferation function, so that heavy metal adsorption using glutathione, production of coenzyme, liver function enhancer and detoxicant It can be usefully used for production.

Description

감마 글루타밀시스테인 합성효소 및 이를 코딩하는 유전자{Gamma-glutamylcysteine synthetase and gene coding for the same} Gamma-glutamylcysteine synthetase and gene coding for the same

본 발명은 글루타치온 생합성 유전자에 관한 것으로, 보다 구체적으로는 글루타치온 생합성 기능 결손 변이주에 도입시킬 때 글루타치온 생합성 기능과 더불어 중금속 내성 및 세포 증식 기능을 회복시키는 감마-글루타밀시스테인 합성효소에 관한 것이다.The present invention relates to glutathione biosynthesis genes, and more particularly, to gamma-glutamylcysteine synthase, which restores heavy metal resistance and cell proliferation function as well as glutathione biosynthesis function when introduced into a glutathione biosynthetic function-deficient strain.

글루타치온(glutathione, GSH)은 호기성 원핵세포와 진핵세포내에 가장 많은 티올(thiol)계 화합물로서, 산화 스트레스 반응 및 중금속과 같은 생체 이물질들의 독성에 대한 방어 반응에 관여하는 중요한 생리적 기능을 지닌 트리펩타이드이다. 감마-글루타밀-L-시스테인글리신(γ-glutamyl-L-cysteineglycin)을 구성 성분으로 하는 글루타치온은 세포내에서 L-글루타민산, L-시스테인 및 글리신을 이용하여 감마-글루타밀시스테인 합성효소(γ-glutamylcysteine synthetase, 이하 'γ-GCS'라 약칭함) 및 글루타치온 합성효소(glutathione synthetase, 이하 'GS'라 약칭함)의 연쇄작용에 의해 생성된다. 글루타치온 생합성 관련 효소인 γ-GCS와 GS를 코딩하는 두 유전자들은 대장균, 식물, 쥐 및 인체(Griffith and Mulcahy, Advances in Enzymology and Related Areas of Molecular Biology, 1999, 73, 209-267)에서 뿐만 아니라 효모인 사카로마이세스 세레비시애(Saccharomyces cerevisiae) 및 스키조사카로마이세스 폼베(Schizosaccharomyces pombe)에서 분리되었다(Ohtake and Yabuuchi, Yeast, 1991, 7, 953; Al-Lahham et al., Yeast, 1999, 15, 385). 사카로마이세스 세레비시애의 경우, 글루타치온 생합성 경로의 첫 번째 단계이며 율속 단계(rate-determining step)에 관여하는 효소인 γ-GCS를 코딩하는 GSH1 유전자의 발현이 반응성 산소족(H2O2), 과산소 음이온 발생계 및 중금속 카드뮴 등에 의해 조절되고, 이는 전사 인자인 Yap1, Skn7, Met-4, Met-31, Met-32 및 Cbf1에 의해 조절된다고 알려져 있다(Wu et al., Mol. Cell. Biol., 1994, 14, 5832; Lee et al ., J. Biol. Chem., 1999, 274, 16040; Dormer et al., J. Biol. Chem., 2000 , 275, 32611).Glutathione (GSH) is the most thiol-based compound in aerobic prokaryotic and eukaryotic cells and is an important physiological function that is involved in the oxidative stress response and the defense against the toxicity of biological foreign substances such as heavy metals. . Glutathione, consisting of gamma-glutamyl-L-cysteineglycin, is composed of gamma-glutamylcysteine synthase (γ-) using L-glutamic acid, L-cysteine and glycine in cells. It is produced by the chain action of glutamylcysteine synthetase (hereinafter abbreviated 'γ-GCS') and glutathione synthetase (abbreviated as 'GS'). The two genes encoding glutathione biosynthesis-related enzymes γ-GCS and GS are yeast as well as in E. coli, plants, mice and the human body (Griffith and Mulcahy, Advances in Enzymology and Related Areas of Molecular Biology , 1999 , 73, 209-267). Isolated from Saccharomyces cerevisiae and Schizosaccharomyces pombe (Ohtake and Yabuuchi, Yeast , 1991 , 7, 953; Al-Lahham et al ., Yeast , 1999 , 15, 385). In Saccharomyces cerevisiae, the expression of the GSH1 gene encoding γ-GCS, the first step in the glutathione biosynthetic pathway and involved in the rate-determining step, is associated with reactive oxygen groups (H 2 O 2 ). Is controlled by the transcription factors Yap1, Skn7, Met-4, Met-31, Met-32 and Cbf1 (Wu et al ., Mol. Cell). Biol., 1994 , 14, 5832; Lee et al ., J. Biol. Chem., 1999 , 274, 16040; Dormer et al ., J. Biol. Chem ., 2000 , 275, 32611).

글루타치온은 메탄올 대사과정에 필수적인 역할을 담당하고 있다. 메탄올 대사과정을 보면 메탄올은 퍼옥시좀에서 포름알데히드와 과산화수소로 전환되며(Sahm H., Adv. Biochem. Eng., 1977, 6, 103), 전환된 포름알데히드는 세포질로 가서 포름산으로 산화되고 탈수소효소(dehydrogenase) 반응에 의해 최종적으로 이산화탄소가 된다. 포름알데히드가 산화되기 위해서는 보조 인자로써 글루타치온을 이용한 NAD+-의존 탈수소효소에 의해 반응이 진행된다. 또한, 메탄올에서 배양된 칸디다 보디니(Candida boidinii)의 경우, 퍼옥시좀의 막 표면에서 생성되는 알킬 하이드로퍼옥사이드(alkyl hydroperoxides)에 대한 반응에 관여하는 글루타치온 퍼옥시다제인 CbPmp20 단백질과 함께 상당한 농도의 환원형 글루타치온이 퍼옥시좀 부위에서 관찰되었다(Sakai et al., Microbiology, 2002, 148, 2697). 상기와 같은 연구 보고들을 통해 글루타치온은 메탄올의 산화에 수반되는 다양한 대사산물을 무독화(detoxification) 하는데 관여함으로써 메탄올 대사에 필수적임을 알 수 있다. 실제로 메탄올은 세포내에 글루타치온의 함량을 증가시키는 것으로 알려져 있으며, 특히 포름알데히드 탈수소화효소 결손 변이주에서 그 현상이 더욱 뚜렷이 나타났다(Sibirny et al., Arch. Microbiol., 1990, 154, 566). 따라서, 메탄올을 유일한 탄소원으로 사용하는 메탄올자화 효모들은 글루타치온의 좋은 공급원이 될 것으로 기대된다.Glutathione plays an essential role in methanol metabolism. Methanol metabolism shows that methanol is converted from peroxysomes to formaldehyde and hydrogen peroxide (Sahm H., Adv. Biochem. Eng., 1977 , 6, 103), and the converted formaldehyde goes into the cytoplasm and is oxidized to formic acid and dehydrogenated. The dehydrogenase reaction finally results in carbon dioxide. In order to oxidize formaldehyde, the reaction proceeds by NAD + -dependent dehydrogenase using glutathione as a cofactor. In addition, Candida boidinii incubated in methanol has a significant concentration with CbPmp20 protein, a glutathione peroxidase that is involved in the reaction of peroxysomes to alkyl hydroperoxides produced on the membrane surface. Reduced glutathione was observed at the peroxysome site (Sakai et al ., Microbiology, 2002 , 148, 2697). These studies report that glutathione is essential for methanol metabolism by being involved in detoxification of various metabolites involved in the oxidation of methanol. Indeed, methanol is known to increase the content of glutathione in cells, particularly in formaldehyde dehydrogenase-deficient strains (Sibirny et al ., Arch. Microbiol., 1990 , 154, 566). Therefore, methanolized yeasts using methanol as the sole carbon source are expected to be a good source of glutathione.

글루타치온은 효모와 같은 미생물 외에도 동물의 간장 등에도 널리 분포되어 있으며, 생체내의 호흡계, 산화환원 반응, 해독작용, 효소부활작용, 보조효소로서의 작용등 중요한 생리작용을 지니고 있다. 또한, 유독화합물, 반응성 효소유도체 및 방사선에 의한 산화손상에 대한 세포 보호물로서, 일반적으로 세포에 손상을 주는 물질을 불활성화시키는데 있어서 중요한 역할을 하고 있다.In addition to microorganisms such as yeast, glutathione is widely distributed in the liver of animals, and has important physiological effects such as respiratory system, redox reaction, detoxification, enzyme reactivation, and coenzyme in vivo. In addition, as a cell protector against oxidative damage caused by toxic compounds, reactive enzyme derivatives and radiation, it generally plays an important role in inactivating substances that damage cells.

상기에서 밝힌 바와 같이 다양한 기능을 지닌 글루타치온은 간 기능 강화나 탈독성을 위한 치료제로 유용할 뿐만 아니라 스포츠 음료 등 건강 보조를 위한 식품 첨가제로 활용될 수 있어 글루타치온의 대량생산에 대한 수요가 점차 증가되고 있다(Yin et al., Chinese J. Biotech., 1998, 14, 85). 종래에는 글루타치온을 생산하기 위해 발효 공업적 제조 방법으로 효모를 배양하여 그 배양된 효모로부터 글루타치온을 추출하는 방법이 널리 이용되어져 왔다. 예를 들면 효모를 배양하는데 있어서, 글루타치온을 구성하는 3종의 아미노산인 L-시스테인, L-글루타민산 및 글리신을 단독 또는 혼합첨가하는 방법(일본특허 제 48092579호 및 제 53094089호), L-시스틴을 첨가하는 방법, 메티오닌 및 그 유도체를 첨가하는 방법이 있다. 또는 배양하는 효모에 있어서, 돌연변이 균주인 메티오닌 아날로그 내성균주를 이용하는 방법, 메티오닌 또는 메티오닌·리신 요구 균주를 이용하는 방법, L 또는 D, L-에티오닌 감수성 균주를 이용하는 방법 등이 이미 보고되었다(미국특허 제 4596775호 및 제 4582801호). 근래에는 유전자 재조합 기술의 발달로 인해 글루타치온 생합성에 관여하는 효소의 유전자를 대장균 또는 효모에 다중 도입함으로써 글루타치온의 생산성을 높이는 연구가 진행되고 있다. 그 예로, 대장균 유래의 글루타치온 생합성 관련 유전자인 gshI gshⅡ를 다중 카피 플라스미드에 삽입하여 대장균에 도입한 경우 세포내에서 글루타치온 합성계의 비효소 활성이 40배까지 상승하였다(Watanabe et al., Appl. Microbiol. Biotech., 1986, 24, 375; 일본 특허 제 20316900호). 또한, gshI gshⅡ를 다중 카피 플라스미드에 삽입하여 사카로마이세스 세레비시애에 도입한 경우 세포내에서 30% 정도의 글루타치온 생산이 증가하였다(일본 특허 제 61052299호 및 유럽 특허 제 0300168호).As mentioned above, glutathione having various functions is not only useful as a therapeutic agent for enhancing liver function or detoxification, but also can be used as a food additive for health supplements such as sports drinks, so that the demand for mass production of glutathione is gradually increased. (Yin et al ., Chinese J. Biotech., 1998 , 14, 85). Conventionally, in order to produce glutathione, a method of culturing yeast by a fermentation industrial production method and extracting glutathione from the cultured yeast has been widely used. For example, in culturing yeast, a method of adding or mixing three amino acids, L-cysteine, L-glutamic acid and glycine, constituting glutathione (Japanese Patent Nos. 48092579 and 53094089) and L-cystine There is a method of adding, and a method of adding methionine and its derivatives. Alternatively, in cultured yeast, a method using a methionine analog resistant strain, which is a mutant strain, a method using a methionine or a methionine-lysine requesting strain, or a method using an L or D or L-ethionine sensitive strain has already been reported. Patents 4596775 and 4582801). Recently, due to the development of genetic recombination technology, studies have been conducted to increase the productivity of glutathione by introducing multiple genes of enzymes involved in glutathione biosynthesis into E. coli or yeast. For example, when non-enzymatic activity of glutathione synthesis system was increased up to 40-fold when E. coli-derived glutathione biosynthesis genes, gshI and gshII , were inserted into E. coli by multiple copy plasmids (Watanabe et al ., Appl. Microbiol) Biotech ., 1986 , 24, 375; Japanese Patent No. 20316900). In addition, when gshI and gshII were inserted into multiple copy plasmids and introduced into Saccharomyces cerevisiae, glutathione production increased by about 30% in cells (Japanese Patent No. 61052299 and European Patent No. 0300168).

한편, 글루타치온의 높은 중금속 흡착능을 활용하여 중금속에 대한 내성 및 축적능이 향상된 재조합 균주를 개발하기 위한 목적으로 글루타치온 생합성 유전자들이 유용하게 활용되고 있다. 일례로, γ-GCS와 GS를 코딩하는 대장균 유래의 유전자인 gshIgshⅡ를 과발현시킨 인도 겨자(Brassica juncea) 묘목은 야생 묘목에 비해 카드늄(Cd)에 대한 내성이 증가되었고, 파이토켈라틴(pytochelatin), 감마-글루타밀시스테인, 글루타치온 및 총 비단백질형 티올의 농도가 증가되었다(Zhu et al. Plant Physiology, 1999, 121, 1169; Zhu et al., Plant Physiology, 1999, 119, 73). 더 나아가 글루타치온 합성 관련 유전자들의 발현은 중금속 같은 독성 물질의 존재 여부에 따라 민감하게 조절 및 유도된다(Dormer et al. J. Biol. Chem., 2000, 275, 32611). 따라서, γ-GCS 및 GS를 코딩하는 유전자 유래의 프로모터를 발광 단백질, 또는 형광 단백질 등과 같은 리포터 단백질 발현을 위한 프로모터로 사용하면 독성 물질 탐지용 바이오센서 개발에 필요한 재조합 균주 개발에 유용하게 활용될 수 있다(국제공개번호 W09008826호).Meanwhile, glutathione biosynthesis genes have been usefully used for the purpose of developing recombinant strains having improved resistance and accumulation to heavy metals by utilizing glutathione's high heavy metal adsorption capacity. In one example, E. coli encoding γ-GCS and GS Origin Brassica juncea seedlings overexpressing the genes gshI and gshII have increased resistance to cadmium (Cd) compared to wild seedlings, phytokelatin, gamma-glutamylcysteine, glutathione and total nonprotein types. Thiol concentrations were increased (Zhu et al . Plant Physiology , 1999 , 121, 1169; Zhu et al ., Plant Physiology , 1999 , 119, 73). Furthermore, expression of glutathione related genes is sensitively regulated and induced depending on the presence of toxic substances such as heavy metals (Dormer et al . J. Biol. Chem ., 2000 , 275, 32611). Therefore, using a promoter derived from genes encoding γ-GCS and GS as a promoter for expression of a reporter protein such as a luminescent protein or a fluorescent protein may be useful for the development of a recombinant strain for developing a biosensor for detecting toxic substances. (International Publication No. W09008826).

전통 효모인 사카로마이세스 세레비시애 및 분열 효모인 스키조사카로마이세스 폼베의 경우, 글루타치온 생합성의 첫 단계에 작용하는 γ-GCS를 코딩하는 유전자인 GSH1 또는 GCS1가 결손된 gsh 변이주들은 글루타치온이 첨가되지 않은 합성배지에서 자라지 못하며, MNNG(N-methyl-N'-nitro-N-nitrosoguanidine)에 대한 저항성이 현저히 강화되고, 카드뮴 이온에 대한 민감성이 증가되는 특징을 보였다(Kistler et al., Mutat. Res., 1986, 173, 117; Glaeser et al., Curr. Genet., 1991, 19, 207). 또한, 본 발명자들은 메탄올자화 효모인 한세눌라 폴리모르파(Hansenula polymorpha, 일명 Pichia angusta)에서 MNNG에 대해 내성을 가지는 반면, 카드뮴 이온 및 메탄올에 민감하게 반응하며, 메탄올 또는 복수 탄소원을 기질로 하는 글루타치온 결핍 배지에서는 성장할 수 없는 변이주들을 분리한 바 있다(Ubiyvovk et al., Microbiology, 1999, 68, 26). 'gsh1-2 leu1-1' 및 'gsh2-1 leu1-1'로 명명된 한세눌라 폴리모르파의 gsh1gsh2 변이주는 야생형 균주에 비해 세포내 총 글루타치온 함량이 극히 적었고, γ-GCS 활성은 없지만 GS 활성은 야생형 균주와 유사하였다. 또한 gsh2 변이주는 카드뮴에 매우 민감한 반면, gsh1 변이주는 크롬에 매우 민감하였다.In the traditional yeast Saccharomyces cerevisiae and the cleavage yeast Schizocaromyces pombe , gsh mutants lacking GSH1 or GCS1 , a gene encoding γ-GCS that acts at the first stage of glutathione biosynthesis, It did not grow on synthetic medium without addition, and it showed remarkably enhanced resistance to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and increased sensitivity to cadmium ions (Kistler et al ., Mutat) . Res ., 1986 , 173, 117; Glaeser et a l., Curr. Genet ., 1991 , 19, 207). In addition, the present inventors , while resistant to MNNG in the methanolic yeast Hansenula polymorpha ( aka Pichia angusta ), while sensitive to cadmium ions and methanol, glutathione based on methanol or multiple carbon sources as a substrate Mutant strains that cannot grow in deficient media have been isolated (Ubiyvovk et al ., Microbiology , 1999 , 68, 26). The gsh1 and gsh2 mutants of Hanshenula polymorpha , named ' gsh1-2 leu1-1 ' and ' gsh2-1 leu1-1 ', had very low total intracellular glutathione content and no γ-GCS activity compared to wild-type strains. GS activity was similar to wild type strains. The gsh2 mutant was very sensitive to cadmium, while the gsh1 mutant was very sensitive to chromium.

이에, 본 발명자들은 생체내에서 중요한 생리작용을 하고 중금속 흡착 기능을 가진 글루타치온을 대량 생산하기 위해 본 발명자들이 분리한 변이주(Ubiyvovk et al., Microbiology, 1999, 68, 26)로부터 글루타치온 생합성에 관여하는 중요한 유전자를 클로닝하고, 이를 글루타치온 결핍 변이주에 도입함으로써 글루타치온의 생합성이 증가하고 중금속에 대한 내성이 회복됨을 확인함으로써 본 발명을 완성하였다.Therefore, the present inventors are involved in glutathione biosynthesis from mutants (Ubiyvovk et al ., Microbiology , 1999 , 68, 26) isolated from the inventors for mass production of glutathione having important physiological function and heavy metal adsorption function in vivo. Cloning an important gene and introducing it into a glutathione deficient strain resulted in an increase in the biosynthesis of glutathione and the recovery of resistance to heavy metals.

본 발명의 목적은 감마-글루타밀시스테인 합성효소, 상기 효소를 코딩하는 유전자, 상기 유전자를 포함하는 발현벡터, 상기 벡터를 형질도입한 형질전환체, 상기 형질전환체를 이용하여 글루타치온을 대량 생산하는 방법을 제공하는 것이다. An object of the present invention is to produce a large amount of glutathione using a gamma-glutamylcysteine synthetase, a gene encoding the enzyme, an expression vector containing the gene, a transformant transducing the vector, and the transformant. To provide a way.

상기 목적을 달성하기 위하여, 본 발명은 한세눌라 폴리모르파 유래의 감마-글루타밀시스테인 합성 효소의 프로모터 및 유전자를 포함하는 게노믹 DNA를 제공한다.In order to achieve the above object, the present invention provides a genomic DNA comprising a promoter and gene of a gamma-glutamylcysteine synthetase derived from Hansenula polymorpha.

또한, 본 발명은 한세눌라 폴리모르파 유래의 감마-글루타밀시스테인 합성효소의 프로모터를 제공한다.The present invention also provides a promoter of gamma-glutamylcysteine synthase derived from Hanshenula polymorpha.

또한, 본 발명은 한세눌라 폴리모르파 유래의 감마-글루타밀시스테인 합성효소를 제공한다.The present invention also provides gamma-glutamylcysteine synthase derived from Hanshenula polymorpha.

또한, 본 발명은 상기 감마-글루타밀시스테인 합성효소를 코딩하는 유전자를 제공한다.The present invention also provides a gene encoding the gamma-glutamylcysteine synthase.

또한, 본 발명은 상기 유전자를 포함하는 발현벡터를 제공한다.The present invention also provides an expression vector comprising the gene.

또한, 본 발명은 상기 벡터를 숙주세포에 도입한 형질 전환체를 제공한다.The present invention also provides a transformant in which the vector is introduced into a host cell.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 한세눌라 폴리모르파 유래의 감마-글루타밀시스테인 합성 효소의 프로모터 및 유전자를 포함하는 게노믹 DNA를 제공한다.The present invention provides a genomic DNA comprising a promoter and gene of a gamma-glutamylcysteine synthetase derived from Hanshenula polymorpha.

본 발명의 서열번호 1로 기재되는 게노믹 DNA는 감마-글루타밀시스테인 합성효소(γ-glutamylcysteine synthetase) 활성이 결핍된 한세눌라 폴리모르파 변이균주(gsh2)의 글루타치온 생합성능을 회복시켜주는 기능이 있다. 상기 DNA는 감마-글루타밀시스테인 합성효소의 프로모터 및 감마-글루타밀시스테인 합성효소를 코딩하는 유전자를 포함하고 있다(GenBank, 기탁번호 AF435121). 상기 유전자 전체 4195개의 염기서열 중에서 1번부터 450번까지는 감마-글루타밀시스테인 합성효소의 프로모터 부위이고, 451번부터 2403번까지는 감마-글루타밀시스테인 합성효소를 코딩하는 유전자 부위(open reading frame, ORF)이며, 나머지 2436번부터 3140번 및 2691번부터 3146번까지는 알려지지 않은 단백질 코딩 유전자 부위(ORF)이다.The genomic DNA described in SEQ ID NO: 1 of the present invention has a function of restoring glutathione biosynthesis of Hanshenula polymorpha mutant strain ( gsh2 ) lacking gamma-glutamylcysteine synthetase activity. have. The DNA contains a promoter of gamma-glutamylcysteine synthase and a gene encoding gamma-glutamylcysteine synthase (GenBank, Accession No. AF435121). The gene region encoding gamma-glutamylcysteine synthase from Nos. 1 to 450 is a promoter region of gamma-glutamylcysteine synthase among 4195 nucleotide sequences of the gene, and 451 to 2403 is an open reading frame (ORF). And the remaining 2436 to 3140 and 2691 to 3146 are unknown protein coding gene sites (ORFs).

또한, 본 발명은 한세눌라 폴리모르파 유래의 감마-글루타밀시스테인 합성효소의 프로모터를 제공한다.The present invention also provides a promoter of gamma-glutamylcysteine synthase derived from Hanshenula polymorpha.

본 발명의 프로모터는 상기 서열번호 1로 기재되는 염기서열의 1번부터 450번까지의 서열로 이루어지며, 글루타치온 생합성에 관계하는 감마-글루타밀시스테인 합성효소의 발현을 유도하여 글루타치온의 생합성을 증가시키게 하는 역할을 하는 프로모터로서 서열번호 2로 기재되는 염기서열이거나 또는 그의 일부 염기서열일 수 있다. 또한, 글루타치온 합성 관련 유전자의 발현이 중금속 같은 독성 물질의 존재 여부에 따라 민감하게 조절되고 유도되므로, 본 발명의 프로모터와 함께 발광 단백질 또는 형광 단백질과 같은 리포터 단백질을 코딩하는 유전자를 포함하는 발현 벡터를 제조하여 형질 도입시킨 재조합 균주를 이용하면 독성 물질을 탐지하는데 유용하고 쉽게 사용될 수 있다.Promoter of the present invention consists of the sequence from 1 to 450 of the nucleotide sequence described in SEQ ID NO: 1 , to induce the expression of gamma-glutamylcysteine synthase related to glutathione biosynthesis to increase the biosynthesis of glutathione As a promoter that plays a role, it may be a nucleotide sequence shown in SEQ ID NO: 2 or some nucleotide sequence thereof. In addition, since expression of glutathione-related genes is sensitively regulated and induced according to the presence or absence of toxic substances such as heavy metals, an expression vector including a gene encoding a reporter protein, such as a luminescent protein or a fluorescent protein, together with a promoter of the present invention is used. The recombinant strain prepared and transduced is useful and easily used for detecting toxic substances.

또한, 본 발명은 한세눌라 폴리모르파 유래의 감마-글루타밀시스테인 합성효소를 제공한다.The present invention also provides gamma-glutamylcysteine synthase derived from Hanshenula polymorpha.

본 발명자들은 감마-글루타밀시스테인 합성효소 활성의 결핍으로 인해 글루타치온 생합성능이 결손된 한세눌라 폴리모르파 변이균주의 글루타치온 생합성능을 회복시키는 기능을 지닌 서열번호 1로 기재되는 염기서열에 3개의 단백질 코딩 유전자 부위(451번부터 2403번, 2436번부터 3140번 및 2691번부터 3146번)가 존재함을 확인한 후, 이들 각각의 유전자가 포함된 발현벡터를 제조하고, 이를 형질 도입한 형질전환체를 이용하여 글루타치온 생합성 능력을 조사하였다. 그 결과, 451번부터 2403번의 단백질 코딩 유전자 부위를 포함하는 유전자로 제조된 형질전환체만이 글루타치온 생합성 능력이 증가됨을 알 수 있었다(표 2 참조). 이에, 상기 451번부터 2403번의 단백질 코딩 유전자 부위가 어떤 단백질을 코딩하는지 분석하기 위해 서열의 상동성 분석을 수행한 결과, 상기 서열은 캔디다 알비칸(C. albicans)의 Gcs1p(GenBank 기탁번호 AAG43412) 유전자와 53%의 동일성과 69% 유사성을 보이고 사카로마이세스 세레비시애의 ScGsh1p 유전자와 47%의 동일성과 61%의 유사성을 보였다. 또한, 스키조사카로마이세스 폼베의 SpGcs1p 유전자와 46%의 동일성과 63%의 유사성을 보이고, 인간(Homo sapiens)의 HsGCSh 유전자와 45%의 동일성과 63%의 유사성을 보였으며, 다른 감마-글루타밀시스테인 합성효소들과도 상당히 높은 유사성을 보임을 알 수 있었다(도 2 참조). 이에, 본 발명자들은 상기 단백질이 감마-글루타밀시스테인 합성효소임을 확인하였다. 본 발명의 감마-글루타밀시스테인 합성효소는 상기 서열번호 1로 기재되는 염기서열의 451번부터 2403번의 단백질 코딩 유전자 서열로부터 코딩되는 서열번호 3으로 기재되는 아미노산 서열을 가진다.The present inventors have identified three protein coding sequences in the nucleotide sequence shown in SEQ ID NO: 1 having the function of restoring glutathione biosynthesis of a Hanshenula polymorpha mutant strain lacking glutathione biosynthesis due to a lack of gamma-glutamylcysteine synthase activity. After confirming that the gene sites (451 to 2403, 2436 to 3140, and 2691 to 3146) existed, an expression vector containing these genes was prepared and transformed using the transformants. Glutathione biosynthesis ability was investigated. As a result, it was found that only the transformants prepared with the gene containing the protein coding gene region of 451 to 2403 increased glutathione biosynthesis ability (see Table 2 ). Thus, as a result of performing a homology analysis of the sequence to analyze the protein encoding the protein coding gene region of the 451 to 2403, the sequence is Gcs1p (GenBank Accession No. AAG43412) of Candida albicans ( C. albicans ) 53% identity and 69% similarity to the gene and 47% identity and 61% similarity to the ScGsh1p gene of Saccharomyces cerevisiae. In addition, it showed 46% identity and 63% similarity to the SpGcs1p gene of Schizocarmyosis pombe, and 45% identity and 63% similarity to HsGCSh gene of human ( Homo sapiens ), and other gamma-glu It can be seen that the similarity with tamil cysteine synthase was also very high (see Fig. 2 ). Thus, the present inventors confirmed that the protein is gamma-glutamylcysteine synthase. The gamma-glutamylcysteine synthetase of the present invention has an amino acid sequence set forth in SEQ ID NO: 3 encoded from a protein coding gene sequence of Nos. 451 to 2403 of the nucleotide sequence set forth in SEQ ID NO: 1 above.

또한, 본 발명은 상기 감마-글루타밀시스테인 합성효소를 코딩하는 유전자를 제공한다.The present invention also provides a gene encoding the gamma-glutamylcysteine synthase.

본 발명의 유전자는 상기에서 한세눌라 폴리모르파의 감마-글루타밀시스테인 합성효소임을 확인한 서열번호 3으로 기재되는 효소를 코딩하는 유전자이며, 서열번호 4로 기재되는 염기서열을 가지는 것이 바람직하다. 서열번호 4로 기재되는 본 발명의 유전자 서열은 450 bp 정도의 5' 인접영역 서열과 1792 bp 정도의 3' 인접 서열을 갖고 있으며, 전형적인 TATA 박스, CAAT 박스 및 폴리아데닐레이션(polyadenylation) 서열은 관찰되지 않는다. 그러나, 단백질 번역 개시 코돈으로부터 상류 416 bp 지점에서 사카로마이세스 세레비시애에서 GSH1 유전자의 발현을 조절하는 단백질인 Cbf1이 결합하는 부위로 알려진 CDEI-결합지역(GCACG)으로 추정되는 서열은 관찰된다(도 2 참조). 따라서, 본 발명의 유전자는 반응성 산소족이나 중금속 카드뮴 존재 여부에 따라 Cbf1 상동 단백질에 의해 발현이 조절됨을 알 수 있다.The gene of the present invention is a gene encoding the enzyme described in SEQ ID NO: 3 which has been identified as a gamma-glutamylcysteine synthase of Hanshenula polymorpha, and preferably has a nucleotide sequence described in SEQ ID NO: 4 . The gene sequence of the present invention described in SEQ ID NO: 4 has a 5 'contiguous region sequence of about 450 bp and a 3' contiguous sequence of about 1792 bp, and typical TATA box, CAAT box, and polyadenylation sequences are observed. It doesn't work. But, A sequence presumed to be the CDEI-binding region (GCACG), known as the binding site of Cbf1, a protein that regulates the expression of the GSH1 gene in Saccharomyces cerevisiae at 416 bp upstream from the protein translation initiation codon, is observed ( FIG. 2 ). Therefore, it can be seen that the gene of the present invention is regulated by Cbf1 homologous protein depending on the presence of reactive oxygen groups or heavy metal cadmium.

또한, 다른 생물체 유래의 감마-글루타밀시스테인 합성효소들처럼 본 발명의 유전자는 글루타치온-결합 단백질들에서 일반적으로 관찰되는 글루타치온과의 특이적 상호작용에 관련되는 서열번호 5로 기재되는 GWRVEFRPME 모티브에 보존된 리신 및 아르기닌 잔기를 갖고 있으며, 효소의 활성 중심부로 추정되는 서열번호 6으로 기재되는 MGFGMGXXCLQ 영역에서 잘 보존된 시스테인 잔기를 갖고 있다(도 2 참조).In addition, the genes of the invention, like gamma-glutamylcysteine synthetases from other organisms, are conserved in the GWRVEFRPME motif set forth in SEQ ID NO: 5 , which relates to the specific interaction with glutathione commonly found in glutathione-binding proteins. Lysine and arginine residues, and have a well-conserved cysteine residue in the MGFGMGXXCLQ region as set forth in SEQ ID NO: 6 , presumably the active center of the enzyme (see FIG. 2 ).

상기 결과로부터, 본 발명의 유전자는 글루타치온 요구성 보완 기능과 더불어 글루타치온 생합성 경로에서 가장 중요한 첫 단계 반응에 작용하는 γ-GCS를 코딩함을 알 수 있다.From the above results, it can be seen that the gene of the present invention encodes γ-GCS which acts on the most important first-step response in the glutathione biosynthetic pathway as well as the glutathione requirement complementary function.

또한, 본 발명은 상기 유전자를 포함하는 발현벡터를 제공한다.The present invention also provides an expression vector comprising the gene.

본 발명의 발현벡터는 감마-글루타밀시스테인 합성효소를 생산할 수 있게 제조한 발현벡터로, 글루타치온의 생합성을 증가시킬 수 있는 발현벡터이다. 본 발명의 바람직한 실시예에서는 서열번호 4로 기재되는 유전자를 pYT3 벡터에 삽입하여 제조한 벡터를 'pG24'라 명명하였다.The expression vector of the present invention is an expression vector prepared to produce gamma-glutamylcysteine synthase, and is an expression vector capable of increasing the biosynthesis of glutathione. In a preferred embodiment of the present invention, the vector prepared by inserting the gene described in SEQ ID NO: 4 into the pYT3 vector was named 'pG24'.

또한, 본 발명은 상기 벡터를 숙주세포에 도입한 형질전환체를 제공한다.The present invention also provides a transformant in which the vector is introduced into a host cell.

상기에서 숙주세포는 박테리아, 효모, 대장균, 진균류, 식물 세포 및 동물 세포로 구성된 군으로부터 선택되는 것이 바람직하다. 본 발명의 바람직한 실시예에서는 상기 pG24 발현벡터를 글루타치온 생합성 효소가 결핍된 한세눌라 폴리모르파 변이 균주에 도입한 형질전환체를 제조하고, 이를 'Gsh+Leu+(pG24)'라 명명하였다. 또한, 형질전환체의 글루타치온 생합성 능력 및 중금속 내성에 대한 반응을 조사한 결과, 글루타치온 생합성 능력이 증가되고 중금속 내성이 증가됨을 확인하였다(표 2 참조).The host cell is preferably selected from the group consisting of bacteria, yeast, E. coli, fungi, plant cells and animal cells. In a preferred embodiment of the present invention, a transformant in which the pG24 expression vector was introduced into a Hanshenula polymorpha strain lacking glutathione biosynthetic enzyme was prepared and named 'Gsh + Leu + (pG24)'. In addition, as a result of examining the response to the glutathione biosynthesis ability and the heavy metal resistance of the transformant, it was confirmed that the glutathione biosynthesis ability is increased and the heavy metal resistance is increased (see Table 2 ).

본 발명자들은 pG24 발현벡터를 대장균인 DH5α에 형질전환한 형질전환체를 제조하고, 이를 2002년 11월 8일자로 한국생명공학연구원 유전자은행에 기탁하였다(수탁번호 KCTC 10370BP).The present inventors prepared a transformant transformed with the pG24 expression vector to E. coli DH5α, and deposited it on 8 November 2002 to the Korea Biotechnology Research Institute Gene Bank (Accession Number KCTC 10370BP).

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

<실시예 1> 한세눌라 폴리모르파로부터 글루타치온 생합성 유전자의 클로닝Example 1 Cloning of Glutathione Biosynthesis Gene from Hanshenula Polymorpha

본 발명자들은 메탄올자화 효모인 한세눌라 폴리모르파(Hansenula polymorpha) 균주로부터 MNNG(N-methyl-N'-nitro-N-nitrosoguanidine)에 대한 내성을 가지는 반면, 카드뮴 이온과 메탄올에 민감하게 반응하며, 글루타치온 결핍 배지에서는 성장할 수 없는 변이주인 gsh1(gsh1-2 leu1-1) 및 gsh2(gsh2-1 leu1-1)들을 분리한 바 있다(Ubiyvovk et al., Microbiology, 1999, 68, 26). 상기 gsh1gsh2 변이주들은 야생형 균주에 비해 총 글루타치온 함량이 극히 적고, 감마-글루타밀시스테인 합성효소(γ-glutamylcysteine synthetase, 이하 'γ-GCS'라 칭함) 활성이 없지만 글루타치온 생합성효소(glutathione synthetase, 이하 'GS'라 칭함)의 활성은 야생형 균주와 유사하였으며, gsh2 변이주는 카드뮴에 매우 민감한 반면, gsh1 변이주는 크롬에 매우 민감하였다. 이에, 본 발명자들은 상기 gsh 변이균주로부터 글루타치온 생합성에 관여하는 유전자를 클로닝하고자 하였다.The present inventors have a resistance to M-N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) from the methanolic yeast Hansenula polymorpha strain, but are sensitive to cadmium ions and methanol, Glutathione deficient media has isolated gsh1 ( gsh1-2 leu1-1 ) and gsh2 ( gsh2-1 leu1-1 ) strains that cannot grow (Ubiyvovk et al ., Microbiology , 1999 , 68, 26). The gsh1 and gsh2 mutants have an extremely low total glutathione content and no gamma-glutamylcysteine synthetase (hereinafter, referred to as 'γ-GCS') activity, but are glutathione synthetase, or less than wild type strains. The activity of 'GS') was similar to that of the wild type strain, and the gsh2 mutant was very sensitive to cadmium, while the gsh1 mutant was very sensitive to chromium. Thus, the present inventors attempted to clone genes involved in glutathione biosynthesis from the gsh mutant strain.

<1-1> 글루타치온 요구성을 회복하는 형질전환체의 선별<1-1> Screening for transformants that restore glutathione requirements

본 발명자들은 한세눌라 폴리모르파-대장균 셔틀 플라스미드인 pYT3(GenBank 기탁번호 AF347016)에 한세눌라 폴리모르파 CBS4732 leu2 균주(Centraalbureau voor Schimmelcultures, Delft, Netherland)의 게놈 DNA 라이브러리(Tan et al., J. Cell Biol., 1995, 128, 307)가 클로닝된 벡터를 사용하여 한세눌라 폴리모르파 변이주인 gsh1-2 leu2(495-145L)과 gsh2-1 leu2(495-40L)에 기존의 전기적 방법(Faber et al., Curr Genet, 1994, 25, 305)으로 형질전환시켰다. 상기 형질도입된 한세눌라 폴리모르파 균주를 글루코즈가 함유된 글루타치온 무첨가 합성배지(10 g/ℓ글루코즈, 1 ㎍/ℓ 비오틴, 0.2 ㎎/ℓ 티아민 하이드로클로라이드, 미량원소, 20 ㎎/㎖ 루이신)(Sibirny et al., Arch. Microbiol, 1990, 154, 566)에서 배양한 후, 글루타치온 없이도 성장할 수 있는 형질전환체를 선별하였다.The present inventors century Cronulla poly Maurepas - genomic DNA library of E. coli shuttle plasmid, pYT3 (GenBank Accession No. AF347016) Hanse Cronulla poly Maurepas leu2 strain CBS4732 (Centraalbureau voor Schimmelcultures, Delft, Netherland ) in (Tan et al, J. Cell Biol ., 1995 , 128, 307) were cloned using the cloned vector and the conventional electrical methods (Faber) for the gins1-2 leu2 (495-145L) and gsh2-1 leu2 (495-40L) strains et al ., Curr Genet , 1994 , 25, 305). The transduced Hanshenula polymorpha strain was glutathione-free synthetic medium containing glucose (10 g / l glucose, 1 μg / l biotin, 0.2 mg / l thiamine hydrochloride, trace element, 20 mg / ml leucine). After incubation in (Sibirny et al ., Arch. Microbiol , 1990 , 154, 566), transformants that could grow without glutathione were selected.

그 결과, gsh 변이주들의 글루타치온 요구성을 보완하는 기능을 가지게 됨으로써 글루타치온 없이도 성장하는 형질전환체를 선별하였다. 상기 형질전환체로부터 플라스미드를 분리하여 BamHⅠ으로 절단하여 전기영동으로 확인한 결과, 약 7.5 kb 및 9.6 kb의 DNA 절편이 있음을 확인하고, 상기 DNA 절편 각각이 삽입된 벡터를 'pG1' 및 'pG2'라 명명하고, 글루타치온 무첨가 배지에서 성장하는 상기 벡터가 형질도입된 형질전환체를 각각 'Gsh+Leu+(pG1)' 및 'Gsh+Leu+(pG2)'라 명명하였다.As a result, the Gsh mutants had a function of complementing the glutathione requirements, thereby selecting a transformant that grew without glutathione. The plasmid was isolated from the transformant, digested with BamH I, and confirmed by electrophoresis. As a result, DNAs of about 7.5 kb and 9.6 kb were confirmed, and the vectors into which the DNA fragments were inserted were respectively 'pG1' and 'pG2'. The transformants transfected with the vector growing in glutathione free medium were named 'Gsh + Leu + (pG1)' and 'Gsh + Leu + (pG2)', respectively.

<1-2> 형질전환체의 글루타치온 생합성 및 중금속에 대한 내성의 분석<1-2> Analysis of glutathione biosynthesis and resistance to heavy metals of transformants

본 발명자들은 상기 실시예 <1-1>에서 선별한 형질전환체가 글루타치온을 생합성하는지 여부를 분석하기 위해 야생형 균주 NCYC495 leu1-1(National Collection of Yeast Clustures, Food Reaearch Institute, Norwich, UK), gsh 변이 균주 gsh1-2 leu1-1, gsh2-1 leu1-1 및 글루타치온 유전자가 도입된 형질전환체 Gsh+Leu+(pG1) 및 Gsh+Leu+(pG2)를 글리세롤 1%가 첨가된 세미합성 배지(1% 글리세롤, 0.05% 효모엑기스, 20 ㎎/ℓ루이신)에서 배양한 후 글리세롤 1%가 첨가된 합성배지(글리세롤 1%, 비오틴 1 ㎍/ℓ, 티아민 하이드로클로라이드 0.2 ㎎/ℓ, 미량원소, 루이신 20 ㎎/㎖)(Sibirny et al., Arch. Microbiol, 1990, 154, 566)에서 14시간 동안 배양하였다. 상기 배양 후 브레헤 및 버쉬의 방법(Brehe and Burch, Anal. Biochem., 1976, 74, 189)에 의해 세포 파쇄액으로부터 단백질(㎎)에 포함된 총 글루타치온의 함량(nmol)을 측정하였다. 또한, 글루타치온의 생합성에 관계된 효소인 감마-글루타밀시스테인 합성효소(γ-glutamylcystein syntase, 이하 'γ-GCS'라 약칭함) 및 글루타치온 합성효소(glutathion syntase, 이하 'GS'라 약칭함)의 활성을 분석하기 위해 세미합성배지에서 배양된 대수기 중반의 세포로부터 유비보크의 방법(Ubiyvovk et al., Microbiology, 1999, 68, 26)에 따라 30분동안 단백질(㎎)에 포함된 γ-GCS 및 GS의 함량(nmol)을 측정하였다. 또한, 중금속에 대한 내성을 분석하기 위해 1% 글루코즈와 중금속인 카드뮴(0.05 mM) 또는 크롬(0.4 mM)을 포함하는 고체 합성배지에서 효모세포를 3일동안 배양한 후 효모성장을 관찰 및 분석하였다.The present inventors used the wild type strain NCYC495 leu1-1 (National Collection of Yeast Clustures, Food Reaearch Institute, Norwich, UK), gsh mutation to analyze whether the transformants selected in Example <1-1> biosynthesis of glutathione. Transformants Gsh + Leu + (pG1) and Gsh + Leu + (pG2) with strains gsh1-2 leu1-1, gsh2-1 leu1-1 and glutathione gene were added to the semisynthetic medium (1) Culture medium in% glycerol, 0.05% yeast extract, 20 mg / l leucine, and then 1% glycerol added synthetic medium (glycerol 1%, biotin 1 ug / l, thiamine hydrochloride 0.2 mg / l, trace element, louis) Shin 20 mg / ml) (Sibirny et al ., Arch. Microbiol , 1990 , 154, 566) for 14 hours. After the incubation, the total glutathione content (nmol) contained in the protein (mg) was measured from the cell lysate by the method of Brehe and Burch, Anal. Biochem ., 1976 , 74, 189. In addition, the activity of gamma-glutamylcysteine synthase (γ-GCS), which is an enzyme involved in the biosynthesis of glutathione, and glutathione syntase (hereinafter, abbreviated as 'GS') Γ-GCS contained in protein (mg) for 30 minutes according to the method of Ubibok (Ubiyvovk et al ., Microbiology , 1999 , 68, 26) from cells in the mid- log phase cultured in semi-synthetic medium to analyze The content of GS (nmol) was measured. In addition, yeast cells were cultured for 3 days in a solid synthetic medium containing 1% glucose and heavy metals such as cadmium (0.05 mM) or chromium (0.4 mM) in order to analyze resistance to heavy metals, and then yeast growth was observed and analyzed. .

그 결과, 형질전환체 Gsh+Leu+(pG1) 및 Gsh+Leu+(pG2)는 글루타치온 생합성이 증가하고, 메탄올 또는 복수 탄소원(글루코스 및 메탄올)을 기질로 한 합성배지에서의 성장 능력이 야생형 수준으로 회복되었을 뿐만 아니라, 카드뮴(Cd) 및 크롬(Cr) 이온에 대한 저항성이 야생형 균주와 유사한 정도로 나타나고, 형질전환되지 않은 gsh1gsh2 변이주 자체보다 MNNG에 더 민감하게 반응하였다(표 1).As a result, the transformants Gsh + Leu + (pG1) and Gsh + Leu + (pG2) have increased glutathione biosynthesis and wild-type growth ability in synthetic media based on methanol or multiple carbon sources (glucose and methanol) as substrates. In addition, the resistance to cadmium (Cd) and chromium (Cr) ions appeared to be similar to that of wild-type strains, and was more sensitive to MNNG than the untransformed gsh1 and gsh2 mutants themselves ( Table 1 ).

gsh 변이주 및 Gsh+ 형질전환체의 생리 특징 비교Comparison of Physiological Characteristics of gsh Variants and Gsh + Transformants 균주Strain 총 글루타치온 함량Total glutathione content 성장 정도Growth degree 성장 정도Growth degree 글루코스Glucose 메탄올Methanol 글루코스+ 크롬Glucose + chromium 글루코스+ 카드뮴Glucose + cadmium NCYC495leu1-1 NCYC495 leu1-1 202202 ++++++ ++++ ++ ++++ gsh1-2 leu1-1gsh1-2 leu1-1 <1.0<1.0 -- -- -- -- gsh2-1 leu1-1gsh2-1 leu1-1 <1.0<1.0 -- -- -- -- Gsh+Leu+(pG1)Gsh + Leu + (pG1) 8383 ++++ ++ ++++ ++++ Gsh+Leu+(pG2)Gsh + Leu + (pG2) 8787 ++++ ++ ++++ ++++

+++ : 가장 왕성한 성장, ++ : 중간정도의 성장,+++: strongest growth, ++: moderate growth,

+ : 미약한 성장, - : 성장 안함+: Slight growth,-: no growth

이에, Gsh+Leu+(pG1) 및 Gsh+Leu+(pG2) 형질전환체에 도입된 pG1 및 pG2벡터의 인서트 DNA를 분석해 보았다(Molecular cloning: a laboratory manual, 2nd edn. Cold Spring harbor laboratory press, Cold spring harbor, NY, 1989).Thus, insert DNAs of pG1 and pG2 vectors introduced into Gsh + Leu + (pG1) and Gsh + Leu + (pG2) transformants were analyzed ( Molecular cloning : a laboratory manual, 2nd edn. Cold Spring harbor laboratory press, Cold spring harbor, NY, 1989 ).

그 결과, pG1 벡터의 BamHⅠ으로 절단되는 7.5 kb DNA 절편은 네 개의 단백질 코딩부위를 포함하고 있지만 글루타치온 합성 유전자와는 관련되지 않은 유전자였다. 다음으로, pG2 벡터의 BamHⅠ으로 절단되는 9.6 kb DNA 절편을 다시 BamHⅠ 또는 XbaⅠ으로 절단한 결과, 3.9 kb(BamHI), 4.0 kb(BamHI), 3.3 kb(XbaI)와 4.2 kb(XbaI)의 작은 DNA 단편으로 절단됨을 알 수 있었다. 이에, 상기 DNA 절편 각각을 pYT3 벡터로 삽입하여 제조한 벡터를 각각 pG21, pG22, pG23 및 pG24 로 명명하였다(도 1). 상기 벡터를 gsh2 변이주에 다시 형질전환시켜, 형질전환된 각각의 형질전환체를 'Gsh+Leu+(pG21)', 'Gsh+Leu+(pG22)', 'Gsh+ Leu+(pG23)' 및 'Gsh+Leu+(pG24)'라 명명하였다. 형질전환체를 상기와 동일한 방법으로 글루타치온 생합성 및 중금속 내성에 대한 분석을 한 결과, Gsh+Leu+(pG24) 형질전환체 만이 야생형과 동일하게 글루타치온을 생합성함을 확인하였다(표 2)As a result, the 7.5 kb DNA fragment cleaved with BamH I of the pG1 vector contained four protein coding sites but was not related to the glutathione synthesis gene. Next, the 9.6 kb DNA fragment cleaved with BamH I of the pG2 vector was further digested with BamH I or Xba I, resulting in 3.9 kb ( Bam HI), 4.0 kb ( Bam HI), 3.3 kb ( Xba I) and 4.2 kb. It can be seen that it is cleaved into a small DNA fragment of ( Xba I). Thus, the vectors prepared by inserting each of the DNA fragments into the pYT3 vector were named as pG21, pG22, pG23 and pG24, respectively ( Fig. 1 ). The vector was transformed back into gsh2 mutant strains, so that each transformant transformed into 'Gsh + Leu + (pG21)', 'Gsh + Leu + (pG22)', 'Gsh + Leu + (pG23)' and It was named 'Gsh + Leu + (pG24)'. As a result of analyzing the transformants for glutathione biosynthesis and heavy metal resistance in the same manner as above, it was confirmed that only Gsh + Leu + (pG24) transformants biosynthesized glutathione as wild type ( Table 2 ).

gsh2 변이주와 pG2 계열 벡터를 지닌 형질전환체 표현형 비교 Comparison of Transformant Phenotypes with gsh2 Variants and pG2 Family Vectors 균주Strain 총 글루타치온 함량Total glutathione content 성장 정도Growth degree 성장 정도Growth degree 글루코스Glucose 메탄올Methanol 글루코스+ 크롬Glucose + chromium 글루코스+ 카드뮴Glucose + cadmium NCYC495leu1-1 NCYC495 leu1-1 202202 ++++++ ++++ ++ ++++ gsh2-1 leu1-1gsh2-1 leu1-1 <1.0<1.0 -- -- -- -- Gsh+Leu+(pG21)Gsh + Leu + (pG21) <1.0<1.0 -- -- -- -- Gsh+Leu+(pG22)Gsh + Leu + (pG22) <1.0<1.0 -- -- -- -- Gsh+Leu+(pG23)Gsh + Leu + (pG23) <1.0<1.0 -- -- -- -- Gsh+Leu+(pG24)Gsh + Leu + (pG24) 8787 ++++ ++ ++++ ++++

+++ : 가장 왕성한 성장, ++ : 중간정도의 성장,+++: strongest growth, ++: moderate growth,

+ : 미약한 성장, - : 성장 안함+: Slight growth,-: no growth

<실시예 2> 글루타치온 생합성 유전자의 분석Example 2 Analysis of Glutathione Biosynthesis Gene

본 발명자들은 상기 실시예 1에서 글루타치온 생합성 능력이 야생형으로 복귀됨이 확인된 Gsh+Leu+(pG24) 형질전환체로부터 표준 효모 유전자 방법을 이용하여 pG24 플라스미드 DNA를 분리하고, 아가로즈 젤 전기영동을 하여 분리된 DNA의 크기를 확인하였다(Molecular cloning: a laboratory manual, 2nd edn. Cold Spring harbor laboratory press, Cold spring harbor, NY, 1989). 상기 확인된 DNA의 염기 서열 분석은 GPS-1 게놈 프라이밍 시스템(New England Biolabs, Beverly, MA, USA) 및 염기서열 자동 분석기(BigDye terminator cycle sequencing ready reaction kit)(Applied Biosystems, Foster City, CA, USA)를 사용하여 수행하였다.The present inventors isolated pG24 plasmid DNA from Gsh + Leu + (pG24) transformants confirmed that the glutathione biosynthetic ability was returned to the wild type in Example 1 using a standard yeast gene method, and agarose gel electrophoresis was performed. The size of the isolated DNA was confirmed ( Molecular cloning : a laboratory manual, 2nd edn. Cold Spring harbor laboratory press, Cold spring harbor, NY, 1989 ). DNA sequencing of the identified DNA was performed using the GPS-1 genome priming system (New England Biolabs, Beverly, MA, USA) and the BigDye terminator cycle sequencing ready reaction kit (Applied Biosystems, Foster City, CA, USA). ) Was performed.

그 결과, pG24 벡터의 삽입 DNA 절편은 전체 4195 bp 크기의 서열번호 1로 기재되는 염기서열임을 확인하였다. 상기 전체 DNA에는 593 bp, 456 bp 및 1953 bp 크기를 가진 3개의 단백질 코딩지역(open reading frame, ORF)이 존재하였다. 상기 3개의 단백질 코딩지역 중 593 bp 및 456 bp 크기의 작은 단백질 코딩 지역을 포함하는 pG22 벡터는 gsh2 변이주의 글루타치온 결핍 능력을 복귀시키지 못하였고, 지금까지 보고된 단백질들과의 유사성도 매우 낮았다(표 2 참조). 이에 반해 1953 bp 크기로 650개의 아미노산을 코딩하는 가장 큰 단백질 코딩지역을 포함하는 pG24 벡터는 gsh2 변이주를 글루타치온 합성 능력을 가진 형질로 변환시키는 기능을 지니고 있었으며, 상기 단백질을 코딩하는 유전자는 캔디다 알비칸(C. albicans)의 Gcs1p(GenBank 기탁번호 AAG43412) 유전자와 53%의 동일성과 69% 유사성을 보였다. 또한, 사카로마이세스 세레비시애(S. cerevisiae)의 ScGsh1p 유전자와 47%의 동일성과 61%의 유사성을 보이고, 스키조사카로마이세스 폼베(Sch. pombe)의 SpGcs1p 유전자와 46%의 동일성과 63%의 유사성을 보였으며, 인간(Homo sapiens)의 HsGCSh 유전자와 45%의 동일성과 63%의 유사성을 보였고, 다른 γ-GCS들과도 상당히 높은 유사성을 보였다(도 2). 이에, 본 발명자들은 상기 4195 bp 크기의 pG24 플라스미드 DNA를 한세눌라 폴리모르파 γ-GCS를 코딩하는 유전자로 추정하여 'HpGSH2'로 명명하고 GenBank에 기탁하였다(기탁번호 AF435121).As a result, it was confirmed that the inserted DNA fragment of the pG24 vector was the nucleotide sequence described in SEQ ID NO: 1 in total 4195 bp. There were three open reading frames (ORFs) of 593 bp, 456 bp and 1953 bp in the total DNA. PG22 vector comprising the three protein-coding region of 593 bp and 456 bp in size small protein coding region of was not not return a glutathione deficiency capacity of gsh2 mutants, the similarity with the reported protein is very low so far (Table 2 ). In contrast, the pG24 vector, which contains the largest protein coding region that encodes 650 amino acids at 1953 bp, had the ability to convert gsh2 mutants into traits with glutathione synthesis, and the gene encoding the protein is Candida albican. ( C. albicans ) Gcs1p (GenBank Accession No. AAG43412) gene showed 53% identity and 69% similarity. It also shows 47% identity and 61% similarity to the ScGsh1p gene of S. cerevisiae and 46% identity to the SpGcs1p gene of Sch. Pombe . It showed 63% similarity, 45% identity and 63% similarity with HsGCSh gene of human ( Homo sapiens ), and showed significantly high similarity with other γ-GCS ( FIG. 2 ). Thus, the present inventors assumed that the 4195 bp pG24 plasmid DNA was a gene encoding Hanshenula polymorpha γ-GCS and named it as 'HpGSH2' and deposited it in GenBank (Accession No. AF435121).

<실시예 3> <Example 3> HpGSH2 HpGSH2 유전자의 구성 성분 특성 분석Compositional Characterization of Genes

본 발명자들은 상기 실시예 2에서 분리한 HpGSH2 유전자의 염기서열에 존재하는 세부 구성요소를 분석하기 위해 서열번호 1로 기재되는 염기서열을 이용해 단백질 코딩지역, 단백질 서열 상동성 분석 및 서열 배열 분석을 하였다. 구체적으로, 단백질 코딩 지역(open reading frame; ORF)은 NCBI(National Center for Biotechnology Information, Bethesda, MD, USA)의 그래프 분석 프로그램인 ORF Finder를 사용하여 분석하였다. 단백질 서열 상동성 분석은 BLAST 서버를 사용하였고, 서열 배열 분석은 MultAlin 프로그램을 사용하였다(Corpet, F. Nucleic Acids Res., 1988, 16, 10881).The present inventors performed the protein coding region, protein sequence homology analysis and sequence alignment analysis using the nucleotide sequence shown in SEQ ID NO: 1 to analyze the detailed components present in the nucleotide sequence of the HpGSH2 gene isolated in Example 2 . Specifically, an open reading frame (ORF) was analyzed using ORF Finder, a graph analysis program of the National Center for Biotechnology Information, Bethesda, MD, USA. Protein sequence homology analysis was performed using the BLAST server, and sequence alignment analysis was performed using the MultAlin program (Corpet, F. Nucleic Acids Res ., 198 8, 16, 10881).

그 결과, 서열번호 1로 기재되는 HpGSH2 유전자는 450 bp 정도의 5' 인접영역 서열(1번부터 450번까지)과 1792 bp 정도의 3' 인접 서열(2401번부터 4195번까지)을 갖고 있으며, 전형적인 TATA 박스, CAAT 박스 및 폴리아데닐레이션(polyadenylation) 서열은 관찰되지 않았다. 그러나, 단백질 번역 개시 코돈으로부터 상류 416 bp 지점에서 사카로마이세스 세레비시애에서 GSH1 유전자의 발현을 조절하는 단백질인 Cbf1이 결합하는 부위로 알려진 CDEI-결합지역(GCACG)으로 추정되는 서열(31번에서 35번까지)이 관찰되었다(도 2). 이를 통해 한세눌라 폴리모르파 유전자 HpGSH2가 반응성 산소족이나 중금속 카드뮴 존재 여부에 따라 Cbf1 상동 단백질에 의해 발현이 조절됨을 알 수 있었다.As a result, the HpGSH2 gene described in SEQ ID NO: 1 has a 5 'contiguous region sequence of about 450 bp (from 1 to 450) and a 3' contiguous sequence of about 1792 bp (from 2401 to 4195). Typical TATA boxes, CAAT boxes and polyadenylation sequences were not observed. But, Sequence estimated to be the CDEI-binding region (GCACG) known as the binding site of Cbf1, a protein that regulates expression of the GSH1 gene in Saccharomyces cerevisiae at 416 bp upstream from the protein translation initiation codon (Nos. 31 to 35). Times) were observed ( FIG. 2 ). Through this, the expression of the Hansenula polymorpha gene HpGSH2 is regulated by Cbf1 homologous protein depending on the presence of reactive oxygen groups or heavy metal cadmium.

또한, 다른 생물체 유래의 감마-글루타밀시스테인 합성효소들처럼 한세눌라 폴리모르파 HpGsh2p는 글루타치온-결합 단백질들에서 일반적으로 관찰되는 글루타치온과의 특이적 상호작용에 관련되는 서열번호 5로 기재되는 GWRVEFRPME 모티브(서열번호 3으로 기재되는 아미노산 서열의 457번에서 466번까지)와 보존된 리신 또는 아르기닌 잔기(서열번호 3으로 기재되는 아미노산 서열의 459번과 503번 아미노산 잔기)를 갖고 있으며(Coblenz and Wolf, Yeast, 1995, 11, 1171), 효소의 활성 중심부로 추정되는 서열번호 6으로 기재되는 MGFGMGXXCLQ 영역에서 잘 보존된 시스테인 잔기(서열번호 3으로 기재되는 아미노산 서열의 251번째 내지 261번째)를 갖고 있었다(도 2). 따라서, gsh2 변이주의 글루타치온 요구성 보완 기능과 더불어 상기 여러 구조적인 특징들은 HpGSH2 유전자가 글루타치온 생합성 경로에서 가장 중요한 첫 단계 반응에 작용하는 γ-GCS를 코딩함을 알 수 있었다.Also, like gamma-glutamylcysteine synthetases from other organisms, the Hansenula polymorph HpGsh2p is a GWRVEFRPME motif described by SEQ ID NO: 5 which is involved in the specific interaction with glutathione commonly found in glutathione-binding proteins. ( Numbers 457 to 466 of the amino acid sequence set forth in SEQ ID NO: 3 ) and conserved lysine or arginine residues (amino acid residues 459 and 503 of the amino acid sequence set forth in SEQ ID NO: 3 ) (Coblenz and Wolf, Yeast, 1995 , 11, 1171), having a well-conserved cysteine residue (251nd to 261th of the amino acid sequence set forth in SEQ ID NO: 3) in the MGFGMGXXCLQ region described as SEQ ID NO: 6 , presumed to be the active center of the enzyme. 2 ). Thus, the structural features, together with the glutathione complimentary function of gsh2 mutants, suggest that the HpGSH2 gene encodes γ-GCS, which acts as the most important first-stage response in the glutathione biosynthetic pathway.

<실시예 4><Example 4> HpGSH2HpGSH2 유전자의 카피 수 및 구조 분석 Copy number and structure analysis of genes

한세눌라 폴리모르파 야생형 균주(CBS4732 leu2), gsh2 변이주(gsh2-1 leu1-1) 및 플라스미드 pG24가 도입된 gsh2 형질전환체(Gsh+Leu+(pG24))로부터 HpGSH2 유전자의 카피 수와 구조에 대한 정보를 얻기 위해 서던 블랏을 수행하였다. 구체적으로, DNA 탐침자를 제조하기 위해 HpGSH2 유전자를 BamHI으로 절단하여 수득된 2.0 kb HpGSH2 단편(도 3A)을 준비하였다. 상기 각각 세포들로부터 염색체를 분리하여 제한효소 PstⅠ으로 절단한 후, 상기에서 제조한 DNA 탐침자를 이용하여 일반적인 방법으로 서던 블롯 분석을 수행하였다(Molecular cloning: a laboratory manual, 2nd edn. Cold Spring harbor laboratory press, Cold spring harbor, NY, 1989).Copy number and structure of HpGSH2 gene from Hanshenula polymorpha wild type strain (CBS4732 leu2 ), gsh 2 variant (gsh2-1 leu1-1) and plasmid pG24 introduced gsh2 transformant (Gsh + Leu + (pG24)) Southern blot was performed to obtain information about. Specifically, a 2.0 kb HpGSH2 fragment ( A of FIG. 3 ) obtained by cutting the HpGSH2 gene with Bam HI was prepared to prepare a DNA probe. Chromosomes were isolated from each of the cells and digested with restriction enzyme Pst I, followed by Southern blot analysis using a DNA probe prepared above ( Molecular cloning : a laboratory manual, 2nd edn. Cold Spring harbor laboratory press, Cold spring harbor, NY, 1989 ).

그 결과, 야생형 균주에서는 HpGSH2 유전자의 단일 염색체 카피에 해당하는 4.0 kb PstⅠ단편에서 교잡 신호(hybridization signal)가 나타났고, 형질전환되지 않은 gsh2 균주에서는 4.0 kb PstⅠ단편 대신 6.5 kb PstⅠ 단편에서 교잡 신호가 나타났다. 또한, 플라스미드 pG24가 도입된 gsh2 형질전환체(Gsh+Leu+(pG24))는 도입된 pG24로부터의 PstⅠ단편(4.0 kb)과 염색체 DNA으로부터의 PstⅠ단편(6.5 kb)에 의한 두 개의 교잡 신호가 나타났으며, 4.0 kb 단편이 6.5 kb 단편보다 더 진한 시그널을 보였다(도 3B). 상기 결과를 통해 gsh2 변이가 HpGSH2 ORF를 둘러싸고 있는 두 PstⅠ 자리 중 한 곳에 위치할 것이라는 것임을 알 수 있었으며, 야생형 HpGSH2 유전자의 도입으로 인해 gsh2 변이주의 결손 표현형이 야생형으로 보완됨을 알 수 있었고, gsh2 형질전환체들에 HpGSH2 유전자가 다중으로 도입됨을 알 수 있었다. 따라서, γ-GCS 결손 표현형에 대한 HpGSH2 유전자의 보완 능력은 본 발명에서 확보된 HpGSH2 유전자가 한세눌라 폴리모르파의 γ-GCS를 코딩하고 있으며, gsh2 형질전환체들의 중금속에 대한 내성이 증가(표 1표 2)한 이유는 HpGSH2 유전자의 다중 도입에 의해 유도된 것임을 알 수 있었다.As a result, the hybridization signal was found in the 4.0 kb Pst I fragment corresponding to a single chromosome copy of the HpGSH2 gene in the wild type strain, and in the 6.5 kb Pst I fragment instead of the 4.0 kb Pst I fragment in the untransformed gsh2 strain. Hybridization signal appeared. In addition, the gsh2 transformant (Gsh + Leu + (pG24)) into which the plasmid pG24 was introduced was subjected to two hybridizations by Pst I fragment (4.0 kb) from pG24 introduced and Pst I fragment (6.5 kb) from chromosomal DNA. The signal appeared and the 4.0 kb fragment showed a darker signal than the 6.5 kb fragment ( B in FIG. 3 ). The results show that the gsh2 mutation will be located in one of the two Pst I sites surrounding the HpGSH2 ORF, and the introduction of the wild-type HpGSH2 gene complements the defective phenotype of the gsh2 mutant strain. It was found that multiple HpGSH2 genes were introduced into the transformants. Therefore, γ-GCS complementary ability of HpGSH2 gene for a deficient phenotype and is a HpGSH2 gene obtained by the present invention encoding a γ-GCS of a century Cronulla poly Maurepas, resistance to heavy metals of gsh2 transformant increased (Table 1 and Table 2 ) was found to be induced by multiple introduction of the HpGSH2 gene.

본 발명자들은, pG24 발현벡터를 대장균인 DH5α에 형질전환한 형질전환체를 제조하고, 이를 2002년 11월 8일자로 한국생명공학연구원 유전자은행에 기탁하였다(수탁번호 KCTC 10370BP).The present inventors prepared a transformant transformed with the pG24 expression vector to E. coli DH5α, and deposited it on 8 November 2002 to the Korea Biotechnology Research Institute Gene Bank (Accession Number KCTC 10370BP).

상기에서 살펴본 바와 같이, 본 발명의 한세눌라 폴리모르파 균주로부터 분리된 글루타치온 생합성 유전자를 글루타치온 생합성 결손 변이주에 도입시키면 글루타치온 생합성 기능과 더불어 중금속 내성 및 세포 증식 기능을 회복 또는 증가시킬 수 있어 글루타치온을 이용한 중금속 흡착, 보조 효소의 생산, 간기능 강화제 및 탈독성화제로서 유용하게 사용할 수 있다.As described above, when the glutathione biosynthesis gene isolated from the Hanshenula polymorpho strain of the present invention is introduced into the glutathione biosynthetic defect mutant strain, glutathione biosynthesis function can be restored or increased in addition to glutathione biosynthesis function, and thus glutathione can be used. It can be usefully used as heavy metal adsorption, production of coenzyme, liver function enhancer and detoxicant.

도 1은 pG2 플라스미드에 삽입된 9.6 kb DNA 절편의 제한 효소에 의한 절단 부위를 나타낸 지도이고, 1 is a map showing a cleavage site by a restriction enzyme of a 9.6 kb DNA fragment inserted into a pG2 plasmid,

도 2는 한세눌라 폴리모르파 HpGSH2 유전자의 염기서열을 타종의 글루타치온 생합성 효소 유전자와 상동 비교 분석한 것이고, Figure 2 is a homologous analysis of the nucleotide sequence of Hanshenula polymorpha HpGSH2 gene and other glutathione biosynthetic enzyme gene,

ScGsh1p: 사카로마이세스 세레비시애 CaGcs1p: 캔디다 알비칸ScGsh1p: Saccharomyces cerevisiae CaGcs1p: Candida albicans

SpGcs1p: 스키조사카로마이세스 폼베 및 HsGCSh: 인간SpGcs1p: Ski Research Caromyces Pombe and HsGCSh: Human

도 3HpGSH2 유전자의 카피수 분석을 위한 서던 블랏 분석을 위해 제조한 탐침자 DNA(A) 및 상기 탐침자를 이용하여 야생균주 또는 형질전환체의 유전자를 서던 블랏 분석한 전기 영동 사진(B)이다. Figure 3 is a probe DNA (A) prepared for Southern blot analysis for copy number analysis of HpGSH2 gene and electrophoresis picture (B) Southern blot analysis of the gene of wild strain or transformant using the probe .

레인 1: DNA 사이즈 마커,Lane 1: DNA size marker,

레인 2: gsh2-1 leu1-1 변이주,Lane 2: gsh2-1 leu1-1 mutant,

레인 3 내지 레인 7: Gsh+Leu+(pG24) 균주, 및Lanes 3 to 7: Gsh + Leu + (pG24) strains, and

레인 8: NCYC495 leu1-1 야생형 균주.Lane 8: NCYC495 leu1-1 wild-type strain.

<110> Korea Research Institute of Bioscience and Biotechnology Institute of Cell Biology <120> Gamma-glutamylcysteine synthetase and gene coding for the same <130> 2p-11-22 <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 4195 <212> DNA <213> Hansenula polymorpha <220> <221> gene <222> (1)..(4195) <223> gamma-glutamylcysteine synthetase complete cds and unknown gene <400> 1 tctagaatca gcctccacat aagccagcga gcacgggcct gcctgcgtct gcacaaggta 60 tcctgcagtc gtcgggctgg cagtgttacc gcttgtctgc aagttggggc ccagaacaag 120 ctcggatcct gcctccagcg taaattggtc tccgggaagt aacgatagac atggcaggta 180 gcaaaaaaaa aaaaaatgga gcggaaaaaa ttgtacagat cagacgcgtc gatcgacgcc 240 cactcgctga taaccaagca ccgcatgtag tcattatttg cttgatcacc cgaaatcaag 300 tgagtgtacg acaactaccc aaacatgtgg acagcggcca cccgcgcctg aatgcggatt 360 tgttagccga ctttaaaaat gcagcattcg cttgtacgtg ctgacaaata attgagaaag 420 gaaaaacttt cctgaaaaac cttatcgacc atgggtctgc tctctctggg tacgcctcta 480 cattggaacg actcccgtct ctatgctgat catgtgcgca caaacggtat cattcagctg 540 ataaactgtt tcaacgcggc acgagaccgc aagaatgacc cgtttttgtg gggagacgaa 600 gtggaatata tgctggtgaa gctggacagg gagcacaaag ttgctcgtct tgccatcaac 660 aaggaccatc ttttgaaaga ccttggcgag aatggctcat ccttcgaggt ggcggtcagt 720 aataatgtgg tgttccaccc cgagtacggc agatacatga tagaagcaac tccgctccgg 780 ccctacgatg ggacgaaagt ggaagagttt gaatatgttg agcataacat gagaactaga 840 cggcagattg ccacacagga gcttggagaa gaagatatgt tgccattgac actcacttct 900 tttccgcgaa tgggcgttga gatttttaca tatccggccg ccgagcctaa cggtgaagcg 960 tccaagtctc tcttccttcc ggacgagatc atcaaccgcc acttccgttt tccaacgctg 1020 acagccaaca ttcgtcgcag aagggaccag aaggtgagta tcaacatccc tctgtacaaa 1080 gacgagaaaa ctgtggcttc aggaattgat ccgtccattc ctcgaaggaa cttgttcccg 1140 catcacgacg aagaaccatt tttgggggcc gccaagaagg gctacatata catggactcg 1200 atgggctttg gcatgggctc gtcgtgtctg caagtaacga tgcaggcccc agatgtggct 1260 catgctagat tcctgtacga ctctctggtc aacatcgctc cattgatgct ggctgtgaca 1320 gctgcggctc cgattttccg gggccatctt gctgatcagg acgttagatg gaatgtgatt 1380 gccgcagcag ttgatgatcg gaccccgtat gagcgcggag agccgccatt gaagggtcac 1440 aaagagagag ggaacacttt ggacacagca gagcttgtgc gcataccaaa gtcacggtat 1500 gactcggtgg accagtacct gggtgacttg gattcttccg gcagattctc ctatttcaga 1560 aaagagtaca atgacatcga atctccgaaa aatagcaagg tttacgaaaa acttgtttcc 1620 aatgggtttg acgaaacact ggcgggccat ttcgcacacc tgttcatccg ggaccctatc 1680 gtcattttca ccgaatccat agagcaggac aacaccgtcg agaccgacca tttcgaaaac 1740 atccagtcta caaactggca gacactgcgt ttcaagcctc caaaacagtc tgctgtgccg 1800 gaaaggcacg atgttccggg gtggagagtt gagctccggc caatggaaat ttccttgaca 1860 gatttcgaaa acgctgcgta tgcaaacttt tccgtcctgc tctcgctagc ggtgctcaaa 1920 tatagaccaa acttctacct ccctatttcg tatgtggagg ctaatatgaa gacggcgcat 1980 cgccggaatg ccatagtgga gcagacattc cacttccgaa ccaatgtgtg ggaggcagga 2040 gaggcaattg tggagcagct gagtcttgaa gaggttttcc acggatccgg ctctttcgag 2100 ggacttctat ctctagttta ccgatacatc aaagagacat ggggagaacc tcttcccgca 2160 aagcttgagg cgtacctcaa gctggtgagc tttagagctt cggcaaaaat cccatccaca 2220 gcgcaataca tacggaattt tgtcgtgagt catccagatt acaagaagga cagtattgtc 2280 agcgaccaaa taaactacga cctgctggag atggcggcca aactgtccac atacgatcac 2340 ggcctggtga ctgacttctt cgggcccgaa ctgggtcaat ggttaattga taatggttac 2400 tagataaaaa acataaacca tacagctgcg caaacctagt tctcgttttc gctttcggac 2460 tcagactgag agtcgaaggc ttccttgtgg acttcctcct gagccttagc tggtctcttg 2520 tgcttctgtc tgcgtccctt ctcgaccttc tcgaccttct cttcctcgtc ctttggctcc 2580 tcgtcttttg gctccttctc caacttctcc ttcgaatctt ccttaaggtg cttgtcctgt 2640 ttcgtcttgg agaactcgcc tcccttgtgg cccttcaact tcattccctt atgatgtggt 2700 ctgtcgtgag ccttgtgctc ctcgatttca aactcgtgtt cggtctctct gagttcacct 2760 tcagcaccct tgatgctctt gtggcccttg tgcatctcgt gagccttcag catgccgccc 2820 ttcttgtcca tcttgcagtc cttgaatggc ttgacctcat cttccatctc gtgcatgcct 2880 tcgaatcccg gtggagggcg gtgtgctccg tggaatccgt gggcatgtgg gtggtgtgga 2940 tgggtcaagg acttgacacc gtggacaacc ggaccggact gcaaaaccag acaggcaacg 3000 aagaacaaaa acactcccaa gccgagtttg gcaatctttt tgttggtctc atatctgctc 3060 ttgatcttgt agagtttctc gacctcctcg cgaggcaaag tgacgtcggt gtattctggc 3120 aattctgttt tagaagacat ggttaacaac aaggaaaaat tgcacgctat ataaatatca 3180 ctcgataagc caccaaacta agcatattcc aaaacgggct tcccaaacgc atttgaatca 3240 ccgaataaaa tttttggcaa agcccgatga cataatatta caatccgagg ctgacaaacg 3300 cgcttggcaa ggcaggaggg ttcggatggg acctaagcaa gtgtgtgagc gcctcatagg 3360 gctatcaccg ataagtcttc gtccaatcgc acatctgagc attttcagaa gtaagctgct 3420 gtgacactgt gtgactactt gactatttga cttgggtaca aggcccctaa actaagtaag 3480 cagcagtctt ccagactcct ttctgcatat aggcaatctt atacgaaact agcacacttt 3540 tttgcatata tggttggtgt acagatgtcg aatattattt ttcaagattt ttccccagtc 3600 gattgacttt ccttatgtat cgaccctcaa ctggtctgct caatcagcgt tcagtgccgt 3660 tatttgcccc tcgcttttat tcatcagctt gcagaaaata tgggacagcg acacagcaaa 3720 atccggattt tctttcccca ccagaacctc aaaattggta cgcacttcta accaaaccac 3780 cttcccaaaa taaacatcgc ttagccaatt tccaaaagga ggtcatcgaa ggtctccgat 3840 cgccgtcata cgattccttc aactcgctct tcatcaagcc ctacagacga cacagagatt 3900 tggcgcatgt cacaaactcc aagagcgccc tcccccatgt tcctagttcc tacgatgctc 3960 cagaagcatt gcgcaaacaa ctgaaacgca ggcccttacc ctttcaccta tcccatcgac 4020 tttcgacata tctgcagaag aagagcctgc gtgatatagg ttccatctat tttgaaatcc 4080 ctgcaccacg agcagctagt ttttccatac ttcagctgga gcagcttcta tcgctgattt 4140 taagcaccaa gcgagccaat attgagattg tgaatgtggc gagacgtatt ctaga 4195 <210> 2 <211> 450 <212> DNA <213> Hansenula polymorpha <220> <221> promoter <222> (1)..(450) <223> gamma-glutamylcysteine synthetase <400> 2 tctagaatca gcctccacat aagccagcga gcacgggcct gcctgcgtct gcacaaggta 60 tcctgcagtc gtcgggctgg cagtgttacc gcttgtctgc aagttggggc ccagaacaag 120 ctcggatcct gcctccagcg taaattggtc tccgggaagt aacgatagac atggcaggta 180 gcaaaaaaaa aaaaaatgga gcggaaaaaa ttgtacagat cagacgcgtc gatcgacgcc 240 cactcgctga taaccaagca ccgcatgtag tcattatttg cttgatcacc cgaaatcaag 300 tgagtgtacg acaactaccc aaacatgtgg acagcggcca cccgcgcctg aatgcggatt 360 tgttagccga ctttaaaaat gcagcattcg cttgtacgtg ctgacaaata attgagaaag 420 gaaaaacttt cctgaaaaac cttatcgacc 450 <210> 3 <211> 650 <212> PRT <213> Hansenula polymorpha <220> <221> PEPTIDE <222> (1)..(650) <223> gamma-glutamylcysteine synthetase <400> 3 Met Gly Leu Leu Ser Leu Gly Thr Pro Leu His Trp Asn Asp Ser Arg 1 5 10 15 Leu Tyr Ala Asp His Val Arg Thr Asn Gly Ile Ile Gln Leu Ile Asn 20 25 30 Cys Phe Asn Ala Ala Arg Asp Arg Lys Asn Asp Pro Phe Leu Trp Gly 35 40 45 Asp Glu Val Glu Tyr Met Leu Val Lys Leu Asp Arg Glu His Lys Val 50 55 60 Ala Arg Leu Ala Ile Asn Lys Asp His Leu Leu Lys Asp Leu Gly Glu 65 70 75 80 Asn Gly Ser Ser Phe Glu Val Ala Val Ser Asn Asn Val Val Phe His 85 90 95 Pro Glu Tyr Gly Arg Tyr Met Ile Glu Ala Thr Pro Leu Arg Pro Tyr 100 105 110 Asp Gly Thr Lys Val Glu Glu Phe Glu Tyr Val Glu His Asn Met Arg 115 120 125 Thr Arg Arg Gln Ile Ala Thr Gln Glu Leu Gly Glu Glu Asp Met Leu 130 135 140 Pro Leu Thr Leu Thr Ser Phe Pro Arg Met Gly Val Glu Ile Phe Thr 145 150 155 160 Tyr Pro Ala Ala Glu Pro Asn Gly Glu Ala Ser Lys Ser Leu Phe Leu 165 170 175 Pro Asp Glu Ile Ile Asn Arg His Phe Arg Phe Pro Thr Leu Thr Ala 180 185 190 Asn Ile Arg Arg Arg Arg Asp Gln Lys Val Ser Ile Asn Ile Pro Leu 195 200 205 Tyr Lys Asp Glu Lys Thr Val Ala Ser Gly Ile Asp Pro Ser Ile Pro 210 215 220 Arg Arg Asn Leu Phe Pro His His Asp Glu Glu Pro Phe Leu Gly Ala 225 230 235 240 Ala Lys Lys Gly Tyr Ile Tyr Met Asp Ser Met Gly Phe Gly Met Gly 245 250 255 Ser Ser Cys Leu Gln Val Thr Met Gln Ala Pro Asp Val Ala His Ala 260 265 270 Arg Phe Leu Tyr Asp Ser Leu Val Asn Ile Ala Pro Leu Met Leu Ala 275 280 285 Val Thr Ala Ala Ala Pro Ile Phe Arg Gly His Leu Ala Asp Gln Asp 290 295 300 Val Arg Trp Asn Val Ile Ala Ala Ala Val Asp Asp Arg Thr Pro Tyr 305 310 315 320 Glu Arg Gly Glu Pro Pro Leu Lys Gly His Lys Glu Arg Gly Asn Thr 325 330 335 Leu Asp Thr Ala Glu Leu Val Arg Ile Pro Lys Ser Arg Tyr Asp Ser 340 345 350 Val Asp Gln Tyr Leu Gly Asp Leu Asp Ser Ser Gly Arg Phe Ser Tyr 355 360 365 Phe Arg Lys Glu Tyr Asn Asp Ile Glu Ser Pro Lys Asn Ser Lys Val 370 375 380 Tyr Glu Lys Leu Val Ser Asn Gly Phe Asp Glu Thr Leu Ala Gly His 385 390 395 400 Phe Ala His Leu Phe Ile Arg Asp Pro Ile Val Ile Phe Thr Glu Ser 405 410 415 Ile Glu Gln Asp Asn Thr Val Glu Thr Asp His Phe Glu Asn Ile Gln 420 425 430 Ser Thr Asn Trp Gln Thr Leu Arg Phe Lys Pro Pro Lys Gln Ser Ala 435 440 445 Val Pro Glu Arg His Asp Val Pro Gly Trp Arg Val Glu Leu Arg Pro 450 455 460 Met Glu Ile Ser Leu Thr Asp Phe Glu Asn Ala Ala Tyr Ala Asn Phe 465 470 475 480 Ser Val Leu Leu Ser Leu Ala Val Leu Lys Tyr Arg Pro Asn Phe Tyr 485 490 495 Leu Pro Ile Ser Tyr Val Glu Ala Asn Met Lys Thr Ala His Arg Arg 500 505 510 Asn Ala Ile Val Glu Gln Thr Phe His Phe Arg Thr Asn Val Trp Glu 515 520 525 Ala Gly Glu Ala Ile Val Glu Gln Leu Ser Leu Glu Glu Val Phe His 530 535 540 Gly Ser Gly Ser Phe Glu Gly Leu Leu Ser Leu Val Tyr Arg Tyr Ile 545 550 555 560 Lys Glu Thr Trp Gly Glu Pro Leu Pro Ala Lys Leu Glu Ala Tyr Leu 565 570 575 Lys Leu Val Ser Phe Arg Ala Ser Ala Lys Ile Pro Ser Thr Ala Gln 580 585 590 Tyr Ile Arg Asn Phe Val Val Ser His Pro Asp Tyr Lys Lys Asp Ser 595 600 605 Ile Val Ser Asp Gln Ile Asn Tyr Asp Leu Leu Glu Met Ala Ala Lys 610 615 620 Leu Ser Thr Tyr Asp His Gly Leu Val Thr Asp Phe Phe Gly Pro Glu 625 630 635 640 Leu Gly Gln Trp Leu Ile Asp Asn Gly Tyr 645 650 <210> 4 <211> 1950 <212> DNA <213> Hansenula polymorpha <220> <221> gene <222> (1)..(1950) <223> gamma-glutamylcysteine synthetase ORF <400> 4 atgggtctgc tctctctggg tacgcctcta cattggaacg actcccgtct ctatgctgat 60 catgtgcgca caaacggtat cattcagctg ataaactgtt tcaacgcggc acgagaccgc 120 aagaatgacc cgtttttgtg gggagacgaa gtggaatata tgctggtgaa gctggacagg 180 gagcacaaag ttgctcgtct tgccatcaac aaggaccatc ttttgaaaga ccttggcgag 240 aatggctcat ccttcgaggt ggcggtcagt aataatgtgg tgttccaccc cgagtacggc 300 agatacatga tagaagcaac tccgctccgg ccctacgatg ggacgaaagt ggaagagttt 360 gaatatgttg agcataacat gagaactaga cggcagattg ccacacagga gcttggagaa 420 gaagatatgt tgccattgac actcacttct tttccgcgaa tgggcgttga gatttttaca 480 tatccggccg ccgagcctaa cggtgaagcg tccaagtctc tcttccttcc ggacgagatc 540 atcaaccgcc acttccgttt tccaacgctg acagccaaca ttcgtcgcag aagggaccag 600 aaggtgagta tcaacatccc tctgtacaaa gacgagaaaa ctgtggcttc aggaattgat 660 ccgtccattc ctcgaaggaa cttgttcccg catcacgacg aagaaccatt tttgggggcc 720 gccaagaagg gctacatata catggactcg atgggctttg gcatgggctc gtcgtgtctg 780 caagtaacga tgcaggcccc agatgtggct catgctagat tcctgtacga ctctctggtc 840 aacatcgctc cattgatgct ggctgtgaca gctgcggctc cgattttccg gggccatctt 900 gctgatcagg acgttagatg gaatgtgatt gccgcagcag ttgatgatcg gaccccgtat 960 gagcgcggag agccgccatt gaagggtcac aaagagagag ggaacacttt ggacacagca 1020 gagcttgtgc gcataccaaa gtcacggtat gactcggtgg accagtacct gggtgacttg 1080 gattcttccg gcagattctc ctatttcaga aaagagtaca atgacatcga atctccgaaa 1140 aatagcaagg tttacgaaaa acttgtttcc aatgggtttg acgaaacact ggcgggccat 1200 ttcgcacacc tgttcatccg ggaccctatc gtcattttca ccgaatccat agagcaggac 1260 aacaccgtcg agaccgacca tttcgaaaac atccagtcta caaactggca gacactgcgt 1320 ttcaagcctc caaaacagtc tgctgtgccg gaaaggcacg atgttccggg gtggagagtt 1380 gagctccggc caatggaaat ttccttgaca gatttcgaaa acgctgcgta tgcaaacttt 1440 tccgtcctgc tctcgctagc ggtgctcaaa tatagaccaa acttctacct ccctatttcg 1500 tatgtggagg ctaatatgaa gacggcgcat cgccggaatg ccatagtgga gcagacattc 1560 cacttccgaa ccaatgtgtg ggaggcagga gaggcaattg tggagcagct gagtcttgaa 1620 gaggttttcc acggatccgg ctctttcgag ggacttctat ctctagttta ccgatacatc 1680 aaagagacat ggggagaacc tcttcccgca aagcttgagg cgtacctcaa gctggtgagc 1740 tttagagctt cggcaaaaat cccatccaca gcgcaataca tacggaattt tgtcgtgagt 1800 catccagatt acaagaagga cagtattgtc agcgaccaaa taaactacga cctgctggag 1860 atggcggcca aactgtccac atacgatcac ggcctggtga ctgacttctt cgggcccgaa 1920 ctgggtcaat ggttaattga taatggttac 1950 <210> 5 <211> 10 <212> PRT <213> Hansenula polymorpha <400> 5 Gly Trp Arg Val Glu Phe Arg Pro Met Glu 1 5 10 <210> 6 <211> 11 <212> PRT <213> Hansenula polymorpha <400> 6 Met Gly Phe Gly Met Gly Xaa Xaa Cys Leu Gln 1 5 10<110> Korea Research Institute of Bioscience and Biotechnology Institute of Cell Biology <120> Gamma-glutamylcysteine synthetase and gene coding for the same <130> 2p-11-22 <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 4195 <212> DNA <213> Hansenula polymorpha <220> <221> gene (222) (1) .. (4195) <223> gamma-glutamylcysteine synthetase complete cds and unknown gene <400> 1 tctagaatca gcctccacat aagccagcga gcacgggcct gcctgcgtct gcacaaggta 60 tcctgcagtc gtcgggctgg cagtgttacc gcttgtctgc aagttggggc ccagaacaag 120 ctcggatcct gcctccagcg taaattggtc tccgggaagt aacgatagac atggcaggta 180 gcaaaaaaaa aaaaaatgga gcggaaaaaa ttgtacagat cagacgcgtc gatcgacgcc 240 cactcgctga taaccaagca ccgcatgtag tcattatttg cttgatcacc cgaaatcaag 300 tgagtgtacg acaactaccc aaacatgtgg acagcggcca cccgcgcctg aatgcggatt 360 tgttagccga ctttaaaaat gcagcattcg cttgtacgtg ctgacaaata attgagaaag 420 gaaaaacttt cctgaaaaac cttatcgacc atgggtctgc tctctctggg tacgcctcta 480 cattggaacg actcccgtct ctatgctgat catgtgcgca caaacggtat cattcagctg 540 ataaactgtt tcaacgcggc acgagaccgc aagaatgacc cgtttttgtg gggagacgaa 600 gtggaatata tgctggtgaa gctggacagg gagcacaaag ttgctcgtct tgccatcaac 660 aaggaccatc ttttgaaaga ccttggcgag aatggctcat ccttcgaggt ggcggtcagt 720 aataatgtgg tgttccaccc cgagtacggc agatacatga tagaagcaac tccgctccgg 780 ccctacgatg ggacgaaagt ggaagagttt gaatatgttg agcataacat gagaactaga 840 cggcagattg ccacacagga gcttggagaa gaagatatgt tgccattgac actcacttct 900 tttccgcgaa tgggcgttga gatttttaca tatccggccg ccgagcctaa cggtgaagcg 960 tccaagtctc tcttccttcc ggacgagatc atcaaccgcc acttccgttt tccaacgctg 1020 acagccaaca ttcgtcgcag aagggaccag aaggtgagta tcaacatccc tctgtacaaa 1080 gacgagaaaa ctgtggcttc aggaattgat ccgtccattc ctcgaaggaa cttgttcccg 1140 catcacgacg aagaaccatt tttgggggcc gccaagaagg gctacatata catggactcg 1200 atgggctttg gcatgggctc gtcgtgtctg caagtaacga tgcaggcccc agatgtggct 1260 catgctagat tcctgtacga ctctctggtc aacatcgctc cattgatgct ggctgtgaca 1320 gctgcggctc cgattttccg gggccatctt gctgatcagg acgttagatg gaatgtgatt 1380 gccgcagcag ttgatgatcg gaccccgtat gagcgcggag agccgccatt gaagggtcac 1440 aaagagagag ggaacacttt ggacacagca gagcttgtgc gcataccaaa gtcacggtat 1500 gactcggtgg accagtacct gggtgacttg gattcttccg gcagattctc ctatttcaga 1560 aaagagtaca atgacatcga atctccgaaa aatagcaagg tttacgaaaa acttgtttcc 1620 aatgggtttg acgaaacact ggcgggccat ttcgcacacc tgttcatccg ggaccctatc 1680 gtcattttca ccgaatccat agagcaggac aacaccgtcg agaccgacca tttcgaaaac 1740 atccagtcta caaactggca gacactgcgt ttcaagcctc caaaacagtc tgctgtgccg 1800 gaaaggcacg atgttccggg gtggagagtt gagctccggc caatggaaat ttccttgaca 1860 gatttcgaaa acgctgcgta tgcaaacttt tccgtcctgc tctcgctagc ggtgctcaaa 1920 tatagaccaa acttctacct ccctatttcg tatgtggagg ctaatatgaa gacggcgcat 1980 cgccggaatg ccatagtgga gcagacattc cacttccgaa ccaatgtgtg ggaggcagga 2040 gaggcaattg tggagcagct gagtcttgaa gaggttttcc acggatccgg ctctttcgag 2100 ggacttctat ctctagttta ccgatacatc aaagagacat ggggagaacc tcttcccgca 2160 aagcttgagg cgtacctcaa gctggtgagc tttagagctt cggcaaaaat cccatccaca 2220 gcgcaataca tacggaattt tgtcgtgagt catccagatt acaagaagga cagtattgtc 2280 agcgaccaaa taaactacga cctgctggag atggcggcca aactgtccac atacgatcac 2340 ggcctggtga ctgacttctt cgggcccgaa ctgggtcaat ggttaattga taatggttac 2400 tagataaaaa acataaacca tacagctgcg caaacctagt tctcgttttc gctttcggac 2460 tcagactgag agtcgaaggc ttccttgtgg acttcctcct gagccttagc tggtctcttg 2520 tgcttctgtc tgcgtccctt ctcgaccttc tcgaccttct cttcctcgtc ctttggctcc 2580 tcgtcttttg gctccttctc caacttctcc ttcgaatctt ccttaaggtg cttgtcctgt 2640 ttcgtcttgg agaactcgcc tcccttgtgg cccttcaact tcattccctt atgatgtggt 2700 ctgtcgtgag ccttgtgctc ctcgatttca aactcgtgtt cggtctctct gagttcacct 2760 tcagcaccct tgatgctctt gtggcccttg tgcatctcgt gagccttcag catgccgccc 2820 ttcttgtcca tcttgcagtc cttgaatggc ttgacctcat cttccatctc gtgcatgcct 2880 tcgaatcccg gtggagggcg gtgtgctccg tggaatccgt gggcatgtgg gtggtgtgga 2940 tgggtcaagg acttgacacc gtggacaacc ggaccggact gcaaaaccag acaggcaacg 3000 aagaacaaaa acactcccaa gccgagtttg gcaatctttt tgttggtctc atatctgctc 3060 ttgatcttgt agagtttctc gacctcctcg cgaggcaaag tgacgtcggt gtattctggc 3120 aattctgttt tagaagacat ggttaacaac aaggaaaaat tgcacgctat ataaatatca 3180 ctcgataagc caccaaacta agcatattcc aaaacgggct tcccaaacgc atttgaatca 3240 ccgaataaaa tttttggcaa agcccgatga cataatatta caatccgagg ctgacaaacg 3300 cgcttggcaa ggcaggaggg ttcggatggg acctaagcaa gtgtgtgagc gcctcatagg 3360 gctatcaccg ataagtcttc gtccaatcgc acatctgagc attttcagaa gtaagctgct 3420 gtgacactgt gtgactactt gactatttga cttgggtaca aggcccctaa actaagtaag 3480 cagcagtctt ccagactcct ttctgcatat aggcaatctt atacgaaact agcacacttt 3540 tttgcatata tggttggtgt acagatgtcg aatattattt ttcaagattt ttccccagtc 3600 gattgacttt ccttatgtat cgaccctcaa ctggtctgct caatcagcgt tcagtgccgt 3660 tatttgcccc tcgcttttat tcatcagctt gcagaaaata tgggacagcg acacagcaaa 3720 atccggattt tctttcccca ccagaacctc aaaattggta cgcacttcta accaaaccac 3780 cttcccaaaa taaacatcgc ttagccaatt tccaaaagga ggtcatcgaa ggtctccgat 3840 cgccgtcata cgattccttc aactcgctct tcatcaagcc ctacagacga cacagagatt 3900 tggcgcatgt cacaaactcc aagagcgccc tcccccatgt tcctagttcc tacgatgctc 3960 cagaagcatt gcgcaaacaa ctgaaacgca ggcccttacc ctttcaccta tcccatcgac 4020 tttcgacata tctgcagaag aagagcctgc gtgatatagg ttccatctat tttgaaatcc 4080 ctgcaccacg agcagctagt ttttccatac ttcagctgga gcagcttcta tcgctgattt 4140 taagcaccaa gcgagccaat attgagattg tgaatgtggc gagacgtatt ctaga 4195 <210> 2 <211> 450 <212> DNA <213> Hansenula polymorpha <220> <221> promoter (222) (1) .. (450) Gamma-glutamylcysteine synthetase <400> 2 tctagaatca gcctccacat aagccagcga gcacgggcct gcctgcgtct gcacaaggta 60 tcctgcagtc gtcgggctgg cagtgttacc gcttgtctgc aagttggggc ccagaacaag 120 ctcggatcct gcctccagcg taaattggtc tccgggaagt aacgatagac atggcaggta 180 gcaaaaaaaa aaaaaatgga gcggaaaaaa ttgtacagat cagacgcgtc gatcgacgcc 240 cactcgctga taaccaagca ccgcatgtag tcattatttg cttgatcacc cgaaatcaag 300 tgagtgtacg acaactaccc aaacatgtgg acagcggcca cccgcgcctg aatgcggatt 360 tgttagccga ctttaaaaat gcagcattcg cttgtacgtg ctgacaaata attgagaaag 420 gaaaaacttt cctgaaaaac cttatcgacc 450 <210> 3 <211> 650 <212> PRT <213> Hansenula polymorpha <220> <221> PEPTIDE (222) (1) .. (650) Gamma-glutamylcysteine synthetase <400> 3 Met Gly Leu Leu Ser Leu Gly Thr Pro Leu His Trp Asn Asp Ser Arg 1 5 10 15 Leu Tyr Ala Asp His Val Arg Thr Asn Gly Ile Ile Gln Leu Ile Asn 20 25 30 Cys Phe Asn Ala Ala Arg Asp Arg Lys Asn Asp Pro Phe Leu Trp Gly 35 40 45 Asp Glu Val Glu Tyr Met Leu Val Lys Leu Asp Arg Glu His Lys Val 50 55 60 Ala Arg Leu Ala Ile Asn Lys Asp His Leu Leu Lys Asp Leu Gly Glu 65 70 75 80 Asn Gly Ser Ser Phe Glu Val Ala Val Ser Asn Asn Val Val Phe His 85 90 95 Pro Glu Tyr Gly Arg Tyr Met Ile Glu Ala Thr Pro Leu Arg Pro Tyr 100 105 110 Asp Gly Thr Lys Val Glu Glu Phe Glu Tyr Val Glu His Asn Met Arg 115 120 125 Thr Arg Arg Gln Ile Ala Thr Gln Glu Leu Gly Glu Glu Asp Met Leu 130 135 140 Pro Leu Thr Leu Thr Ser Phe Pro Arg Met Gly Val Glu Ile Phe Thr 145 150 155 160 Tyr Pro Ala Ala Glu Pro Asn Gly Glu Ala Ser Lys Ser Leu Phe Leu 165 170 175 Pro Asp Glu Ile Ile Asn Arg His Phe Arg Phe Pro Thr Leu Thr Ala 180 185 190 Asn Ile Arg Arg Arg Arg Asp Gln Lys Val Ser Ile Asn Ile Pro Leu 195 200 205 Tyr Lys Asp Glu Lys Thr Val Ala Ser Gly Ile Asp Pro Ser Ile Pro 210 215 220 Arg Arg Asn Leu Phe Pro His His Asp Glu Glu Pro Phe Leu Gly Ala 225 230 235 240 Ala Lys Lys Gly Tyr Ile Tyr Met Asp Ser Met Gly Phe Gly Met Gly 245 250 255 Ser Ser Cys Leu Gln Val Thr Met Gln Ala Pro Asp Val Ala His Ala 260 265 270 Arg Phe Leu Tyr Asp Ser Leu Val Asn Ile Ala Pro Leu Met Leu Ala 275 280 285 Val Thr Ala Ala Ala Pro Ile Phe Arg Gly His Leu Ala Asp Gln Asp 290 295 300 Val Arg Trp Asn Val Ile Ala Ala Ala Val Asp Asp Arg Thr Pro Tyr 305 310 315 320 Glu Arg Gly Glu Pro Pro Leu Lys Gly His Lys Glu Arg Gly Asn Thr 325 330 335 Leu Asp Thr Ala Glu Leu Val Arg Ile Pro Lys Ser Arg Tyr Asp Ser 340 345 350 Val Asp Gln Tyr Leu Gly Asp Leu Asp Ser Ser Gly Arg Phe Ser Tyr 355 360 365 Phe Arg Lys Glu Tyr Asn Asp Ile Glu Ser Pro Lys Asn Ser Lys Val 370 375 380 Tyr Glu Lys Leu Val Ser Asn Gly Phe Asp Glu Thr Leu Ala Gly His 385 390 395 400 Phe Ala His Leu Phe Ile Arg Asp Pro Ile Val Ile Phe Thr Glu Ser 405 410 415 Ile Glu Gln Asp Asn Thr Val Glu Thr Asp His Phe Glu Asn Ile Gln 420 425 430 Ser Thr Asn Trp Gln Thr Leu Arg Phe Lys Pro Pro Lys Gln Ser Ala 435 440 445 Val Pro Glu Arg His Asp Val Pro Gly Trp Arg Val Glu Leu Arg Pro 450 455 460 Met Glu Ile Ser Leu Thr Asp Phe Glu Asn Ala Ala Tyr Ala Asn Phe 465 470 475 480 Ser Val Leu Leu Ser Leu Ala Val Leu Lys Tyr Arg Pro Asn Phe Tyr 485 490 495 Leu Pro Ile Ser Tyr Val Glu Ala Asn Met Lys Thr Ala His Arg Arg 500 505 510 Asn Ala Ile Val Glu Gln Thr Phe His Phe Arg Thr Asn Val Trp Glu 515 520 525 Ala Gly Glu Ala Ile Val Glu Gln Leu Ser Leu Glu Glu Val Phe His 530 535 540 Gly Ser Gly Ser Phe Glu Gly Leu Leu Ser Leu Val Tyr Arg Tyr Ile 545 550 555 560 Lys Glu Thr Trp Gly Glu Pro Leu Pro Ala Lys Leu Glu Ala Tyr Leu 565 570 575 Lys Leu Val Ser Phe Arg Ala Ser Ala Lys Ile Pro Ser Thr Ala Gln 580 585 590 Tyr Ile Arg Asn Phe Val Val Ser His Pro Asp Tyr Lys Lys Asp Ser 595 600 605 Ile Val Ser Asp Gln Ile Asn Tyr Asp Leu Leu Glu Met Ala Ala Lys 610 615 620 Leu Ser Thr Tyr Asp His Gly Leu Val Thr Asp Phe Phe Gly Pro Glu 625 630 635 640 Leu Gly Gln Trp Leu Ile Asp Asn Gly Tyr 645 650 <210> 4 <211> 1950 <212> DNA <213> Hansenula polymorpha <220> <221> gene (222) (1) .. (1950) <223> gamma-glutamylcysteine synthetase ORF <400> 4 atgggtctgc tctctctggg tacgcctcta cattggaacg actcccgtct ctatgctgat 60 catgtgcgca caaacggtat cattcagctg ataaactgtt tcaacgcggc acgagaccgc 120 aagaatgacc cgtttttgtg gggagacgaa gtggaatata tgctggtgaa gctggacagg 180 gagcacaaag ttgctcgtct tgccatcaac aaggaccatc ttttgaaaga ccttggcgag 240 aatggctcat ccttcgaggt ggcggtcagt aataatgtgg tgttccaccc cgagtacggc 300 agatacatga tagaagcaac tccgctccgg ccctacgatg ggacgaaagt ggaagagttt 360 gaatatgttg agcataacat gagaactaga cggcagattg ccacacagga gcttggagaa 420 gaagatatgt tgccattgac actcacttct tttccgcgaa tgggcgttga gatttttaca 480 tatccggccg ccgagcctaa cggtgaagcg tccaagtctc tcttccttcc ggacgagatc 540 atcaaccgcc acttccgttt tccaacgctg acagccaaca ttcgtcgcag aagggaccag 600 aaggtgagta tcaacatccc tctgtacaaa gacgagaaaa ctgtggcttc aggaattgat 660 ccgtccattc ctcgaaggaa cttgttcccg catcacgacg aagaaccatt tttgggggcc 720 gccaagaagg gctacatata catggactcg atgggctttg gcatgggctc gtcgtgtctg 780 caagtaacga tgcaggcccc agatgtggct catgctagat tcctgtacga ctctctggtc 840 aacatcgctc cattgatgct ggctgtgaca gctgcggctc cgattttccg gggccatctt 900 gctgatcagg acgttagatg gaatgtgatt gccgcagcag ttgatgatcg gaccccgtat 960 gagcgcggag agccgccatt gaagggtcac aaagagagag ggaacacttt ggacacagca 1020 gagcttgtgc gcataccaaa gtcacggtat gactcggtgg accagtacct gggtgacttg 1080 gattcttccg gcagattctc ctatttcaga aaagagtaca atgacatcga atctccgaaa 1140 aatagcaagg tttacgaaaa acttgtttcc aatgggtttg acgaaacact ggcgggccat 1200 ttcgcacacc tgttcatccg ggaccctatc gtcattttca ccgaatccat agagcaggac 1260 aacaccgtcg agaccgacca tttcgaaaac atccagtcta caaactggca gacactgcgt 1320 ttcaagcctc caaaacagtc tgctgtgccg gaaaggcacg atgttccggg gtggagagtt 1380 gagctccggc caatggaaat ttccttgaca gatttcgaaa acgctgcgta tgcaaacttt 1440 tccgtcctgc tctcgctagc ggtgctcaaa tatagaccaa acttctacct ccctatttcg 1500 tatgtggagg ctaatatgaa gacggcgcat cgccggaatg ccatagtgga gcagacattc 1560 cacttccgaa ccaatgtgtg ggaggcagga gaggcaattg tggagcagct gagtcttgaa 1620 gaggttttcc acggatccgg ctctttcgag ggacttctat ctctagttta ccgatacatc 1680 aaagagacat ggggagaacc tcttcccgca aagcttgagg cgtacctcaa gctggtgagc 1740 tttagagctt cggcaaaaat cccatccaca gcgcaataca tacggaattt tgtcgtgagt 1800 catccagatt acaagaagga cagtattgtc agcgaccaaa taaactacga cctgctggag 1860 atggcggcca aactgtccac atacgatcac ggcctggtga ctgacttctt cgggcccgaa 1920 ctgggtcaat ggttaattga taatggttac 1950 <210> 5 <211> 10 <212> PRT <213> Hansenula polymorpha <400> 5 Gly Trp Arg Val Glu Phe Arg Pro Met Glu 1 5 10 <210> 6 <211> 11 <212> PRT <213> Hansenula polymorpha <400> 6 Met Gly Phe Gly Met Gly Xaa Xaa Cys Leu Gln 1 5 10

Claims (9)

한세눌라 폴리모르파 유래의 감마-글루타밀시스테인 합성효소의 프로모터 및 유전자를 구성하는, 서열번호 1의 1번부터 2403번까지의 게노믹 DNA.A genomic DNA from Nos. 1 to 2403 of SEQ ID NO: 1 constituting a promoter and gene of gamma-glutamylcysteine synthase derived from Hanshenula polymorpha. 서열번호 2로 기재되는 한세눌라 폴리모르파 유래의 감마-글루타밀시스테인 합성효소의 프로모터.A promoter of gamma-glutamylcysteine synthetase derived from Hansenula polymorpha as set forth in SEQ ID NO: 2. 서열번호 3으로 기재되는 한세눌라 폴리모르파 유래의 감마-글루타밀시스테인 합성효소.A gamma-glutamylcysteine synthetase derived from Hansenula polymorpha as set forth in SEQ ID NO: 3. 제 3항의 합성효소를 코딩하는 유전자.The gene encoding the synthetase of claim 3. 제 4항에 있어서, 서열번호 4로 기재되는 것을 특징으로 하는 유전자.The gene of claim 4, wherein the gene is set forth in SEQ ID NO: 4. 6. 제 4항의 유전자를 포함하는 발현벡터.An expression vector comprising the gene of claim 4. 제 6항에 있어서, 상기 발현벡터는 pG24인 것을 특징으로 하는 발현벡터.The expression vector of claim 6, wherein the expression vector is pG24. 제 6항의 발현벡터를 숙주세포에 형질도입한 형질전환체.A transformant transformed with the expression vector of claim 6 into a host cell. 제 8항에 있어서, pG24 발현벡터를 대장균인 DH5α에 형질도입한 형질전환체(수탁번호 KCTC 10370BP).The transformant according to claim 8, wherein the pG24 expression vector is transfected into E. coli DH5α (Accession Number KCTC 10370BP).
KR10-2002-0073219A 2002-11-22 2002-11-22 Gamma-glutamylcysteine synthetase and gene coding for the same KR100485055B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0073219A KR100485055B1 (en) 2002-11-22 2002-11-22 Gamma-glutamylcysteine synthetase and gene coding for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0073219A KR100485055B1 (en) 2002-11-22 2002-11-22 Gamma-glutamylcysteine synthetase and gene coding for the same

Publications (2)

Publication Number Publication Date
KR20040045180A KR20040045180A (en) 2004-06-01
KR100485055B1 true KR100485055B1 (en) 2005-04-25

Family

ID=37341207

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0073219A KR100485055B1 (en) 2002-11-22 2002-11-22 Gamma-glutamylcysteine synthetase and gene coding for the same

Country Status (1)

Country Link
KR (1) KR100485055B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626091A (en) * 2020-11-10 2021-04-09 华南农业大学 Application of onion gamma-glutamylcysteine ligase AcGCL gene in improving heavy metal resistance of plants

Also Published As

Publication number Publication date
KR20040045180A (en) 2004-06-01

Similar Documents

Publication Publication Date Title
des Francs-Small et al. Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase
Carothers et al. Dihydrolipoamide dehydrogenase: functional similarities and divergent evolution of the pyridine nucleotide-disulfide oxidoreductases
May et al. Arabidopsis thaliana gamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs.
RU2154671C1 (en) Dna fragment encoding 3-phosphoglycerate dehydrogenase, 3-phosphoglycerate dehydrogenase, method of serine producing
Miller et al. Cloning and expression of a yeast ubiquitin-protein cleaving activity in Escherichia coli
Coblenz et al. The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe
JP5857973B2 (en) Yeast extract containing γ-Glu-X or γ-Glu-X-Gly and method for producing the same
EP3266875A1 (en) Method for producing glutathione
Hoja et al. Pleiotropic phenotype of acetyl‐CoA‐carboxylase‐defective yeast cells: Viability of a BPL1‐amber mutation depending on its readthrough by normal tRNA. esGln. rb. eiCAG. rb
Nomura et al. Characterization of novel acetyltransferases found in budding and fission yeasts that detoxify a proline analogue, azetidine-2-carboxylic acid
JP3478396B2 (en) Production of black Aspergillus catalase-R
CA2368953A1 (en) Proteins related to gaba metabolism
KR100485055B1 (en) Gamma-glutamylcysteine synthetase and gene coding for the same
Fujita et al. Characterization of two genes encoding putative cysteine synthase required for cysteine biosynthesis in Schizosaccharomyces pombe
Contreras-Shannon et al. Influence of compartmental localization on the function of yeast NADP+-specific isocitrate dehydrogenases
FR2877011A1 (en) GENETICALLY MODIFIED YEAST STRAIN HAVING EXTENDED PRODUCTION AND EXCRETION OF S-ADENOSYLMETHIONINE (SAM)
Hunter et al. A role for HEM2 in cadmium tolerance
Clemente et al. Site-directed mutagenesis of Glu-297 from the α-polypeptide of Phaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confers resistance to L-methionine sulfoximine
Ubiyvovk et al. Cloning and functional analysis of the GSH1/MET1 gene complementing cysteine and glutathione auxotrophy of the methylotrophic yeast Hansenula polymorpha
JP3783023B2 (en) γ-glutamylcysteine synthetase and gene encoding the same
Tone et al. Isolation and characterization of Arabidopsis thaliana ISU1 gene
CN112639117A (en) Method for producing glutathione
US20020155192A1 (en) Yeast transport isoforms
WO2014003555A1 (en) Improved penicillin production
Yamagishi et al. Identification and overexpression of genes encoding cAMP-dependent protein kinase catalytic subunits in homobasidiomycete Schizophyllum commune

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100415

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee