KR100481434B1 - Manufacturing method of drug complex - Google Patents

Manufacturing method of drug complex Download PDF

Info

Publication number
KR100481434B1
KR100481434B1 KR1019980709945A KR19980709945A KR100481434B1 KR 100481434 B1 KR100481434 B1 KR 100481434B1 KR 1019980709945 A KR1019980709945 A KR 1019980709945A KR 19980709945 A KR19980709945 A KR 19980709945A KR 100481434 B1 KR100481434 B1 KR 100481434B1
Authority
KR
South Korea
Prior art keywords
gly
solution
compound
pharmaceutical compound
dissolved
Prior art date
Application number
KR1019980709945A
Other languages
Korean (ko)
Other versions
KR20000016371A (en
Inventor
가즈히로 이노우에
히로시 스사키
마사히로 이케다
Original Assignee
다이이찌 세이야꾸 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이이찌 세이야꾸 가부시기가이샤 filed Critical 다이이찌 세이야꾸 가부시기가이샤
Priority to KR1019980709945A priority Critical patent/KR100481434B1/en
Publication of KR20000016371A publication Critical patent/KR20000016371A/en
Application granted granted Critical
Publication of KR100481434B1 publication Critical patent/KR100481434B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates

Abstract

본 발명은 카르복실기를 가지는 다당유도체와 의약화합물의 잔기가 1개의 아미노산으로 된 스페이서 혹은 펩타이드 결합한 2 내지 8개의 아미노산으로 된 스페이서를 통해서 걸합하고 있는 약물복합체, 또는 카르복실기를 가지는 다당유도체와 의약화합물의 잔기가 전기 스페이서를 통하지 않고 결합하고 있는 약물복합체의 제조방법에 관한 것이고, 이 방법은 카르복실기를 가지는 다당유도체의 유기 아민염과 의약화합물 또는 의약화합물을 결합시킨 스페이서를 비수용성계에서 반응시키는 것을 특징으로 한다.The present invention relates to a drug complex in which a polysaccharide derivative having a carboxyl group and a residue of a pharmaceutical compound are combined through a spacer consisting of one amino acid or a spacer consisting of two to eight amino acids bonded to a peptide, or a residue of a polysaccharide derivative having a carboxyl group and a pharmaceutical compound. The present invention relates to a method for producing a drug complex which is bound via an electrical spacer, wherein the method comprises reacting an organic amine salt of a polysaccharide derivative having a carboxyl group with a pharmaceutical compound or a spacer in which a pharmaceutical compound is bound in a non-aqueous system. .

카르복실기를 가지는 다당유도체와 스페이서를 결합시킨 의약화합물 등과의 반응을 효율적으로 수행할 수 있고, 아울러 락톤환을 가지는 의약화합물 등을 반응시키는 경우에 부반응을 억제할 수 있다.The reaction with a polysaccharide derivative having a carboxyl group and a pharmaceutical compound having a spacer bonded thereto can be efficiently performed, and side reactions can be suppressed when the pharmaceutical compound having a lactone ring is reacted.

Description

약물복합체의 제조방법Manufacturing method of drug complex

본 발명은 다당유도체와 항종양제 등의 의약화합물을 결합시킨 약물복합체의 제조방법에 관한 것이다.The present invention relates to a method for producing a drug complex in which a pharmaceutical compound such as a polysaccharide derivative and an anti-tumor agent is combined.

폐암이나 소화기암 등의 고형암이나 백혈병 등의 혈액암의 치료에 이용되고 있는 항종양제는, 정맥 내 투여나 경구 투여 등의 투여경로를 통해 전신으로 투여된 후, 특정 종양부위에 이행되어 암세포의 증식을 저해 내지 억제함으로써 치료효과를 발휘한다. 그러나, 전신으로 투여된 항종양제는, 혈액으로부터 간장ㆍ강내계 장기에 급속히 흡수되거나, 혹은 급속히 요로 배설되기 때문에, 혈중농도가 저하되어 종양부위로의 이행이 충분하지 않은 경우가 있다. 또한, 통상의 항종양제 자체에서는 종양부위로의 이행선택성(종양선택성)이 낮기 때문에, 항종양제가 전신의 여러 세포나 조직으로 모조리 분포되어 버리고, 정상 세포나 조직에 대해서도 세포독으로 작용하기 때문에 구토, 발열 혹은 탈모 등의 부작용을 매우 높은 비율로 발생시킨다는 문제가 있다. 따라서, 항종양제를 효율적이고 선택적으로 종양부위에 이행시키는 수단의 개발이 요구되고 있다.Antitumor agents, which are used for the treatment of solid cancers such as lung cancer and gastrointestinal cancer, and blood cancers such as leukemia, are administered systemically through the administration route such as intravenous administration or oral administration, and then transferred to specific tumor sites, It exhibits a therapeutic effect by inhibiting or inhibiting proliferation. However, since the antitumor agent administered systemically is rapidly absorbed from the blood into the hepatic and intraluminal organs, or rapidly excreted in the urinary tract, the blood concentration may be lowered and transition to the tumor site may not be sufficient. In addition, since the conventional antitumor agent itself has low transition selectivity (tumor selectivity) to the tumor site, the antitumor agent is distributed to various cells and tissues throughout the system, and acts as a cytotoxic to normal cells or tissues. Side effects such as vomiting, fever or hair loss occur at a very high rate. Therefore, there is a need for the development of means for effectively and selectively transferring antitumor agents to tumor sites.

이와 같은 수단의 하나로서, 카르복실(carboxyl)기를 가지는 다당유도체를 약물담체로서 이용하고, 그 다당유도체에 대해 항종양제를 결합시켜 항종양제의 혈중으로부터의 소실을 지연시킴과 함께, 암조직으로의 지향성을 높이는 방법이 제안되고 있다. 예를 들어, 국제공개 WO94/19376호에는, 카르복실기를 가지는 다당의 카르복실기에 펩타이드(peptide)쇄(아미노산수 1 내지 8)이 결합되어 있고, 게다가 이 펩타이드쇄를 통해서 독소루비신(doxorubicin), 다우노루비신(daunorubicin), 마이토마이신 C(mitomycin C), 또는 블레오마이신(bleomycin) 등을 결합시킨 약물복합체가 개시되어 있다. 또한, 특허공고 평 7-84481호 공보에는, 카르복시메칠(carboxymethyl)화된 만노글루칸(mannoglucan)유도체에 쉬프(schiff)염기나 산아미드결합을 통해서 상기의 항종양제를 도입한 약물복합체가 개시되어 있다. 이들 약물복합체는, 약물 송달의 담체에 결합되어 있지 않은 항종양제 자체에 비해서 보다 우수한 항종양 효과를 가지면서 독성ㆍ부작용이 경감되는 것을 특징으로 하고 있다.As one of such means, a polysaccharide derivative having a carboxyl group is used as a drug carrier, and an anti-tumor agent is bound to the polysaccharide derivative to delay the loss of the anti-tumor agent from the blood and cancer tissue. A method of increasing the directivity to the future has been proposed. For example, in WO 94/19376, a peptide chain (amino acids 1 to 8) is bound to a carboxyl group of a polysaccharide having a carboxyl group, and further, doxorubicin and daunorubicin are linked through the peptide chain. A drug complex in which daunorubicin, mitomycin C, or bleomycin is combined is disclosed. In addition, Japanese Patent Application Laid-Open No. 7-84481 discloses a drug complex in which the antitumor agent is introduced into a carboxymethylated mannoglucan derivative through a Schiff base or an acid amide bond. . These drug complexes are characterized by having more excellent anti-tumor effect and less toxicity and side effects than the anti-tumor agent itself which is not bound to the carrier for drug delivery.

그 외, 폴리알콜화다당유도체를 약물 송달의 담체로서 이용한 약물복합체에 관한 기술에 대해서는, 「다당-펩타이드-독소루비신복합체에 관한 연구ㆍ다당유도체의 혈중 안정성과 항종양효과의 관계」(제 10회 일본 DDS학회 강연 요지집, 279, 1994) ; 「다당-펩타이드-독소루비신복합체에 관한 연구ㆍ체내 동태와 항종양 효과」(제 9회 일본 약물동태학회 연회강연 요지집, 292, 1994); 제 19회 연구개발 동향 세미나(의약품기구 주최)요지집, D-9, 1995 ; 및 「다당 담체에 의한 종양으로의 약물 송달에 관한 연구」(제 12회 콜로이드ㆍ계면기술 심포지움, 일본 화학회, 강연 요지집, 51, 1995) 등의 보고가 있다.In addition, for the description of drug complexes using polyalcoholized polysaccharide derivatives as carriers for drug delivery, "Research on polysaccharide-peptide-doxorubicin complexes and the relationship between blood stability and anti-tumor effect of polysaccharide derivatives" (10th) Journal of the Japanese DDS Society Abstract, 279, 1994); "Study on Polysaccharide-Peptide-Doxorubicin Complexes, In Vivo Dynamics and Antitumor Effects" (9th Pharmacokinetic Society Banquet Lecture Abstract, 292, 1994); 19th Research & Development Trend Seminar (Organized by Pharmaceutical Organization) Abstract, D-9, 1995; And "Study on Drug Delivery to Tumors with Polysaccharide Carriers" (12th Colloid / Interface Symposium, Japanese Chemistry Society, Lecture Abstract, 51, 1995).

종래, 이들 약물복합체는, 카르복시메칠퓨란, 카르복시메칠만노글루칸 등의 카르복실기를 가지는 다당유도체를 나트륨염으로 제조한 후에, 그 다당유도체의 카르복실기와 항종양제의 아미노기(또는 항종양제에 결합한 펩타이드쇄의 N말단 아미노기)를 산아미드 결합시키는 것에 의해 제조되고 있다. 다당유도체의 나트륨염은 유기용매에는 전혀 용해되지 않기 때문에, 이 반응을 시행함에 있어서는, 다당유도체의 나트륨염을 물 또는 물을 함유한 수성 유기용매의 용액으로 제조해 두고, 이 용액 속에 축합제와 염산염 등의 형태의 항종양제(또는 펩타이드쇄를 가지는 항종양제)를 용해시키는 방법이 채용되어 왔다.Conventionally, these drug complexes are prepared by preparing a polysaccharide derivative having a carboxyl group such as carboxymethylfuran and carboxymethylmannoglucan with sodium salt, and then a carboxyl group of the polysaccharide derivative and an amino group of an antitumor agent (or a peptide bound to an antitumor agent). N-terminal amino group of the chain) is produced by acid amide bonding. Since the sodium salt of the polysaccharide derivative is not dissolved in the organic solvent at all, the sodium salt of the polysaccharide derivative is prepared from a solution of water or an aqueous organic solvent containing water, and the condensing agent and A method of dissolving an antitumor agent (or an antitumor agent having a peptide chain) in the form of a hydrochloride salt has been adopted.

그러나, 이 반응으로는 탈수축합반응을 물을 함유한 용매 속에서 시행하기 때문에, 목적물을 고수율로 얻는 것이 불가능하였다. 반응 원료로서 사용하는 항종양제 등은 일반적으로 고가이고, 제조 비용의 관점에서 상기의 약물복합체를 효율적으로 제조하는 방법의 개발이 요구되고 있었다. 또한, 항종양제로서 유용한 특호공개 평 6-87746호 공보에 기재된 화합물은 분자 중에 락톤(lactone)환을 가지고 있기 때문에, 이것에 펩타이드쇄가 결합한 화합물을 상기의 반응으로 부착하면 염기 및 물의 존재하에서 락톤환이 개환되고, 생성된 카르복실기가 항종양제에 결합한 펩타이드쇄의 N말단 아미드기와 반응하여 목적물의 수율을 현저히 감소시키고, 또한 목적으로 하는 균일한 약물 복합체가 얻어지지 않는다는 문제가 있었다. 이 때문에, 락톤환이 개환된 화합물의 생성을 피할 수 있는 반응 방법의 개발이 요구되고 있었다.In this reaction, however, the dehydration and condensation reaction was carried out in a solvent containing water, so that the target product was not obtained in high yield. Antitumor agents and the like used as reaction raw materials are generally expensive, and development of a method for efficiently producing the above-described drug complexes has been required from the viewpoint of production cost. In addition, since the compound described in Japanese Patent Application Laid-Open No. 6-87746 useful as an anti-tumor agent has a lactone ring in its molecule, when a compound having a peptide chain attached thereto is attached by the above reaction, in the presence of a base and water The lactone ring is ring-opened, and the resulting carboxyl group reacts with the N-terminal amide group of the peptide chain bound to the anti-tumor agent, resulting in a significant reduction in the yield of the target product, and a target drug complex cannot be obtained. For this reason, development of the reaction method which can avoid production | generation of the compound which the lactone ring ring-opened was calculated | required.

발명의 개시Disclosure of the Invention

본 발명은, 항종양제나 항염증제 등의 유효 성분을 종양부위 등에 대해서 부위 선택적으로 이행시킬 수 있는 약물복합체를 효율적으로 제조하는 방법을 제공하는 것을 과제로 하고 있다. 보다 구체적으로는, 카르복실기를 가지는 다당유도체와 항종양제 등의 의약화합물 또는 의약화합물을 결합시킨 올리고펩타이드 등의 스페이서를 효율적으로 반응시켜, 약물복합체를 대량으로 저가에 제조할 수 있는 방법을 제공하는 것에 있다.An object of the present invention is to provide a method for efficiently producing a drug complex that can selectively transfer active ingredients such as antitumor agents and anti-inflammatory agents to tumor sites and the like. More specifically, it is possible to efficiently react a polysaccharide derivative having a carboxyl group with a spacer such as a pharmaceutical compound such as an anti-tumor agent or an oligopeptide combined with a pharmaceutical compound, thereby providing a method for producing a drug complex at a low cost in large quantities. Is in.

본 발명자들은 상기의 과제를 해결하고자 예의 노력한 결과, 카르복실기를 가지는 다당유도체를 의약화합물 또는 의약화합물을 결합시킨 스페이서와 반응시키킬 때, 종래 이용되어 온 다당유도체의 나트륨염 대신에 유기 아민염을 이용하면, 다당유도체의 염을 실질적으로 물을 함유하지 않는 유기용매 내에 고농도로 용해될 수 있고, 다당유도체와 의약화합물 또는 의약화합물을 결합시킨 스페이서와의 반응을 극히 좋은 수율로 시행할 수 있고, 게다가 부생성물 등을 감소시킬 수가 있는 것을 발견하였다. 본 발명은 이들 내용을 토대로 하여 완성된 것이다.As a result of intensive efforts to solve the above problems, the present inventors use an organic amine salt in place of the sodium salt of a polysaccharide derivative that has been conventionally used when the polysaccharide derivative having a carboxyl group is reacted with a pharmaceutical compound or a spacer to which the pharmaceutical compound is bound. In other words, the salt of the polysaccharide derivative can be dissolved in high concentration in an organic solvent that is substantially free of water, and the reaction between the polysaccharide derivative and the pharmaceutical compound or the spacer incorporating the pharmaceutical compound can be carried out in an extremely good yield. It was found that by-products and the like can be reduced. The present invention has been completed based on these contents.

즉, 본 발명은, 카르복실기를 가지는 다당유도체와 의약화합물의 잔기가 1개의 아미노산 또는 펩타이드 결합된 2 내지 8개의 아미노산으로 구성된 스페이서를 통해 결합되어 있는 약물복합체, 또는 카르복실기를 가지는 다당유도체와 의약화합물의 잔기가 그 스페이서를 통하지 않고 결합되어 있는 약물복합체의 제조방법에서, 카르복실기를 가지는 다당유도체의 유기 아민염과 의약화합물 또는 스페이서를 결합시킨 의약화합물을 비수용성계에서 반응시키는 것을 특징으로 하는 방법; (1) 카르복실기를 가지는 다당유도체의 알칼리 금속염을 유기 아민염으로 변환시키는 공정과 (2) 그 유기 아민염과 의약화합물 또는 스페이서을 결합시킨 의약화합물을 비수용성계에서 반응시키는 공정을 포함하는 약물복합체의 제조방법을 제공하는 것이다.That is, the present invention relates to a polysaccharide derivative having a carboxyl group and a drug compound wherein a residue of the pharmaceutical compound is bound via a spacer consisting of 2 to 8 amino acids bound by one amino acid or peptide, or a polysaccharide derivative having a carboxyl group and a pharmaceutical compound. A method for producing a drug complex in which a residue is bonded through a spacer, wherein the organic amine salt of a polysaccharide derivative having a carboxyl group and a pharmaceutical compound or a pharmaceutical compound bonded with a spacer are reacted in a non-aqueous system; (1) preparing a drug complex comprising converting an alkali metal salt of a polysaccharide derivative having a carboxyl group into an organic amine salt and (2) reacting the organic amine salt with a pharmaceutical compound or a pharmaceutical compound bonded with a spacer in a non-aqueous system To provide a way.

본 발명의 바람직한 태양에 의하면, 카르복실기를 가지는 다당유도체가 카르복시C1-4알킬덱스트란폴리알콜(carboxyC1-4alkyldextranpolyalcohol)인 상기 방법; 카르복시C1-4알킬덱스트란폴리알콜을 구성하는 덱스트란폴리알콜(dextranpolyalcohol)이, 실질적으로 완전히 폴리알콜화가 가능한 조건하에서 덱스트란을 처리하여 얻어진 덱스트란폴리알콜인 것을 특징으로 하는 상기 방법; 카르복시C1-4알킬덱스트란폴리알콜이 카르복시메칠덱스트란폴리알콜인 상기 방법; 카르복시C1-4알킬덱스트란폴리알콜이, 분자량 5,000 내지 500,000의 범위, 바람직하게는 50,000 내지 450,000의 범위, 보다 바람직하게는 200,000 내지 400,000의 범위의 카르복시메칠덱스트란폴리알콜이고, 카르복시메칠화 정도가 구성 당 잔기 당 0.01 내지 2.0의 범위, 바람직하게는 0.1 내지 1.0의 범위, 보다 바람직하게는 0.3 내지 0.5의 범위인 상기 방법; 및, 의약화합물이 항종양제 또는 항염증제인 상기 방법이 제공된다.According to an exemplary embodiment of the present invention, wherein the method is a polysaccharide derivative having a carboxyl group, carboxy C 1-4 alkyl polyalcohol (carboxyC 1-4 alkyldextranpolyalcohol); The dextran polyalcohol constituting the carboxyC 1-4 alkyldextran polyalcohol (dextranpolyalcohol) is a dextran polyalcohol obtained by treating dextran under conditions that are substantially polyalcoholizable; The above method wherein the carboxyC 1-4 alkyldextran polyalcohol is a carboxymethyldextran polyalcohol; The carboxyC 1-4 alkyldextran polyalcohol is a carboxymethyldextran polyalcohol in the range of molecular weight 5,000 to 500,000, preferably in the range of 50,000 to 450,000, more preferably in the range of 200,000 to 400,000, and the degree of carboxymethylation Wherein the range is from 0.01 to 2.0, preferably from 0.1 to 1.0, more preferably from 0.3 to 0.5 per residue per constituent; And the above method wherein the pharmaceutical compound is an anti-tumor agent or an anti-inflammatory agent.

또한, 본 발명의 바람직한 태양으로는, 의약화합물이 락톤환을 형성할 수 있는 화합물인 상기 방법; 유기 아민염과 의약화합물 또는 의약화합물을 결합시킨 스페이서와의 반응에 있어서, 락톤환을 형성한 의약화합물 또는 락톤환을 형성한 의약화합물을 결합한 스페이서를 이용한 상기 방법; 및, 락톤환을 형성할 수 있는 상기 의약화합물이 (1S,9S)-1-아미노(amino)-9-에칠(ethyl)-5-플루오로(fluoro)-2,3-디히드로(dihydro)-9-히드록시(hydroxy)-4-에칠(ethyl)-1H,12H-벤조(benzo)[de]피라노(pyrano)[3',4';6,7]인돌리지노(indolizino)[1,2-b]퀴놀린(quinoline)-10,13(9H,15H)-디온(dione)인 상기 방법이 제공된다.Moreover, as a preferable aspect of this invention, the said method whose pharmaceutical compound is a compound which can form a lactone ring; In the reaction of an organic amine salt with a spacer combining a pharmaceutical compound or a pharmaceutical compound, the above method using a spacer combining a pharmaceutical compound having a lactone ring or a pharmaceutical compound having a lactone ring; And, the pharmaceutical compound capable of forming a lactone ring is (1S, 9S) -1-amino-9-ethyl-5-fluoro-2,3-dihydro -9-hydroxy-4-ethyl-1H, 12H-benzo [de] pyrano [3 ', 4'; 6,7] indolizino [ 1,2-b] quinoline-10,13 (9H, 15H) -dione is provided.

도 1은 본 발명의 방법으로 제조한 예 8의 약물복합체의 GPC 챠트를 나타낸 도면이다.1 is a diagram showing a GPC chart of a drug complex of Example 8 prepared by the method of the present invention.

도 2는 본 발명의 방법으로 제조한 예 8의 약물복합체의 자외선 흡수 스펙트럼를 나타낸 도면이다.2 is a diagram showing an ultraviolet absorption spectrum of the drug complex of Example 8 prepared by the method of the present invention.

도 3은 본 발명의 방법으로 제조한 예 9의 약물복합체의 GPC 챠트를 나타낸 도면이다.3 is a diagram showing a GPC chart of a drug complex of Example 9 prepared by the method of the present invention.

도 4는 본 발명의 방법으로 제조한 예 9의 약물복합체의 자외선 흡수 스펙트럼을 나타낸 도면이다.4 is a diagram showing an ultraviolet absorption spectrum of the drug complex of Example 9 prepared by the method of the present invention.

도 5는 본 발명의 방법으로 제조한 예 10의 약물복합체의 자외선 흡수 스펙트럼을 나타낸 도면이다.5 is a diagram showing an ultraviolet absorption spectrum of the drug complex of Example 10 prepared by the method of the present invention.

도 6은 본 발명의 방법으로 제조한 예 15의 약물복합체의 GPC 챠트를 나타낸 도면이다.Fig. 6 shows the GPC chart of the drug complex of Example 15 prepared by the method of the present invention.

도 7은 본 발명의 방법으로 제조한 예 15의 약물복합체의 자외선 흡수 스펙트럼을 나타낸 도면이다.Fig. 7 shows the ultraviolet absorption spectrum of the drug complex of Example 15 prepared by the method of the present invention.

도 8은 본 발명의 방법으로 제조한 예 28의 약물복합체의 GPC 챠트를 나타낸 도면이다.Fig. 8 shows the GPC chart of the drug complex of Example 28 prepared by the method of the present invention.

도 9는 본 발명의 방법으로 제조한 예 28의 약물복합체의 자외선 흡수 스펙트럼을 나타낸 도면이다.Fig. 9 shows the ultraviolet absorption spectrum of the drug complex of Example 28 prepared by the method of the present invention.

도 10은 본 발명의 방법으로 제조한 예 29의 약물복합체의 GPC 챠트를 나타낸 도면이다.Fig. 10 shows the GPC chart of the drug complex of Example 29 prepared by the method of the present invention.

도 11은 본 발명의 방법으로 제조한 예 29의 약물복합체의 자외선 흡수 스펙트럼을 나타낸 도면이다.Fig. 11 shows the ultraviolet absorption spectrum of the drug complex of Example 29 prepared by the method of the present invention.

도 12는 본 발명의 방법으로 제조한 예 34의 약물복합체의 GPC 챠트를 나타낸 도면이다.Fig. 12 shows the GPC chart of the drug complex of Example 34 prepared by the method of the present invention.

도 13은 본 발명의 방법으로 제조한 예 34의 약물복합체의 자외선 흡수 스펙트럼을 나타낸 도면이다.Fig. 13 shows the ultraviolet absorption spectrum of the drug complex of Example 34 prepared by the method of the present invention.

도 14는 본 발명의 방법으로 제조한 예 39의 약물복합체의 GPC 챠트를 나타낸 도면이다.Fig. 14 shows the GPC chart of the drug complex of Example 39 prepared by the method of the present invention.

도 15는, 본 발명의 방법으로 제조한 예 39의 약물복합체의 자외선 흡수 스펙트럼을 나타낸 도면이다.Fig. 15 shows the ultraviolet absorption spectrum of the drug complex of Example 39 prepared by the method of the present invention.

도 16은 본 발명의 방법으로 제조한 예 41의 약물복합체의 GPC 챠트를 나타낸 도면이다.Fig. 16 shows the GPC chart of the drug complex of Example 41 prepared by the method of the present invention.

도 17은 본 발명의 방법으로 제조한 예 41의 약물복합체의 자외선 흡수 스펙트럼을 나타낸 도면이다.Fig. 17 shows the ultraviolet absorption spectrum of the drug complex of Example 41 prepared by the method of the present invention.

도 18은 본 발명의 방법으로 제조한 예 44의 약물복합체의 GPC 챠트를 나타낸 도면이다.Fig. 18 shows the GPC chart of the drug complex of Example 44 prepared by the method of the present invention.

도 19는 본 발명의 방법으로 제조한 예 44의 약물복합체의 자외선 흡수 스펙트럼을 나타낸 도면이다.Fig. 19 shows the ultraviolet absorption spectrum of the drug complex of Example 44 prepared by the method of the present invention.

도 20은 본 발명의 방법으로 제조한 예 15의 약물복합체의 체내동태를0 나타낸 도면이다. 도 안의 각점은 3 예의 평균값를 나타낸다.20 is a diagram showing the body kinetics of the drug complex of Example 15 prepared by the method of the present invention. Each point in a figure shows the average value of three examples.

발명을 실시하기 위한 바람직한 형태Best Mode for Carrying Out the Invention

본 발명의 제조 방법에 의해 제조된 약물복합체는, 카르복실기를 가지는 다당유도체와 의약화합물의 잔기가 1개의 아미노산 또는 펩타이드 결합된 2 내지 8개의 아미노산으로 구성된 스페이서를 통해서 결합되거나, 또는 카르복실기를 가지는 다당유도체와 의약화합물의 잔기가 그 스페이서를 통하지 않고 결합하고 있는 것을 특징으로 하고 있다.The drug complex produced by the production method of the present invention is a polysaccharide derivative having a carboxyl group and a residue of the pharmaceutical compound is bound through a spacer consisting of 2 to 8 amino acids, one amino acid or peptide-bonded, or a polysaccharide derivative having a carboxyl group And the residues of the pharmaceutical compound are bonded to each other without passing through the spacer.

약물복합체에 포함되는 의약화합물의 잔기는, 예를 들어, 항종양제, 항염증제, 항균제 등의 의약으로서 사람을 포함한 포유류의 질병의 치료 및/또는 예방에 이용되는 의약화합물에서 유래하고, 그 부분 구조에 의해 구성된다. 단, 그 잔기가 유래된 의약화합물은 상기의 것에 한정되지는 않는다. 또한 의약화합물으로서는, 다당유도체 또는 스페이서와의 결합에 관여할 수 있는 1 또는 2 이상의 반응성관능기(예를 들어, 아미노기, 카르복실기, 수산기, 치올(thiol)기, 에스테르기 등)을 가지는 것이라면 어떠한 것을 사용해도 좋다, 본 명세서에 있어서 의약화합물이라고 하는 경우에는, 그 자체가 의약작용을 가지는 화합물의 주요구조를 그 부분구조로서 포함하여 생체내에서 그 화합물을 재생할 수 있는 약물전구체(prodrug)화합물도 포함된다.The residue of the pharmaceutical compound included in the drug complex is derived from a pharmaceutical compound used for the treatment and / or prevention of diseases of mammals including humans, for example, as a medicine such as an anti-tumor agent, an anti-inflammatory agent, an antimicrobial agent, and a partial structure thereof. It is composed by. However, the pharmaceutical compound from which the residue is derived is not limited to the above. In addition, any pharmaceutical compound may be used as long as it has one or two or more reactive functional groups (for example, amino group, carboxyl group, hydroxyl group, thiol group, ester group, etc.) that may be involved in binding to a polysaccharide derivative or spacer. In the present specification, when referred to as a pharmaceutical compound, a prodrug compound that can reproduce the compound in vivo, including the main structure of the compound which itself has a medicinal action as its partial structure, is also included. .

보다 구체적으로는, 본 명세서에 있어서 의약화합물의 잔기는, 다당유도체 또는 스페이서와 의약화합물 잔기와의 결합이 의약화합물 내의 반응성관능기와 다당유도체 또는 스페이서 내의 반응성관능기의 반응(예를 들어, 탈수축합 등)에 의해 형성된다고 가정한 경우에 있어서, 결합후의 화합물 중에 존재하는 의약화합물에서 유래하는 부분구조를 의미하고 있다. 예를 들어, 의약화합물이 D-NH2, D-COOH, D-COOR, D-OH, D-SH, D-CONH2, D-NH-COOR(R은 저급 알킬기 등)로 표시되는 경우, 의약화합물의 잔기는 각각 D-NH-(D-NH-CO-Q 등), D-CO-(D-CO-NH-Q, D-CO-O-Q, D-CO-S-Q 등), D-CO-(D-CO-NH-Q, D-CO-O-Q, D-CO-S-Q 등), D-O-(D-O-CO-Q, D-O-Q 등), D-S-(D-S-CO-Q, D-S-Q 등), D-CONH-(D-CO-NH-CO-Q 등), D-NH-CO-(D-NH-CO-O-Q, D-NH-CO-NH-Q 등)으로 표시되는(괄호안은 스페이서 또는 다당유도체와 의약화합물 잔기와의 결합을 나타내고, Q는 스페이서 및 다당유도체에서 각각 반응성관능기 및 카르복실기를 제외한 남은 부분구조를 나타낸다). 단, 스페이서 또는 다당유도체와 의약화합물 잔기와의 결합의 종류는 상기의 것에 한정되는 것은 아니다. 의약화합물의 잔기는, 다당유도체의 카르복실기, 스페이서의 N말단 아미노기 또는 C말단 카르복실기, 또는 스페이서를 구성하는 아미노산에 존재하는 반응성관능기에 결합하고 있어도 좋다.More specifically, in the present specification, the residue of the pharmaceutical compound is a reaction of a reactive group in the pharmaceutical compound with a polysaccharide derivative or spacer and the residue of the drug compound in the pharmaceutical compound (for example, dehydration condensation, etc.). In the case of assuming that it is formed by a), it means a partial structure derived from a pharmaceutical compound present in the compound after bonding. For example, when the pharmaceutical compound is represented by D-NH 2 , D-COOH, D-COOR, D-OH, D-SH, D-CONH 2 , D-NH-COOR (where R is a lower alkyl group), Residues of pharmaceutical compounds are D-NH- (D-NH-CO-Q, etc.), D-CO- (D-CO-NH-Q, D-CO-OQ, D-CO-SQ, etc.), D- CO- (D-CO-NH-Q, D-CO-OQ, D-CO-SQ, etc.), DO- (DO-CO-Q, DOQ, etc.), DS- (DS-CO-Q, DSQ, etc.) , D-CONH- (D-CO-NH-CO-Q, etc.), D-NH-CO- (D-NH-CO-OQ, D-NH-CO-NH-Q, etc.) The spacer or polysaccharide derivative is bound to the drug compound moiety, and Q represents the remaining partial structure excluding the reactive functional group and the carboxyl group in the spacer and the polysaccharide derivative, respectively). However, the type of bond between the spacer or the polysaccharide derivative and the residue of the pharmaceutical compound is not limited to the above. The residue of the pharmaceutical compound may be bonded to the carboxyl group of the polysaccharide derivative, the N-terminal amino group or C-terminal carboxyl group of the spacer, or the reactive functional group present in the amino acid constituting the spacer.

의약화합물의 잔기로서는, 예를 들어, 독소루비신, 다우노루비신, 마이토마이신C, 블레오마이신, 시클로시티딘(cyclocytidine), 빈크리스틴(vincristine), 빈블라스틴(vinblastine), 메토트렉세이트(methotrexate), 백금계항종양제(시스플라틴(cysplatine) 혹은 그 유도체), 탁솔(taxol) 혹은 그 유도체, 캄프토테신(camptothecin) 혹은 그 유도체(특허공개 평 6-87746호 공보에 기재된 항종양제, 바람직하게는 청구항 2에 기재된(1S,9S)-1-아미노(amino)-9-에칠(ethyl)-5-플루오로(fluoro)-2,3-디히드로(dihydro)-9-히드록시(hydroxy)-4-에칠(ethyl)-1H,12H-벤조(benzo)[de]피라노(pyrano)[3',4';6,7]인돌리지노[1,2-b]퀴놀린(quinoline)-10,13(9H,15H)-디온(dione) 등) 등의 항종양제의 잔기를 적절히 이용할 수 있다. 또한, 예를 들어, 호박산히드로콜티손(succinic acid-hydrocortisone), 호박산프레드니솔론(succinic acid-prednisolone) 등의 스테로이드계 항염증제, 또는 메페남산(mefenamic acid), 프루페남산(flufenamic acid), 디클로페낙(diclofenac), 이부프로펜(ibuprofen), 티노리딘(tinoridine) 등의 비스테로이드계 항염증약의 잔기도 적절하다.As the residue of the pharmaceutical compound, for example, doxorubicin, daunorubicin, mitomycin C, bleomycin, cyclocytidine, vincristine, vinblastine, methotrexate, platinum Anti-tumor agents (cysplatine or derivatives thereof), taxol or derivatives thereof, camptothecin or derivatives thereof (antitumor agents described in Japanese Patent Application Laid-Open No. 6-87746, preferably Claim 2 (1S, 9S) -1-amino-9-ethyl-5-fluoro-2,3-dihydro-9-hydroxy-4- as described in Ethyl-1H, 12H-benzo (de) pyrano [3 ', 4'; 6,7] indolizino [1,2-b] quinoline-10,13 Residues of anti-tumor agents such as (9H, 15H) -dione). In addition, for example, steroid-based anti-inflammatory agents such as succinic acid-hydrocortisone, succinic acid-prednisolone, or mefenamic acid, flufenamic acid, diclofenac (diclofenac) Residues of non-steroidal anti-inflammatory drugs such as ibuprofen and tinoridine are also suitable.

의약화합물의 잔기는 다당유도체와 직접 결합하고 있어도 좋으나, 스페이서를 통해서 결합해도 좋다. 이와 같은 스페이서로서는, 1개의 아미노산으로 된 스페이서 또는 펩타이드 결합한 2 내지 8개의 아미노산으로 된 스페이서를 이용할 수 있다. 보다 구체적으로는, 의약화합물의 잔기와 다당유도체가 스페이서를 통해 결합하고 있는 경우에는, 그 스페이서는 1개의 아미노산의 잔기(아미노산의 아미노기 및 카르복실기에서 각각 1개의 수소원자 및 1개의 수산기를 제거한 잔기를 의미한다) 또는 펩타이드 결합한 2 내지 8개의 아미노산으로 된 올리고펩타이드의 잔기(N말단의 아미노기 및 C말단의 카르복실기에서 각각 1개의 수소원자 및 1개의 수산기를 제거한 잔기를 의미한다)의 형태를 가지고 있다.The residue of the pharmaceutical compound may be directly bonded to the polysaccharide derivative, or may be bonded via a spacer. As such a spacer, a spacer consisting of one amino acid or a spacer consisting of two to eight amino acids bonded to peptides can be used. More specifically, when a residue of a pharmaceutical compound and a polysaccharide derivative are bound via a spacer, the spacer is a residue of one amino acid (a residue from which one hydrogen atom and one hydroxyl group are removed from the amino and carboxyl groups of the amino acid, respectively). Or a residue of an oligopeptide of 2 to 8 amino acids bound to a peptide (meaning a residue obtained by removing one hydrogen atom and one hydroxyl group from the N-terminal amino group and the C-terminal carboxyl group, respectively).

바람직한 스페이서는 2 내지 6개의 아미노산으로 된 올리고펩타이드의 잔기이다. 스페이서를 구성하는 아미노산의 종류는 특히 한정되지 않고, 예를 들어, L-또는 D-아미노산, 바람직하게는 L-아미노산을 이용할 수 있고, α- 아미노산 외, β-알라닌(alanine), ε-아미노카프론산(aminocaproic acid), γ- 아미노젖산 등을 이용해도 좋다. 이와 같은 α-아미노산 이외의 아미노산은, 스페이서 중에서 다당유도체에 근접한 위치에 배치되는 것이 바람직하다.Preferred spacers are residues of oligopeptides of 2 to 6 amino acids. The kind of amino acid which comprises a spacer is not specifically limited, For example, L- or D-amino acid, Preferably L-amino acid can be used, In addition to ( alpha )-amino acid, ( beta ) -alanine ( ε -amino) Capronic acid (aminocaproic acid), γ -amino lactic acid may be used. It is preferable that such amino acids other than the α -amino acid are arranged at positions close to the polysaccharide derivative in the spacer.

예를 들어, 올리고펩타이드 스페이서를 이용한 경우의 결합방향은 특히 한정되지 않지만, 일반적으로는, 카르복시C1-4알킬덱스트란폴리알콜의 카르복실기에 스페이서의 N말단을 산아미드결합에 의해 결합하고, 의약화합물의 아미노기에 스페이서의 C말단을 결합할 수 있다. 또는, 예를 들어, 펩타이드 스페이서의 구성단위로서 리딘 잔기를 포함하고 있고, 리딘 잔기의 α- 아미노기 및 ε-아미노기를 각각 다른 아미노산의 카르복실기와 산아미드 결합시키면, 펩타이드 스페이서의 양말단이 N말단이 되기 때문에, 의약화합물의 카르복실기를 결합하는 것이 가능하게 된다. 또한, 스페이서 중에 1개 또는 2개 이상의 디아민 화합물 또는 디카르본산 화합물의 잔기(예를 들어, 에칠렌디아민 등의 디아민의 잔기나 호박산 등의 디카르본산의 잔기 등)을 구성단위로서 포함하고 있고, 각각 양말단이 N말단의 스페이서 및 양말단이 C말단의 스페이서를 이용해도 된다.For example, the binding direction in the case of using the oligopeptide spacer is not particularly limited, but in general, the carboxyl group of the carboxyC 1-4 alkyldextran polyalcohol is bonded to the N terminal of the spacer by an acid amide bond, The C terminal of the spacer can be bonded to the amino group of the compound. Alternatively, for example, when a ridine residue is included as a structural unit of the peptide spacer, and the α -amino group and the ε -amino group of the lidin residue are each combined with a carboxyl group and an acid amide of another amino acid, the terminal end of the peptide spacer is N-terminated. Therefore, it becomes possible to combine the carboxyl group of a pharmaceutical compound. In addition, the spacer includes residues of one or two or more diamine compounds or dicarboxylic acid compounds (for example, residues of diamines such as ethylenediamine and residues of dicarboxylic acids such as succinic acid) as structural units. The sock end may have a spacer at the N end and the sock end may have a spacer at the C end.

올리고펩타이드로 된 스페이서를 이용한 경우의 아미노산 배열은 특히 한정되어 있지 않지만, 예를 들어, 스페이서가 -X-Z-로 표시되는 디펩타이드의 잔기(X는 소수성 아미노산의 잔기를 나타내고, Z는 친수성 아미노산의 잔기를 나타내고, -X-Z-는 소수성 아미노산(X)과 친수성 아미노산(Z)가 각각 N말단측 및 C말단측이 되어 펩타이드 결합한 디펩타이드의 N말단의 아미노기 및 C말단의 카르복실기에서 각각 1개의 수소원자 및 1개의 수산기를 제거한 잔기를 의미한다)이거나, 또는 그 디펩타이드의 잔기를 부분 펩타이드 배열로서 포함하는 스페이서를 적절히 이용할 수 있다. 소수성 아미노산으로서는, 예를 들어, 페닐알라닌(phenylalanine), 티로신(tyrosine), 루이신 등을 이용할 수 있고, 친수성 아미노산으로서는, 예를 들어, 글리신(glycine), 알라닌 등을 이용할 수 있다. 스페이서가 이와 같은 디펩타이드 잔기의 반복 배열(예를 들어, -X-Z-X-Z-, -X-Z-X-Z-X-Z- 등)을 가지고 있어도 좋다.The amino acid sequence in the case of using a spacer made of an oligopeptide is not particularly limited. For example, the residue of the dipeptide in which the spacer is represented by -XZ- (X represents a residue of a hydrophobic amino acid, and Z represents a residue of a hydrophilic amino acid. And -XZ- represents one hydrogen atom in the N-terminal amino group and C-terminal carboxyl group of the peptide to which the hydrophobic amino acid (X) and the hydrophilic amino acid (Z) are respectively N-terminal and C-terminal, respectively. Or a residue containing a residue of the dipeptide as a partial peptide sequence can be suitably used. As the hydrophobic amino acid, for example, phenylalanine, tyrosine, leucine, and the like can be used. As the hydrophilic amino acid, for example, glycine, alanine, or the like can be used. The spacer may have a repeating arrangement of such dipeptide residues (eg, -X-Z-X-Z-, -X-Z-X-Z-X-Z-, etc.).

이와 같은 디펩타이드 구조를 포함한 스페이서를 이용하면, 스페이서가 펩티다제(peptidase)가 풍부하다고 생각되어지는 종양부위나 염증부위에서 가수분해되어, 해당 부위에 있어서 의약화합물이 고농도로 유리되기 때문에, 상기 디펩타이드를 함유하는 스페이서와 의약화합물이 결합하여 형성되는 구조는, 본 발명의 방법에 의해 제조된 약물복합체의 바람직한 부분구조이다. 의약화합물의 잔기로서, 농도에 의존한 항종양작용을 발현하는 항종양제(보다 높은 농도로 보다 강한 항종양작용을 발현하는 항종양제: 농도의존형의 항종양제, 예를 들어, 독소루비신 등)의 잔기를 이용하는 경우에는, -X-Z-로 나타낸 상기의 디펩타이드 잔기로 된 스페이서 또는 그 디펩타이드 잔기를 부분 펩타이드 배열로서 포함하는 스페이서를 이용하는 것이 특히 바람직하다.When the spacer including such a dipeptide structure is used, the spacer is hydrolyzed at the tumor site or the inflammatory site where the spacer is considered to be rich in peptidase, and the pharmaceutical compound is liberated at a high concentration at the site. The structure formed by combining the spacer containing the dipeptide and the pharmaceutical compound is a preferred substructure of the drug complex produced by the method of the present invention. Antitumor agents that express concentration-dependent antitumor activity as residues of pharmaceutical compounds (antitumor agents that express stronger antitumor activity at higher concentrations: concentration-dependent antitumor agents such as doxorubicin, etc.) When using the residue of, it is particularly preferable to use a spacer comprising the above-described dipeptide residue represented by -XZ- or a spacer containing the dipeptide residue as a partial peptide sequence.

또한, 의약화합물의 잔기로서, 일정 농도 이상에서 작용시간의 지속를 필요로하는 시간의존형의 항종양제를 이용하는 경우에도, 상기의 스페이서를 이용함으로써 높은 항종양 효과를 달성할 수 있는 경우가 있고, 예를 들어, 특허공개 평6-87746호 공보에 기재되어 있는 항종양제, 바람직하게는 청구항 2에 기재된 항종양제를 들 수가 있다. 일반적으로는, 상기의 스페이서에 한정되는 것이 아니라, 항종양제의 작용기작, 체내 동태나 독성발현의 특징, 체내에서의 항종양제의 유리성 등의 관점에서 바람직한 스페이서를 선택할 필요가 있다. 또한, 일반적으로 증식이 빠른 암종에 대해서는, 단시간에 고농도의 의약화합물을 유리할 수 있는 상기의 스페이서를 선택하는 것이 바람직하다.In addition, even when using a time-dependent anti-tumor agent which requires the duration of action time at a certain concentration or more as a residue of a pharmaceutical compound, a high anti-tumor effect may be achieved by using the spacer described above. For example, the anti-tumor agent described in Unexamined-Japanese-Patent No. 6-87746, Preferably the anti-tumor agent of Claim 2 is mentioned. In general, it is not limited to the above-mentioned spacers, but it is necessary to select a preferred spacer from the viewpoint of the mechanism of action of the anti-tumor agent, the characteristics of the body dynamics and toxic expression, and the viability of the anti-tumor agent in the body. In general, for a carcinoma having a rapid proliferation, it is preferable to select the above-mentioned spacers that can favor a high concentration of the pharmaceutical compound in a short time.

스페이서의 구체적인 예를 이하의 표에 나타내지만, 본 발명의 약물복합체의 제조 방법에 이용되는 스페이서는 이하의 것에 한정되는 것이 아니라, 의약화합물의 적절한 유리 속도를 부여하도록 당업자가 적절히 선택 가능하다는 것은 말할 것도 없다. 표 중에서, 펩타이드 배열은 좌측이 N말단이고, C말단 측에 의약화합물의 잔기가 결합한다. D-Phe는 D-페닐알라닌 잔기를 나타내고, 그 외의 아미노산은 L-아미노산을 나타낸다. 또한, 유리 속도의 대소는 독소루비신을 결합한 약물복합체의 Walker 256 암에 걸린 랫트(rat)에 대한 약효발현의 정도, 또는 Walker 256 암에 걸린 랫트의 종양부위에 있어서 유리 독소루비신의 농도에 의해 판정한 것이다. 이들 스페이서 중에, 독소루비신에 대해서는 (N말단)-Gly-Gly-Phe-Gly- 등의 단시간에 고농도의 의약화합물을 유리할 수 있는 스페이서를 이용하는 것이 바람직하다.Although the specific example of a spacer is shown in the following table, the spacer used for the manufacturing method of the drug complex of this invention is not limited to the following, It can be said that those skilled in the art can select suitably to give an appropriate glass velocity of a pharmaceutical compound. Nothing. In the table, the peptide sequence has the N terminus on the left side, and the residue of the pharmaceutical compound binds to the C terminus side. D-Phe represents a D-phenylalanine residue and other amino acids represent L-amino acids. In addition, the magnitude of the free rate was determined by the degree of drug expression of the doxorubicin-coupled drug complex in rats with Walker 256 cancer or the concentration of free doxorubicin in the tumor site of rats with Walker 256 cancer. . Among these spacers, for doxorubicin, it is preferable to use a spacer capable of releasing a high concentration of pharmaceutical compound in a short time such as (N-terminal) -Gly-Gly-Phe-Gly-.

[표 1]TABLE 1

약물복합체의 다당유도체 부분을 구성하는 카르복실기를 가지는 다당유도체로서는, 예를 들어, 다당류 또는 그들을 화학적 혹은 생물학적으로 변형시킨 유도체이고, 분자 중에 카르복실기를 가지는 것이라면 어떠한 것을 이용해도 좋다. 예를 들어, 히알론산(hyaluronic acid), 펙틴산(pectic acid), 알긴산(alginic acid), 콘드로이친, 헤파린(heparin) 등의 다당류 외에, 플루란(pullulan), 덱스트란, 만난(mannan), 키틴(chitin), 이눌린(inulin), 레반(levan), 크실란(xylan), 아라반(araban), 만노글루칸, 키토산(chitosan) 등의 다당의 일부 또는 모든 수산기에 대해서 카르복실기를 가지는 관능기를 도입한 것 등을 이용할 수 있다. 예를 들어, 수산기를 카르복시C1-4알킬화한 것이나, 수산기에 다염기산의 하나인 카르복실기를 에스테르 결합시킨 것 등을 적절히 이용할 수 있다. 또한, 상기의 다당류를 폴리알콜화한 후에, 카르복실기를 가지는 관능기를 도입한 것을 이용해도 좋다.As the polysaccharide derivative having a carboxyl group constituting the polysaccharide derivative portion of the drug complex, for example, any of polysaccharides or derivatives obtained by modifying them chemically or biologically and having a carboxyl group in the molecule may be used. For example, in addition to polysaccharides such as hyaluronic acid, pectic acid, alginic acid, chondroitin, heparin, pullulan, dextran, mannan, chitin A functional group having a carboxyl group is introduced to some or all hydroxyl groups of polysaccharides such as chitin, inulin, levan, xylan, araban, mannoglucan and chitosan. Can be used. For example, the thing which carboxy C 1-4 alkylated the hydroxyl group, the thing which ester-bonded the carboxyl group which is one of polybasic acids, etc. can be used suitably. Moreover, after polyalcoholizing the said polysaccharide, you may use what introduce | transduced the functional group which has a carboxyl group.

이들 다당유도체 중에, 카르복시C1-4알킬덱스트란폴리알콜을 이용하는 것이 바람직하다. 카르복시C1-4알킬덱스트란폴리알콜의 폴리알콜화 정도는 특히 한정되어 있지 않지만, 카르복시C1-4알킬덱스트란폴리알콜을 구성하는 덱스트란폴리알콜이 실질적으로 완전히 폴리알콜화 가능한 조건하에서 덱스트란을 처리하여 얻어진 덱스트란폴리알콜인 것이 바람직하다.Of these polysaccharide derivatives, it is preferable to use carboxyC 1-4 alkyldextran polyalcohols. Carboxy C 1-4 alkyl polyalcohol The degree of polyalcohol include, but are not particularly limited, and under completely polyalcohol Chemistry possible conditions in the dextran polyalcohol constituting the carboxy C 1-4 alkyl polyalcohol substantially Dex It is preferable that it is dextran polyalcohol obtained by processing a tran.

카르복시C1-4알킬덱스트란폴리알콜을 제조하기 위해서 이용하는 덱스트란의 종류는 특히 한정되지 않고, α-D-1,6-결합을 임의의 비율로 포함하고 있어도 좋다. 예를 들어, α-D-1,6-결합의 비율이 85% 이상, 90% 이상, 또는 95% 이상의 덱스트란 등을 이용할 수 있다. 덱스트란의 분자량은 특히 한정되지 않지만, 예를 들어, 10,000 정도에서 2,000,000 정도의 것, 바람직하게는 50,000 정도에서 800,000 정도의 것을 이용할 수 있다. 카르복시C1-4알킬덱스트란폴리알콜의 카르복시C1-4알킬기를 구성하는 C1-4알킬로서는, 직쇄 또는 분지쇄의 C1-4알킬, 구체적으로는 메칠기, 에칠기, n-프로필(propyl)기, 이소프로필(isopropyl)기, n-부틸(butyl)기, sec-부틸기 등을 이용할 수 있으나, 바람직하게는 메칠기를 이용할 수 있다.The kind of dextran used for producing the carboxyC 1-4 alkyldextran polyalcohol is not particularly limited, and may include α- D-1,6-bonds at any ratio. For example, it may have α -D-1,6- combination ratio of used, and more than 85%, more than 90%, or 95% dextran. Although the molecular weight of dextran is not specifically limited, For example, about 10,000 to about 2,000,000, Preferably about 50,000 to about 800,000 can be used. Carboxy C 1-4 alkyl C 1-4 alkyl as dextran poly constituting the carboxy C 1-4 alkyl alcohols, linear or branched C 1-4 alkyl, specifically methyl groups, a lacquer, n- propyl (propyl) group, isopropyl group, n-butyl (butyl) group, sec-butyl group and the like can be used, but preferably methyl group.

본 발명의 방법은, 상기의 약물복합체를 제조함에 있어서, 카르복실기를 가지는 다당유도체의 유기 아민염과 의약화합물 자체, 또는 카르복실기를 가지는 다당유도체의 유기 아민염과 의약화합물을 결합시킨 스페이서를 실질적으로 물을 함유하지 않는 유기용매, 즉 비수용성계에서 반응시키는 것을 특징으로 하고 있다. 이하, 본 발명의 방법의 바람직한 태양으로서, 카르복시C1-4알킬덱스트란폴리알콜을 다당유도체로서 이용하는 경우에 대해서 구체적으로 설명하지만, 본 발명의 범위는 이들 태양에 한정되는 것은 아니다.According to the method of the present invention, in the preparation of the drug complex, a spacer in which the organic amine salt of the polysaccharide derivative having a carboxyl group and the pharmaceutical compound itself or the organic amine salt and the pharmaceutical compound of the polysaccharide derivative having a carboxyl group are combined with water is substantially water. It is characterized by reacting in an organic solvent which does not contain ie, a water-insoluble system. Hereinafter, a preferred embodiment of the method of the present invention, with respect to the case of using a carboxy C 1-4 alkyl polyalcohol as the polysaccharide derivative specifically described, but the scope of the present invention is not limited to this aspect.

출발원료로서 덱스트란을 이용하는 경우에는, 덱스트란에 과잉의 과요오드산나트륨과 수소화붕소나트륨을 순차적으로 작용시켜 덱스트란을 실질적으로 완전히 폴리알콜화한 덱스트란폴리알콜을 제조할 수 있다. 단, 덱스트란의 폴리알콜화하는 방법은 상기의 것에 한정하는 것이 아니라, 당업자에 이용가능한 것이라면, 어떠한 방법을 채용해도 좋다. 카르복시C1-4알킬화는, 예를 들어, 덱스트란폴리알콜의 수산기에 대해서, 염화초산, 브롬초산, α-염화프로피온산, α-메칠-α-염화프로피온산, β-염화프로피온산, α-메칠-β-염화프로피온산, α-염화젖산, β-염화젖산, γ-염화젖산 등의 할로겐화C1-4알킬카르본산, 바람직하게는, 염화초산을 반응시켜서 수산기를 부분적으로 또는 완전히 카르복시C1-4알킬화시킴으로써 수행될 수 있다.When dextran is used as a starting material, dextran polyalcohol in which the dextran is substantially completely polyalcoholized by sequentially acting excess sodium iodide and sodium borohydride on the dextran. However, the method of polyalcoholization of dextran is not limited to the above-mentioned thing, Any method may be employ | adopted as long as it is available to a person skilled in the art. Carboxy-C 1-4 alkylated, for example, index with respect to the hydroxyl groups of the polyalcohol, acid chloride, acid bromide, acid chloride, α-, α-methyl-α-propionic acid chloride, β-propionic acid chloride, α-methyl- Halogenated C 1-4 alkylcarboxylic acids, such as β -propionic acid, α -chlorinated lactic acid, β -chloride lactic acid, and γ -chlorinated lactic acid, preferably by reacting acetic acid chloride to partially or completely carboxyC 1-4 By alkylation.

예를 들어, 덱스트란폴리알콜을 반응에 관여하지 않는 불활성용매(예를 들어, 물, N,N-디메칠포름아미드(dimethylformamide), 디메칠술폭시드(dimethylsulfoxide) 등에 용해시켜, 염기(예를 들어, 수산화나트륨이나 수산화칼륨 등)의 존재하에서 할로겐화C1-4알킬카르본산 또는 그의 염을 첨가하여, 빙냉하 내지는 100℃ 정도의 온도범위에서 몇분간 내지는 몇일간 반응시키면 좋다. 카르복시C1-4알킬기의 도입의 정도는, 예를 들어, 카르복시C1-4알킬화의 반응온도나 시약으로서 사용하는 할로겐화C1-4알킬카르본산 및 염기의 양을 적절히 선택하는 것에 의해 용이하게 조절 가능하고, 그와 같은 수단은 당업자에게 알려진 사실이다. 덱스트란폴리알콜의 수산기에 대한 카르복시C1-4알킬화의 정도는 특히 한정되지 않지만, 예를 들어, 구성 당 잔기당 0.01 내지는 2.0의 범위, 바람직하게는 0.1 내지는 1.0, 보다 바람직하게는 0.3 내지는 0.5의 범위이다. 카르복시C1-4알킬덱스트란폴리알콜의 분자량은, 겔여과법으로 측정한 경우에 5,000 내지는 500,000정도, 바람직하게는 50,000 내지는 450,000정도, 보다 바람직하게는 200,000 내지는 400,000정도이다.For example, dextran polyalcohol is dissolved in an inert solvent (eg, water, N, N-dimethylformamide, dimethylsulfoxide) that is not involved in the reaction, and the base (for example, For example, halogenated C 1-4 alkylcarboxylic acid or a salt thereof may be added in the presence of sodium hydroxide, potassium hydroxide, or the like, and reacted for several minutes to several days under ice-cooling to about 100 ° C. Carboxy C 1- the degree of introduction of the 4 groups are, for example, and can be easily controlled by appropriately selecting the amount of the halogenated C 1-4 alkyl-carboxylic acid and the base used as the reaction temperature and the reagent of carboxy-C 1-4 alkylated, means, such as that is the fact known to those skilled in the art. dextran polycarboxy degree of C 1-4 alkylation for hydroxyl groups of the alcohol is not particularly limited, for example, 0.01 naejineun 2.0 per sugar moiety configuration Range, preferably from 0.1 naejineun 1.0, more preferably 0.3 naejineun in the range of 0.5. The molecular weight of the carboxy C 1-4 alkyl polyalcohol is, when measured by the gel filtration method naejineun 5,000 to 500,000, preferably about 50,000 To 450,000, more preferably 200,000 to 400,000.

이와 같이 제조된 카르복시C1-4알킬덱스트란폴리알콜은, 나트륨염 또는 칼륨염 등의 알카리 금속염 형태의 수용액으로서 제조된다. 본 발명의 방법에서는, 이와 같은 다당유도체의 카르복실기에 대해서 의약화합물 또는 의약화합물의 잔기와 결합시킨 스페이서를 결합시킬 때, 상기의 알카리금속염 형태의 다당유도체를 바꿔서, 유기 아민염의 형태의 다당유도체를 이용하는 것을 특징으로 하고 있다. 이와 같은 유기 아민염의 형태의 다당유도체는, 실질적으로 물을 함유하지 않는 유기용매에 고농도로 용해될 수 있고, 반응을 비수용성계에서 시행하는 것을 가능케 하기 때문에, 반응효율을 현저히 높일 수 있다.The carboxyC 1-4 alkyldextran polyalcohol thus prepared is prepared as an aqueous solution in the form of an alkali metal salt such as sodium salt or potassium salt. In the method of the present invention, when a spacer bonded to a pharmaceutical compound or a residue of a pharmaceutical compound is bonded to a carboxyl group of such a polysaccharide derivative, the polysaccharide derivative in the form of an alkali metal salt is changed to use a polysaccharide derivative in the form of an organic amine salt. It is characterized by. Such a polysaccharide derivative in the form of an organic amine salt can be dissolved in a high concentration in an organic solvent substantially free of water, and the reaction can be carried out in a non-aqueous system, thereby significantly increasing the reaction efficiency.

유기 아민염으로서는, 예를 들어, 트리에칠아민, 트리메칠아민, 트리에탄올아민 등의 지방족 아민류의 염 외에, N-메칠피롤리딘(methylpyrrolidine), N-메칠피페리딘(methylpiperidine), N-메칠몰포린(methylmorpholine), 디메칠아미노피리딘(dimethylaminopyridine) 등의 지환식 또는 방향족 아민류의 염, 염화테트라메칠암모니움, 염화테트라에칠암모니움 등의 4급 암모니움염 등을 이용할 수 있다. 다당유도체의 나트륨염에서 유기 아민염으로의 변환은, 이온 교환수지 등을 이용하여 시행할 수 있다. 예를 들어, 카르복시메칠덱스트란폴리알콜의 나트륨염을 물에 용해하여, Bio-Rad AG50W-X2(200 내지 400 메쉬(mesh), H+형) 수지를 충진한 칼럼(column)에 주입하고 물로 용출한 후, 트리에칠아민 등의 유기 아민을 첨가하여 동결 건조할 수 있다. 또한, 카르복시메칠덱스트란폴리알콜의 나트륨염을 물에 용해하여, 트리에칠암모니움형의 수지를 통과시키는 것에 의해 하나의 공정으로 변환을 시행하는 것도 가능하다.Examples of the organic amine salts include N-methylpyrrolidine, N-methylpiperidine, and N- in addition to salts of aliphatic amines such as triethylamine, trimethylamine, and triethanolamine. Salts of alicyclic or aromatic amines such as methylmorpholine and dimethylaminopyridine, and quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium chloride. The conversion from the sodium salt of the polysaccharide derivative to the organic amine salt can be carried out using an ion exchange resin or the like. For example, the sodium salt of carboxymethyldextran polyalcohol is dissolved in water, injected into a column filled with Bio-Rad AG50W-X2 (200-400 mesh, H + type) resin and filled with water. After eluting, organic amines, such as triethylamine, can be added and lyophilized. In addition, the sodium salt of carboxymethyldextran polyalcohol is dissolved in water, and the triethylammonium-type resin can be passed through to convert it into one step.

의약화합물 자체와 카르복시메칠덱스트란폴리알콜의 카르복실기와의 결합, 또는 의약화합물을 결합시킨 스페이서와 카르복시메칠덱스트란폴리알콜의 카르복실기와의 결합은, 일반적으로는, 의약화합물이 가지는 반응성 아미노기 또는 스페이서의 N말단 아미노기와 카르복시메칠덱스트란폴리알콜의 카르복실기를 산아미드 결합시키면 좋다. 단, 의약화합물 또는 스페이서와 카르복시메칠덱스트란폴리알콜의 카르복실기와의 결합은, 상기의 것에 한정되는 것이 아니라, 다른 화학 결합이나 1 또는 2이상의 스페이서를 이용한 결합이어도 좋다. 예를 들어, 스페이서의 C말단 카르복실기 또는 의약화합물의 카르복실기와 카르복시메칠덱스트란폴리알콜의 카르복실기에 의한 산무수물을 형성시켜도 좋고, 또는, 에칠렌디아민 등의 디아민화합물을 스페이서로서 사용하여 각각의 카르복실기를 디아민의 각 아미노기에 산아미드 결합시켜도 좋다.Coupling of the pharmaceutical compound itself and the carboxyl group of the carboxymethyldextran polyalcohol or the spacer of which the pharmaceutical compound is bound to the carboxyl group of the carboxymethyldextran polyalcohol generally refers to the reactive amino group or spacer of the pharmaceutical compound. The N-terminal amino group and the carboxyl group of the carboxymethyldextran polyalcohol may be combined with an acid amide. However, the bond between the pharmaceutical compound or the spacer and the carboxyl group of the carboxymethyldextran polyalcohol is not limited to the above, but may be a bond using another chemical bond or one or more spacers. For example, an acid anhydride may be formed by the C-terminal carboxyl group of the spacer or the carboxyl group of the pharmaceutical compound or the carboxyl group of the carboxymethyldextran polyalcohol, or each carboxyl group may be formed by using a diamine compound such as ethylenediamine as a spacer. You may couple | bond an acid amide to each amino group of.

의약화합물이 가지는 반응성 아미노기 또는 스페이서의 N말단 아미노기와 카르복시메칠덱스트란폴리알콜의 카르복실기를 산아미드 결합에 의해 결합시킨 경우에는, 펩타이드쇄의 합성에 이용하는 통상의 탈수축합제, 예를 들어, N,N'-디시클로헥실카르보디이미드(DCC)와 같은 N,N'-디시클로알킬카르보디이미드(dicycloalkylcarbodiimide)류, 1-에칠-3-(3-디메칠아미노프로필)카르보디이미드(EDAPC) 등의 카르보디이미드유도체, 1-히드록시벤조트리아졸(HOBT)과 같은 벤조트리아졸(benzotriazole) 유도체 외에, 1-에톡시카르보닐(ethoxycarbonyl)-2-에톡시-1,2-디히드록시퀴놀린(EEDQ) 등을 이용할 수 있다. 또한, 활성 에스테르법이나 산핼라이드법(acid halide) 등에 의해 반응을 시행해도 좋다.When the N-terminal amino group of the pharmaceutical compound or the N-terminal amino group of the spacer and the carboxyl group of the carboxymethyldextran polyalcohol are bonded by an acid amide bond, a common dehydrating condensing agent used for synthesis of the peptide chain, for example, N, N, N'-dicycloalkylcarbodiimides such as N'-dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDAPC) In addition to carbodiimide derivatives, such as benzotriazole derivatives such as 1-hydroxybenzotriazole (HOBT) and the like, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxy Quinoline (EEDQ) and the like can be used. The reaction may be carried out by an active ester method, an acid halide method or the like.

반응은 실질적으로 물을 함유하지 않는 유기용매이고, 반응종(카르복시메칠덱스트란폴리알콜의 유기 아민염 및 의약화합물 또는 의약화합물을 결합시킨 스페이서)를 용해할 수 있는 것이라면 어떠한 것을 사용해도 좋다. 예를 들어, N,N-디메칠포름아미드, 디메칠술폭시드, 아세토아미드, N-메칠피롤리돈(pyrrolidone), 술포란(sulfolane) 등을 사용하는 것이 적절하다. 의약화합물 또는 의약화합물을 결합시킨 스페이서를 반응시키는 것에 의해 카르복시메칠덱스트란폴리알콜에 도입시킨 의약화합물 잔기의 양은 특히 한정되어 있지 않지만, 의약화합물 잔기의 물리화학적 성질, 및 약물복합체의 체내동태, 약효, 및 독성 등의 관점에서 적절히 선택하여야 한다. 일반적으로는, 0.1 내지 30 중량%, 바람직하게는 1 내지 15 중량% 정도의 범위를 선택할 수 있다. 카르복시메칠덱스트란폴리알콜에 도입시킨 의약화합물 잔기의 비율은, 예를 들어, 흡광도 분석 등에 의해 용이하게 결정하는 것이 가능하다.The reaction is an organic solvent substantially free of water, and any reaction may be used as long as it can dissolve the reactive species (organic amine salt of carboxymethyldextran polyalcohol and a pharmaceutical compound or a spacer incorporating the pharmaceutical compound). For example, it is suitable to use N, N-dimethylformamide, dimethylsulfoxide, acetoamide, N-methylpyrrolidone, sulfolane and the like. The amount of the drug compound residue introduced into the carboxymethyldextran polyalcohol by reacting the drug compound or the spacer bound to the drug compound is not particularly limited, but the physicochemical properties of the drug compound residue and the body kinetics and efficacy of the drug complex Selection should be made in terms of toxicity, toxicity and the like. Generally, a range of about 0.1 to 30% by weight, preferably about 1 to 15% by weight can be selected. The ratio of the pharmaceutical compound residues introduced into the carboxymethyldextran polyalcohol can be easily determined, for example, by absorbance analysis.

본 발명의 제조방법의 바람직한 태양으로는, 특허공개 평6-87746호 공보의 청구항 2에 기재된 항종양제인 의약화합물을 결합한 올리고펩타이드를 카르복시메칠덱스트란폴리알콜에 도입하는 방법을 이하의 개략도에 나타내지만, 본 발명의 방법은 이 개략도에 나타낸 것에 한정되는 것은 아니다. 하기 개략도에서 의약화합물 잔기의 도입량은, 예를 들어, 1 내지 15 중량%, 바람직하게는 4 내지 8 중량%정도이다. 또는, 하기 개략도 중에는, 폴리알콜류의 구성단위 중에 1개 또는 2개의 카르복시메칠기가 도입된 구성단위만을 예시적으로 기재하지만, 약물복합체의 다당유도체 부분은 상기 구성단위의 반복에 의해 구성되는 것은 아니라는 것을 이해하여야 한다.As a preferable aspect of the manufacturing method of this invention, the method of introduce | transducing the oligopeptide which combined the pharmaceutical compound which is the anti-tumor agent of Claim 2 of Unexamined-Japanese-Patent No. 6-87746 to carboxymethyldextran polyalcohol is shown in the following schematic diagram. However, the method of the present invention is not limited to that shown in this schematic. The introduction amount of the pharmaceutical compound residue in the schematic diagram below is, for example, about 1 to 15% by weight, preferably about 4 to 8% by weight. Or, in the following schematic diagram, only the structural unit into which one or two carboxymethyl groups are introduced in the structural units of polyalcohols is exemplarily described, but the polysaccharide derivative portion of the drug complex is not constituted by repetition of the structural unit. It must be understood.

상기 개략도의 의약화합물은, 산성수성매체 내(예를 들어 pH 3 정도)에서는 락톤환을 형성한 화합물(폐환체)로 평형이 기울고, 한편, 염기성수성매체 내(예를 들어 pH 10 정도)에서는 락톤환이 개환된 화합물(개환체)로 평형이 기우는 것으로 알려져 있지만, 이와 같은 폐환체 및 개환체에 대응하는 잔기를 도입한 약물복합체는 동등의 항종양효과를 가지고 있다. 그러나, 카르복시메칠덱스트란폴리알콜과 상기 의약화합물을 결합시킨 스페이서(예를 들어 올리고펩타이드ㆍ스페이서)를 반응시킨 경우에 개환형의 반응종이 반응계에 존재하면, 락톤환에서 유래하는 카르복실기와 스페이서 유래의 아미노기와의 사이에서 축합반응이 진행되고, 현저하게 반응수율이 저하하는 것 뿐만 아니라, 목적으로 하는 균일한 약물복합체가 얻어지지 않는 경우가 있다. 이와 같은 부반응은, 평형이 달성되지 않는 비수용성계에서 반응종으로서 폐환체을 이용함으로써 회피할 수 있다. 따라서, 본 발명의 방법은 상기의 의약화합물을 함유하는 약물복합체의 제조에 특히 적절하다.The pharmaceutical compound of the above schematic is in equilibrium with a compound (lung ring) which forms a lactone ring in an acidic aqueous medium (for example, pH 3), while in a basic aqueous medium (for example, pH 10). It is known that the equilibrium is inclined to the compound (opening ring) in which the lactone ring is ring-opened, but the drug complex in which such a pulmonary ring and a residue corresponding to the ring opening are introduced has the same anti-tumor effect. However, when the carboxymethyldextran polyalcohol and the spacer (e.g., oligopeptide spacer) in which the pharmaceutical compound is bound are reacted and the ring-opening reactive species is present in the reaction system, the carboxyl group derived from the lactone ring and the spacer-derived species are present. The condensation reaction proceeds between the amino groups, the reaction yield notably decreases, and the desired uniform drug complex may not be obtained. Such side reactions can be avoided by using cyclization as a reactive species in a non-aqueous system where equilibrium is not achieved. Therefore, the method of the present invention is particularly suitable for the preparation of drug complexes containing the above pharmaceutical compounds.

본 발명의 방법에 의해 제조된 상기의 약물복합체는, 의약화합물의 잔기의 종류(예를 들어, 항종양제 또는 항염증제 등의 의약화합물의 잔기)에 따라서, 원하는 의약활성을 종양부위나 염증부위 등의 국소에서 특이적으로 발현시킬 수가 있고, 또한, 의약화합물 자체가 가지는 독성을 감소시킬 수 있다는 특징을 가진다. 예를 들어, 다당유도체 부분인 카르복시메칠덱스트란폴리알콜은 약물송달의 담체로서 극히 우수한 혈중체류성 및 종양ㆍ염증부위로의 집적성을 가지고 있고, 상기의 약물복합체는 종양성택성 및 염증부위 선택성을 가지고 있다. 또한, 종양부위나 염증부위에서는 프로테아제(펩티다제)가 발현되고 있다고 여겨지므로, 올리고펩타이드로 된 스페이서를 가지는 약물복합체는 스페이서 부분으로 용이하게 가수분해되어, 유리된 의약화합물이 약효를 발휘한다.The drug complex prepared by the method of the present invention may have a desired pharmacological activity depending on the kind of residue of the pharmaceutical compound (for example, the residue of the pharmaceutical compound such as an anti-tumor agent or an anti-inflammatory agent) and the like. It can be specifically expressed locally, and can also reduce the toxicity of the pharmaceutical compound itself. For example, the polysaccharide derivative, carboxymethyldextran polyalcohol, has excellent blood retention and integration to tumor and inflammation sites as a carrier for drug delivery, and the drug complex has tumor selectivity and inflammation site selectivity. Have In addition, since it is considered that the protease (peptidase) is expressed in the tumor site or the inflammation site, the drug complex having a spacer made of oligopeptide is easily hydrolyzed into the spacer moiety, and the free pharmaceutical compound exhibits efficacy.

본 발명의 방법에 의해 제조된 약물복합체를 함유하는 의약은, 통상, 동결건조품 등의 형태로 바이알(vial) 등에 충진할 수 있고, 사용시 즉시 용해 가능한 주사용 또는 점적용 제제 등의 비경구 투여용 제제로서 임상적으로 제공되지만, 이와 같은 의약의 제제형태는 상기 태양에 한정되는 것은 아니다. 상기 제제의 제조에는, 예를 들어, 용해보조제, pH 조절제, 안정화제 등 당업계에서 이용가능한 제제용 첨가물을 이용하여 제조된 의약조성물을 이용할 수 있다. 상기 의약의 투여량은 특별히 한정되지 않지만, 통상은, 의약화합물 잔기를 구성하는 의약화합물의 투여량, 약물복합체 내에 도입된 의약화합물의 잔기의 량, 환자의 상태나 질환의 종류 등을 감안하여 결정하여야만 한다. 예를 들어, 특허공개 평6-87746호 공보의 청구항 2에 기재되어 있는 항종양제의 잔기가 약 6중량%정도의 비율로 도입된 약물복합체를 비경구 투여하는 경우에는, 일반적으로 하루에 체표면적 1㎡당 약 1 내지 500 ㎎ 정도, 바람직하게는 약 10 내지 100 ㎎의 범위로 일회 투여하고, 3 내지 4주 마다 반복하는 것이 바람직하다.Pharmaceuticals containing the drug complex prepared by the method of the present invention are usually filled in vials or the like in the form of lyophilized products, for parenteral administration such as injectable or injectable preparations that can be dissolved immediately upon use. Although provided clinically as an agent, the form of such a medicament is not limited to this embodiment. For the preparation of the preparation, for example, a pharmaceutical composition prepared using additives for preparations available in the art such as dissolution aids, pH adjusting agents, stabilizers, etc. may be used. The dosage of the drug is not particularly limited, but is usually determined in consideration of the dosage of the pharmaceutical compound constituting the pharmaceutical compound residue, the amount of the residue of the pharmaceutical compound introduced into the drug complex, the condition of the patient or the type of disease, etc. You must do it. For example, when parenterally administering a drug complex in which the antitumor agent residues described in claim 2 of Japanese Patent Application Laid-Open No. 6-87746 are introduced at a rate of about 6% by weight, it is generally a day. It is preferable to administer once in a range of about 1 to 500 mg, preferably about 10 to 100 mg per 1 m 2 of surface area, and repeat every 3 to 4 weeks.

이하, 본발명을 실시예에 의해 보다 구체적으로 설명하지만, 본 발명의 범위는 하기의 실시예로 한정되는 것은 아니다. 실시예 중,「A-NH-」는, 특허공개 평6-87746호 공보의 청구항 2에 기재된 의약화합물(실시예 중에서「DX-8951」라고 하는 경우가 있다) 등과 같은 락톤환을 가지는 의약화합물에서, 락톤환이 폐환한 의약화합물을 A-NH2로 나타낸 경우의 의약화합물 잔기를 나타내고, 그 하나의 예로, 상기의 개략도 중에서 A-NH-로 나타낸 기(락톤환을 형성한 것)이다. 또한, A'-NH-는 A-NH-로 표시되는 의약화합물 잔기 중의 락톤환이 폐환형 혹은 개환형 중 어느 하나 또는 이들의 혼합형태임을 나타낸다.Hereinafter, although an Example demonstrates this invention more concretely, the scope of the present invention is not limited to the following Example. In Examples, "A-NH-" is a pharmaceutical compound having a lactone ring, such as the pharmaceutical compound described in claim 2 of the Japanese Patent Application Laid-open No. Hei 6-87746 (may be referred to as "DX-8951" in Examples). Denotes a drug compound residue when the drug compound closed by the lactone ring is represented by A-NH 2 , and as one example thereof, a group represented by A-NH- in the above schematic diagram (which forms a lactone ring). In addition, A'-NH- shows that the lactone ring in the chemical compound residue represented by A-NH- is either a closed ring type or a ring-opened type, or a mixed form thereof.

또한, 실시예 중, 특히 언급하지 않은 경우에는, 카르복시메칠덱스트란폴리알콜의 카르복시메칠화 정도(구성 당 잔기 당의 카르복시메칠기의 치환도)는, 카르복시메칠덱스트란폴리알콜의 나트륨염을 유리산형으로 변환한 후, 0.1N 수산화 나트륨 수용액으로 용해하여 0.1N 염산으로 적정하는 것에 의해 구하였다. 카르복시메칠덱스트란폴리알콜의 나트륨염의 수용액을 Bio-Rad AG50W-x 2(H+ 형) 칼럼에 주입하고, 통과액을 동결건조하여 시료로서 이용하였다. 이 시료를 소정 과잉량의 0.1N 수산화 나트륨 수용액에 용해하고, 페놀프탈레인을 지시약으로서 0.1N 염산으로 적정하였다. 시료의 채취량을 s(㎎), 0.1N 수산화 나트륨 수용액의 소정과잉량을 a(㎖), 0.1N 염산의 적정량을 b(㎖)로 하고, 카르복시메칠화 정도를 13.4(a-b)/[s-5.8(a-b)]의 식에 의해 구하였다. 또한, 약물의 도입량(중량%)는, 약물의 흡수 특성를 이용한 흡광도분석(362㎚ 부근)에서 구했다. 아울러, 겔여과법은 다음의 조건에 따라 시행하였다(칼럼: TSK gel G4000 PWXL, 용리액: 0.1M NaCl, 유속: 0.8 ㎖/min, 칼럼온도: 40℃).In addition, in the Example, unless otherwise mentioned, the degree of carboxymethylation of the carboxymethyldextran polyalcohol (the degree of substitution of the carboxymethyl group per constituent sugar residue) is a sodium salt of the carboxymethyldextran polyalcohol free acid type. After conversion to, the solution was dissolved in 0.1 N aqueous sodium hydroxide solution and titrated with 0.1 N hydrochloric acid. An aqueous solution of the sodium salt of carboxymethyldextran polyalcohol was injected into a Bio-Rad AG50W-x 2 (H + type) column, and the passage solution was lyophilized and used as a sample. This sample was dissolved in a predetermined excess amount of 0.1N sodium hydroxide aqueous solution, and phenolphthalein was titrated with 0.1N hydrochloric acid as an indicator. The sample was taken as s (mg), the predetermined excess amount of 0.1N sodium hydroxide aqueous solution was a (ml), and the appropriate amount of 0.1N hydrochloric acid was b (ml), and the degree of carboxymethylation was 13.4 (ab) / [s- 5.8 (ab)]. In addition, the introduction amount (weight%) of a drug was calculated | required by the absorbance analysis (near 362 nm) using the absorption characteristic of a drug. In addition, gel filtration was carried out according to the following conditions (column: TSK gel G4000 PW XL , eluent: 0.1M NaCl, flow rate: 0.8 ml / min, column temperature: 40 ℃).

예1: 3'-N-(Boc-Gly-Gly-Phe-Gly)-NH-A(A-NH 2 =DX-8951) Example 1: 3'-N- (Boc-Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951)

Boc-Gly-Gly-Phe-Gly(600㎎) 및 N-히드록시숙신이미드(hydroxysuccinimide)(160㎎)을 N,N-디메칠포름아미드(dimethylformamide)(20㎖)에 용해하고, 4℃로 냉각한 후, N,N'-디시클로헥실카르보디이미드(280㎎)을 첨가하였다. 이 용액에 특허공개 평6-87746호 공보의 청구항 2에 기재된 의약화합물의 메탄술폰산염(600 ㎎: 상기 공보의 실시예 50에 기재된 화합물)과 트리에칠아민(0.16㎖)을 용해한 N,N-디메칠포름아미드(30㎖) 용액을 가하여, 차광하에서 실온으로 16시간 교반하면서 반응시켰다. 이 반응액을 감압하에서 건고하고, 잔사를 실리카겔칼럼크로마토그래피(chromatography)(용출액: 0.5% 초산을 함유하는 디클로로메탄(dichloromethane) : 메탄올 = 10:1 용액)으로 정제하여 예 1의 화합물(1.0 g)을 얻었다.Boc-Gly-Gly-Phe-Gly (600 mg) and N-hydroxysuccinimide (160 mg) were dissolved in N, N-dimethylformamide (20 mL) and 4 ° C. After cooling with N, N'-dicyclohexylcarbodiimide (280 mg) was added. N, N in which methane sulfonate (600 mg: the compound described in Example 50 of the publication) and triethylamine (0.16 ml) of the pharmaceutical compound according to claim 2 of Patent Publication No. Hei 6-87746 are dissolved in this solution. A dimethylformamide (30 mL) solution was added, and the mixture was reacted with stirring at room temperature under light shielding for 16 hours. The reaction solution was dried under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: dichloromethane containing 10% acetic acid: methanol = 10: 1 solution) to obtain the compound of Example 1 (1.0 g). )

1H-NMR(DMSO-d6) δ: 8.40(d, 1H, J= 8.3 Hz), 8.10-8.17(m, 2H), 7.91-8.01(m, 1H), 7.78(d, 1H, J= 10.75 Hz), 7.32(s, 1H), 6.94-6.96(m, 1H), 6.50(s, 1H), 5.57(t, 1H, J= 4.5 Hz), 5.43(s, 2H), 5.23(s, 2H), 3.77(dd, 2H, J= 5.85 Hz, J= 8.80 Hz), 3.70(d, 2H, J= 4.40 Hz), 3.65(d, 2H, J= 5.35 Hz), 3.56(d, 2H, J= 5.85 Hz), 3.15-3.25(m, 2H), 2.40(s, 3H), 2.05-2.25(m, 1H), 1.86(m, 2H), 1.35(s, 9H), 0.88(t, 3H, J= 7.35). 1 H-NMR (DMSO-d 6 ) δ : 8.40 (d, 1H, J = 8.3 Hz), 8.10-8.17 (m, 2H), 7.91-8.01 (m, 1H), 7.78 (d, 1H, J = 10.75 Hz), 7.32 (s, 1H), 6.94-6.96 (m, 1H), 6.50 (s, 1H), 5.57 (t, 1H, J = 4.5 Hz), 5.43 (s, 2H), 5.23 (s, 2H), 3.77 (dd, 2H, J = 5.85 Hz, J = 8.80 Hz), 3.70 (d, 2H, J = 4.40 Hz), 3.65 (d, 2H, J = 5.35 Hz), 3.56 (d, 2H, J = 5.85 Hz), 3.15-3.25 (m, 2H), 2.40 (s, 3H), 2.05-2.25 (m, 1H), 1.86 (m, 2H), 1.35 (s, 9H), 0.88 (t, 3H , J = 7.35).

Mass(FAB); m/e 854(M+1)Mass (FAB); m / e 854 (M + 1)

예2 : 3'-N-(Boc-Gly-Gly-Gly-Phe)-NH-A(A-NH 2 =DX-8951)의 합성 Example 2: Synthesis of 3'-N- (Boc-Gly-Gly-Gly-Phe) -NH-A (A-NH 2 = DX-8951)

Boc-Gly-Gly-Gly-Phe(600㎎) 및 N-히드록시숙신이미드(160㎎)을 N,N-디메칠포름아미드(20㎖)에 용해하고, 4℃로 냉각한 후, N,N'-디시클로헥실카르보디이미드(280㎎)을 첨가하였다. 이 용액에 DX-8951의 메탄술폰산염(600㎎)과 트리에칠아민(0.16㎖)을 용해한 N,N-디메칠포름아미드(30㎖) 용액을 가하고, 차광하에서 실온으로 16시간 교반하면서 반응시켰다. 이 반응액을 감압 건고하고, 잔사를 실리카겔칼럼크로마토그래피(용출액: 0.5% 초산을 함유하는 디클로로메탄 : 메탄올 = 10:1 용액)으로 정제하여 예 2의 화합물(700 ㎎)을 얻었다.Boc-Gly-Gly-Gly-Phe (600 mg) and N-hydroxysuccinimide (160 mg) were dissolved in N, N-dimethylformamide (20 mL) and cooled to 4 ° C., followed by N , N'-dicyclohexylcarbodiimide (280 mg) was added. To this solution was added N, N-dimethylformamide (30 mL) solution of DX-8951 methanesulfonate (600 mg) and triethylamine (0.16 mL), which was then reacted under light shielding at room temperature for 16 hours. I was. The reaction solution was dried under reduced pressure, and the residue was purified by silica gel column chromatography (eluate: dichloromethane: methanol = 10: 1 solution containing 0.5% acetic acid) to obtain the compound of Example 2 (700 mg).

1H-NMR(DMSO-d6) δ:8.57(d, 1H, J= 7.8 Hz), 8.19(d, 1H), 8.05-8.07(m, 2H), 7.79(d, 1H, J= 11.2 Hz), 7.32(s, 1H), 7.10(d, 2H, J= 7.8 Hz), 6.93-7.03(m, 4H), 6.51(s, 1H), 5.52-5.55(m, 1H), 5.44(s, 2H), 5.18(d, 1H, J=18.5 Hz), 4.84(d, 1H, J= 18.5 Hz), 4.57-4.59(m, 1H), 3.57-3.71(m, 6H), 3.15-3.25(m, 2H), 3.00-3.02(m, 1H), 2.80-2.90(m, 1H), 2.40(s, 3H), 2.05-2.25(m, 1H), 1.86(m, 2H), 1.35(s, 9H), 0.88(t, 3H, J= 7.35 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.57 (d, 1H, J = 7.8 Hz), 8.19 (d, 1H), 8.05-8.07 (m, 2H), 7.79 (d, 1H, J = 11.2 Hz ), 7.32 (s, 1H), 7.10 (d, 2H, J = 7.8 Hz), 6.93-7.03 (m, 4H), 6.51 (s, 1H), 5.52-5.55 (m, 1H), 5.44 (s, 2H), 5.18 (d, 1H, J = 18.5 Hz), 4.84 (d, 1H, J = 18.5 Hz), 4.57-4.59 (m, 1H), 3.57-3.71 (m, 6H), 3.15-3.25 (m , 2H), 3.00-3.02 (m, 1H), 2.80-2.90 (m, 1H), 2.40 (s, 3H), 2.05-2.25 (m, 1H), 1.86 (m, 2H), 1.35 (s, 9H ), 0.88 (t, 3H, J = 7.35 Hz).

Mass(FAB); m/e 854(M+1)Mass (FAB); m / e 854 (M + 1)

예3 : 3'-N-(Boc-Gly-Gly-Gly-Gly)-NH-A(A-NH 2 =DX-8951)의 합성 Example 3: Synthesis of 3'-N- (Boc-Gly-Gly-Gly-Gly) -NH-A (A-NH 2 = DX-8951)

Boc-Gly-Gly-Gly-Gly(120mg) 및 N-히드록시숙신이미드(39㎎)을 N,N-디메칠포름아미드(20㎖)에 용해하고, 4℃로 냉각한 후, N,N'-디시클로헥실카르보디이미드(70㎎)을 첨가하였다. 이 용액에 DX-8951의 메탄술폰산염(150㎎)과 트리에칠아민(0.039㎖)을 용해한 N,N-디메칠포름아미드(10㎖) 용액을 가하고, 차광하에서 실온으로 16시간 교반하면서 반응시켰다. 이 반응액을 감압 건고하고, 잔사를 실리카겔칼럼크로마토그래피(용출액: 0.5% 초산을 함유하는 디클로로메탄 : 메탄올 = 10:1 용액)으로 정제하여 예 3의 화합물(100 ㎎)을 얻었다.Boc-Gly-Gly-Gly-Gly (120 mg) and N-hydroxysuccinimide (39 mg) were dissolved in N, N-dimethylformamide (20 mL) and cooled to 4 ° C., followed by N, N'-dicyclohexylcarbodiimide (70 mg) was added. N, N-dimethylformamide solution (10 ml) in which DX-8951 methanesulfonic acid salt (150 mg) and triethylamine (0.039 ml) were dissolved was added to the solution, followed by reaction for 16 hours at room temperature under light shielding. I was. The reaction solution was dried under reduced pressure, and the residue was purified by silica gel column chromatography (eluate: dichloromethane: methanol = 10: 1 solution containing 0.5% acetic acid) to obtain the compound of Example 3 (100 mg).

1H-NMR(DMSO-d6) δ:8.40(d, 1H, J= 8.3 Hz), 8.10-8.17(m, 2H), 7.91-8.01(m, 1H), 7.78(d, 1H, J= 10.75 Hz), 7.32(s, 1H), 6.94-6.96(m, 1H), 6.50(s, 1H), 5.57(t, 1H, J= 4.5 Hz), 5.43(s, 2H), 5.23(s, 2H), 3.77(dd, 2H, J= 5.85 Hz, J= 8.80 hz), 3.70(d, 2H, J= 4.40 Hz), 3.65(d, 2H, J= 5.35 Hz), 3.56(d, 2H, J= 5.85 Hz), 3.15-3.25(m, 2H), 2.40(s, 3H), 2.05-2.25(m, 1H), 1.86(m, 2H), 1.35(s, 9H), 0.88(t, 3H, J= 7.35 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.40 (d, 1H, J = 8.3 Hz), 8.10-8.17 (m, 2H), 7.91-8.01 (m, 1H), 7.78 (d, 1H, J = 10.75 Hz), 7.32 (s, 1H), 6.94-6.96 (m, 1H), 6.50 (s, 1H), 5.57 (t, 1H, J = 4.5 Hz), 5.43 (s, 2H), 5.23 (s, 2H), 3.77 (dd, 2H, J = 5.85 Hz, J = 8.80 hz), 3.70 (d, 2H, J = 4.40 Hz), 3.65 (d, 2H, J = 5.35 Hz), 3.56 (d, 2H, J = 5.85 Hz), 3.15-3.25 (m, 2H), 2.40 (s, 3H), 2.05-2.25 (m, 1H), 1.86 (m, 2H), 1.35 (s, 9H), 0.88 (t, 3H , J = 7.35 Hz).

Mass(FAB); m/e 764(M+1)Mass (FAB); m / e 764 (M + 1)

예 4 : 3'-N-(Gly-Gly-Gly-Gly)-NH-A(A-NH 2  =DX-8951)트리플루오로초산염의 합성 Example 4: Synthesis of 3'-N- (Gly-Gly-Gly-Gly) -NH-A (A-NH 2 = DX-8951) trifluoroacetate

3'-N-(Boc-Gly-Gly-Gly-Gly)-NH-A(A-NH2 =DX-8951)(79 ㎎)을 트리플루오로 초산(3 ㎖)에 녹이고, 1시간 방치하였다. 용매를 제거하고, 메탄올(30 ㎖)을 가하여 함께 끓이는 과정을 2회, 에탄올(30 ㎖)을 가하여 함께 끓이는 과정을 2회 시행하였다. 잔사를 에테르로 세척하여, 예 4의 화합물(80 ㎎)을 얻었다.3'-N- (Boc-Gly-Gly-Gly-Gly) -NH-A (A-NH 2 = DX-8951) (79 mg) was dissolved in trifluoroacetic acid (3 mL) and left for 1 hour. . The solvent was removed, and methanol (30 mL) was added twice to boil together, and ethanol (30 mL) was added twice to boil together. The residue was washed with ether to give the compound of Example 4 (80 mg).

1H-NMR(DMSO-d6) δ: 8.59-8.61(m, 1H), 8.50(d, 1H, J= 8.3 Hz), 8.21-8.27(m, 2H), 7.91-8.01(br, 3H), 7.81(d, 1H, J= 11.2 Hz), 7.32(s, 1H), 6.50-6.52(br, 1H), 5.57-5.59(m, 1H), 5.43(s, 2H), 5.23(s, 2H), 3.80-3.82(m, 3H), 3.70-3.75(m, 3H), 3.15-3.25(m, 2H), 2.41(s, 3H), 2.05-2.25 (m, 1H), 1.86-1.88(m, 2H), 0.88 (t, 3H, J= 7.35 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.59-8.61 (m, 1H), 8.50 (d, 1H, J = 8.3 Hz), 8.21-8.27 (m, 2H), 7.91-8.01 (br, 3H) , 7.81 (d, 1H, J = 11.2 Hz), 7.32 (s, 1H), 6.50-6.52 (br, 1H), 5.57-5.59 (m, 1H), 5.43 (s, 2H), 5.23 (s, 2H ), 3.80-3.82 (m, 3H), 3.70-3.75 (m, 3H), 3.15-3.25 (m, 2H), 2.41 (s, 3H), 2.05-2.25 (m, 1H), 1.86-1.88 (m) , 2H), 0.88 (t, 3H, J = 7.35 Hz).

예5 : 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염의 합성 Example 5 Synthesis of Triethylammonium Salt of Carboxymethyldextran Polyalcohol

덱스트란T2000(10 g, Pharmacia사 제품, 평균 분자량 2,000,000)을 0.1M 초산완충액(pH 5.5, 1,000 ㎖)에 용해하고, 과요오드산나트륨(33.0 g)의 수용액(1000㎖)을 부가하였다. 빛을 차단하면서, 4℃에서 10일간 교반한 후, 에칠렌글리콜(7.0 ㎖)을 가하고, 하룻밤 교반하였다. 반응액을 빙냉하에서 8 M 수산화나트륨 수용액을 이용하여 pH를 7.5로 조정하였다. 수소화붕소나트륨(14 g)을 부가하여 용해한 후, 실온으로 하룻밤 교반하였다. 반응액을 빙냉하고, 초산으로 pH 5.5로 조절하여 4℃에서 1시간 교반한 후, 빙냉하에서 8M 수산화나트륨 수용액을 이용하여 pH를 7.5로 조절하였다. 얻어진 수용액을 바이오맥스-30막(Millipore사 제품)을 이용한 한외여과법으로 저분자 분획을 제거하였다. 고분자 분획을 동결건조하여, 덱스트란폴리알콜을 얻었다. 이 덱스트란폴리알콜을 pH 3.0에서 1시간 처리한 후, 바이오맥스-50막으로 저분자 분획을 제거한 다음, 고분자 분획을 바이오맥스-100막으로 제거하고, 동결건조하여 정제 덱스트란폴리알콜(2.0 g)을 얻었다. 이 물질의 분자량(겔여과법, 덱스트란 표준)은 220 K이었다.Dextran T2000 (10 g, product of Pharmacia, average molecular weight 2,000,000) was dissolved in 0.1 M acetic acid buffer solution (pH 5.5, 1,000 mL), and an aqueous solution of sodium periodate (33.0 g) (1000 mL) was added. After stirring for 10 days at 4 ° C. while blocking light, ethylene glycol (7.0 ml) was added and the mixture was stirred overnight. The pH of the reaction solution was adjusted to 7.5 using 8 M aqueous sodium hydroxide solution under ice-cooling. Sodium borohydride (14 g) was added and dissolved, followed by stirring overnight to room temperature. The reaction solution was ice-cooled, adjusted to pH 5.5 with acetic acid and stirred at 4 ° C. for 1 hour, and then adjusted to pH 7.5 with 8 M aqueous sodium hydroxide solution under ice-cooling. The low molecular weight fraction was removed by ultrafiltration using the obtained aqueous solution of Biomax-30 membrane (Millipore Co., Ltd.). The polymer fraction was lyophilized to give dextran polyalcohol. After treating this dextran polyalcohol at pH 3.0 for 1 hour, the low molecular weight fraction was removed with a Biomax-50 membrane, the polymer fraction was removed with a Biomax-100 membrane, and lyophilized to purify dextran polyalcohol (2.0 g ) The molecular weight of this substance was 220 K (gel filtration, dextran standard).

이 정제 덱스트란폴리알콜(1.8 g)을, 수산화나트륨(10.5 g)을 물(45㎖)에 녹여서 얻은 수용액에 가하여, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로초산(15 g)을 가하여 용해시킨 후, 실온으로 20시간 반응시켰다. 이 반응액을 초산으로 pH를 8로 조절한 후, 바이오맥스-10막을 이용한 한외여과법으로 저분자 분획을 제거하였다. 고분자 분획을 동결건조하고, 카르복시메칠덱스트란폴리알콜의 나트륨염(1.8 g)을 얻었다. 이 물질의 분자량(겔여과, 덱스트란 표준)은 330K이고, 카르복시메칠화 정도는 0.8 이었다. This purified dextran polyalcohol (1.8 g) was added to an aqueous solution obtained by dissolving sodium hydroxide (10.5 g) in water (45 mL) and dissolved at room temperature. Monochloroacetic acid (15 g) was added to this solution under ice-cooling to dissolve it, and the mixture was allowed to react at room temperature for 20 hours. The reaction solution was adjusted to pH 8 with acetic acid and the low molecular weight fraction was removed by ultrafiltration using a Biomax-10 membrane. The polymer fraction was lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (1.8 g). The molecular weight of this substance was 330K (gel filtration, dextran standard) and the degree of carboxymethylation was 0.8.

상기의 카르복시메칠덱스트란폴리알콜의 나트륨염(300 ㎎)을 물에 용해하고, Bio-Rad AG50W-X2(200 내지 400 메쉬, H + 형) 칼럼(1.5 X 8.6 ㎝)에 주입하여 물로 용출하였다. 이 용출액에 트리에칠아민(0.5 ㎖)를 가한 후, 동결건조하여 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(380 ㎎)을 얻었다. 카르복시메칠덱스트란폴리알콜의 나트륨염(각 300 ㎎)을 상기와 같은 칼럼에 처리하고, 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(380㎎, 400 ㎎)을 얻었다.The sodium salt of carboxymethyldextran polyalcohol (300 mg) was dissolved in water, injected into a Bio-Rad AG50W-X2 (200-400 mesh, H + type) column (1.5 X 8.6 cm) and eluted with water. . Triethylamine (0.5 ml) was added to this eluate, and then lyophilized to obtain triethylammonium salt of carboxymethyldextran polyalcohol (380 mg). Sodium salts of carboxymethyldextran polyalcohols (300 mg each) were treated in the same column as above to obtain triethylammonium salts of carboxymethyldextran polyalcohols (380 mg, 400 mg).

예6 : 카르복시메칠덱스트란폴리알콜의 나트륨염의 합성 Example 6 Synthesis of Sodium Salt of Carboxymethyldextran Polyalcohols

상기예 5에서 얻은 카르복시메칠덱스트란폴리알콜의 나트륨염(0.15 g)을, 수산화 나트륨(1.05 g)을 물(4.5 ml)에 녹여 얻어진 수용액에 가하고, 실온에서 용해시켰다. 이 용액에 빙냉하에서 모노클로로 초산(1.5 g)을 가하여 용해시킨 후, 실온에서 18시간 반응시켰다. 이 반응액을 초산으로 pH를 8로 조절하고, 90㎖ 메탄올에 떨어뜨린 후, 3M 염화 나트륨 수용액(0.15 ㎖)를 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 메탄올로 세척한 후, 물(5 ml)에 용해하고, 3 M 염화나트륨 수용액(0.15 ㎖)를 가하였다. 이 수용액을 밀리포아필터(0.45 ㎛m)로 여과하고, 여과액을 35 ㎖의 에탄올에 적하하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 에탄올로 세척한 후, 물에 용해하고, 투석막(Spectrapore 1, 한외분자량 6,000 내지 8,000)을 이용하여, 정제수에 대하여 투석하였다. 투석내액을 밀리포아필터(0.22 ㎛)로 여과한 후에 동결건조하여 카르복시메칠덱스트란폴리알콜의 나트륨염(0.18 g)을 얻었다. 이 물질의 당잔기 당의 카르복시메칠화 정도(알카리 적정법)는 1.2이었다.The sodium salt of carboxymethyldextran polyalcohol obtained in Example 5 (0.15 g) was added to an aqueous solution obtained by dissolving sodium hydroxide (1.05 g) in water (4.5 ml), and dissolved at room temperature. Monochloroacetic acid (1.5 g) was added to this solution under ice-cooling, and it was made to melt | dissolve, and it reacted at room temperature for 18 hours. The reaction solution was adjusted to pH 8 with acetic acid, dropped into 90 ml methanol, 3M aqueous sodium chloride solution (0.15 ml) was added, and the precipitate precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was washed with methanol, then dissolved in water (5 ml) and 3M aqueous sodium chloride solution (0.15 ml) was added. This aqueous solution was filtered through a Millipore filter (0.45 µm), the filtrate was added dropwise to 35 ml of ethanol, and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). The precipitate was washed with ethanol, dissolved in water, and dialyzed against purified water using a dialysis membrane (Spectrapore 1, ultra-molecular weight 6,000 to 8,000). The dialysis solution was filtered through a Millipore filter (0.22 μm) and then lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (0.18 g). Carboxymethylation degree (alkali titration method) of the sugar residue sugar of this substance was 1.2.

예 7 : 카르복시메칠덱스트란폴리알콜의 나트륨염의 합성 Example 7: Synthesis of Sodium Salt of Carboxymethyldextran Polyalcohols

예 5에서 얻은 정제 덱스트란폴리알콜(0.2 g)을, 수산화나트륨(0.84 g)을 물(6 ㎖)에 녹여 얻어진 수용액에 가하고, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로 초산(1.2 g)을 가하여 용해시킨 후, 실온으로 18시간 반응시켰다. 이 반응액을 초산으로 pH를 8로 조절하고, 120 ㎖의 메탄올에 떨어뜨린 후, 3 M 염화 나트륨 수용액(0.2 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 메탄올로 세척한 후, 물(5 ㎖)에 용해하고, 3 M 염화나트륨 수용액(0.2 ㎖)을 부가하였다. 이 수용액을 밀리포아필터(0.45 ㎛)로 여과하고, 여과액을 35 ㎖의 에탄올에 떨어뜨리고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 에탄올로 세척한 후, 물에 용해하고, 투석막(Spectrapore 1, 한외분자량 6,000 내지 8,000)을 이용하여, 정제수에 대해 투석하였다. 투석내액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 카르복시메칠덱스트란폴리알콜의 나트륨염(0.20 g)을 얻었다. 이 물질의 당잔기 당의 카르복시메칠화 정도(알카리 적정법)은 0.4이었다.The purified dextran polyalcohol (0.2 g) obtained in Example 5 was added to an aqueous solution obtained by dissolving sodium hydroxide (0.84 g) in water (6 mL) and dissolved at room temperature. Monochloroacetic acid (1.2 g) was added to this solution under ice-cooling to dissolve it, and the mixture was allowed to react at room temperature for 18 hours. The reaction solution was adjusted to pH 8 with acetic acid, dropped into 120 ml of methanol, and then added with 3 M aqueous sodium chloride solution (0.2 ml), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). . This precipitate was washed with methanol, then dissolved in water (5 mL) and 3M aqueous sodium chloride solution (0.2 mL) was added. This aqueous solution was filtered through a Millipore filter (0.45 µm), the filtrate was dropped into 35 ml of ethanol, and the precipitate precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was washed with ethanol, dissolved in water, and dialyzed against purified water using a dialysis membrane (Spectrapore 1, ultra-molecular weight 6,000 to 8,000). The dialysis solution was filtered through a Millipore filter (0.22 μm) and then lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (0.20 g). Carboxymethylation degree (alkali titration method) of the sugar residue sugar of this substance was 0.4.

예 8 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Gly-Phe-NH-A'(A-NH 2 Example 8: Carboxymethyldextran Polyalcohol-Gly-Gly-Gly-Phe-NH-A '(A-NH 2

=DX-8951)의 합성Synthesis of = DX-8951)

예 5에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(380 ㎎, 카르복시메칠화 정도 0.8)을 N,N-디메칠포름아미드(30 ㎖)에 용해하였다. 이 용액에, 3'-N-(Gly-Gly-Gly-Phe)-NH-A(A-NH2 =DX-8951)의 트리플루오로초산염(49 ㎎)의 N,N-디메칠포름아미드(5㎖) 용액, 트리에칠아민(0.017 ㎖), 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(380 ㎎)을 순차적으로 부가해, 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액을 1M 수산화 나트륨 수용액으로 pH 10으로 조절한 후, 25 ㎖의 에탄올에 5 ㎖씩 떨어뜨렸다. 이 혼합물에 3 M 염화나트륨 수용액(1 ㎖), 디에칠에테르(5 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다.Triethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 5 (380 mg, degree of carboxymethylation 0.8) was dissolved in N, N-dimethylformamide (30 mL). In this solution, N, N-dimethylformamide of trifluoroacetate (49 mg) of 3'-N- (Gly-Gly-Gly-Phe) -NH-A (A-NH 2 = DX-8951) was added. (5 ml) A solution, triethylamine (0.017 ml), and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (380 mg) were added sequentially, while stirring to room temperature overnight. Reacted. The reaction solution was adjusted to pH 10 with 1M aqueous sodium hydroxide solution, and then dropped into 5 ml of 25 ml ethanol. To this mixture, 3M aqueous sodium chloride solution (1 ml) and diethyl ether (5 ml) were added, and the precipitate precipitate was collected by centrifugation (3500 rpm, 8 minutes).

이 침전물을 물에 용해하고, 투석막(Spetrapore 1, 한외 분자량 6,000 내지 8,000)을 이용하여 정제수에 대해 투석하고, 투석내액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하였다. 얻어진 조생성물을 물(30 ㎖)에 용해하고, 0.1 M 수산화나트륨 수용액으로 pH 9로 조절하고, 37℃로 1시간 처리하였다. 이 처리액을 상기와 동일하게 투석한 후, 투석내액을 밀리포아필터(0.22 ㎛)로 여과하고, 동결건조하여 예 8의 화합물을 289 ㎎ 얻었다. 본 화합물을 0.1 M 염화나트륨 수용액에 용해한 후, GPC(칼럼 : 토소(Tosoh) 주식회사 제품 TSK Gel PW-4000XL, 용매 : 0.1 M NaCl, 유속 : 0.8 ㎖/min)으로 분석한 결과, 및 본 화합물의 자외선 흡수 스펙트럼(0.1 M 트리스 완충액, pH 9.0, 0.25 ㎎/㎖)을 각각 도 1 및 도 2에 나타낸다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스완충액(pH 9.0) 내에서 의 362 nm 흡광도에 근거하여 양을 정한 바, 5.3%(w/w)이었다. This precipitate was dissolved in water, dialyzed against purified water using a dialysis membrane (Spetrapore 1, ultra molecular weight: 6,000 to 8,000), the dialysis solution was filtered through a Millipore filter (0.22 m), and lyophilized. The obtained crude product was dissolved in water (30 mL), adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution, and treated at 37 ° C. for 1 hour. After the treatment solution was dialyzed in the same manner as above, the dialysis solution was filtered through a Millipore filter (0.22 m) and lyophilized to give 289 mg of the compound of Example 8. The compound was dissolved in 0.1 M aqueous sodium chloride solution and analyzed by GPC (column: TSK Gel PW-4000XL manufactured by Tosoh Co., Ltd., solvent: 0.1 M NaCl, flow rate: 0.8 ml / min), and the ultraviolet ray of the compound. Absorption spectra (0.1 M Tris buffer, pH 9.0, 0.25 mg / ml) are shown in FIGS. 1 and 2, respectively. The content of the pharmaceutical compound residue of the present compound was 5.3% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M tris buffer (pH 9.0).

예 9 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Phe-Gly-NH-A'(A-NH 2 Example 9: Carboxymethyldextran Polyalcohol-Gly-Gly-Phe-Gly-NH-A '(A-NH 2

=DX-8951)합성DX-8951)

3'-N-(Boc-Gly-Gly-Phe-Gly)-NH-A(A-NH2 =DX-8951)(50 ㎎)로부터 예 4와 같은 방법으로 탈 Boc화하여 얻어진 3'-N-(Gly-Gly-Phe-Gly)-NH-A의 트리플루오로초산염을 예8과 같은 방법에 따라, 예 5에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(380 ㎎)에 도입하여 예 9의 화합물(300 ㎎)을 합성하였다. 본 화합물은 0.1 M 염화나트륨 수용액에 용해한 후, GPC(칼럼 : 토소(Tosoh) 주식회사 제품 TSK Gel PW-4000XL, 용매 : 0.1 M NaCl, 유속 : 0.8 ㎖/min)으로 분석한 결과, 및 본 화합물의 자외선 흡수 스펙트럼(0.1 M 트리스 완충액, pH 9.0, 0.19 ㎎/㎖)을 각각 도 3 및 도 4에 나타낸다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 5.3%(w/w)이었다.3'-N obtained by de-Boc formation in the same manner as in Example 4 from 3'-N- (Boc-Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) (50 mg) Trifluoroacetic acid salt of-(Gly-Gly-Phe-Gly) -NH-A was introduced into triethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 5 (380 mg) according to the same method as in Example 8. Compound (300 mg) of Example 9 was synthesized. The compound was dissolved in 0.1 M aqueous sodium chloride solution and analyzed by GPC (column: TSK Gel PW-4000XL manufactured by Tosoh Co., Ltd., solvent: 0.1 M NaCl, flow rate: 0.8 ml / min), and the ultraviolet ray of the compound. Absorption spectra (0.1 M Tris buffer, pH 9.0, 0.19 mg / ml) are shown in FIGS. 3 and 4, respectively. The content of the pharmaceutical compound residue of the compound was 5.3% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 10 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Gly-Gly-NH-A'(A-NH 2 Example 10 Carboxymethyldextran Polyalcohol-Gly-Gly-Gly-Gly-NH-A '(A-NH 2

=DX-8951)의 합성Synthesis of = DX-8951)

3'-N-(Boc-Gly-Gly-Gly-Gly)-NH-A(A-NH2 =DX-8951)(41 ㎎)으로부터 예 4와 같은 방법으로 탈 Boc화하여 얻어진 3'-N-(Gly-Gly-Gly-Gly)-NH-A의 트리플루오로초산염을 예 8과 같은 방법에 따라, 예 5에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(380 ㎎)에 도입하여 예 10의 화합물(190 ㎎)을 합성하였다. 본 화합물의 자외선 흡수 스펙트럼(0.1 M 트리스 완충액, pH 9.0, 0.34 ㎎/㎖)을 도 5에 나타낸다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 5.3%(w/w)이었다.3'-N obtained by de-Boc formation in the same manner as in Example 4 from 3'-N- (Boc-Gly-Gly-Gly-Gly) -NH-A (A-NH 2 = DX-8951) (41 mg) Trifluoroacetic acid salt of-(Gly-Gly-Gly-Gly) -NH-A was introduced into triethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 5 (380 mg) according to the same method as in Example 8. The compound of Example 10 (190 mg) was synthesized. The ultraviolet absorption spectrum (0.1 M Tris buffer, pH 9.0, 0.34 mg / ml) of this compound is shown in FIG. The content of the pharmaceutical compound residue of the compound was 5.3% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예11 : 본 발명의 약물복합체의 항종양작용 Example 11: Antitumor Activity of Drug Complex of the Present Invention

마우스 선유육종 Meth A 세포 1 X 106개를 BALB/c 계의 웅성 마우스(7 주령)의 우측 혜부피하에 이식하여 Meth A 종양을 가진 마우스를 준비하였다(1군 당 7마리). 7일 째에 주사용 증류수에 용해한 예 9의 약물복합체를 Meth A 종양을 가진 마우스의 꼬리 정맥 내에 4일 마다 4회 투여하였다. 이식 후 21일째에 종양을 적출하여 중량을 측정하고, 종양증식억제율을 다음 식 : 종양증식억제율(%) = [1-(검체투여군의 평균 종양중량/대조군의 평균종양중량)] X 100에 의해 산출하였다. 그 결과, 예 9에서 얻어진 본 발명의 약물복합체는, 독성(체중감소)를 발현하지 않고, 상기 의약화합물 자체(스페이서 및 다당유도체가 없음)에 비교하여 항종양효과가 큰폭으로 증강되어 있었다. 다당유도체 자체(예 5) 및 스페이서만을 도입한 의약화합물 잔기(예 1의 화합물에서 예 4의 방법에 따라 탈 BOC화하여 얻어진 H2 N-Gly-Gly-Phe-Gly-NH-A(A-NH2 =DX-8951)의 트리플루오로초산염)은 효과가 없었다.1 x 10 6 mouse fibrosarcoma Meth A cells were transplanted subcutaneously under the right hypodermic volume of BALB / c male mice (7 weeks old) to prepare mice with Meth A tumors (7 per group). The drug complex of Example 9 dissolved in distilled water for injection on day 7 was administered four times every four days in the tail vein of mice with Meth A tumors. At 21 days after transplantation, tumors were removed and weighed, and tumor growth inhibition rate was expressed by the following equation: tumor growth inhibition rate (%) = [1- (average tumor weight of control group / average tumor weight of control group)] X 100 Calculated. As a result, the drug complex of the present invention obtained in Example 9 did not express toxicity (weight loss), and the antitumor effect was greatly enhanced compared with the pharmaceutical compound itself (there was no spacer and the polysaccharide derivative). A pharmaceutical compound residue incorporating only the polysaccharide derivative itself (Example 5) and the spacer (H 2 N-Gly-Gly-Phe-Gly-NH-A obtained by de-BOCation in the compound of Example 1 according to the method of Example 4) Trifluoroacetic acid of NH 2 = DX-8951) had no effect.

[표 2]TABLE 2

예12 : 본 발명의 약물복합체의 항종양작용 Example 12 Antitumor Activity of Drug Complexes of the Present Invention

예 11과 같은 방법에 의해 Meth A 종양을 가진 마우스를 준비하고(1군 당 6마리), 7일째에 예 8 및 예 9의 약물복합체를 1회 투여한 경우의 항종양작용을 비교하였다. 그 결과, 항종양작용의 정도는 (다당유도체)-Gly-Gly-Phe-Gly-NH-A' 〉(다당유도체)-Gly-Gly-Gly-Phe-NH-A' 〉 의약화합물 자체이었다. 스페이서를 통하지 않고 의약화합물 잔기를 예 5의 카르복시메칠덱스트란폴리알콜의 카르복실기에 직접 결합한 화합물(의약화합물 잔기의 도입량 : 6.2 중량 %)는 효과가 없었다.Mice with Meth A tumors were prepared (6 per group) by the same method as in Example 11, and antitumor effects were compared when the drug complexes of Examples 8 and 9 were administered once on day 7. As a result, the degree of antitumor activity was (polysaccharide derivative) -Gly-Gly-Phe-Gly-NH-A '> (polysaccharide derivative) -Gly-Gly-Gly-Phe-NH-A'> pharmaceutical compound itself. The compound in which the pharmaceutical compound residue was directly bonded to the carboxyl group of the carboxymethyldextran polyalcohol of Example 5 without introducing a spacer (introduction amount of the pharmaceutical compound residue: 6.2% by weight) was ineffective.

[표 3]TABLE 3

예 13 : 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염의 합성 Example 13: Synthesis of Triethylammonium Salt of Carboxymethyldextran Polyalcohol

덱스트란 T500(10 g, Pharmacia사 제품, 분자량 500K)을 0.1 초산완충액(pH 5.5, 1000 ㎖)에 용해하고, 과요오드산나트륨(33 g)의 수용액(1000 ㎖)을 가하였다. 빛을 차단하면서 4℃에서 10일간 교반한 후, 에칠렌글리콜(7.0 ㎖)을 부가하여, 하룻밤 교반하였다. 반응액을 8 M 수산화나트륨 수용액을 이용하여 pH를 7.5로 조절하였다. 수소화붕소나트륨(14 g)을 부가하여 용해한 후, 하룻밤 교반하였다. 반응액을 빙냉하여, 초산으로 pH 5.5로 조절하여 4℃로 1시간 교반한 후, 8 M 수산화나트륨 수용액으로 pH 7.5로 조절하여 용액 1을 얻었다. 별도로, 덱스트란 T500(10 g, Pharmacia사 제품, 분자량 500K)에 대해서, 상기의 일련의 조작을 시행하여, 용액 2를 얻었다. 아울러, 덱스트란 T250(각 10g, Pharmacia사 제품, 분자량 250 K)에 대해서, 상기의 일련의 조작을 시행하여, 용액 3과 용액 4를 얻었다. 이들 용액 1 내지 4를 합하고, 바이오맥스-50막을 이용한 한외여과법에 의해, 저분자 분획의 제거를 시행하였다. 고분자 분획을 동결건조하여, 덱스트란폴리알콜(25 g)을 얻었다. 이 물질의 분자량(겔여과, 플루란 표준)은, 163 K이었다. Dextran T500 (10 g, manufactured by Pharmacia, molecular weight 500 K) was dissolved in 0.1 acetic acid buffer solution (pH 5.5, 1000 mL), and an aqueous solution of sodium periodate (33 g) (1000 mL) was added. After stirring for 10 days at 4 ° C while blocking light, ethylene glycol (7.0 ml) was added, and the mixture was stirred overnight. The reaction solution was adjusted to pH 7.5 using 8 M aqueous sodium hydroxide solution. Sodium borohydride (14 g) was added and dissolved, followed by stirring overnight. The reaction solution was ice-cooled, adjusted to pH 5.5 with acetic acid, stirred at 4 ° C. for 1 hour, and then adjusted to pH 7.5 with 8 M aqueous sodium hydroxide solution to obtain solution 1. Separately, the above series of operations were performed on dextran T500 (10 g, manufactured by Pharmacia, molecular weight 500 K) to obtain solution 2. In addition, the said series of operation was performed about dextran T250 (each 10g, a Pharmacia company, molecular weight 250K), and the solution 3 and the solution 4 were obtained. These solutions 1-4 were combined and the low molecular weight fraction was removed by the ultrafiltration method using a Biomax-50 membrane. The polymer fraction was lyophilized to give dextran polyalcohol (25 g). The molecular weight (gel filtration, pullulan standard) of this substance was 163K.

이 덱스트란폴리알콜(11g)을, 수산화나트륨(46.2 g)을 물(330 ml)에 녹여서 얻어진 수용액에 가하여, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로초산(66 g)을 가하여 용해시킨 후, 실온으로 하룻밤 반응시켰다. 이 반응액을 초산으로 pH를 9로 조절한 후, 바이오맥스-30막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 동결건조하여 카르복시메칠덱스트란폴리알콜의 나트륨염(13 g)을 얻었다. 이 물질의 분자량(겔 여과, 플루란 표준)은 228K이고, 카르복시메칠화 정도는 0.4이었다. This dextran polyalcohol (11 g) was added to the aqueous solution obtained by dissolving sodium hydroxide (46.2 g) in water (330 ml), and it melt | dissolved at room temperature. Monochloroacetic acid (66 g) was added to this solution under ice-cooling to dissolve it, and then reacted overnight at room temperature. The reaction solution was adjusted to pH 9 with acetic acid and then desalted by ultrafiltration using a Biomax-30 membrane. The remaining solution that had not passed through the membrane was lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (13 g). The molecular weight of this substance was 228K (gel filtration, pullulan standard), and the degree of carboxymethylation was 0.4.

이 카르복시메칠덱스트란폴리알콜의 나트륨염(600 ㎎)을 물에 용해하고, Bod-Rad AG 50W-X2(200 내지 400 메쉬, H + 형) 칼럼(직경 44㎜, 길이 210㎜)에 주입하여, 물로 용출하였다. 이 용출액에 트리에칠아민(0.93 ㎖)을 가한 후, 동결건조하여 예 13의 화합물(690 ㎎)을 얻었다.The sodium salt of carboxymethyldextran polyalcohol (600 mg) was dissolved in water, and injected into a Bod-Rad AG 50W-X2 (200 to 400 mesh, H + type) column (44 mm in diameter and 210 mm in length). , Eluted with water. Triethylamine (0.93 ml) was added to the eluate, and then lyophilized to obtain the compound of Example 13 (690 mg).

예 14 : 3'-N-(Gly-Gly-Phe-Gly)-NH-A(A-NH 2  =DX-8951)트리플루오로초산염의 합성 Example 14 Synthesis of 3'-N- (Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) trifluoroacetate

예 1에서 얻은 3'-N-(Boc-Gly-Gly-Phe-Gly)-NH-A(A-NH2 =DX-8951)(79 ㎎)을 트리플루오로초산(3 ㎖)에 녹이고, 1시간 방치하였다. 용매를 제거하고, 메탄올(30 ㎖)을 가하여 함께 끓이는 과정을 2회, 에탄올(30 ㎖)을 가하여 함께 끓이는 과정을 2회 시행한 후, 잔사를 에테르로 세척하여, 예 14의 화합물(80 ㎎)을 얻었다.3'-N- (Boc-Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) (79 mg) obtained in Example 1 was dissolved in trifluoroacetic acid (3 mL), It was left for 1 hour. The solvent was removed, the mixture was boiled twice with methanol (30 ml) and the mixture was boiled twice with ethanol (30 ml), and then the residue was washed with ether to give the compound of Example 14 (80 mg). )

1H-NMR(DMSO-d6) δ:8.53(d, 1H, J= 8.3 Hz), 8.40-8.48(m, 2H), 8.28(d, 1H, J= 8.3 Hz), 7.95-8.07(br, 3H), 7.81(d, 1H, J= 10.2 Hz), 7.30-7.37(m, 2H), 7.15-7.30(m, 5H), 6.50-6.55(br, 1H), 5.50-5.57(m, 1H), 5.41(d, 2H, J= 7.82 Hz), 5.25(s, 2H), 4.55-4.62(m, 1H), 3.55-3.92(m, 6H), 3.15-3.25(br, 2H), 2.98-3.03(m, 1H), 2.73-2.82(m, 1H), 2.40(s, 3H), 2.05-2.25(m, 1H), 1.84-1.92(m, 2H), 0.88(t, 3H, J= 7.35 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.53 (d, 1H, J = 8.3 Hz), 8.40-8.48 (m, 2H), 8.28 (d, 1H, J = 8.3 Hz), 7.95-8.07 (br , 3H), 7.81 (d, 1H, J = 10.2 Hz), 7.30-7.37 (m, 2H), 7.15-7.30 (m, 5H), 6.50-6.55 (br, 1H), 5.50-5.57 (m, 1H ), 5.41 (d, 2H, J = 7.82 Hz), 5.25 (s, 2H), 4.55-4.62 (m, 1H), 3.55-3.92 (m, 6H), 3.15-3.25 (br, 2H), 2.98- 3.03 (m, 1H), 2.73-2.82 (m, 1H), 2.40 (s, 3H), 2.05-2.25 (m, 1H), 1.84-1.92 (m, 2H), 0.88 (t, 3H, J = 7.35 Hz).

예 15 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Phe-Gly-NH-A'(A-NH 2 Example 15 Carboxymethyldextran Polyalcohol-Gly-Gly-Phe-Gly-NH-A '(A-NH 2

=DX-9851)의 합성Synthesis of = DX-9851)

예 13에서 얻은 카르복시메칠덱스트란폴리알콜의 나트륨염(400 ㎎)을 트리에칠암모니움염(470 ㎎)으로 변환시키고, N,N-디메칠포름아미드(30 ㎖)에 용해시켰다. 이 용액에 예 14에서 얻은 3'-N-(Gly-Gly-Phe-Gly)-NH-A (A-NH2 =DX-8951)의 트리플루오로초산염(62 ㎎)의 N,N-디메칠포름아미드(5 ㎖) 용액, 트리에칠아민(0.02 ㎖), 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(470 ㎎)을 순차적으로 부가하여, 빛을 차단하여 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 이것에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(20 ㎖)을 가하고, 석출한 침전물을 원심분리에 의해 모았다. 이 침전물을 0.5 M 염화나트륨 수용액에 용해하고, 빙냉하에서 0.1 M 수산화 나트륨 수용액으로 pH 9로 조절한 후, 투석막(Spectrapore 1, 한외 분자량 6000 내지 8000)을 이용하여, 정제수에 대해서 투석하였다. 투석내액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 15의 화합물(600 ㎎)을 얻었다. 본 화합물을 0.1 M 염화 나트륨 수용액에 용해한 후, GPC(칼럼 : 토소(Tosoh) TSK Gel PW-4000XL, 용매 : 0.1 M NaCl, 유속 : 0.8 ㎖/min)으로 분석한 결과, 및 본 화합물의 자외선 흡수 스펙트럼(0.1 M 트리스 완충액, pH 9.0, 0.1 ㎎/㎖)을 각각 도 6 및 도 7 에 나타낸다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 5.8 %(w/w)이었다.The sodium salt of carboxymethyldextran polyalcohol obtained in Example 13 (400 mg) was converted into triethylammonium salt (470 mg) and dissolved in N, N-dimethylformamide (30 mL). N, N-di of trifluoroacetic acid salt (62 mg) of 3'-N- (Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) obtained in Example 14 was added to this solution. Methylformamide (5 mL) solution, triethylamine (0.02 mL), 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (470 mg) were added sequentially to give light. Blocked and reacted with stirring overnight to room temperature. 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To this was added 3M aqueous sodium chloride solution (2.5 ml) and diethether (20 ml), and the precipitated precipitate was collected by centrifugation. The precipitate was dissolved in 0.5 M aqueous sodium chloride solution, adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling, and dialyzed against purified water using a dialysis membrane (Spectrapore 1, ultra-molecular weight 6000 to 8000). The dialysis solution was filtered through a Millipore filter (0.22 m) and then lyophilized to obtain the compound of Example 15 (600 mg). The compound was dissolved in 0.1 M aqueous sodium chloride solution and analyzed by GPC (column: Tosoh TSK Gel PW-4000XL, solvent: 0.1 M NaCl, flow rate: 0.8 ml / min), and ultraviolet absorption of the compound. Spectra (0.1 M Tris buffer, pH 9.0, 0.1 mg / ml) are shown in FIGS. 6 and 7, respectively. The content of the pharmaceutical compound residue of the compound was 5.8% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 16 : 3'-N-(Gly-Gly-Gly-Phe)-NH-A (A-NH 2 =DX-8951)트리플루오로초산염 Example 16: 3'-N- (Gly-Gly-Gly-Phe) -NH-A (A-NH 2 = DX-8951) trifluoroacetate

의 합성Synthesis of

예 2에서 얻은 3'-N-(Boc-Gly-Gly-Gly-Phe)-NH-A (A-NH2 =DX-8951)(79 ㎎) 을 트리플루오로초산(3 ㎖)에 녹이고, 1시간 방치하였다. 용매를 제거하고, 메탄올(30 ㎖)을 가하여 함께 끓이는 과정을 2회, 에탄올(30 ㎖)을 가하여 끓이는 과정을 2회 시행한 후, 잔사를 에테르로 세척하여, 예 16의 화합물(80 ㎎)을 얻었다.3'-N- (Boc-Gly-Gly-Gly-Phe) -NH-A (A-NH 2 = DX-8951) (79 mg) obtained in Example 2 was dissolved in trifluoroacetic acid (3 mL), It was left for 1 hour. The solvent was removed, two times of boiling with methanol (30 mL) and ethanol (30 mL) was added, and then the residue was washed with ether, and the compound of Example 16 (80 mg) was washed with ether. Got.

1H-NMR(DMSO-d6) δ:8.62-8.66(m, 2H), 8.23(d, 1H, J= 8.3 Hz), 8.18-8.20(m, 1H), 7.98-8.10(br, 2H), 7.79(d, 1H, J= 10.7 Hz), 7.32(s, 1H), 7.09(d, 2H, J= 7.3 Hz), 6.93-7.03(m, 4H), 6.50-6.60(br, 1H), 5.52-5.55(m, 1H), 5.44(s, 2H), 5.18(d, 1H, J= 18.5 Hz), 4.80(d, 1H, J= 18.5 Hz), 4.57-4.59(m, 1H), 3.57-3.71(m, 6H), 3.15-3.25(m, 2H), 3.00-3.02(m, 1H), 2.80-2.90(m, 1H), 2.50(s, 3H), 2.05-2.25(m, 1H), 1.86-2.00(m, 2H), 0.88(t, 3H, J= 7.35 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.62-8.66 (m, 2H), 8.23 (d, 1H, J = 8.3 Hz), 8.18-8.20 (m, 1H), 7.98-8.10 (br, 2H) , 7.79 (d, 1H, J = 10.7 Hz), 7.32 (s, 1H), 7.09 (d, 2H, J = 7.3 Hz), 6.93-7.03 (m, 4H), 6.50-6.60 (br, 1H), 5.52-5.55 (m, 1H), 5.44 (s, 2H), 5.18 (d, 1H, J = 18.5 Hz), 4.80 (d, 1H, J = 18.5 Hz), 4.57-4.59 (m, 1H), 3.57 -3.71 (m, 6H), 3.15-3.25 (m, 2H), 3.00-3.02 (m, 1H), 2.80-2.90 (m, 1H), 2.50 (s, 3H), 2.05-2.25 (m, 1H) , 1.86-2.00 (m, 2H), 0.88 (t, 3H, J = 7.35 Hz).

예 17 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Gly-Phe-NH-A'(A-NH 2 Example 17 Carboxymethyldextran Polyalcohol-Gly-Gly-Gly-Phe-NH-A '(A-NH 2

=DX-9851)의 합성Synthesis of = DX-9851)

예 13에서 얻은 카르복시메칠덱스트란폴리알콜의 나트륨염(1.0 g)을 트리에칠암모니움염(1.2 g)으로 변환시키고, N,N-디메칠포름아미드(90 ㎖)에 용해시켰다. 이 용액에 예 16에서 얻은 3'-N-(Gly-Gly-Gly-Phe)-NH-A (A-NH2 =DX-8951)의 트리플루오로초산염(158 ㎎)의 N,N-디메칠포름아미드(15 ㎖) 용액, 트리에칠이민(0.05 ㎖), 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(1.2 g)을 순차적으로 부가하여, 빛을 차단하여 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 이것에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(20 ㎖)을 가하고, 석출한 침전물을 원심분리에 의해 모았다. 이 침전물을 0.5 M 염화 나트륨 수용액에 용해하고, 빙냉하에서 0.1 M 수산화 나트륨 수용액으로 pH 9로 조절한 후, 투석막(Spectrapore 1, 한외 분자량 6000 내지 8000)을 이용하여, 정제수에 대해서 투석하였다. 투석내액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 17의 화합물(1.4 g)을 얻었다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 측정한 바, 5.2%(w/w)이었다.The sodium salt of carboxymethyldextran polyalcohol obtained in Example 13 (1.0 g) was converted to triethylammonium salt (1.2 g) and dissolved in N, N-dimethylformamide (90 mL). N, N-di of trifluoroacetic acid salt (158 mg) of 3'-N- (Gly-Gly-Gly-Phe) -NH-A (A-NH 2 = DX-8951) obtained in Example 16 was added to this solution. Methylformamide (15 mL) solution, triethylimine (0.05 mL), 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (1.2 g) were added sequentially to give light. Blocked and reacted with stirring overnight to room temperature. 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To this was added 3M aqueous sodium chloride solution (2.5 ml) and diethether (20 ml), and the precipitated precipitate was collected by centrifugation. The precipitate was dissolved in 0.5 M aqueous sodium chloride solution, adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling, and dialyzed against purified water using a dialysis membrane (Spectrapore 1, ultra-molecular weight 6000 to 8000). The dialysate solution was filtered through a Millipore filter (0.22 m) and then lyophilized to obtain the compound of Example 17 (1.4 g). The content of the pharmaceutical compound residue of the present compound was 5.2% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 18 : Boc-Gly-Phe-Leu-OH의 합성 Example 18 Synthesis of Boc-Gly-Phe-Leu-OH

H-Gly-Phe-Leu-OH(3.0 g)을 50% 디옥산 수용액(48 ㎖)에 가하여 빙냉하였다. 이 용액에 1N 수산화 나트륨 수용액(9.45 ㎖)와 (Boc)2O(2.27 g)을 함유한 디옥산(24㎖) 용액을 가하여, 하룻밤 교반하였다. 반응액에 1N 염산(9.45㎖)을 가하여, 용매를 제거하였다. 얻어진 잔사를 실리카겔칼럼크로마토그래피(용출액 : 디클로로메탄: 메탄올 = 5:1 용액)으로 정제하여 예 18의 화합물(2.5 g)을 얻었다.H-Gly-Phe-Leu-OH (3.0 g) was added to 50% aqueous dioxane solution (48 mL) and ice-cooled. A dioxane (24 mL) solution containing 1N aqueous sodium hydroxide solution (9.45 mL) and (Boc) 2 O (2.27 g) was added to the solution, followed by stirring overnight. 1N hydrochloric acid (9.45 mL) was added to the reaction solution to remove the solvent. The obtained residue was purified by silica gel column chromatography (eluent: dichloromethane: methanol = 5: 1 solution) to obtain the compound (2.5 g) of Example 18.

예 19 : Boc-Gly-Phe-Leu-Gly-OBzl의 합성 Example 19 Synthesis of Boc-Gly-Phe-Leu-Gly-OBzl

예 18에서 얻은 Boc-Gly-Phe-Leu-OH(2.4 g) 및 N-히드록시숙신이미드(656 ㎎)을 N,N-디메칠포름아미드(50 ㎖)에 용해하고, 4℃에서 냉각한 후, N,N-디시클로헥실카르보디이미드(1.17 g)을 첨가하고 2시간 교반하였다. 이 용액에 H-Gly-OBzl의 토실산염(1.9 g)과 트리에칠아민(0.79 ㎖)을 용해한 N,N-디메칠포름아미드(40 ㎖) 용액을 가하고, 실온으로 16시간 교반하면서 반응시켰다. 이 반응액을 감압 건고시켜, 잔사를 실리카겔칼럼크로마토그래피(용출액 : 디클로로메탄 : 메탄올 = 50 : 1 용액)으로 정제하여 예 19의 화합물(2.0 g)을 얻었다.Boc-Gly-Phe-Leu-OH (2.4 g) and N-hydroxysuccinimide (656 mg) obtained in Example 18 were dissolved in N, N-dimethylformamide (50 mL) and cooled at 4 ° C. After that, N, N-dicyclohexylcarbodiimide (1.17 g) was added and stirred for 2 hours. To this solution was added a solution of N, N-dimethylformamide (40 ml) in which H-Gly-OBzl tosylate (1.9 g) and triethylamine (0.79 ml) were dissolved, followed by stirring at room temperature for 16 hours. . The reaction solution was dried under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: dichloromethane: methanol = 50: 1 solution) to obtain the compound (2.0 g) of Example 19.

1H-NMR(DMSO-d6) δ:8.20-8.30(m, 1H), 8.12(d, 1H, J= 8.3 Hz), 7.83(d, 1H, J= 8.3 Hz), 7.32-7.37(m, 5H), 6.89-6.95(m, 1H), 5.12(s, 1H), 4.52-4.59(br, 1H), 4.34(dd, 1H, J= 7.3 Hz, J= 15.1 Hz), 3.93(dd, 1H, J= 5.5 Hz, J= 17.2 Hz), 3.84(dd, 1H, J= 5.5 Hz, J= 17.2 Hz), 3.54(dd, 1H, J= 5.9 Hz, J= 16.7Hz), 3.42(dd, J= 5.9 Hz, J= 16.7 Hz), 3.00(dd, 1H, J= 4.4 Hz, 13.7 Hz), 2.78(dd, 1H, J= 8.8 Hz, J= 13.2 Hz), 1.50-1.65(m, 1H), 1.45(t, 2H, J= 7.3 Hz), 1.36(s, 9H), 0.86(d, 3H, J= 6.4 Hz), 0.82(d, 3H, J= 6.4 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.20-8.30 (m, 1H), 8.12 (d, 1H, J = 8.3 Hz), 7.83 (d, 1H, J = 8.3 Hz), 7.32-7.37 (m , 5H), 6.89-6.95 (m, 1H), 5.12 (s, 1H), 4.52-4.59 (br, 1H), 4.34 (dd, 1H, J = 7.3 Hz, J = 15.1 Hz), 3.93 (dd, 1H, J = 5.5 Hz, J = 17.2 Hz, 3.84 (dd, 1H, J = 5.5 Hz, J = 17.2 Hz), 3.54 (dd, 1H, J = 5.9 Hz, J = 16.7 Hz), 3.42 (dd , J = 5.9 Hz, J = 16.7 Hz, 3.00 (dd, 1H, J = 4.4 Hz, 13.7 Hz), 2.78 (dd, 1H, J = 8.8 Hz, J = 13.2 Hz), 1.50-1.65 (m, 1H), 1.45 (t, 2H, J = 7.3 Hz), 1.36 (s, 9H), 0.86 (d, 3H, J = 6.4 Hz), 0.82 (d, 3H, J = 6.4 Hz).

예 20 : Boc-Gly-Phe-Leu-Gly-OH의 합성 Example 20 Synthesis of Boc-Gly-Phe-Leu-Gly-OH

예 19에서 얻은 Boc-Gly-Phe-Leu-OBzl(1.7 g)을 초산에칠(30 ㎖)와 메탄올(30 ㎖)의 혼합용액에 용해시킨 후, 5% Pd-C(1.5 g)을 가하고, 접촉 환원을 시행하였다. 반응액을 여과하고, 여과액을 감압 건고시켜, 예 20의 화합물(1.15 g)을 얻었다. Boc-Gly-Phe-Leu-OBzl (1.7 g) obtained in Example 19 was dissolved in a mixed solution of ethyl acetate (30 mL) and methanol (30 mL), and then 5% Pd-C (1.5 g) was added thereto. , Contact reduction was performed. The reaction solution was filtered, and the filtrate was dried under reduced pressure to obtain the compound (1.15 g) of Example 20.

예 21 : 3'-N-(Boc-Gly-Phe-Leu-Gly)-NH-A(A-NH 2 =DX-8951)의 합성 Example 21 Synthesis of 3′-N- (Boc-Gly-Phe-Leu-Gly) -NH-A (A-NH 2 = DX-8951)

예 20에서 얻은 Boc-Gly-Phe-Leu-Gly-OH(200 ㎎) 및 N-히드록시숙신이미드(58 ㎎)을 N,N-디메칠포름아미드(5 ㎖)에 용해하고, 4℃로 냉각한 후, N,N-디시클로헥실카르보디이미드(104 ㎎)을 부가하여 용해시켰다. 이 용액에 DX-8951의 메탄술폰산염(224 ㎎)과 트리에칠아민(0.059 ㎖)을 용해한 N,N-디메칠포름아미드(5 ㎖) 용액을 가하고, 빛을 차단하여 실온으로 16시간 교반하면서 반응시켰다. 이 반응액을 압력을 줄이면서 건고시켜, 잔사를 실리카겔칼럼크로마토그래피(용출액 : 0.5 % 초산을 함유한 디클로로메탄 : 메탄올 = 10 : 1 용액)으로 정제하여 예 21의 화합물(200 ㎎)을 얻었다.Boc-Gly-Phe-Leu-Gly-OH (200 mg) and N-hydroxysuccinimide (58 mg) obtained in Example 20 were dissolved in N, N-dimethylformamide (5 mL) and 4 ° C. After cooling with N, N-dicyclohexylcarbodiimide (104 mg) was added and dissolved. To this solution was added N, N-dimethylformamide (5 mL) solution of DX-8951 methanesulfonate (224 mg) and triethylamine (0.059 mL). Reacted. The reaction solution was dried under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: dichloromethane: methanol = 10: 1 solution containing 0.5% acetic acid) to obtain the compound of Example 21 (200 mg).

1H-NMR(DMSO-d6) δ:8.35(d, 1H, J= 7.8 Hz), 8.08-8.18(m, 2H), 7.75-7.85(m, 2H), 7.32(s, 1H), 7.10(d, 2H, J= 6.8 Hz), 7.08-7.13(m, 3H), 6.85-6.95(br, 1H), 6.40-6.65(br, 1H), 5.52- 5.55(m,, 1H), 5.46(d, 1H, J= 18.5 Hz), 5.37(d, 1H, J= 18.5 Hz), 5.24(s, 2H), 4.44-4.52(m, 1H), 4.15-4.25(m, 1H), 3.68-3.72(m, 2H), 3.40-3.52(m, 2H), 3.15-3.25(br, 2H), 2.85-2.95(m, 1H), 2.65-2.75(m, 1H), 2.40(s, 3H), 2.05-2.25(m, 1H), 1.80-1.91(m, 2H), 1.50-1.65(m, 1H), 1.45(t, 2H, J= 7.3 Hz), 1.35(s, 9H), 0.88(t, 3H, J= 7.4 Hz), 0.86(d, 3H, J= 6.4 Hz), 0.82(d, 3H, J= 6.4Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.35 (d, 1H, J = 7.8 Hz), 8.08-8.18 (m, 2H), 7.75-7.85 (m, 2H), 7.32 (s, 1H), 7.10 (d, 2H, J = 6.8 Hz), 7.08-7.13 (m, 3H), 6.85-6.95 (br, 1H), 6.40-6.65 (br, 1H), 5.52- 5.55 (m, 1H), 5.46 ( d, 1H, J = 18.5 Hz, 5.37 (d, 1H, J = 18.5 Hz), 5.24 (s, 2H), 4.44-4.52 (m, 1H), 4.15-4.25 (m, 1H), 3.68-3.72 (m, 2H), 3.40-3.52 (m, 2H), 3.15-3.25 (br, 2H), 2.85-2.95 (m, 1H), 2.65-2.75 (m, 1H), 2.40 (s, 3H), 2.05 -2.25 (m, 1H), 1.80-1.91 (m, 2H), 1.50-1.65 (m, 1H), 1.45 (t, 2H, J = 7.3 Hz), 1.35 (s, 9H), 0.88 (t, 3H , J = 7.4 Hz), 0.86 (d, 3H, J = 6.4 Hz), 0.82 (d, 3H, J = 6.4 Hz).

예 22 : 3'-N-(Gly-Phe-Leu-Gly)-NH-A (A-NH 2 =DX-8951)트리플루오로초산염 Example 22: 3'-N- (Gly-Phe-Leu-Gly) -NH-A (A-NH 2 = DX-8951) trifluoroacetate

의 합성Synthesis of

예 21에서 얻은 3'-N-(Boc-Gly-Phe-Leu-Gly)-NH-A(A-NH2 =DX-8951)(97 ㎎) 을 트리플루오로초산(3 ㎖)에 녹이고, 1시간 방치하였다. 용매를 제거하고, 메탄올(30 ㎖)을 가하여 함께 끓이는 과정을 2회, 에탄올(30 ㎖)을 가하여 함께 끓이는 과정을 2회 시행한 후, 잔사를 에테르로 세척하여, 예 22의 화합물(95 ㎎)을 얻었다.3'-N- (Boc-Gly-Phe-Leu-Gly) -NH-A (A-NH 2 = DX-8951) (97 mg) obtained in Example 21 was dissolved in trifluoroacetic acid (3 mL), It was left for 1 hour. The solvent was removed, two times of boiling together with methanol (30 mL) and two times of boiling together with ethanol (30 mL), and the residue was washed with ether to give the compound of Example 22 (95 mg). )

1H-NMR(DMSO-d6) δ:8.57(d, 1H, J= 8.3 Hz), 8.47(d, 1H, J= 8.3 Hz), 8.32(d, 1H, J= 7.8 Hz), 8.17(t, 1H, J= 5.5 Hz), 7.81-7.91(br, 3H), 7.79(d, 1H, J= 10.7 Hz), 7.32(s, 1H), 7.21-7.23(m, 5H), 7.12-7.17(m, 1H), 6.45-6.55(br, 1H), 5.57(q, 1H, J= 4.4 Hz), 5.43(d, 1H, J= 16.1 Hz), 5.34(d, 1H, J= 16.1 Hz), 5.23(s, 2H), 4.67(dt, 1H, J= 4.0 Hz, J= 9.0Hz), 4.31(dd, 1H, J= 8.5 Hz, J= 15.0 Hz), 4.0-4.4(br, 1H), 3.74-3.76(m, 2H), 3.56(dd, 1H, J= 6.0 Hz J= 16.0 Hz), 3.41(dd, 1H, J= 6.0 Hz, J= 16.0 Hz), 3.17-3.19(br, 2H), 3.02(dd, 1H, J= 4.0 Hz, J= 14.0 Hz), 2.70(dd, 1H, J= 10.0 Hz, J= 14.0 Hz), 2.40(s, 3H), 2.05-2.15(m, 1H), 1.85(dt, 2H, J= 7.0 Hz, J= 14.0 Hz), 1.50-1.55(m, 1H), 1.45(t, 2H, J= 6.0 Hz), 1.35(s, 9H), 0.88(t, 3H, J= 7.4), 0.85(d, 3H, J= 6.4 Hz), 0.80(d, 3H, J= 6.4 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.57 (d, 1H, J = 8.3 Hz), 8.47 (d, 1H, J = 8.3 Hz), 8.32 (d, 1H, J = 7.8 Hz), 8.17 ( t, 1H, J = 5.5 Hz), 7.81-7.91 (br, 3H), 7.79 (d, 1H, J = 10.7 Hz), 7.32 (s, 1H), 7.21-7.23 (m, 5H), 7.12-7.17 (m, 1H), 6.45-6.55 (br, 1H), 5.57 (q, 1H, J = 4.4 Hz), 5.43 (d, 1H, J = 16.1 Hz), 5.34 (d, 1H, J = 16.1 Hz) , 5.23 (s, 2H), 4.67 (dt, 1H, J = 4.0 Hz, J = 9.0 Hz), 4.31 (dd, 1H, J = 8.5 Hz, J = 15.0 Hz), 4.0-4.4 (br, 1H) , 3.74-3.76 (m, 2H), 3.56 (dd, 1H, J = 6.0 Hz J = 16.0 Hz), 3.41 (dd, 1H, J = 6.0 Hz, J = 16.0 Hz), 3.17-3.19 (br, 2H ), 3.02 (dd, 1H, J = 4.0 Hz, J = 14.0 Hz), 2.70 (dd, 1H, J = 10.0 Hz, J = 14.0 Hz), 2.40 (s, 3H), 2.05-2.15 (m, 1H ), 1.85 (dt, 2H, J = 7.0 Hz, J = 14.0 Hz), 1.50-1.55 (m, 1H), 1.45 (t, 2H, J = 6.0 Hz), 1.35 (s, 9H), 0.88 (t , 3H, J = 7.4), 0.85 (d, 3H, J = 6.4 Hz), 0.80 (d, 3H, J = 6.4 Hz).

예 23 : 카르복시메칠덱스트란폴리알콜-Gly-Phe-Leu-Gly-NH-A'(A-NH 2 Example 23 Carboxymethyldextran Polyalcohol-Gly-Phe-Leu-Gly-NH-A '(A-NH 2

=DX-9851)의 합성Synthesis of = DX-9851)

예 13에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(690 ㎎)을 N,N-디메칠포름아미드(50 ㎖)에 용해시켰다. 이 용액에 예 22에서 얻은 3'-N-(Gly-Phe-Leu-Gly)-NH-A (A-NH2 =DX-8951)의 트리플루오로초산염(95 ㎎)의N,N-디메칠포름아미드(10 ㎖) 용액, 트리에칠아민(0.03 ㎖), 1-에톡시카르보닐-2- 에톡시-1,2-디히드록시퀴놀린(690 ㎎)을 순차적으로 부가하여, 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 이것에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(20 ㎖)을 가하고, 석출한 침전물을 원심분리에 의해 모았다. 이 침전물을 0.5 M 식염수에 용해하고, 빙냉하에서 0.1 M 수산화 나트륨 수용액으로 pH 9로 조절한 후, 투석막(Spetrapore 1, 한외 분자량 6000 내지 8000)을 이용하여, 정제수에 대해서 투석하였다. 투석내액을 밀리포아필터(0.22 ㎛)로 여과한 후, 여과액을 동결건조하여 예 23의 화합물(600 ㎎)을 얻었다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0 )내에서의 362㎚ 흡광도에 근거하여 양을 정한 바, 4.8%(w/w)이었다.Triethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 13 (690 mg) was dissolved in N, N-dimethylformamide (50 mL). N, N-di of trifluoroacetate (95 mg) of 3'-N- (Gly-Phe-Leu-Gly) -NH-A (A-NH 2 = DX-8951) obtained in Example 22 was added to this solution. Methylformamide (10 mL) solution, triethamine (0.03 mL), and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (690 mg) were added sequentially to room temperature. The reaction was stirred overnight. 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To this was added 3M aqueous sodium chloride solution (2.5 ml) and diethether (20 ml), and the precipitated precipitate was collected by centrifugation. This precipitate was dissolved in 0.5 M brine, adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling, and dialyzed against purified water using a dialysis membrane (Spetrapore 1, ultra-molecular weight 6000 to 8000). After the dialysis solution was filtered through a Millipore filter (0.22 m), the filtrate was lyophilized to obtain the compound of Example 23 (600 mg). The content of the pharmaceutical compound residue of the compound was 4.8% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 24 : 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염의 합성 Example 24: Synthesis of triethylammonium salt of carboxymethyldextran polyalcohol

덱스트란 T500(50 g, Pharmacia사 제품, 분자량 500K)을 0.1 M 초산 완충액(pH 5.5, 5000 ㎖)에 용해하고, 과요오드산나트륨(165.0 g)의 수용액(5000 ㎖)을 가하였다. 빛을 차단하면서 4℃에서 10일간 교반한 후, 에칠렌글리콜(35.0 ㎖)을 가하여, 하룻밤 교반하였다. 반응액을 8 M 수산화나트륨 수용액을 이용하여 pH 7.5로 조절하였다. 수소화붕소나트륨(70 g)을 가하여 용해한 후, 하룻밤 교반하였다. 반응액을 빙냉하여, 초산으로 pH 5.5 로 조절하여 4℃에서 1시간 교반한 후, 8 M 수산화나트륨 수용액을 이용하여 pH 7.5로 조절하였다. 얻어진 수용액을 바이오맥스-50막을 이용한 한외여과법으로 저분자 분획의 제거를 시행하였다. 고분자 분획을 동결건조하여, 덱스트란폴리알콜(27.1 g)을 얻었다. 이 물질의 분자량(겔여과, 플루란 표준)은 140 K이었다. Dextran T500 (50 g, Pharmacia, molecular weight 500K) was dissolved in 0.1 M acetic acid buffer (pH 5.5, 5000 mL), and an aqueous solution of sodium periodate (165.0 g) (5000 mL) was added. After stirring for 10 days at 4 ° C. while blocking light, ethylene glycol (35.0 ml) was added, and the mixture was stirred overnight. The reaction solution was adjusted to pH 7.5 using 8 M aqueous sodium hydroxide solution. Sodium borohydride (70 g) was added and dissolved, followed by stirring overnight. The reaction solution was ice-cooled, adjusted to pH 5.5 with acetic acid, stirred at 4 ° C. for 1 hour, and then adjusted to pH 7.5 using an aqueous 8 M sodium hydroxide solution. The obtained aqueous solution was removed by ultrafiltration using a Biomax-50 membrane. The polymer fraction was lyophilized to give dextran polyalcohol (27.1 g). The molecular weight of this substance was 140 K (gel filtration, pullulan standard).

이 덱스트란폴리알콜(5 g)을, 수산화나트륨(21 g)을 물(150 ㎖)에 녹여서 얻어진 수용액에 가하여, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로초산(30 g)을 가하여 용해시킨 후, 실온으로 하룻밤 반응시켰다. 이 반응액을 초산으로 pH를 8로 조절한 후, 바이오맥스-50막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 동결건조하여 카르복시메칠덱스트란폴리알콜의 나트륨염(5.6 g)을 얻었다. 이 물질의 분자량(겔 여과, 플루란 표준)은 263 K이고, 카르복시메칠화 정도는 0.4이었다. This dextran polyalcohol (5 g) was added to an aqueous solution obtained by dissolving sodium hydroxide (21 g) in water (150 mL) and dissolved at room temperature. Monochloroacetic acid (30 g) was added and dissolved in this solution under ice-cooling, and then reacted overnight at room temperature. The reaction solution was adjusted to pH 8 with acetic acid and then desalted by ultrafiltration using a Biomax-50 membrane. The remaining solution that had not passed through the membrane was lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (5.6 g). The molecular weight of this substance was 263 K (gel filtration, pullulan standard) and the degree of carboxymethylation was 0.4.

이 카르복시메칠덱스트란폴리알콜의 나트륨염(2.0 g)을 물에 용해하고, Bio-Rad AG 50W-X2(200 내지 400 메쉬, H + 형) 칼럼(직경 44 ㎜, 길이 210 ㎜)에 주입하여, 물로 용출하였다. 이 용출액에 트리에칠아민(4 ㎖)을 가한 후, 동결건조하여 예 24의 화합물(2.2 g)을 얻었다.The sodium salt of carboxymethyldextran polyalcohol (2.0 g) was dissolved in water, and injected into a Bio-Rad AG 50W-X2 (200 to 400 mesh, H + type) column (44 mm in diameter and 210 mm in length). , Eluted with water. Triethylamine (4 ml) was added to this eluate, and then lyophilized to obtain the compound (2.2 g) in Example 24.

예 25 : 카르복시메칠덱스트란폴리알콜의 트리메칠암모니움염의 합성 Example 25 Synthesis of Trimethylammonium Salt of Carboxymethyldextran Polyalcohols

예 24에서 얻은 카르복시메칠덱스트란폴리알콜의 나트륨염(1.0 g)을 물에 용해하고, Bio-Rad AG 50W-X2(200 내지 400 메쉬, Me3N H+ 형) 칼럼에 주입하여, 물로 용출하였다. 이 용출액을 동결건조하여 예 25의 화합물(950 ㎎)을 얻었다.The sodium salt of carboxymethyldextran polyalcohol obtained in Example 24 (1.0 g) was dissolved in water, poured into a Bio-Rad AG 50W-X2 (200-400 mesh, Me 3 NH + type) column, and eluted with water. . The eluate was lyophilized to obtain the compound of Example 25 (950 mg).

예 26 : 3'-N-(Gly-Gly-Phe-Gly)-NH-A (A-NH 2 =DX-8951)염산염의 합성 Example 26 Synthesis of 3'-N- (Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) Hydrochloride

예 14와 같은 방법으로 3'-N-(Boc-Gly-Gly-Phe-Gly)-NH-A(A-NH2 =DX-8951)(400 ㎎)로부터 얻은 3'-N-(Gly-Gly-Phe-Gly)-NH-A 트리플루오로초산염을 물-MeOH(1:4)에 용해하고, Bio-Rad AG 1-X8(200 내지 400 메쉬, Cl- 형) 칼럼(1.5 cm X 8.6 cm)에 주입하여, 상기 용매로 용출하였다. 이 용출액을 농축한 후, 동결건조하여 예 26의 화합물(310 ㎎)을 얻었다.3'-N- (Gly-) obtained from 3'-N- (Boc-Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) (400 mg) in the same manner as in Example 14. Gly-Phe-Gly) -NH-A trifluoroacetic acid was dissolved in water-MeOH (1: 4) and a Bio-Rad AG 1-X8 (200-400 mesh, Cl - type) column (1.5 cm X 8.6) cm) and eluted with the solvent. The eluate was concentrated and then lyophilized to obtain the compound of Example 26 (310 mg).

1H-NMR(DMSO-d6) δ:8.53(d, 1H, J= 8.5 Hz), 8.46-8.48(m, 1H), 8.37-8.39(m, 1H), 7.95(d, 1H, J= 8.0 Hz), 7.80(s, 3H), 7.78(d, 1H, J= 11.1 Hz), 7.34(s, 1H), 7.14-7.24(m, 5H), 6.50(s, 1H), 5.56-5.60(m, 1H), 5.35-5.40(m, 2H), 5.24(s, 2H), 4.51-4.56(m, 1H), 3.86(dd, J= 4.8, 13.5 Hz, 1H), 3.68-3.79 (m, 3H), 3.54 (s, 2H), 3.15-3.22(m, 2H), 3.01(dd, J= 5.6, 13.5 Hz, 1H), 2.78(dd, J= 9.6, 3.5 Hz, 1H), 2.41(s, 3H), 2.12-2.23(m, 2H), 1.81-1.89(m, 2H), 0.88(t, 3H, J= 7.2 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.53 (d, 1H, J = 8.5 Hz), 8.46-8.48 (m, 1H), 8.37-8.39 (m, 1H), 7.95 (d, 1H, J = 8.0 Hz), 7.80 (s, 3H), 7.78 (d, 1H, J = 11.1 Hz), 7.34 (s, 1H), 7.14-7.24 (m, 5H), 6.50 (s, 1H), 5.56-5.60 ( m, 1H), 5.35-5.40 (m, 2H), 5.24 (s, 2H), 4.51-4.56 (m, 1H), 3.86 (dd, J = 4.8, 13.5 Hz, 1H), 3.68-3.79 (m, 3H), 3.54 (s, 2H), 3.15-3.22 (m, 2H), 3.01 (dd, J = 5.6, 13.5 Hz, 1H), 2.78 (dd, J = 9.6, 3.5 Hz, 1H), 2.41 (s , 3H), 2.12-2.23 (m, 2H), 1.81-1.89 (m, 2H), 0.88 (t, 3H, J = 7.2 Hz).

Mass(FAB); m/e 753(M+1)Mass (FAB); m / e 753 (M + 1)

예 27 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Phe-Gly-NH-A'(A-NH 2 Example 27: Carboxymethyldextran Polyalcohol-Gly-Gly-Phe-Gly-NH-A '(A-NH 2

=DX-9851)의 합성Synthesis of = DX-9851)

예 25에서 얻은 카르복시메칠덱스트란폴리알콜의 트리메칠암모니움염(0.1 g)을 N,N-디메칠포름아미드(6 ㎖)에 용해시켰다. 이 용액에, 예 26에서 얻은 3'-N-(Gly-Gly-Phe-Gly)-NH-A(A-NH2 =DX-8951)의 염산염(24 ㎎)의 N,N-디메칠포름아미드(10 ㎖) 용액, 트리에칠아민(5 ㎕), 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(0.1 g)을 순차적으로 부가하여, 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 이것에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(20 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8 분)에 의해 모았다. 이 침전물을 0.5 M 식염수에 용해하고, 빙냉하에서 0.1 M 수산화나트륨 수용액으로 pH 9로 조절하였다. 얻어진 수용액을 바이오맥스 -30막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 27의 화합물(90 ㎎)을 얻었다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 11 %(w/w)이었다.Trimethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 25 (0.1 g) was dissolved in N, N-dimethylformamide (6 mL). To this solution, N, N-dimethylform of hydrochloride (24 mg) of 3'-N- (Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) obtained in Example 26 was obtained. Amide (10 mL) solution, triethylamine (5 μL) and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (0.1 g) were added sequentially and stirred to room temperature overnight. Reacted. 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To this was added 3M aqueous sodium chloride solution (2.5 ml) and diethether (20 ml), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was dissolved in 0.5 M brine and adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was desalted by ultrafiltration using a Biomax-30 membrane. The remaining solution that had not passed through the membrane was filtered through a Millipore filter (0.22 m) and then lyophilized to obtain the compound of Example 27 (90 mg). The content of the pharmaceutical compound residue of the compound was 11% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 28 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Phe-Gly-NH-A'(A-NH 2 Example 28 Carboxymethyldextran Polyalcohol-Gly-Gly-Phe-Gly-NH-A '(A-NH 2

=DX-8951)의 합성Synthesis of = DX-8951)

예 25에서 얻은 카르복시메칠덱스트란폴리알콜의 트리메칠암모니움염(0.1 g)을 N,N-디메칠포름아미드(6 ㎖)에 용해시켰다. 이 용액에, 예 26에서 얻은 3'-N-(Gly-Gly-Phe-Gly)-NH-A(A-NH2 =DX-8951)의 염산염(36 ㎎)의 N,N-디메칠포름아미드(10 ㎖) 용액, 트리에칠아민(8 ㎕), 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(0.1 g)을 순차적으로 가하여, 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 이것에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(20 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8 분)에 의해 모았다. 이 침전물을 0.5 M 식염수에 용해하고, 빙냉하에서 0.1 M 수산화나트륨 수용액으로 pH 12로 조절하였다. 얻어진 수용액을 바이오맥스 -30막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 28의 화합물(80 ㎎)을 얻었다. 본 화합물을 0.1 M 염화나트륨 수용액에 용해한 후, GPC(칼럼 : 토소(Tosoh) TSK Gel PW-4000XL, 용매 : 0.1 M NaCl, 유속 : 0.8 ㎖/min)으로 분석한 결과, 및 본 화합물의 자외선 흡수 스펙트럼(0.1 M 트리스 완충액, pH 9.0, 36 ㎍/㎖)을 각각 도 8 및 도 9에 나타낸다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 15 %(w/w)이었다.Trimethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 25 (0.1 g) was dissolved in N, N-dimethylformamide (6 mL). In this solution, N, N-dimethylform of hydrochloride (36 mg) of 3'-N- (Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) obtained in Example 26 was obtained. Amide (10 mL) solution, triethylamine (8 μL), 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (0.1 g) were added sequentially, and stirred at room temperature overnight. Reacted. 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To this was added 3M aqueous sodium chloride solution (2.5 ml) and diethether (20 ml), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was dissolved in 0.5 M brine and adjusted to pH 12 with 0.1 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was desalted by ultrafiltration using a Biomax-30 membrane. The remaining solution that had not passed through the membrane was filtered through a Millipore filter (0.22 µm) and then lyophilized to obtain the compound of Example 28 (80 mg). The present compound was dissolved in 0.1 M aqueous sodium chloride solution and analyzed by GPC (column: Tosoh TSK Gel PW-4000XL, solvent: 0.1 M NaCl, flow rate: 0.8 ml / min), and ultraviolet absorption spectrum of the compound. (0.1 M Tris buffer, pH 9.0, 36 μg / ml) are shown in FIGS. 8 and 9, respectively. The content of the pharmaceutical compound residue of the present compound was 15% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 29 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Gly-Phe-NH-A'(A-NH 2 Example 29: Carboxymethyldextran Polyalcohol-Gly-Gly-Gly-Phe-NH-A '(A-NH 2

=DX-8951)의 합성Synthesis of = DX-8951)

덱스트란 T250(20 g, EXTRASYNTHESE사 제품, 평균 분자량 250K)을 0.1 M 초산 완충액(pH 5.5, 2000 ㎖)에 용해하고, 과요오드산나트륨(66.0 g)의 수용액(2000 ㎖)을 가하였다. 빛을 차단하면서 4℃에서 10일간 교반한 후, 에칠렌글리콜(14.0 ㎖)을 가하여, 하룻밤 교반하였다. 반응액을 빙냉하에서 8 M 수산화나트륨 수용액을 이용하여 pH를 7.5로 조절하였다. 수소화붕소나트륨(28 g)을 가하여 용해한 후, 실온으로 하룻밤 교반하였다. 반응액을 빙냉하고, 초산으로 pH 5.5로 조절하여 4℃에서 1시간 교반한 후, 빙냉하에서 8 M 수산화나트륨 수용액을 이용하여 pH 7.5로 조절하였다. 얻어진 수용액을 바이오맥스-30막을 이용한 한외여과법으로 저분자 분획의 제거하여, 막을 통과하지 않은 잔유용액 1을 얻었다. 별도로, 덱스트란 T250(50 g, EXTRASYNTHESE사 제품, 평균분자량 250 K)를 0.1 M 초산 완충액(pH 5.5, 5000 ㎖)에 용해하고, 과요오드산나트륨(165 g)의 수용액(5000 ㎖)을 가하였다. 빛을 차단하면서 4℃에서 10일간 교반한 후, 에칠렌글리콜(35.0 ㎖)을 가하여, 하룻밤 교반하였다. 반응액을 빙냉하에서 8 M 수산화나트륨 수용액을 이용하여 pH를 7.5로 조절하였다. 수소화나트륨붕소나트륨(70 g)을 부가하여 용해한 후, 실온에서 하룻밤 교반하였다. 반응액을 빙냉하고, 초산으로 pH 5.5로 조절하여 4℃에서 1시간 교반한 후, 빙냉하에서 8M 수산화나트륨 수용액을 이용하여 pH를 7.5로 조절하였다. 얻어진 수용액을 바이오맥스-30막을 이용한 한외여과법에 의해 저분자 분획을 제거하고, 막을 통과하지 않은 잔유용액 2를 얻었다. 잔유용액 1과 잔유용액 2를 합하여, 한외여과법에 의해 바이오맥스-50막을 통과하는 분획을 바이오맥스-30막을 이용하여 저분자 분획을 제거하고, 동결건조하여 덱스트란폴리알콜(25.7 g)을 얻었다. 이 물질의 분자량(겔여과, 플루란 표준)은 47 K이었다. Dextran T250 (20 g, manufactured by EXTRASYNTHESE, average molecular weight 250 K) was dissolved in 0.1 M acetic acid buffer (pH 5.5, 2000 mL) and an aqueous solution of sodium periodate (66.0 g) (2000 mL) was added. After stirring for 10 days at 4 ° C. while blocking light, ethylene glycol (14.0 ml) was added, followed by stirring overnight. The pH of the reaction solution was adjusted to 7.5 using 8 M aqueous sodium hydroxide solution under ice cooling. Sodium borohydride (28 g) was added to dissolve and stirred overnight at room temperature. The reaction solution was ice-cooled, adjusted to pH 5.5 with acetic acid and stirred at 4 ° C. for 1 hour, and then adjusted to pH 7.5 with 8 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was removed by ultrafiltration using a Biomax-30 membrane to obtain Residual Solution 1 that did not pass through the membrane. Separately, dextran T250 (50 g, manufactured by EXTRASYNTHESE, average molecular weight 250 K) was dissolved in 0.1 M acetic acid buffer (pH 5.5, 5000 mL), and an aqueous solution of sodium periodate (165 g) (5000 mL) was added. It was. After stirring for 10 days at 4 ° C. while blocking light, ethylene glycol (35.0 ml) was added, and the mixture was stirred overnight. The pH of the reaction solution was adjusted to 7.5 using 8 M aqueous sodium hydroxide solution under ice cooling. Sodium borohydride (70 g) was added and dissolved, followed by stirring at room temperature overnight. The reaction solution was ice-cooled, adjusted to pH 5.5 with acetic acid and stirred at 4 ° C. for 1 hour, and then adjusted to pH 7.5 with 8 M aqueous sodium hydroxide solution under ice-cooling. The low molecular weight fraction was removed by the ultrafiltration method using the Biomax-30 membrane, and the residual solution 2 which did not pass through the membrane was obtained. The remaining solution 1 and the remaining solution 2 were combined, and the fractions passing through the Biomax-50 membrane by ultrafiltration were removed using the Biomax-30 membrane, and then freeze-dried to obtain dextran polyalcohol (25.7 g). The molecular weight of this substance was 47K (gel filtration, pullulan standard).

이 덱스트란폴리알콜(5 g)을, 수산화 나트륨(35 g)을 물(150 ㎖)에 녹여 얻어진 수용액에 가하여, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로 초산(50 g)을 가하여 용해시킨 후, 실온으로 18시간 반응시켰다. 이 반응액을 초산으로 pH를 8로 조절한 후, 바이오맥스-50막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 동결건조하고, 카르복시메칠덱스트란폴리알콜의 나트륨염(7.2 g)을 얻었다. 이 물질의 분자량(겔여과, 플루란 표준)은 127 K이고, 카르복시메칠화 정도는 0.8이었다. 이 카르복시메칠덱스트란폴리알콜의 나트륨염(2.2 g)을 물에 용해하고, Bio-Rad AG 50W-X2(200 내지 400 메쉬, H + 형) 칼럼(직경 44 ㎜, 길이 210 ㎜)에 주입하여, 물로 용출하였다. 이 용출액에 트리에칠아민(4㎖)을 부가한 후, 동결건조하여 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(2.69 g)을 얻었다.This dextran polyalcohol (5 g) was added to an aqueous solution obtained by dissolving sodium hydroxide (35 g) in water (150 mL) and dissolved at room temperature. Monochloroacetic acid (50 g) was added and dissolved in this solution under ice-cooling, followed by reaction at room temperature for 18 hours. The reaction solution was adjusted to pH 8 with acetic acid and then desalted by ultrafiltration using a Biomax-50 membrane. The remaining solution that had not passed through the membrane was lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (7.2 g). The molecular weight of this substance was 127 K (gel filtration, pullulan standard) and the degree of carboxymethylation was 0.8. Sodium salt of this carboxymethyldextran polyalcohol (2.2 g) was dissolved in water and injected into a Bio-Rad AG 50W-X2 (200 to 400 mesh, H + type) column (44 mm in diameter and 210 mm in length). , Eluted with water. Triethylamine (4 ml) was added to this eluate, and then lyophilized to obtain triethylammonium salt of carboxymethyldextran polyalcohol (2.69 g).

이 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(2.67 g)을 N,N-디메칠포름아미드(200 ㎖)에 용해하였다. 이 용액에, 예 2와 동일한 방법으로 합성한 3'-N-(Boc-Gly-Gly-Gly-Phe)-NH-A(A-NH2 =DX-8951)(350 ㎎)으로부터 예 16과 같은 방법으로 탈 Boc화하여 얻어진 3'-N-(Gly-Gly-Gly-Phe)-NH-A의 트리플루오로초산염과 트리에칠아민(0.116 ㎖)를 N,N-디메칠포름아미드(10 ㎖)에 녹여서 얻어진 용액, 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(2.67 g)을 N,N-디메칠포름아미드(10 ㎖)에 녹여 얻어진 용액을 순차적으로 부가하여, 실온에서 하룻밤 교반하면서 반응시켰다. 이 반응액에 3 M 염화나트륨 수용액(100 ㎖)를 가하여, 8㎖ 씩을 각 30 ㎖의 에탄올에 떨어뜨렸다. 각각에 3 M 염화나트륨 수용액(1 ㎖), 디에칠에테르(5 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 아세톤으로 세척한 후, 물에 용해하고, 3 M 염화나트륨 수용액(10 ㎖)를 부가한 후, 0.1 M 수산화 나트륨 수용액으로 pH 9로 조절하고, 37℃에서 1시간 처리하였다. 이 처리액을 바이오맥스-10막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 29의 화합물(2.30 g)을 얻었다. 본 화합물을 0.1 M 염화 나트륨 수용액에 용해한 후, GPC(칼럼 : 토소 TSK Gel PW-4000XL, 용매 : 0.1 M NaCl, 유속 : 0.8 ㎖/min)으로 분석한 결과, 및 본 화합물의 자외선 흡수 스펙트럼(0.1 M 트리스 완충액, pH 9.0, 0.20 ㎎/㎖을 각각 도 10 및 도 11에 나타낸다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 5.8 %(w/w)이었다.Triethylammonium salt (2.67 g) of this carboxymethyldextran polyalcohol was dissolved in N, N-dimethylformamide (200 mL). In this solution, 3'-N- (Boc-Gly-Gly-Gly-Phe) -NH-A (A-NH 2 = DX-8951) (350 mg) synthesized in the same manner as in Example 2 was used. Trifluoroacetate and triethylamine (0.116 mL) of 3'-N- (Gly-Gly-Gly-Phe) -NH-A obtained by debocation in the same manner were added to N, N-dimethylformamide ( 10 ml), a solution obtained by dissolving 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (2.67 g) in N, N-dimethylformamide (10 ml) was obtained. It was added sequentially and reacted with stirring overnight at room temperature. A 3 M aqueous sodium chloride solution (100 ml) was added to the reaction solution, and 8 ml each was dropped into 30 ml of ethanol. To each were added 3 M aqueous sodium chloride solution (1 ml) and diethether (5 ml), and the precipitates were collected by centrifugation (3500 rpm, 8 minutes). The precipitate was washed with acetone, dissolved in water, and added with 3M aqueous sodium chloride solution (10 ml), adjusted to pH 9 with 0.1M aqueous sodium hydroxide solution, and treated at 37 ° C for 1 hour. This treated solution was desalted by ultrafiltration using a Biomax-10 membrane. The remaining solution that did not pass through the membrane was filtered through a Millipore filter (0.22 µm) and then lyophilized to obtain the compound of Example 29 (2.30 g). The compound was dissolved in 0.1 M aqueous sodium chloride solution and analyzed by GPC (column: Toso TSK Gel PW-4000XL, solvent: 0.1 M NaCl, flow rate: 0.8 ml / min), and the ultraviolet absorption spectrum of the compound (0.1 M Tris buffer, pH 9.0 and 0.20 mg / ml, are shown in Figs. 10 and 11. The amount of the drug compound residue of the compound was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0). Bar, 5.8% (w / w).

예 30 : 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염의 합성 Example 30: Synthesis of triethylammonium salt of carboxymethyldextran polyalcohol

덱스트란 T10(20 g, Pharmacia사 제품, 평균 분자량 10K)의 0.1 M 초산 완충액(pH 5.5) 용액(2000 ㎖)에, 과요오드산나트륨(66.0 g)의 수용액(2000 ㎖)을 부가하였다. 빛을 차단하면서 4℃에서 10일간 교반한 후, 에칠렌글리콜(14.0 ㎖)을 부가하여, 하룻밤 교반하였다. 반응액을 빙냉하에서 8 M 수산화나트륨 수용액을 이용하여 pH를 7.5로 조절하였다. 수소화붕소나트륨(28 g)을 부가하여 용해한 후, 하룻밤 교반하였다. 반응액을 빙냉하여, 초산으로 pH 5.5 로 조절하여 4℃에서 1시간 교반한 후, 빙냉하에서 8 M 수산화나트륨 수용액을 이용하여 pH 7.5로 조절하였다. 얻어진 수용액을 바이오맥스-5막(밀리포아사 제품)을 이용한 한외여과법을 의해 저분자 분획을 제거하고, 막을 통과하지 않은 잔유용액을 바이오맥스-30막을 통과시켰다. 얻어진 통과액을 동결건조하여, 덱스트란폴리알콜(8.0 g)을 얻었다. 이 물질의 분자량(겔여과, 플루란 표준)은 13 K이었다. An aqueous solution of sodium periodate (66.0 g) (2000 ml) was added to a solution of 0.1 M acetic acid buffer (pH 5.5) of dextran T10 (20 g, Pharmacia, average molecular weight 10K). After stirring for 10 days at 4 ° C while blocking light, ethylene glycol (14.0 ml) was added, and the mixture was stirred overnight. The pH of the reaction solution was adjusted to 7.5 using 8 M aqueous sodium hydroxide solution under ice cooling. Sodium borohydride (28 g) was added and dissolved, followed by stirring overnight. The reaction solution was ice-cooled, adjusted to pH 5.5 with acetic acid, stirred at 4 ° C. for 1 hour, and then adjusted to pH 7.5 with 8 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was removed by ultrafiltration using a Biomax-5 membrane (Millipoa Corporation), and the remaining solution that had not passed through the membrane was passed through the Biomax-30 membrane. The obtained flow liquid was lyophilized to obtain dextran polyalcohol (8.0 g). The molecular weight of this substance was 13K (gel filtration, pullulan standard).

이 덱스트란폴리알콜(3.7 g)을, 수산화나트륨(25.9 g)을 물(111 ㎖)에 녹여서 얻어진 수용액에 가하여, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로초산(37 g)을 가하여 용해시킨 후, 실온에서 20시간 반응시켰다. 이 반응액을 초산으로 pH 8로 조절한 후, 바이오맥스-5막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 동결건조하여 카르복시메칠덱스트란폴리알콜의 나트륨염(6.2 g)을 얻었다. 이 물질의 분자량(겔 여과, 플루란 표준)은 37 K이고, 카르복시메칠화 정도는 0.9이었다. This dextran polyalcohol (3.7 g) was added to the aqueous solution obtained by dissolving sodium hydroxide (25.9 g) in water (111 mL), and it melt | dissolved at room temperature. Monochloroacetic acid (37 g) was added to this solution under ice cooling, and it was made to melt | dissolve, and it was made to react at room temperature for 20 hours. The reaction solution was adjusted to pH 8 with acetic acid and then desalted by ultrafiltration using a Biomax-5 membrane. The remaining solution that had not passed through the membrane was lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (6.2 g). The molecular weight of this substance was 37K (gel filtration, pullulan standard) and the degree of carboxymethylation was 0.9.

이 카르복시메칠덱스트란폴리알콜의 나트륨염(6.0 g)을 물에 용해하고, Bio-Rad AG 50W-X2(200 내지 400 메쉬, H + 형) 칼럼에 주입하여, 물로 용출하였다. 이 용출액에 트리에칠아민(9.3 ㎖)을 부가한 후, 동결건조하여 예 30의 화합물(7.2 g)을 얻었다.This sodium salt of carboxymethyldextran polyalcohol (6.0 g) was dissolved in water, poured into a Bio-Rad AG 50W-X2 (200-400 mesh, H + type) column, and eluted with water. Triethylamine (9.3 ml) was added to this eluate, and then lyophilized to obtain the compound (7.2 g) of Example 30.

예 31 : 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염의 합성 Example 31 Synthesis of Triethylammonium Salt of Carboxymethyldextran Polyalcohol

예 30에서 얻은 덱스트란폴리알콜(3.9 g)을, 수산화 나트륨(16.3 g)을 물(117 ㎖)에 녹여 얻어진 수용액에 가하고, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로 초산(23.4 g)을 부가하여 용해시킨 후, 실온으로 18시간 반응시켰다. 이 반응액을 초산으로 pH 8로 조절한 후, 바이오맥스-5막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 동결건조하고, 카르복시메칠덱스트란폴리알콜의 나트륨염(5.0 g)을 얻었다. 이 물질의 분자량(겔여과, 플루란 표준)은 28 K이고, 카르복시메칠화 정도는 0.5이었다. 이 카르복시메칠덱스트란폴리알콜의 나트륨염(4.8 g)을 예 30과 동일한 방법으로 트리에칠암모니움염으로 변환하고, 예 31의 화합물(5.6 g)을 얻었다.Dextran polyalcohol (3.9 g) obtained in Example 30 was added to an aqueous solution obtained by dissolving sodium hydroxide (16.3 g) in water (117 mL) and dissolved at room temperature. Monochloroacetic acid (23.4 g) was added and dissolved in this solution under ice-cooling, followed by reaction at room temperature for 18 hours. The reaction solution was adjusted to pH 8 with acetic acid and then desalted by ultrafiltration using a Biomax-5 membrane. The remaining solution that had not passed through the membrane was lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (5.0 g). The molecular weight of this substance was 28K (gel filtration, pullulan standard) and the degree of carboxymethylation was 0.5. The sodium salt of this carboxymethyldextran polyalcohol (4.8 g) was converted into the triethylammonium salt in the same manner as in Example 30 to obtain the compound (5.6 g) in Example 31.

예 32 : 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염의 합성 Example 32: Synthesis of triethylammonium salt of carboxymethyldextran polyalcohol

덱스트란 4(20 g, 후나코시사 제품, 평균 분자량 4K 내지 6K)의 0.1 M 초산 완충액(pH 5.5) 용액(2000 ㎖)에, 과요오드산나트륨(66.0 g)의 수용액(2000 ㎖)을 가하였다. 빛을 차단하면서 4℃에서 10일간 교반한 후, 에칠렌글리콜(14.0 ㎖)을 가하여, 하룻밤 교반하였다. 반응액을 빙냉하에서 8 M 수산화나트륨 수용액을 이용하여 pH를 7.5로 조절하였다. 수소화붕소나트륨(28 g)을 가하여 용해한 후, 실온에서 하룻밤 교반하였다. 반응액을 빙냉하여, 초산으로 pH 5.5로 조절하여 4℃에서 1시간 교반한 후, 빙냉하에서 8 M 수산화나트륨 수용액을 이용하여 pH 7.5로 조절하였다. 얻어진 수용액을 바이오맥스-3막(밀리포아사 제품)을 이용한 한외여과법을 의해 저분자 분획을 제거하였다. 얻어진 통과액을 동결건조하여 덱스트란폴리알콜(6.0 g)을 얻었다. 이 물질의 분자량(겔여과, 플루란 표준)은 9K이었다. 이 덱스트란폴리알콜(2.7 g)을, 수산화나트륨(18.9 g)을 물(81 ㎖)에 녹여서 얻어진 수용액에 가하여, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로초산(27 g)을 가하여 용해시킨 후, 실온에서 20시간 반응시켰다. 이 반응액을 초산으로 pH 8로 조절한 후, 바이오맥스-5막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 동결건조하여 카르복시메칠덱스트란폴리알콜의 나트륨염(4.2 g)을 얻었다. 이 물질의 분자량(겔 여과, 플루란 표준)은 20K이고, 카르복시메칠화 정도는 0.9이었다. To an aqueous solution of sodium periodate (66.0 g) (2000 ml) was added to a solution of 0.1 M acetic acid buffer (pH 5.5) of dextran 4 (20 g, manufactured by Funakoshi Co., Ltd., having an average molecular weight of 4K to 6K). It was. After stirring for 10 days at 4 ° C. while blocking light, ethylene glycol (14.0 ml) was added, followed by stirring overnight. The pH of the reaction solution was adjusted to 7.5 using 8 M aqueous sodium hydroxide solution under ice cooling. Sodium borohydride (28 g) was added and dissolved, followed by stirring at room temperature overnight. The reaction solution was ice-cooled, adjusted to pH 5.5 with acetic acid and stirred at 4 ° C. for 1 hour, and then adjusted to pH 7.5 using 8 M aqueous sodium hydroxide solution under ice cooling. The low molecular weight fraction was removed with the obtained aqueous solution by the ultrafiltration method using the Biomax-3 membrane (made by Millipore). The pass-through liquid obtained was lyophilized to obtain dextran polyalcohol (6.0 g). The molecular weight of this substance was 9K (gel filtration, pullulan standard). This dextran polyalcohol (2.7 g) was added to the aqueous solution obtained by dissolving sodium hydroxide (18.9 g) in water (81 mL), and it melt | dissolved at room temperature. Monochloroacetic acid (27 g) was added and dissolved in this solution under ice-cooling, and then reacted at room temperature for 20 hours. The reaction solution was adjusted to pH 8 with acetic acid and then desalted by ultrafiltration using a Biomax-5 membrane. The remaining solution that had not passed through the membrane was lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (4.2 g). The molecular weight of this substance was 20K (gel filtration, pullulan standard), and the degree of carboxymethylation was 0.9.

이 카르복시메칠덱스트란폴리알콜의 나트륨염(4.0 g)을 예 30과 동일한 방법으로 트리에칠암모니움염으로 변환하여, 예 32의 화합물(4.8 g)을 얻었다.The sodium salt of this carboxymethyldextran polyalcohol (4.0 g) was converted into the triethylammonium salt in the same manner as in Example 30 to obtain the compound (4.8 g) in Example 32.

예 33 : 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염의 합성 Example 33: Synthesis of triethylammonium salt of carboxymethyldextran polyalcohol

예 32에서 얻은 덱스트란폴리알콜(2.7 g)을, 수산화 나트륨(11.3 g)을 물(81 ㎖)에 녹여 얻어진 수용액에 가하고, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로 초산(16.2 g)을 가하여 용해시킨 후, 실온으로 18시간 반응시켰다. 이 반응액을 초산으로 pH 8로 조절한 후, 바이오맥스-5막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 동결건조하고, 카르복시메칠덱스트란폴리알콜의 나트륨염(2.7 g)을 얻었다. 이 물질의 분자량(겔여과, 플루란 표준)은, 16 K이고, 카르복시메칠화 정도는 0.5이었다. 이 카르복시메칠덱스트란폴리알콜의 나트륨염(2.7 g)을 예 30과 동일한 방법으로 트리에칠암모니움염으로 변환하고, 예 33의 화합물(3.1 g)을 얻었다.Dextran polyalcohol (2.7 g) obtained in Example 32 was added to an aqueous solution obtained by dissolving sodium hydroxide (11.3 g) in water (81 mL) and dissolved at room temperature. Monochloroacetic acid (16.2g) was added to this solution, and it melt | dissolved under ice cooling, and it was made to react at room temperature for 18 hours. The reaction solution was adjusted to pH 8 with acetic acid and then desalted by ultrafiltration using a Biomax-5 membrane. The remaining solution that had not passed through the membrane was lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (2.7 g). The molecular weight (gel filtration, pullulan standard) of this substance was 16K, and the degree of carboxymethylation was 0.5. The sodium salt of this carboxymethyldextran polyalcohol (2.7 g) was converted into the triethylammonium salt in the same manner as in Example 30 to obtain the compound (3.1 g) of Example 33.

예 34 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Phe-Gly-NH-A'(A-NH 2 Example 34 Carboxymethyldextran Polyalcohol-Gly-Gly-Phe-Gly-NH-A '(A-NH 2

=DX-8951)의 합성Synthesis of = DX-8951)

예 30에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(1.5 g)을 N,N-디메칠포름아미드(90 ㎖)에 용해시켰다. 이 용액에 트리에칠아민(0.07 ㎖)와 3'-N-(Gly-Gly-Phe-Gly)-NH-A(A-NH2 =DX-8951)의 트리플루오로초산염(210 ㎎)의 N,N-디메칠포름아미드(40 ㎖) 용액, 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(1.5 g)을 순차적으로 부가하여, 실온에서 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 각각에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(20 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 0.5 M 식염수에 용해하고, 빙냉하에서 0.1 M 수산화 나트륨 수용액으로 pH 9로 조절하였다. 얻어진 수용액을 바이오맥스-3막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 34의 화합물(1.3 g)을 얻었다. 본 화합물을 0.1 M 염화 나트륨 수용액에 용해한 후, GPC(칼럼 : 토소 TSK Gel PW-4000XL, 용매 : 0.1 M NaCl, 유속 : 0.8 ㎖/min)으로 분석한 결과, 및 본 화합물의 자외선 흡수 스펙트럼(0.1 M 트리스 완충액, pH 9.0, 65 ㎍/㎖)을 각각 도 12및 도 13에 나타낸다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 6.4 %(w/w)이었다.Triethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 30 (1.5 g) was dissolved in N, N-dimethylformamide (90 mL). Triethylamine (0.07 ml) and trifluoroacetic acid (210 mg) of 3'-N- (Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) were added to the solution. N, N-dimethylformamide (40 mL) solution and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (1.5 g) were added sequentially, and the reaction was stirred at room temperature overnight. I was. 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To each was added 3 M aqueous sodium chloride solution (2.5 mL) and diethyl ether (20 mL), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was dissolved in 0.5 M brine and adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was desalted by ultrafiltration using a Biomax-3 membrane. The remaining solution that had not passed through the membrane was filtered through a Millipore filter (0.22 m) and then lyophilized to obtain the compound (1.3 g) of Example 34. The compound was dissolved in 0.1 M aqueous sodium chloride solution and analyzed by GPC (column: Toso TSK Gel PW-4000XL, solvent: 0.1 M NaCl, flow rate: 0.8 ml / min), and the ultraviolet absorption spectrum of the compound (0.1 M Tris buffer, pH 9.0, 65 μg / ml) are shown in FIGS. 12 and 13, respectively. The content of the pharmaceutical compound residue of the compound was 6.4% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 35 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Phe-Gly-NH-A'(A-NH 2 Example 35 Carboxymethyldextran Polyalcohol-Gly-Gly-Phe-Gly-NH-A '(A-NH 2

=DX-8951)의 합성Synthesis of = DX-8951)

예 31에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(1.2 g)을 N,N-디메칠포름아미드(90 ㎖)용해시켰다. 이 용액에 트리에칠아민(0.056 ㎖)과 3'-N-(Gly-Gly-Phe-Gly)-NH-A(A-NH2 =DX-8951)의 트리플루오로초산염(168 ㎎)의 N,N-디메칠포름아미드(30 ㎖) 용액, 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(1.2 g)을 순차적으로 가하여, 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 각각에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(20 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 0.5 M 식염수에 용해하고, 빙냉하에서 0.1 M 수산화 나트륨 수용액으로 pH 9로 조절하였다. 얻어진 수용액을 바이오맥스-3막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 35의 화합물(1.0 g)을 얻었다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚흡광도에 근거하여 양을 정한 바, 4.8 %(w/w)이었다.Triethylammonium salt (1.2 g) of carboxymethyldextran polyalcohol obtained in Example 31 was dissolved in N, N-dimethylformamide (90 mL). Triethylamine (0.056 ml) and trifluoroacetic acid (168 mg) of 3'-N- (Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) were added to the solution. N, N-dimethylformamide (30 mL) solution and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (1.2 g) were added sequentially and reacted with stirring overnight at room temperature. . 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To each was added 3 M aqueous sodium chloride solution (2.5 mL) and diethyl ether (20 mL), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was dissolved in 0.5 M brine and adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was desalted by ultrafiltration using a Biomax-3 membrane. The remaining solution that had not passed through the membrane was filtered through a Millipore filter (0.22 m) and then lyophilized to obtain the compound (1.0 g) of Example 35. The content of the pharmaceutical compound residue of the compound was 4.8% (w / w) when the amount was determined based on the absorbance at 362 nm in 0.1 M Tris buffer (pH 9.0).

예 36 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Phe-Gly-NH-A'(A-NH 2 Example 36 Carboxymethyldextran Polyalcohol-Gly-Gly-Phe-Gly-NH-A '(A-NH 2

=DX-8951)의 합성Synthesis of = DX-8951)

예 32에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(1.2 g)을 N,N-디메칠포름아미드(90 ㎖)용해시켰다. 이 용액에 트리에칠아민(0.056 ㎖)과 3'-N-(Gly-Gly-Phe-Gly)-NH-A (A-NH2 =DX-8951)의 트리플루오로초산염(168 ㎎)의 N,N-디메칠포름아미드(30 ㎖) 용액, 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(1.2 g)을 순차적으로 가하여, 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 각각에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(20 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 0.5 M 식염수에 용해하고, 빙냉하에서 0.1 M 수산화 나트륨 수용액으로 pH 9로 조절하였다. 얻어진 수용액을 바이오맥스-3막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 36의 화합물(1.0 g)을 얻었다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚흡광도에 근거하여 양을 정한 바, 5.9 %(w/w)이었다.Triethylammonium salt (1.2 g) of carboxymethyldextran polyalcohol obtained in Example 32 was dissolved in N, N-dimethylformamide (90 mL). Triethylamine (0.056 mL) and trifluoroacetate (168 mg) of 3'-N- (Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) were added to this solution. N, N-dimethylformamide (30 mL) solution and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (1.2 g) were added sequentially and reacted with stirring overnight at room temperature. . 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To each was added 3 M aqueous sodium chloride solution (2.5 mL) and diethyl ether (20 mL), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was dissolved in 0.5 M brine and adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was desalted by ultrafiltration using a Biomax-3 membrane. The remaining solution that did not pass through the membrane was filtered through a Millipore filter (0.22 m) and then lyophilized to obtain the compound (1.0 g) of Example 36. The content of the pharmaceutical compound residue of the compound was 5.9% (w / w) when the amount was determined based on the absorbance at 362 nm in 0.1 M Tris buffer (pH 9.0).

예 37 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Phe-Gly-NH-A'(A-NH 2 Example 37 Carboxymethyldextran Polyalcohol-Gly-Gly-Phe-Gly-NH-A '(A-NH 2

=DX-8951)의 합성Synthesis of = DX-8951)

예 33에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(1.5 g)을 N,N-디메칠포름아미드(90 ㎖)에 용해시켰다. 이 용액에 트리에칠아민(0.07㎖)과 3'-N-(Gly-Gly-Phe-Gly)-NH-A(A-NH2 =DX-8951)의 트리플루오로초산염(210 ㎎)의 N,N-디메칠포름아미드(40 ㎖) 용액, 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(1.5 g)을 순차적으로 가하여, 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 각각에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(20 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 0.5 M 식염수에 용해하고, 빙냉하에서 0.1 M 수산화 나트륨 수용액으로 pH 9로 조절하였다. 얻어진 수용액을 바이오맥스-3막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 37의 화합물(1.3 g)을 얻었다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚흡광도에 근거하여 양을 정한 바, 4.6 %(w/w)이었다.Triethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 33 (1.5 g) was dissolved in N, N-dimethylformamide (90 mL). Triethylamine (0.07 ml) and trifluoroacetic acid (210 mg) of 3'-N- (Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) were added to the solution. N, N-dimethylformamide (40 mL) solution and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (1.5 g) were added sequentially and reacted with stirring overnight at room temperature. . 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To each was added 3 M aqueous sodium chloride solution (2.5 mL) and diethyl ether (20 mL), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was dissolved in 0.5 M brine and adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was desalted by ultrafiltration using a Biomax-3 membrane. The remaining solution that had not passed through the membrane was filtered through a Millipore filter (0.22 m) and then lyophilized to obtain the compound (1.3 g) of Example 37. The content of the pharmaceutical compound residue of the compound was 4.6% (w / w) when the amount was determined based on the absorbance at 362 nm in 0.1 M Tris buffer (pH 9.0).

예 38 : Boc-Gly-Gly-Phe-Gly-NH-A (A-NH 2 = DW-8286)의 합성 Example 38: Synthesis of Boc-Gly-Gly-Phe-Gly-NH-A (A-NH 2 = DW-8286)

Boc-Gly-Gly-Phe-Gly(42 ㎎) 및 N-히드록시숙신이미드(12 ㎎)을 N,N-디메칠포름아미드(2 ㎖)에 용해하고, 4℃로 냉각한 후, N,N-디클로헥실카르보디이미드(22 ㎎)을 첨가하였다. 이 용액에 하기 식으로 표시되는 화합물 [(1s, 9s)-1-아미노-5-클로로-9-에칠-2,3-디히드로-9-히드록시-1H,12H-벤조[de]피라노[3',4':6,7]인돌리지노[1,2-b]퀴놀린-10,13(9H,15H)-디온: DW-8286]의 염산염(50 mg)과 트리에칠아민(0.01 ㎖)를 용해한 N,N-디메칠포름아미드(6 ㎖) 용액을 가하고, 빛을 피해 실온에서 16시간 교반하면서 반응시켰다:Boc-Gly-Gly-Phe-Gly (42 mg) and N-hydroxysuccinimide (12 mg) were dissolved in N, N-dimethylformamide (2 mL) and cooled to 4 ° C., followed by N , N-dichlorohexylcarbodiimide (22 mg) was added. Compound [(1s, 9s) -1-amino-5-chloro-9-ethyl-2,3-dihydro-9-hydroxy-1H, 12H-benzo [de] pyrano, represented by the following formula in this solution: Hydrochloride (50 mg) and triethylamine of [3 ', 4': 6,7] indolizino [1,2-b] quinoline-10,13 (9H, 15H) -dione: DW-8286] 0.01 ml), dissolved N, N-dimethylformamide (6 ml) solution was added and reacted with stirring for 16 hours at room temperature, avoiding light:

이 반응액을 감압 건고시켜, 잔사를 실리카겔칼럼크로마토그래피(용출액 : 0.5 % 초산을 함유한 디클로로메탄 : 메탄올 = 10:1 용액)으로 정제하여 예 38의 화합물(27 ㎎)을 얻었다.The reaction solution was dried under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: dichloromethane: methanol = 10: 1 solution containing 0.5% acetic acid) to obtain the compound of Example 38 (27 mg).

1H-NMR(CDC13) δ: 8.10-8.20(br, 1H), 7.95-8.05(br, 1H), 7.70-7.80(br, 2H), 7.50-7.60(br, 1H), 7.40-7.50(br, 1H), 7.10-7.25(m, 5H), 7.05-7.15(br, 1H), 5.85-5.95(br, 1H), 5.50-5.60(br, 1H), 5.40-5.50(m, 1H), 5.25-5.35(m, 1H), 5.05-5.15(m, 1H), 4.90-5.00(m, 1H), 4.70-4.80(br, 1H), 4.10-4.25(br, 2H), 3.60-3.90(m, 4H), 3.10-3.40(m, 3H), 2.95-3.05(br, 1H), 2.15-2.30(br, 1H), 1.75-1.90(br, 2H), 1.39(s, 9H), 0.80-1.00(m,3H). 1 H-NMR (CDC1 3 ) δ : 8.10-8.20 (br, 1H), 7.95-8.05 (br, 1H), 7.70-7.80 (br, 2H), 7.50-7.60 (br, 1H), 7.40-7.50 ( br, 1H), 7.10-7.25 (m, 5H), 7.05-7.15 (br, 1H), 5.85-5.95 (br, 1H), 5.50-5.60 (br, 1H), 5.40-5.50 (m, 1H), 5.25-5.35 (m, 1H), 5.05-5.15 (m, 1H), 4.90-5.00 (m, 1H), 4.70-4.80 (br, 1H), 4.10-4.25 (br, 2H), 3.60-3.90 (m , 4H), 3.10-3.40 (m, 3H), 2.95-3.05 (br, 1H), 2.15-2.30 (br, 1H), 1.75-1.90 (br, 2H), 1.39 (s, 9H), 0.80-1.00 (m, 3 H).

예 39 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Phe-Gly-NH-A'(A-NH 2 Example 39 Carboxymethyldextran Polyalcohol-Gly-Gly-Phe-Gly-NH-A '(A-NH 2

=DX-8286)의 합성Synthesis of DX-8286)

예 24에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(175 ㎎)을 N,N-디메칠포름아미드(20 ㎖)에 용해시켰다. 이 용액에, 예 38에서 얻은 3'-N-(Boc-Gly-Gly-Phe-Gly)-NH-A(A-NH2 =DW-8286)(27 ㎎)으로부터 예 4와 같은 방법으로 탈 Boc화하여 얻어진 3'-N-(Gly-Gly-Phe-Gly)-NH-A의 트리플루오로초산염(29 ㎎)과 트리에칠아민(9 ㎕)의 N,N-디메칠포름아미드(5 ㎖) 용액, 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(175 g)을 순차적으로 부가하여, 실온에서 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖ 씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 각각에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(20 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 0.5 M 식염수에 용해하고, 빙냉하에서 0.1 M 수산화 나트륨 수용액으로 pH 9로 조절하였다. 얻어진 수용액을 바이오맥스-30막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 39의 화합물(135 ㎎)을 얻었다. 본 화합물을 0.1 M 염화 나트륨 수용액에 용해한 후, GPC(칼럼 : 토소 TSK Gel PW-4000XL, 용매 : 0.1 M NaCl, 유속 : 0.8 ㎖/min)으로 분석한 결과, 및 본 화합물의 자외선 흡수 스펙트럼(0.1 M 트리스 완충액, pH 9.0, 99 ㎍/ml)을 각각 도 14 및 도 15에 나타낸다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 6.1 %(w/w)이었다.Triethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 24 (175 mg) was dissolved in N, N-dimethylformamide (20 mL). To this solution was removed from the 3'-N- (Boc-Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DW-8286) (27 mg) obtained in Example 38 in the same manner as in Example 4. N, N-dimethylformamide of 3'-N- (Gly-Gly-Phe-Gly) -NH-A trifluoroacetate (29 mg) and triethylamine (9 µl) obtained by bocation ( 5 ml) solution and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (175 g) were added sequentially and reacted with stirring overnight at room temperature. 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To each was added 3 M aqueous sodium chloride solution (2.5 mL) and diethyl ether (20 mL), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was dissolved in 0.5 M brine and adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was desalted by ultrafiltration using a Biomax-30 membrane. The remaining solution that had not passed through the membrane was filtered through a Millipore filter (0.22 m) and then lyophilized to obtain the compound of Example 39 (135 mg). The compound was dissolved in 0.1 M aqueous sodium chloride solution and analyzed by GPC (column: Toso TSK Gel PW-4000XL, solvent: 0.1 M NaCl, flow rate: 0.8 ml / min), and the ultraviolet absorption spectrum of the compound (0.1 M Tris buffer, pH 9.0, 99 μg / ml) are shown in FIGS. 14 and 15, respectively. The content of the pharmaceutical compound residue of the present compound was 6.1% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 40 : 3'-N-(Boc-Gly-Gly-Phe-Gly)-NH-A (A-NH 2 =DW-8089)의 합성 Example 40: Synthesis of 3'-N- (Boc-Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DW-8089)

Boc-Gly-Gly-Phe-Gly(163 ㎎) 및 N-히드록시숙신이미드(45 ㎎)을 N,N-디메칠포름아미드(10 ㎖)에 용해하고, 4℃로 냉각한 후, N,N-디시클로헥실카르보디이미드(79 ㎎을 첨가하였다. 이 용액에 하기 식으로 표시되는 화합물 [(1s, 9s)-1-아미노-9-에칠-2,3-디히드로-9-히드록시-1H,12H-벤조[de]피라노[3',4':6,7]인돌리지노[1,2-b]퀴놀린-10,13(9H,15H)-디온:DW-8089]의 토실산염(170 ㎎)과 트리에칠아민(0.054 ㎖)를 용해한 N,N-디메칠포름아미드(30 ㎖) 용액을 가하고, 빛을 피해 실온에서 하룻밤 교반하면서 반응시켰다: Boc-Gly-Gly-Phe-Gly (163 mg) and N-hydroxysuccinimide (45 mg) were dissolved in N, N-dimethylformamide (10 mL) and cooled to 4 ° C., followed by N , N-dicyclohexylcarbodiimide (79 mg was added. To this solution, the compound represented by the following formula [(1s, 9s) -1-amino-9-ethyl-2,3-dihydro-9-hydride Roxy-1H, 12H-benzo [de] pyrano [3 ', 4': 6,7] indolizino [1,2-b] quinoline-10,13 (9H, 15H) -dione: DW-8089] N, N-dimethylformamide (30 mL) solution containing tosylate (170 mg) and triethylamine (0.054 mL) was added thereto, and reacted with stirring at room temperature overnight, avoiding light.

이 반응액을 감압 건고시켜, 잔사를 실리카겔칼럼크로마토그래피(용출액 : 0.5 % 초산을 함유한 디클로로메탄 : 메탄올 = 94:6 용액)으로 정제하여 예 40의 화합물(100 ㎎)을 얻었다.The reaction solution was dried under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: dichloromethane: methanol containing 0.5% acetic acid = 94: 6 solution) to obtain the compound of Example 40 (100 mg).

1H-NMR(DMSO-d6) δ: 8.51(d, 1H, J= 8.5 Hz), 8.41(t, 1H, J= 5.6 Hz), 8.29(s, 1H), 8.17(d, 1H, J= 8.0 Hz), 8.03(d, 1H, J= 8.0 Hz), 7.90(dd, 1H, J= 4.8, 5.6 Hz), 7.79(t, 1H, J= 5.6 Hz), 7.53(d, 1H, J= 7.2 Hz), 7.36(s, 1H), 7.13-7.25(m, 5H), 6.94-6.95(m, 1H), 5.60-5.63(m, 1H), 5.36-5.47(m, 2H), 5.21-5.30(m, 2H), 4.42-4.47(m, 1H), 3.63-3.96(m, 3H), 3.51-3.59(m, 3H), 3.31-3.40(m, 1H), 3.09-3.21(m, 1H), 3.02(dd, 1H, J=4.8, 13.5 Hz), 2.76-2.81(m, 1H), 2.13-2.17(m, 2H), 1.85-1.90(m, 2H), 1.37(s, 9H), 0.89(t, 3H, J= 8.0 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.51 (d, 1H, J = 8.5 Hz), 8.41 (t, 1H, J = 5.6 Hz), 8.29 (s, 1H), 8.17 (d, 1H, J = 8.0 Hz), 8.03 (d, 1H, J = 8.0 Hz), 7.90 (dd, 1H, J = 4.8, 5.6 Hz), 7.79 (t, 1H, J = 5.6 Hz), 7.53 (d, 1H, J) = 7.2 Hz), 7.36 (s, 1H), 7.13-7.25 (m, 5H), 6.94-6.95 (m, 1H), 5.60-5.63 (m, 1H), 5.36-5.47 (m, 2H), 5.21- 5.30 (m, 2H), 4.42-4.47 (m, 1H), 3.63-3.96 (m, 3H), 3.51-3.59 (m, 3H), 3.31-3.40 (m, 1H), 3.09-3.21 (m, 1H ), 3.02 (dd, 1H, J = 4.8, 13.5 Hz), 2.76-2.81 (m, 1H), 2.13-2.17 (m, 2H), 1.85-1.90 (m, 2H), 1.37 (s, 9H), 0.89 (t, 3H, J = 8.0 Hz).

Mass(FAB) ; m/e 822(M+1)Mass (FAB); m / e 822 (M + 1)

예 41 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Phe-Gly-NH-A'(A-NH 2 Example 41 Carboxymethyldextran Polyalcohol-Gly-Gly-Phe-Gly-NH-A '(A-NH 2

=DW-8089의 합성Synthesis of DW-8089

예 24에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(1.6 g)을 N,N-디메칠포름아미드(60 ㎖)에 용해시켰다. 이 용액에, 예 40에서 얻은 3'-N-(Boc-Gly-Gly-Phe-Gly)-NH-A(A-NH2 =DW-8089)(200 ㎎)으로부터 예 4와 같은 방법으로 탈 Boc화하여 얻어진 3'-N-(Gly-Gly-Phe-Gly)-NH-A의 트리플루오로초산염과 트리에칠아민(0.07 ㎖)를 N,N-디메칠포름아미드(20 ㎖)에 녹여 얻은 용액, 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(1.6 g)을 순차적으로 부가하여, 실온에서 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 각각에 3 M 염화나트륨 수용액(2.5 ㎖), 디에칠에테르(25 ㎖)을 가하고, 석출한 침전물을 원심분리(2500 rpm, 8분)에 의해 모았다. 이 침전물을 에탄올로 세척한 후, 물에 용해하고, 3 M 염화나트륨 수용액(20 ㎖)를 가하고, 0.1 M 수산화나트륨 수용액으로 pH 9로 조절하였다. 이 용액을 바이오맥스-10막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 41의 화합물(1.20 g)을 얻었다. 본 화합물을 0.1 M 염화나트륨 수용액에 용해한 후, GPC(칼럼 : 토소 TSK Gel PW-4000XL, 용매 : 0.1 M NaCl, 유속 : 0.8 ㎖/min)으로 분석한 결과, 및 본 화합물의 자외선 흡수 스펙트럼(0.1 M 트리스 완충액, pH 9.0, 0.26 ㎍/㎖)을 각각 도 16 및 도 17에 나타낸다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 5.0 %(w/w)이었다.Triethylammonium salt (1.6 g) of carboxymethyldextran polyalcohol obtained in Example 24 was dissolved in N, N-dimethylformamide (60 mL). To this solution was removed in the same manner as in Example 4 from 3'-N- (Boc-Gly-Gly-Phe-Gly) -NH-A (A-NH 2 = DW-8089) (200 mg) obtained in Example 40. Trifluoroacetic acid and triethylamine (0.07 mL) of 3'-N- (Gly-Gly-Phe-Gly) -NH-A obtained by Bocification were added to N, N-dimethylformamide (20 mL). The obtained solution and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (1.6g) were added sequentially, and it reacted with stirring overnight at room temperature. 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To each was added 3M aqueous sodium chloride solution (2.5 mL) and diethether (25 mL), and the precipitates were collected by centrifugation (2500 rpm, 8 minutes). This precipitate was washed with ethanol, dissolved in water, 3M aqueous sodium chloride solution (20 ml) was added, and adjusted to pH 9 with 0.1M aqueous sodium hydroxide solution. This solution was desalted by ultrafiltration using a Biomax-10 membrane. The remaining solution that did not pass through the membrane was filtered through a Millipore filter (0.22 µm) and then lyophilized to obtain the compound of Example 41 (1.20 g). The compound was dissolved in 0.1 M aqueous sodium chloride solution and analyzed by GPC (column: Toso TSK Gel PW-4000XL, solvent: 0.1 M NaCl, flow rate: 0.8 ml / min), and ultraviolet absorption spectrum (0.1 M) of the compound. Tris buffer, pH 9.0, 0.26 μg / ml) is shown in FIGS. 16 and 17, respectively. The content of the pharmaceutical compound residue of the compound was 5.0% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 42 : 카르복실메칠덱스트란폴리알콜의 트리에칠암모니움염의 합성 Example 42: Synthesis of triethylammonium salt of carboxymethyldextran polyalcohol

덱스트란 T150(20 g, Pharmacia사제품, 평균분자량 150K)을 0.1 M 초산 완충액(pH 5.5, 2000 ㎖)에 용해하고, 과요오드산나트륨(66.0 g)의 수용액(2000 ㎖)을 가하였다. 빛을 차단하면서 4℃에서 10일간 교반한 후, 에칠렌글리콜(14.0 ㎖)을 가하여, 하룻밤 교반하였다. 반응액을 빙냉하에서 8 M 수산화나트륨 수용액을 이용하여 pH를 7.5로 조절하였다. 수소화붕소나트륨(28 g)을 부가하여 용해한 후, 실온에서 하룻밤 교반하였다. 반응액을 빙냉하여, 초산으로 pH 5.5로 조절하여 4℃에서 1시간 교반한 후, 빙냉하에서 8 M 수산화나트륨 수용액을 이용하여 pH 7.5로 조절하였다. 얻어진 수용액을 바이오맥스-5막(밀리포아사 제품)을 이용한 한외여과법을 의해 500 ㎖농축하여 용액 1을 얻었다. 별도로, 덱스트란 T110(20 g)에 대해서 상기 일련의 조작을 시행하여, 용액 2를 얻었다. 용액 1과 용액 2를 혼합하여, 혼합용액의 pH를 3.0으로 하고, 40 ℃에서 4시간 방치한 후, pH를 7로 조절하여 저분자화된 덱스트란폴리알콜을 함유하는 용액을 얻었다. 바이오맥스-30막을 통과시킨 다음에 바이오맥스-5막을 이용하여 탈염한 후, 동결건조하여 덱스트란폴리알콜(4.6 g)을 얻었다. 이 물질의 분자량(겔여과법, 플루란 표준)은 17K이었다. Dextran T150 (20 g, Pharmacia, average molecular weight 150K) was dissolved in 0.1 M acetate buffer (pH 5.5, 2000 mL) and an aqueous solution of sodium periodate (66.0 g) (2000 mL) was added. After stirring for 10 days at 4 ° C. while blocking light, ethylene glycol (14.0 ml) was added, followed by stirring overnight. The pH of the reaction solution was adjusted to 7.5 using 8 M aqueous sodium hydroxide solution under ice cooling. Sodium borohydride (28 g) was added and dissolved, followed by stirring at room temperature overnight. The reaction solution was ice-cooled, adjusted to pH 5.5 with acetic acid and stirred at 4 ° C. for 1 hour, and then adjusted to pH 7.5 using 8 M aqueous sodium hydroxide solution under ice cooling. 500 ml of the obtained aqueous solution was concentrated by the ultrafiltration method using the Biomax-5 membrane (made by Millipore), and the solution 1 was obtained. Separately, the above series of operations were performed on dextran T110 (20 g) to obtain solution 2. Solution 1 and Solution 2 were mixed, the pH of the mixed solution was adjusted to 3.0, left at 40 ° C. for 4 hours, and then the pH was adjusted to 7 to obtain a solution containing low molecular weighted dextran polyalcohol. After passing through the Biomax-30 membrane, desalting was performed using the Biomax-5 membrane, and then lyophilized to obtain dextran polyalcohol (4.6 g). The molecular weight of this substance was 17K (gel filtration, pullulan standard).

이 덱스트란폴리알콜(2.5 g)을, 수산화나트륨(17.5 g)을 물(75 ㎖)에 녹여서 얻어진 수용액에 부가하여, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로초산(25 g)을 부가하여 용해시킨 후, 실온으로 20시간 반응시켰다. 이 반응액을 초산으로 pH를 9로 조절한 후, 바이오맥스-5막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 동결건조하여 카르복시메칠덱스트란폴리알콜의 나트륨염(4.0 g)을 얻었다. 이 물질의 분자량(겔 여과, 플루란 표준)은 45 K이고, CM화 정도는 0.9이었다. This dextran polyalcohol (2.5 g) was added to the aqueous solution obtained by dissolving sodium hydroxide (17.5 g) in water (75 mL), and it melt | dissolved at room temperature. Monochloroacetic acid (25 g) was added and dissolved in this solution under ice-cooling, and it was made to react at room temperature for 20 hours. The reaction solution was adjusted to pH 9 with acetic acid and then desalted by ultrafiltration using a Biomax-5 membrane. The remaining solution that had not passed through the membrane was lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (4.0 g). The molecular weight of this substance was 45 K (gel filtration, pullulan standard) and the degree of CMization was 0.9.

이 카르복시메칠덱스트란폴리알콜의 나트륨염(3.7 g)을 물에 용해하고, Bio-Rad AG 50W-X2(200 내지 400 메쉬, H+ 형) 칼럼에 주입하여, 물로 용해하였다. 이 용출액에 트리에칠아민(5.8 ㎖부가한 후, 동결건조하여 예 42의 화합물(4.4 g)을 얻었다.The sodium salt of carboxymethyldextran polyalcohol (3.7 g) was dissolved in water, poured into a Bio-Rad AG 50W-X2 (200-400 mesh, H + type) column, and dissolved in water. Triethylamine (5.8 mL addition) was added to this eluate, and then lyophilized to obtain the compound of Example 42 (4.4 g).

예 43 : 카르복시메칠덱스트란폴리알콜-Gly-Gly-Gly-Phe-NH-A'(A-NH 2 Example 43 Carboxymethyldextran Polyalcohol-Gly-Gly-Gly-Phe-NH-A '(A-NH 2

=DX-8951)의 합성Synthesis of = DX-8951)

예 42에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(4.4 g)을 N,N-디메칠포름아미드(300 ㎖)에 용해시켰다. 이 용액에, 트리에칠아민(0.19 ㎖)과 3'-N-(Gly-Gly-Gly-Phe)-NH-A(A-NH2 =DX-8951)의 트리플루오로초산염(580 ㎎)을 함유한 N,N-디메칠포름아미드(45 ㎖) 용액, 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(4.4 g)을 순차적으로 가하여, 빛을 피해 실온에서 하룻밤 교반하면서 반응시켰다. 이 반응액을 1 M 수산화나트륨 수용액으로 pH 10으로 조절한 후, 5 ㎖씩을 각 25 ㎖의 에탄올에 떨어뜨렸다. 이것에 3 M 염화나트륨 수용액(1 ㎖), 디에칠에테르(5 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 물에 용해하고, 투석막(Spectrapore 1, 한외분자량 6000 내지 8000)을 이용하여, 정제수에 대해서 투석하고, 투석내액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 43의 화합물을 얻었다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 4.6 %(w/w)이었다.Triethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 42 (4.4 g) was dissolved in N, N-dimethylformamide (300 mL). To this solution trifluoroamine (580 mg) of triethylamine (0.19 mL) and 3'-N- (Gly-Gly-Gly-Phe) -NH-A (A-NH 2 = DX-8951) N, N-dimethylformamide (45 mL) solution containing 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (4.4 g) was added sequentially to avoid room temperature. The reaction was stirred overnight at. The reaction solution was adjusted to pH 10 with 1 M aqueous sodium hydroxide solution, and 5 ml each was dropped into 25 ml ethanol. To this was added 3 M aqueous sodium chloride solution (1 ml) and diethyl ether (5 ml), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was dissolved in water, dialyzed against purified water using a dialysis membrane (Spectrapore 1, ultra-molecular weight 6000 to 8000), the dialysis solution was filtered through a Millipore filter (0.22 μm), and then lyophilized. The compound was obtained. The content of the pharmaceutical compound residue of the present compound was 4.6% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 44 : α -메칠카르복시메칠덱스트란폴리알콜-Gly-Gly-Gly-Phe-NH-A'(A-NH 2 Example 44 α -Methylcarboxymethyldextran polyalcohol-Gly-Gly-Gly-Phe-NH-A '(A-NH 2

=DX-8951)의 합성 Synthesis of = DX-8951)

예 42에서 얻은 메칠덱스트란폴리알콜(2 g)을, 수산화나트륨(14 g)을 물(60 ㎖)에 녹여서 얻어진 수용액에 가하고, 실온으로 용해시켰다. 이 용액에 빙냉하에서 α-브로모프로피온산(bromopropionic acid)(19 ㎖)를 부가하여 용해시킨 후, 실온에서 18시간 반응시켰다. 이 반응액을 초산으로 pH 8로 조절한 후, 바이오맥스 -50막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않는 잔유용액을 동결 건조하고, α-메칠카르복시메칠덱스트란폴리알콜의 나트륨염(2.95 g)을 얻었다. 이 물질의 분자량(겔여과, 플루란 표준)은 45 K이었다. 당잔기 당 α-메칠카르복시메칠화 정도는, 카르복시메칠덱스트란폴리알콜의 경우에 준하여 이하와 같이 구하였다. α-메칠카르복시메칠덱스트란폴리알콜의 나트륨염의 수용액을 Bio-Rad AG 50 W-X2(H + 형) 칼럼에 주입하여, 통과액을 동결건조하여 시료로서 이용하였다. 이 시료를 소정 과잉량의 0.1 N 수산화 나트륨 수용액에 용해하고, 페놀프탈레인을 지시약으로 하여 0.1 N 염산으로 적정하였다. 시료의 채취량을 s ㎎, 0.1 N 수산화 나트륨 수용액의 소정 과잉량을 a(㎖), 0.1N 염산의 적정량을 b(㎖)으로 하고, α-메칠카르복시메칠화 정도를 13.4(a-b)/[s-7.2(a-b)]의 식에 의해 구하였다. 그 결과 α-메칠카르복시메칠화 정도는 0.8이었다.Methyldextran polyalcohol (2 g) obtained in Example 42 was added to an aqueous solution obtained by dissolving sodium hydroxide (14 g) in water (60 mL) and dissolved at room temperature. ( Alpha ) -bromopropionic acid (19 ml) was added and dissolved in this solution under ice cooling, and it was made to react at room temperature for 18 hours. The reaction solution was adjusted to pH 8 with acetic acid and then desalted by ultrafiltration using a Biomax-50 membrane. The remaining solution that did not pass through the membrane was lyophilized to obtain sodium salt of α -methylcarboxymethyldextran polyalcohol (2.95 g). The molecular weight of this substance was 45K (gel filtration, pullulan standard). The sugar alpha -methylcarboxymethylation degree was calculated | required as follows according to the case of carboxymethyldextran polyalcohol. An aqueous solution of the sodium salt of α -methylcarboxymethyldextran polyalcohol was injected into a Bio-Rad AG 50 W-X2 (H + type) column, and the passage solution was lyophilized and used as a sample. This sample was dissolved in a predetermined excess amount of 0.1 N aqueous sodium hydroxide solution, and titrated with 0.1 N hydrochloric acid using phenolphthalein as an indicator. The sample was taken as s mg, the predetermined excess amount of 0.1 N sodium hydroxide aqueous solution was a (ml), the appropriate amount of 0.1 N hydrochloric acid was b (ml), and the degree of α -methylcarboxymethylation was 13.4 (ab) / [s. -7.2 (ab)]. As a result, the degree of α -methylcarboxymethylation was 0.8.

α-메칠카르복시메칠덱스트란폴리알콜의 나트륨염(2.2 g)을 물에 용해하고, Bio-Rad AG 50W-X2(200 내지 400 메쉬, H + 형) 칼럼(직경 44 ㎜, 길이 210 ㎜)에 주입하여, 물로 용출하였다. 이 용출액에 트리에칠아민(4 ㎖)를 부가한 후, 동결건조하여 α-메칠카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(2.69 g)을 얻었다.This sodium salt of α -methylcarboxymethyldextran polyalcohol (2.2 g) was dissolved in water, and a Bio-Rad AG 50W-X2 (200 to 400 mesh, H + type) column (44 mm in diameter and 210 mm in length) was dissolved. Injected into, eluted with water. Triethylamine (4 ml) was added to this eluate, followed by lyophilization to obtain triethylammonium salt (2.69 g) of α -methylcarboxymethyldextran polyalcohol.

α-메칠카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(2.68 g)을 N,N-디메칠포름아미드(60 ㎖)에 용해하였다. 이 용액에, 예 2와 동일한 방법으로 합성한 3'-N-(Boc-Gly-Gly-Gly-Phe)-NH-A(A-NH2 = DX-8951)(350 ㎎)으로부터 예 16과 같은 방법으로 탈 Boc화하여 얻어진 3'-N-(Gly-Gly-Gly-Phe)-NH-A의 트리플루오로초산염과 트리에칠아민(0.116 ㎖)를 N,N-디메칠포름아미드(10 ㎖)에 녹여 얻어진 용액, 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(2.68 g)을 N,N-디메칠포름아미드(10 ㎖)에 녹여서 얻어진 용액을 순차적으로 부가하여, 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액에 3 M 염화나트륨 수용액(40 ㎖)을 부가하여, 6 ㎖씩을 각 30 ㎖의 에탄올에 떨어뜨렸다. 각각에 3 M 염화나트륨 수용액(1 ㎖), 디에칠에테르(5 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 아세톤으로 세척한 후, 물에 용해하고, 3 M 염화나트륨 수용액(10 ㎖)를 부가하여, 0.1 M 수산화나트륨 수용액으로 pH 9로 조절하고, 37℃에서 1시간 처리하였다. 이 처리액을 바이오맥스-10막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 44의 화합물(2.5 g)을 얻었다. 본 화합물을 0.1 M 염화 나트륨 수용액에 용해한 후, GPC(칼럼 : 토소 TSK Gel PW-4000XL, 용매 : 0.1 M NaCl, 유속 : 0.8 ㎖/min)으로 분석한 결과, 및 본 화합물의 자외선 흡수 스펙트럼(0.1 M 트리스 완충액, pH 9.0, 0.21 ㎎/㎖)을 각각 도 18 및 도 19에 나타낸다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 5.9 %(w/w)이었다.Triethylammonium salt (2.68 g) of the α -methylcarboxymethyldextran polyalcohol was dissolved in N, N-dimethylformamide (60 mL). To this solution, 3'-N- (Boc-Gly-Gly-Gly-Phe) -NH-A (A-NH 2 = DX-8951) (350 mg) synthesized in the same manner as in Example 2 was used. Trifluoroacetate and triethylamine (0.116 mL) of 3'-N- (Gly-Gly-Gly-Phe) -NH-A obtained by debocation in the same manner were added to N, N-dimethylformamide ( 10 ml) was obtained by dissolving 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (2.68 g) in N, N-dimethylformamide (10 ml). It was added sequentially and reacted with stirring overnight at room temperature. A 3 M aqueous sodium chloride solution (40 mL) was added to the reaction solution, and 6 mL each was dropped into 30 mL of ethanol. To each were added 3 M aqueous sodium chloride solution (1 ml) and diethether (5 ml), and the precipitates were collected by centrifugation (3500 rpm, 8 minutes). The precipitate was washed with acetone, dissolved in water, and added with 3M aqueous sodium chloride solution (10 ml), adjusted to pH 9 with 0.1M aqueous sodium hydroxide solution, and treated at 37 ° C for 1 hour. This treated solution was desalted by ultrafiltration using a Biomax-10 membrane. The remaining solution that did not pass through the membrane was filtered through a Millipore filter (0.22 µm), and then lyophilized to obtain the compound (2.5 g) of Example 44. The compound was dissolved in 0.1 M aqueous sodium chloride solution and analyzed by GPC (column: Toso TSK Gel PW-4000XL, solvent: 0.1 M NaCl, flow rate: 0.8 ml / min), and the ultraviolet absorption spectrum of the compound (0.1 M Tris buffer, pH 9.0, 0.21 mg / ml) are shown in FIGS. 18 and 19, respectively. The content of the pharmaceutical compound residue of the compound was 5.9% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 45 : 3'-N-(Gly-Phe-Gly)-NH-A (A-NH 2 = DX-8951)트리플루오로초산염의 합성 Example 45: Synthesis of 3'-N- (Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) trifluoroacetate

Phe-Gly-OBzl의 p-톨루엔술폰산염(3.06 g), Boc-Gly-OH(1.10 g), N-히드록시숙신이미드(941 ㎎), N-메칠몰폴린(0.725 ㎖), N,N-디메칠포름아미드(40 ㎖)의 혼합물을 4℃로 냉각한 후, N,N'-디시클로헥실카르보디이미드(1.56 g)를 부가하였다. 실온에서 하룻밤 교반하면서 반응시킨 후, 반응액을 감압 건고하였다. 잔사를 실리카겔칼럼크로마토그래피(용출액 : 디클로로메탄 : 메탄올 = 98:2 용액)으로 정제하여 Boc-Gly-Phe-Gly-OBzl(1.93 g)을 얻었다.P-toluenesulfonic acid salt of Phe-Gly-OBzl (3.06 g), Boc-Gly-OH (1.10 g), N-hydroxysuccinimide (941 mg), N-methylmorpholine (0.725 mL), N, After the mixture of N-dimethylformamide (40 mL) was cooled to 4 ° C., N, N′-dicyclohexylcarbodiimide (1.56 g) was added. After reacting with stirring at room temperature overnight, the reaction solution was dried under reduced pressure. The residue was purified by silica gel column chromatography (eluent: dichloromethane: methanol = 98: 2 solution) to obtain Boc-Gly-Phe-Gly-OBzl (1.93 g).

1H-NMR(DMSO-d6) δ: 8.52(dd, 1H, J= 5.6, 6.4 Hz), 7.97(d, 1H, J= 8.8 Hz), 7.30-7.39(m, 5H), 7.15-7.26(m, 5H), 6.83(t, 1H, J= 5.6 Hz), 5.14(s, 1H), 4.52-4.57(m, 1H), 3.87-3.96(m, 2H), 3.57(dd, 1H, J= 5.6, 16.7 Hz), 3.43(dd, 1H, J= 5.6, 16.7 Hz), 3.01(dd, 1H, J= 4.8, 14.3 Hz), 2.77(dd, 1H, J= 5.6, 14.3 Hz), 1.37(s, 9H). 1 H-NMR (DMSO-d 6 ) δ : 8.52 (dd, 1H, J = 5.6, 6.4 Hz), 7.97 (d, 1H, J = 8.8 Hz), 7.30-7.39 (m, 5H), 7.15-7.26 (m, 5H), 6.83 (t, 1H, J = 5.6 Hz), 5.14 (s, 1H), 4.52-4.57 (m, 1H), 3.87-3.96 (m, 2H), 3.57 (dd, 1H, J = 5.6, 16.7 Hz), 3.43 (dd, 1H, J = 5.6, 16.7 Hz), 3.01 (dd, 1H, J = 4.8, 14.3 Hz), 2.77 (dd, 1H, J = 5.6, 14.3 Hz), 1.37 (s, 9H).

얻어진 Boc-Gly-Phe-Gly-OBzl(1.78 g)을 초산 에칠(60 ㎖)에 용해하고, 5%-Pd-C(1.8 g) 존재하에서, 24시간 접촉 환원시켰다. 촉매를 여과 제거하고, 여과액을 감압 농축하여, Boc-Gly-Phe-Gly-OH(1.41 g)을 얻었다.The obtained Boc-Gly-Phe-Gly-OBzl (1.78 g) was dissolved in ethyl acetate (60 mL) and subjected to contact reduction for 24 hours in the presence of 5% -Pd-C (1.8 g). The catalyst was filtered off and the filtrate was concentrated under reduced pressure to obtain Boc-Gly-Phe-Gly-OH (1.41 g).

1H-NMR(DMSO-d6) δ: 8.35(t, 1H, J= 5.6 Hz), 7.94(d, 1H, J= 8.8 Hz), 7.15-7.26(m, 5H), 6.85(dd, 1H, J= 5.6, 6.4 Hz), 4.52-4.58(m, 1H), 3.76(d, 2H, J= 5.6 Hz), 3.56(dd, 1H, J= 6.4, 16.7 Hz), 3.43(dd, 1H, J= 5.6, 16.7 Hz), 3.03(dd, 1H, J= 5.0, 13.5 Hz), 2.79(dd, 1H, J= 9.5, 13.5 Hz), 1.37(s, 9H). 1 H-NMR (DMSO-d 6 ) δ : 8.35 (t, 1H, J = 5.6 Hz), 7.94 (d, 1H, J = 8.8 Hz), 7.15-7.26 (m, 5H), 6.85 (dd, 1H) , J = 5.6, 6.4 Hz, 4.52-4.58 (m, 1H), 3.76 (d, 2H, J = 5.6 Hz), 3.56 (dd, 1H, J = 6.4, 16.7 Hz), 3.43 (dd, 1H, J = 5.6, 16.7 Hz), 3.03 (dd, 1H, J = 5.0, 13.5 Hz), 2.79 (dd, 1H, J = 9.5, 13.5 Hz), 1.37 (s, 9H).

위에서 얻은 Boc-Gly-Phe-Gly-OH(500 ㎎) 및 N-히드록시숙신이미드(161 ㎎)을 N,N-디메칠포름아미드(10 ㎖)에 용해하였다. 이 용액에 DX-8951의 메탄술폰산염(530 ㎎)과 트리에칠아민(0.146 ㎖)를 용해한 N,N-디메칠포름아미드(50 ㎖) 용액을 가하고, 4℃로 냉각한 후, N,N-디시클로헥실카르보디이미드(268 ㎎)을 가하고, 빛을 차단하여 실온에서 하룻밤 교반하면서 반응시켰다. 이 반응액을 압력을 줄이면서 건고시켜, 잔사를 실리카겔칼럼크로마토그래피(용출액 : 디클로로메탄:메탄올 = 96:4 용액)으로 정제하여 3'-N-(Boc-Gly-Phe-Gly)-NH-A (A-NH2 =DX-8951)(100 mg)을 얻었다.Boc-Gly-Phe-Gly-OH (500 mg) and N-hydroxysuccinimide (161 mg) obtained above were dissolved in N, N-dimethylformamide (10 mL). To this solution was added N, N-dimethylformamide (50 mL) solution of DX-8951 methanesulfonate (530 mg) and triethylamine (0.146 mL), and cooled to 4 ° C., followed by N, N-dicyclohexylcarbodiimide (268 mg) was added, and light was interrupted and reacted with stirring overnight at room temperature. The reaction solution was dried under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: dichloromethane: methanol = 96: 4 solution) to give 3'-N- (Boc-Gly-Phe-Gly) -NH-. A (A-NH 2 = DX-8951) (100 mg) was obtained.

1H-NMR(DMSO-d6) δ: 8.39(d, 1H, J= 8.0 Hz), 8.34(t, 1H, J= 5.6 Hz), 7.98(d, 1H, J= 7.2 Hz), 7.78(d, 1H, J= 10.3 Hz), 7.33(s, 1H), 7.13-7.24(m, 5H), 6.80(dd, 1H, J= 5.6, 6.4 Hz), 5.55-5.61(m, 1H), 5.44(d, 1H, J= 16.0 Hz), 5.41(d, 1H, J= 16.0 Hz), 5.25(s, 2H), 4.43-4.46(m, 1H), 3.69-3.79(m, 2H), 3.50(dd, 1H, J= 5.6, 16.7 Hz), 3.41(dd, 1H, J= 5.6, 16.7 Hz), 3.16-3.19(m, 2H), 2.98(dd, 1H, J= 4.8, 14.3 Hz), 2.79(dd, 1H, J= 9.5, 14.3 Hz), 2.41(s, 3H), 2.19-2.25(m, 1H), 2.10-2.15(m,1H), 1.82-1.90(m, 2H), 1.35(s, 9H), 0.88(t, 3H, J= 8.0 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.39 (d, 1H, J = 8.0 Hz), 8.34 (t, 1H, J = 5.6 Hz), 7.98 (d, 1H, J = 7.2 Hz), 7.78 ( d, 1H, J = 10.3 Hz, 7.33 (s, 1H), 7.13-7.24 (m, 5H), 6.80 (dd, 1H, J = 5.6, 6.4 Hz), 5.55-5.61 (m, 1H), 5.44 (d, 1H, J = 16.0 Hz), 5.41 (d, 1H, J = 16.0 Hz), 5.25 (s, 2H), 4.43-4.46 (m, 1H), 3.69-3.79 (m, 2H), 3.50 ( dd, 1H, J = 5.6, 16.7 Hz), 3.41 (dd, 1H, J = 5.6, 16.7 Hz), 3.16-3.19 (m, 2H), 2.98 (dd, 1H, J = 4.8, 14.3 Hz), 2.79 (dd, 1H, J = 9.5, 14.3 Hz), 2.41 (s, 3H), 2.19-2.25 (m, 1H), 2.10-2.15 (m, 1H), 1.82-1.90 (m, 2H), 1.35 (s , 9H), 0.88 (t, 3H, J = 8.0 Hz).

Mass(FAB) ; m/e 797(M+1)Mass (FAB); m / e 797 (M + 1)

얻어진 3'-N-(Boc-Gly-Phe-Gly)-NH-A(A-NH2 = DX-8951)(100 ㎎)을 트리플루오로초산(3 ㎖)에 녹이고, 1시간 방치하였다. 용매를 제거하고, 메탄올(30 ㎖)을 가하여 함께 끓이는 과정을 2회, 에탄올(30 ㎖)을 가하여 함께 끓이는 과정을 2회 시행한 후, 잔사를 에탄올로 세척하여, 예 45의 화합물(80 ㎎)을 얻었다.The obtained 3'-N- (Boc-Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) (100 mg) was dissolved in trifluoroacetic acid (3 mL) and left to stand for 1 hour. The solvent was removed and the mixture was boiled twice with methanol (30 mL) and ethanol (30 mL) was added twice to boil together. The residue was washed with ethanol to give the compound of Example 45 (80 mg). )

1H-NMR(DMSO-d6) δ: 8.52-8.62(m,1H), 7.94(s, 3H), 7.79(t, 1H, J= 11.1Hz), 7.34(s, 1H), 7.15-7.27(m, 5H), 6.52(s, 1H), 5.57-5.61(m, 1H), 5.36-5.46(m, 2H), 5.24(s, 2H), 4.66-4.70(m, 1H), 3.69-3.81(m, 2H), 3.61-3.68(m, 1H), 3.40-3.47(m, 1H), 3.15-3.23(m, 1H), 3.01(dd, 1H, J= 4.0, 13.5 Hz), 2.77(dd, 1H, J= 9.5, 13.5 Hz), 2.12-2.23(m, 2H), 1.81-1.91(m, 2H), 0.89(t, 3H, J= 7.2 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.52-8.62 (m, 1H), 7.94 (s, 3H), 7.79 (t, 1H, J = 11.1 Hz), 7.34 (s, 1H), 7.15-7.27 (m, 5H), 6.52 (s, 1H), 5.57-5.61 (m, 1H), 5.36-5.46 (m, 2H), 5.24 (s, 2H), 4.66-4.70 (m, 1H), 3.69-3.81 (m, 2H), 3.61-3.68 (m, 1H), 3.40-3.47 (m, 1H), 3.15-3.23 (m, 1H), 3.01 (dd, 1H, J = 4.0, 13.5 Hz), 2.77 (dd , 1H, J = 9.5, 13.5 Hz), 2.12-2.23 (m, 2H), 1.81-1.91 (m, 2H), 0.89 (t, 3H, J = 7.2 Hz).

Mass(FAB) ; m/e 697(M+1)Mass (FAB); m / e 697 (M + 1)

예 46 : 3'-N-(Phe-Gly)-NH-A (A-NH 2 = DX-8951)트리플루오로초산염의 합성 Example 46: Synthesis of 3'-N- (Phe-Gly) -NH-A (A-NH 2 = DX-8951) trifluoroacetate

Boc-Phe-Gly(771 ㎎) 및 N-히드록시숙신이미드(300 ㎎)을 N,N-디메칠포름아미드(10 ㎖)에 용해하였다. 이 용액에 DX-8951의 메탄술폰산염(1058 ㎎)과 트리에칠아민(0.293 ㎖)를 용해한 N,N-디메칠포름아미드(50 ㎖) 용액을 가하고, 4℃에서 냉각한 후, N,N-디시클로헥실카르보디이미드(494 ㎎)을 가하고, 빛을 차단하면서 실온으로 하룻밤 교반하여 반응시켰다. 이 반응액을 압력을 줄이면서 건고시켜, 잔사를 실리카겔칼럼크로마토그래피(용출액 : 디클로로메탄:메탄올 = 98:2 용액)으로 정제하여 3'-N-(Boc-Phe-Gly)-NH-A (A-NH2 =DX-8951)(1.20 g)을 얻었다.Boc-Phe-Gly (771 mg) and N-hydroxysuccinimide (300 mg) were dissolved in N, N-dimethylformamide (10 mL). N, N-dimethylformamide solution (50 mL) in which DX-8951 methanesulfonate (1058 mg) and triethylamine (0.293 mL) were dissolved was added to this solution, and cooled at 4 占 폚. N-dicyclohexylcarbodiimide (494 mg) was added, and the reaction was stirred overnight at room temperature while blocking light. The reaction solution was dried under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: dichloromethane: methanol = 98: 2 solution) to give 3'-N- (Boc-Phe-Gly) -NH-A ( A-NH 2 = DX-8951) (1.20 g).

1H-NMR(DMSO-d6) δ: 8.29(d, 1H, J= 8.0 Hz), 8.21(t, 1H, J= 4.8 Hz), 7.76(d, 1H, J= 10.3 Hz), 7.32(s, 1H), 7.13-7.25(m, 5H), 6.92(d, 1H, J= 7.2 Hz), 6.49(s, 1H), 5.56-5.61(m, 1H), 5.44(d, 1H, J= 15.9 Hz), 5.38(d, 1H, J= 15.9 Hz), 5.25(s, 2H), 4.08-4.12(m, 1H), 3.78(d, 1H, J= 4.8 Hz), 3.16-3.25(m, 2H), 2.99(dd, 1H, J= 4.0, 13.5 Hz), 2.72(dd, 1H, J= 10.3, 13.5 Hz), 2.40(s, 3H), 2.09-2.35(m, 2H), 1.80-1.91(m, 2H), 1.16(s, 9H), 0.88(t, 3H, J= 8.0 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.29 (d, 1H, J = 8.0 Hz), 8.21 (t, 1H, J = 4.8 Hz), 7.76 (d, 1H, J = 10.3 Hz), 7.32 ( s, 1H), 7.13-7.25 (m, 5H), 6.92 (d, 1H, J = 7.2 Hz), 6.49 (s, 1H), 5.56-5.61 (m, 1H), 5.44 (d, 1H, J = 15.9 Hz), 5.38 (d, 1H, J = 15.9 Hz), 5.25 (s, 2H), 4.08-4.12 (m, 1H), 3.78 (d, 1H, J = 4.8 Hz), 3.16-3.25 (m, 2H), 2.99 (dd, 1H, J = 4.0, 13.5 Hz), 2.72 (dd, 1H, J = 10.3, 13.5 Hz), 2.40 (s, 3H), 2.09-2.35 (m, 2H), 1.80-1.91 (m, 2H), 1.16 (s, 9H), 0.88 (t, 3H, J = 8.0 Hz).

Mass(FAB) ; m/e 741(M+1)Mass (FAB); m / e 741 (M + 1)

상기에서 얻어진 3'-N-(Boc-Phe-Gly)-NH-A(170 ㎎)을 트리플루오로초산(4 ㎖)에 녹이고, 1시간 방치하였다. 용매를 제거하고, 메탄올(10 ㎖)을 가하여 함께 끓이는 과정을 2회, 에탄올(10 ㎖)을 가하여 함께 끓이는 과정을 2회 시행한 후, 잔사를 에탄올로 세척하여, 예 46의 화합물(100 ㎎)을 얻었다.3'-N- (Boc-Phe-Gly) -NH-A (170 mg) obtained above was dissolved in trifluoroacetic acid (4 mL), and left to stand for 1 hour. The solvent was removed, two times of boiling together with methanol (10 mL) and two times of boiling together with ethanol (10 mL), and the residue was washed with ethanol to give the compound of Example 46 (100 mg). )

1H-NMR(DMSO-d6) δ: 8.88(t, 1H, J= 4.8 Hz), 8.68(d, 1H, J= 8.7 Hz), 8.05-8.15(m, 3H), 7.79(d, 1H, J= 11.1 Hz), 7.26-7.36(m, 5H), 6.52(d, 1H, J= 7.2 Hz), 5.57-5.62(m, 1H), 5.43(d, 1H, J= 15.9 Hz), 5.38(d, 1H, J= 15.9 Hz), 5.19-5.28(m, 1H), 4.10-4.18(m, 1H), 3.93(dd, 1H, J= 4.8, 16.7 Hz), 3.82(dd, 1H, J= 4.8, 16.7 Hz), 3.17-3.24(m, 2H), 3.14(dd, 1H, J= 4.8, 13.5 Hz), 2.95(dd, 1H, J= 8.0, 13.5 Hz), 2.42(s, 3H), 2.14-2.25(m, 2H), 1.83-1.91(m, 2H), 0.89(t, 3H, J= 8.0 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.88 (t, 1H, J = 4.8 Hz), 8.68 (d, 1H, J = 8.7 Hz), 8.05-8.15 (m, 3H), 7.79 (d, 1H , J = 11.1 Hz), 7.26-7.36 (m, 5H), 6.52 (d, 1H, J = 7.2 Hz), 5.57-5.62 (m, 1H), 5.43 (d, 1H, J = 15.9 Hz), 5.38 (d, 1H, J = 15.9 Hz), 5.19-5.28 (m, 1H), 4.10-4.18 (m, 1H), 3.93 (dd, 1H, J = 4.8, 16.7 Hz), 3.82 (dd, 1H, J = 4.8, 16.7 Hz), 3.17-3.24 (m, 2H), 3.14 (dd, 1H, J = 4.8, 13.5 Hz), 2.95 (dd, 1H, J = 8.0, 13.5 Hz), 2.42 (s, 3H) , 2.14-2.25 (m, 2H), 1.83-1.91 (m, 2H), 0.89 (t, 3H, J = 8.0 Hz).

Mass(FAB) ; m/e 640(M+1)Mass (FAB); m / e 640 (M + 1)

예 47 : 3'-N-Gly-NH-A(A-NH 2 = DX-8951)트리플루오로초산염의 합성 Example 47 Synthesis of 3'-N-Gly-NH-A (A-NH 2 = DX-8951) Trifluoroacetate

DX-8951의 메탄술폰산염(530 ㎎)과 트리에칠아민(0.28 ㎖)를 N,N-디메칠포름아미드(10 ㎖)에 용해하고, 4℃로 냉각한 후, Boc-Gly의 N-히드록시숙신이미드에스테르(327 ㎎)을 부가하였다. 빛을 차단하면서 실온으로 하룻밤 교반하여 반응시켰다. 이 반응액을 감압 건고하여, 잔사를 실리카겔칼럼크로마토그래피(용출액 : 디클로로메탄 : 메탄올 = 98:2 용액)으로 정제하여 3'-N-(Boc-Gly)-NH-A (A-NH2 = DX-8951)(500 ㎎)을 얻었다.Methanesulfonate (530 mg) and triethylamine (0.28 mL) of DX-8951 were dissolved in N, N-dimethylformamide (10 mL), cooled to 4 ° C., and then N- of Boc-Gly. Hydroxysuccinimide ester (327 mg) was added. The reaction was stirred overnight at room temperature while blocking light. The reaction solution was dried under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: dichloromethane: methanol = 98: 2 solution) to give 3'-N- (Boc-Gly) -NH-A (A-NH 2 =). DX-8951) (500 mg) was obtained.

1H-NMR(DMSO-d6) δ: 8.38(d, 1H, J= 8.3 Hz), 7.77(d, 1H, J= 10.7 Hz), 7.31(s, 1H), 6.89-6.91(m, 1H), 6.49(s, 1H), 5.55-5.59(m, 1H), 5.45(d, 1H, J= 16.1 Hz), 5.38(d, 1H, J= 16.1 Hz), 5.27(d, 1H, J= 19.0 Hz), 5.18(d, 1H, J= 19.0 Hz), 3.50-3.62(m, 2H), 3.15-3.19(m, 2H), 2.41(s, 3H), 2.18-2.24(m, 1H), 2.08-2.12(m, 1H), 1.81-1.91(m, 2H), 1.31(s, 9H), 0.87(t, 3H, J= 8.0 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.38 (d, 1H, J = 8.3 Hz), 7.77 (d, 1H, J = 10.7 Hz), 7.31 (s, 1H), 6.89-6.91 (m, 1H ), 6.49 (s, 1H), 5.55-5.59 (m, 1H), 5.45 (d, 1H, J = 16.1 Hz), 5.38 (d, 1H, J = 16.1 Hz), 5.27 (d, 1H, J = 19.0 Hz), 5.18 (d, 1H, J = 19.0 Hz), 3.50-3.62 (m, 2H), 3.15-3.19 (m, 2H), 2.41 (s, 3H), 2.18-2.24 (m, 1H), 2.08-2.12 (m, 1H), 1.81-1.91 (m, 2H), 1.31 (s, 9H), 0.87 (t, 3H, J = 8.0 Hz).

Mass(FAB) ; m/e 593(M+1)Mass (FAB); m / e 593 (M + 1)

상기에서 얻어진 3'-N-(Boc-Gly)-NH-A(100 ㎎)을 트리플루오로초산(2 ㎖)에 녹이고, 1시간 방치하였다. 용매를 제거하고, 메탄올(10 ㎖)을 가하여 함께 끓이는 과정을 2회, 에탄올(10 ㎖)을 가하여 함께 끓이는 과정을 2회 시행한 후, 잔사를 에탄올로 세척하여, 예 47의 화합물(70 ㎎)을 얻었다.The 3'-N- (Boc-Gly) -NH-A (100 mg) obtained above was dissolved in trifluoroacetic acid (2 mL), and left to stand for 1 hour. The solvent was removed and the mixture was boiled twice with methanol (10 ml) and ethanol (10 ml) twice with boiling. The residue was washed with ethanol to give the compound of Example 47 (70 mg). )

1H-NMR(DMSO-d6) δ: 8.88(d, 1H, J= 8.8 Hz), 8.08(s, 3H), 7.81(d, 1H, J= 11.2 Hz), 7.34(s, 1H), 6.52(s, 1H), 5.63-5.67(m, 1H), 5.45(d, 1H, J= 16.7 Hz), 5.40(d, 1H, J= 16.7 Hz), 5.36(d, 1H, J= 19.1 Hz), 5.25(d, 1H, J= 19.1 Hz), 3.56(s, 2H), 3.11-3.19(m, 2H), 2.43(s, 3H), 2.23-2.28(m, 1H), 2.11-2.19(m, 1H), 1.81-1.91(m, 2H), 0.88(t, 3H, J= 8.0 Hz). 1 H-NMR (DMSO-d 6 ) δ : 8.88 (d, 1H, J = 8.8 Hz), 8.08 (s, 3H), 7.81 (d, 1H, J = 11.2 Hz), 7.34 (s, 1H), 6.52 (s, 1H), 5.63-5.67 (m, 1H), 5.45 (d, 1H, J = 16.7 Hz), 5.40 (d, 1H, J = 16.7 Hz), 5.36 (d, 1H, J = 19.1 Hz ), 5.25 (d, 1H, J = 19.1 Hz), 3.56 (s, 2H), 3.11-3.19 (m, 2H), 2.43 (s, 3H), 2.23-2.28 (m, 1H), 2.11-2.19 ( m, 1H), 1.81-1.91 (m, 2H), 0.88 (t, 3H, J = 8.0 Hz).

Mass(FAB) ; m/e 493(M+1)Mass (FAB); m / e 493 (M + 1)

예 48 : 카르복시메칠덱스트란폴리알콜의 트리메칠암모니움염의 합성 Example 48: Synthesis of trimethylammonium salt of carboxymethyldextran polyalcohol

덱스트란 T500(50 g, Pharmacia사 제품, 분자량 500K)을 0.1 M 초산 완충액(pH 5.5, 5000 ㎖)에 용해하고, 과요오드산나트륨(165.0 g)의 수용액(5000 ㎖)을 부가하였다. 빛을 차단하면서 4℃에서 10일간 교반한 후, 에칠렌글리콜(35.0 ㎖)을 부가하여, 하룻밤 교반하였다. 반응액을 8 M 수산화나트륨 수용액을 이용하여 pH를 7로 조절하였다. 수소화붕소나트륨(70 g)을 부가하여 용해한 후, 하룻밤 교반하였다. 반응액을 빙냉하여, 초산으로 pH 5.5로 조절하여 4℃에서 1시간 교반한 후, 8 M 수산화나트륨 수용액을 이용하여 pH 7.5로 조절하였다. 얻어진 수용액을 바이오맥스-50막을 이용한 한외여과법에 의해 탈염을 시행하였다. 막을 통과하지 않은 잔유용액을 동결건조하여, 덱스트란폴리알콜(20.2 g)을 얻었다. 이 물질의 분자량(겔여과, 플루란 표준)은 159K이었다. Dextran T500 (50 g, Pharmacia, molecular weight 500K) was dissolved in 0.1 M acetic acid buffer (pH 5.5, 5000 mL), and an aqueous solution of sodium periodate (165.0 g) (5000 mL) was added. After stirring for 10 days at 4 ° C while blocking light, ethylene glycol (35.0 ml) was added, and the mixture was stirred overnight. The reaction solution was adjusted to pH 7 using 8 M aqueous sodium hydroxide solution. Sodium borohydride (70 g) was added and dissolved, followed by stirring overnight. The reaction solution was ice-cooled, adjusted to pH 5.5 with acetic acid, stirred at 4 ° C. for 1 hour, and then adjusted to pH 7.5 using an aqueous 8 M sodium hydroxide solution. The obtained aqueous solution was desalted by ultrafiltration using a Biomax-50 membrane. The remaining solution that had not passed through the membrane was lyophilized to obtain dextran polyalcohol (20.2 g). The molecular weight of this substance was 159K (gel filtration, pullulan standard).

이 덱스트란폴리알콜(7.5 g)을, 수산화나트륨(31.5 g)을 물(225 ㎖)에 녹여서 얻어진 수용액에 부가하여, 실온으로 용해시켰다. 이 용액에 빙냉하에서 모노클로로초산(45 g)을 부가하여 용해시킨 후, 실온으로 하룻밤 반응시켰다. 이 반응액을 초산으로 pH를 8로 조절한 후, 바이오맥스-50막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 동결건조하여 카르복시메칠덱스트란폴리알콜의 나트륨염(8.5 g)을 얻었다. 이 물질의 분자량(겔 여과, 플루란 표준)은 274 K이고, 카르복시메칠화 정도는 0.4이었다. 이 카르복시메칠덱스트란폴리알콜의 나트륨염(2.0 g)을 물에 용해하고, Bio-Rad AG 50W-X2(200 내지 400 메쉬, H+ 형) 칼럼(직경 44㎜, 길이 210 ㎜)에 주입하여, 물로 용출하였다. 이 용출액에 트리에칠아민(4 ㎖)을 부가한 후, 동결건조하여 예 48의 화합물(2.2 g)을 얻었다.The dextran polyalcohol (7.5 g) was added to an aqueous solution obtained by dissolving sodium hydroxide (31.5 g) in water (225 ml), and the mixture was dissolved at room temperature. Monochloroacetic acid (45 g) was added and dissolved in this solution under ice-cooling, and then reacted overnight at room temperature. The reaction solution was adjusted to pH 8 with acetic acid and then desalted by ultrafiltration using a Biomax-50 membrane. The remaining solution that had not passed through the membrane was lyophilized to obtain sodium salt of carboxymethyldextran polyalcohol (8.5 g). The molecular weight of this substance was 274 K (gel filtration, pullulan standard) and the degree of carboxymethylation was 0.4. Sodium salt of this carboxymethyldextran polyalcohol (2.0 g) was dissolved in water and poured into a Bio-Rad AG 50W-X2 (200 to 400 mesh, H + type) column (44 mm in diameter and 210 mm in length). , Eluted with water. Triethylamine (4 ml) was added to this eluate, and then lyophilized to obtain the compound (2.2 g) in Example 48.

예 49 : 카르복시메칠덱스트란폴리알콜-Gly-Phe-Gly-NH-A'(A-NH 2 Example 49 Carboxymethyldextran Polyalcohol-Gly-Phe-Gly-NH-A '(A-NH 2

=DX-8951)의 합성Synthesis of = DX-8951)

예 48에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(200 ㎎)을 N,N-디메칠포름아미드(7 ㎖)에 용해시켰다. 이 용액에, 예 45에서 얻은 3'-N-(Gly-Phe-Gly)-NH-A (A-NH2 =DX-8951)의 트리플루오로초산염(41 ㎎)의 N,N-디메칠포름아미드(5 ㎖) 용액, 트리에칠아민(0.014 ㎖), 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(100 ㎎)을 순차적으로 가하여, 실온으로 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 이것에 3 M 염화나트륨 수용액(2.0 ㎖), 디에칠에테르(25 ㎖)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 0.5 M 식염수에 용해하고, 빙냉하에서 0.1 M 수산화나트륨 수용액으로 pH 9로 조절하였다. 얻어진 수용액을 바이오맥스-50막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 49의 화합물(190 ㎎)을 얻었다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 4.5 %(w/w)이었다.Triethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 48 (200 mg) was dissolved in N, N-dimethylformamide (7 mL). To this solution, N, N-dimethyls of trifluoroacetate (41 mg) of 3'-N- (Gly-Phe-Gly) -NH-A (A-NH 2 = DX-8951) obtained in Example 45 was obtained. Formamide (5 mL) solution, triethylamine (0.014 mL) and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (100 mg) were added sequentially and stirred to room temperature overnight. Reacted. 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To this was added 3 M aqueous sodium chloride solution (2.0 mL) and diethether (25 mL), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was dissolved in 0.5 M brine and adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was desalted by ultrafiltration using a Biomax-50 membrane. The remaining solution that did not pass through the membrane was filtered through a Millipore filter (0.22 µm) and then lyophilized to obtain the compound of Example 49 (190 mg). The content of the pharmaceutical compound residue of the compound was 4.5% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 50 : 카르복시메칠덱스트란폴리알콜-Phe-Gly-NH-A'(A-NH 2 =DX-8951)의 합성 Example 50 Synthesis of Carboxymethyldextran Polyalcohol-Phe-Gly-NH-A '(A-NH 2 = DX-8951)

예 24에서 얻은 카르복시메칠덱스트란폴리알콜의 나트륨염(2.5 g)을 물에 용해시키고, Bio-Rad AG 50W-X2(200 내지 400 메쉬, Et3N H+ 형) 칼럼에 주입하여, 물로 용출하였다. 이 용출액을 동결건조하여 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(2.5 g)을 얻었다.The sodium salt of carboxymethyldextran polyalcohol obtained in Example 24 (2.5 g) was dissolved in water, injected into a Bio-Rad AG 50W-X2 (200-400 mesh, Et 3 NH + type) column and eluted with water. . The eluate was lyophilized to obtain triethylammonium salt (2.5 g) of carboxymethyldextran polyalcohol.

이 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(200 ㎎)을 N,N-디메칠포름아미드(12 ㎖)에 용해시켰다. 이 용액에, 예 46에서 얻은 3'-N-(Phe-Gly)-NH-A (A-NH2 =DX-8951)의 트리플루오로초산염(42 mg)과 트리에칠아민(0.016 ㎖)의 N,N-디메칠포름아미드(5 ㎖) 용액, 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(200 mg)을 순차적으로 가하여, 빛을 차단하면서 실온에서 하룻밤 교반하여 반응시켰다. 이 반응액에 물(300 ㎖)을 부가하여 한외여과막 10K(필트론사 제품)을 이용하여 한외여과하였다. 막을 통과하지 않은 잔유용액을 0.1 N 수산화나트륨 수용액으로 pH 10으로 조절하고, 여과막(0.16 ㎛, 필트론사 제품)을 통과시켰다. 통과한 용액을 바이오맥스-50막을 이용한 한외여과법에 의해 탈염한 다음, 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 50의 화합물(180 ㎎)을 얻었다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 6.1 %(w/w)이었다.Triethylammonium salt (200 mg) of this carboxymethyldextran polyalcohol was dissolved in N, N-dimethylformamide (12 mL). To this solution, trifluoroacetate (42 mg) and triethylamine (0.016 mL) of 3'-N- (Phe-Gly) -NH-A (A-NH 2 = DX-8951) obtained in Example 46 were obtained. N, N-dimethylformamide (5 mL) solution, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (200 mg) was added sequentially to block light at room temperature. The reaction was stirred overnight. Water (300 mL) was added to this reaction solution, and ultrafiltration was performed using the ultrafiltration membrane 10K (made by Filtron). The remaining solution that did not pass through the membrane was adjusted to pH 10 with 0.1 N aqueous sodium hydroxide solution, and passed through a filtration membrane (0.16 µm, manufactured by Pitron). The solution passed through was desalted by ultrafiltration using a Biomax-50 membrane, filtered through a Millipore filter (0.22 μm), and then lyophilized to obtain the compound of Example 50 (180 mg). The content of the pharmaceutical compound residue of the present compound was 6.1% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 51 : 카르복시메칠덱스트란폴리알콜-Gly-NH-A'(A-NH 2 =DX-8951)의 합성 Example 51 Synthesis of Carboxymethyldextran Polyalcohol-Gly-NH-A '(A-NH 2 = DX-8951)

예 48에서 얻은 카르복시메칠덱스트란폴리알콜의 트리에칠암모니움염(370 ㎎)을 N,N-디메칠포름아미드(10 ㎖)에 용해시켰다. 이 용액에, 예 47에서 얻은 3'-N-Gly-NH-A (A-NH2 =DX-8951)의 트리플루오로초산염(57 ㎎)의 N,N-디메칠포름아미드(3 ㎖) 용액, 트리에칠아민(0.027 ㎖), 1-에톡시카르보닐-2-에톡시-1,2-디히드록시퀴놀린(185 ㎎)을 순차적으로 가하여, 실온에서 하룻밤 교반하면서 반응시켰다. 이 반응액 5 ㎖씩을 각 10 ㎖의 에탄올에 떨어뜨렸다. 이것에 3 M 염화나트륨 수용액(2.0 ㎖), 디에칠에테르(25 ㎖ml)을 가하고, 석출한 침전물을 원심분리(3500 rpm, 8분)에 의해 모았다. 이 침전물을 0.5 M 식염수에 용해하고, 빙냉하에서 0.1 M 수산화나트륨 수용액으로 pH 9로 조절하였다. 얻어진 수용액을 바이오맥스 -50막을 이용한 한외여과법에 의해 탈염하였다. 막을 통과하지 않은 잔유용액을 밀리포아필터(0.22 ㎛)로 여과한 후, 동결건조하여 예 51의 화합물(290 ㎎)을 얻었다. 본 화합물의 의약화합물 잔기의 함량을 0.1 M 트리스 완충액(pH 9.0)내에서의 362 ㎚ 흡광도에 근거하여 양을 정한 바, 0.5 %(w/w)이었다.Triethylammonium salt of carboxymethyldextran polyalcohol obtained in Example 48 (370 mg) was dissolved in N, N-dimethylformamide (10 mL). To this solution, N, N-dimethylformamide (3 mL) of 3'-N-Gly-NH-A (A-NH 2 = DX-8951) trifluoroacetate (57 mg) obtained in Example 47 was obtained. A solution, triethylamine (0.027 mL) and 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (185 mg) were added sequentially, and it reacted with stirring overnight at room temperature. 5 ml of this reaction solution was dropped into each 10 ml of ethanol. To this was added 3M aqueous sodium chloride solution (2.0 ml) and diethether (25 mlml), and the precipitated precipitate was collected by centrifugation (3500 rpm, 8 minutes). This precipitate was dissolved in 0.5 M brine and adjusted to pH 9 with 0.1 M aqueous sodium hydroxide solution under ice-cooling. The obtained aqueous solution was desalted by ultrafiltration using a Biomax-50 membrane. The remaining solution that had not passed through the membrane was filtered through a Millipore filter (0.22 µm) and then lyophilized to obtain the compound of Example 51 (290 mg). The content of the pharmaceutical compound residue of the present compound was 0.5% (w / w) when the amount was determined based on the absorbance of 362 nm in 0.1 M Tris buffer (pH 9.0).

예 52 : 본 발명의 약물복합체의 항종양작용 Example 52 Antitumor Activity of Drug Complexes of the Invention

예 11과 같은 방법으로 Meth A 종양을 가진 마우스를 준비하여(1군 당 6마리), 예 15의 약물복합체에 대해서, 예 12와 같은 방법으로 1회 투여한 경우의 항종양작용을 조사하였다. 그 결과, 예 15의 약물복합체는 예 12의 의약화합물 자체에 비하여, 현저한 항종양효과의 증강과 유효용량 영역의 확대를 나타내었다.Mice with Meth A tumors were prepared in the same manner as in Example 11 (6 per group), and the antitumor effect of the drug complex of Example 15 when administered once in the same manner as in Example 12 was examined. As a result, the drug complex of Example 15 showed remarkable enhancement of antitumor effect and enlargement of effective dose area, compared with the pharmaceutical compound of Example 12 itself.

예 53 : 본 발명의 약물복합체의 항종양작용 Example 53 Antitumor Activity of Drug Complexes of the Invention

사람 위암 SC-6의 종양덩어리를 누드 마우스(BALB/c-nu/nu, 웅성)의 우측 경부피하에 이식하여 SC-6 종양을 가진 누드 마우스를 준비하였다(1군 당 5마리). 이식후 24일 째에 주사용 증류수에 용해한 예 15의 약물복합체를 정맥내에 1회 투여하고, 항종양작용을 의약화합물 자체와 비교하였다. 그 결과, 예 15의 약물복합체는 의약화합물 자체에 비하여, 독성사에 의한 치사를 나타내는 것이 아니라, 높은 항종양효과를 발휘하였다.Tumor masses of human gastric cancer SC-6 were transplanted subcutaneously to the right neck of nude mice (BALB / c-nu / nu, male) to prepare nude mice with SC-6 tumors (5 per group). The drug complex of Example 15 dissolved in distilled water for injection was administered once intravenously 24 days after transplantation, and antitumor activity was compared with the pharmaceutical compound itself. As a result, the drug complex of Example 15 did not show lethality due to toxic death, but exhibited high antitumor effect, compared with the pharmaceutical compound itself.

예 54 : 본 발명의 약물복합체의 항종양작용 Example 54 Antitumor Activity of Drug Complexes of the Invention

예 53과 같은 방법에 의해 사람 폐암 QG-90 종양을 가진 누드 마우스를 준비하였다(1군 당 5마리). 이식 후 16일 째에 주사용 증류수에 용해한 예 15의 약물복합체를 정맥내에 1회 투여하고, 항종양작용을 의약화합물 자체와 비교하였다. 그 결과, 예 15의 약물복합체는 의약화합물 자체에 비하여, 현저한 항종양효과의 증강과 유효용량 영역의 확대를 나타내었다.Nude mice with human lung cancer QG-90 tumors were prepared by the same method as Example 53 (5 per group). The drug complex of Example 15 dissolved in distilled water for injection was administered once intravenously 16 days after transplantation, and antitumor activity was compared with the pharmaceutical compound itself. As a result, the drug complex of Example 15 showed remarkable enhancement of antitumor effect and enlargement of effective dose area, compared with the pharmaceutical compound itself.

예 55 : 본 발명의 약물복합체의 항종양작용 Example 55 Antitumor Activity of Drug Complexes of the Invention

예 11과 같은 방법으로 Meth A 종양을 가진 마우스를 준비하여(1군 당 6마리), 예 12와 같은 방법으로 예 41의 약물복합체를 1회 투여한 경우의 항종양작용을 의약화합물 자체와 비교하였다. 그 결과, 예 41의 약물복합체는 의약화합물 자체에 비하여, 현저한 항종양효과의 증강과 유효용량 영역의 확대를 나타내었다.In the same manner as in Example 11, mice with Meth A tumors were prepared (6 per group), and the antitumor effect of the single drug complex of Example 41 in the same manner as in Example 12 was compared with the pharmaceutical compound itself. It was. As a result, the drug complex of Example 41 showed remarkable enhancement of antitumor effect and enlargement of effective dose area, compared with the pharmaceutical compound itself.

예 56 : 본 발명의 약물복합체의 항종양작용 Example 56 Antitumor Activity of Drug Complexes of the Invention

예 11과 같은 방법으로 Meth A 종양을 가진 마우스를 준비하여(1군당 6마리), 예 12와 같은 방법으로 예 29, 예 43 및 예 44의 각 약물복합체를 각각 1회 투여한 경우의 항종양작용을 조사하였다. Antitumor when a mouse with Meth A tumor was prepared (6 per group) in the same manner as in Example 11, and each drug complex of Examples 29, 43 and 44 was administered once in the same manner as in Example 12. The action was investigated.

그 결과, 어떤 약물복합체보다 높은 항종양효과와 넓은 유효 용량범위를 나타내었다.As a result, it showed higher antitumor effect and wider effective dose range than any drug complex.

예 57 : 본 발명의 약물복합체의 체내 동태 Example 57: In vivo kinetics of the drug complex of the present invention

예 11과 같은 방법으로 Meth A 종양을 가진 마우스를 준비하고, 예 15의 약물복합체에 대해서 예 12와 같은 방법으로 1회 투여(10 ㎎/㎏ : 의약화합물 환산량)하고, 약물복합체의 각 조직내에 있어서의 농도 추이를 조사하였다. 그 결과, 예 15의 약물복합체는 현저하게 높은 혈중 체류성, 종양 조직으로의 높은 이행성 및 간과 소장에 대한 높은 종양 선택성을 나타내었다. 결과를 도 20에 나타내었다.A mouse having a Meth A tumor was prepared in the same manner as in Example 11, and the drug complex of Example 15 was administered once (10 mg / kg: equivalent of a pharmaceutical compound) in the same manner as in Example 12, and each tissue of the drug complex was The concentration change in the inside was investigated. As a result, the drug complex of Example 15 showed remarkably high blood retention, high migration to tumor tissue and high tumor selectivity for liver and small intestine. The results are shown in FIG. 20.

카르복실기를 가지는 다당유도체와 의약화합물 또는 스페이서를 결합시킨 의약화합물과의 반응을 효율적으로 수행할 수 있고, 게다가 락톤환을 가지는 의약화합물 등을 반응시키는 경우에는 부반응을 억제할 수 있기 때문에, 약물복합체의 제조방법으로서 매우 유용하다.Since the reaction between a polysaccharide derivative having a carboxyl group and a pharmaceutical compound having a pharmaceutical compound or a spacer bonded thereto can be performed efficiently, side reactions can be suppressed when the pharmaceutical compound having a lactone ring is reacted. It is very useful as a manufacturing method.

Claims (7)

카르복실기를 가지는 다당유도체와 락톤환을 가지는 의약화합물의 잔기가 1개의 아미노산 또는 펩타이드 결합된 2 내지 8개의 아미노산으로 구성된 스페이서를 통하여 결합하고 있는 약물복합체, 또는 카르복실기를 가지는 다당유도체와 락톤환을 가지는 의약화합물의 잔기가 전기 스페이서를 통하지 않고 결합하고 있는 약물복합체의 제조방법에 있어서, 카르복실기를 가지는 다당유도체의, 트리에칠아민, 트리메칠아민, 트리에탄올아민, N-메칠피롤리딘(methylpyrrolidine), N-메칠피페리딘(methylpiperidine), N-메칠몰포린(methylmorpholine), 디메칠아미노피리딘(dimethylaminopyridine), 염화테트라메칠암모니움 및 염화테트라에칠암모니움으로 구성된 군에서 선택되는 유기 아민염과, 락톤환을 가지는 의약화합물 또는 락톤환을 가지는 의약화합물을 결합시킨 스페이서를, N,N-디메칠포름아미드, 디메칠술폭시드, 아세토아미드, N-메칠피롤리돈(pyrrolidone) 및 술포란(sulfolane)으로 구성된 군으로부터 선택되는 유기용매에서 반응시키는 것을 특징으로 하는 방법.A drug complex having a residue of a polysaccharide derivative having a carboxyl group and a pharmaceutical compound having a lactone ring bound through a spacer consisting of 2 to 8 amino acids bound by one amino acid or a peptide, or a drug having a polysaccharide derivative having a carboxyl group and a lactone ring In the method for producing a drug complex in which residues of a compound are bonded through an electric spacer, triethylamine, trimethylamine, triethanolamine, N-methylpyrrolidine, N, of a polysaccharide derivative having a carboxyl group Organic amine salts selected from the group consisting of methylpiperidine, N-methylmorpholine, dimethylaminopyridine, tetramethylammonium chloride and tetraethylammonium chloride; A spacer combining a pharmaceutical compound having a ton ring or a pharmaceutical compound having a lactone ring Is reacted in an organic solvent selected from the group consisting of N, N-dimethylformamide, dimethylsulfoxide, acetoamide, N-methylpyrrolidone and sulfolane. . 카르복실기를 가지는 다당유도체와 락톤환을 가지는 의약화합물의 잔기가 1개의 아미노산 또는 펩타이드 결합된 2 내지 8개의 아미노산으로 구성된 스페이서를 통하여 결합하고 있는 약물복합체, 또는 카르복실기를 가지는 다당유도체와 락톤환을 가지는 의약화합물의 잔기가 전기 스페이서를 통하지 않고 결합하고 있는 약물복합체의 제조방법에 있어서,A drug complex having a residue of a polysaccharide derivative having a carboxyl group and a pharmaceutical compound having a lactone ring bound through a spacer consisting of 2 to 8 amino acids linked to one amino acid or a peptide, or a drug having a polysaccharide derivative having a carboxyl group and a lactone ring In the method for producing a drug complex in which the residues of the compound are bound via an electrical spacer, (ⅰ) 카르복실기를 가지는 다당유도체의 알카리 금속염을, 트리에칠아민, 트리메칠아민, 트리에탄올아민, N-메칠피롤리딘(methylpyrrolidine), N-메칠피페리딘(methylpiperidine), N-메칠몰포린(methylmorpholine), 디메칠아미노피리딘(dimethylaminopyridine), 염화테트라메칠암모니움 및 염화테트라에칠암모니움 및 염화테트라에칠암모니움으로 구성된 군에서 선택되는 유기 아민염으로 변환시키는 공정; 및(Iii) Alkali metal salts of polysaccharide derivatives having a carboxyl group include triethylamine, trimethylamine, triethanolamine, N-methylpyrrolidine, N-methylpiperidine, and N-methylmorpholine. (methylmorpholine), dimethylaminopyridine, tetramethylammonium chloride and tetraethylammonium chloride and tetraethylammonium chloride; And (ⅱ) 전기 유기 아민염과 락톤환을 가지는 의약화합물 또는 락톤환을 가지는 의약화합물을 결합시킨 스페이서를, N,N-디메칠포름아미드, 디메칠술폭시드, 아세토아미드, N-메칠피롤리돈(pyrrolidone) 및 술포란(sulfolane)으로 구성된 군으로부터 선택되는 유기용매에서 반응시키는 공정을 포함하는 방법.(Ii) N, N-dimethylformamide, dimethylsulfoxide, acetoamide, N-methylpyrrolidone, comprising a spacer in which an electroorganic amine salt and a pharmaceutical compound having a lactone ring or a pharmaceutical compound having a lactone ring are combined. reacting in an organic solvent selected from the group consisting of pyrrolidone and sulfolane. 제 1항 또는 제 2항에 있어서, The method according to claim 1 or 2, 카르복실기를 가지는 다당유도체는 카르복시C1-4알킬덱스트란폴리알콜인The polysaccharide derivative having a carboxyl group is carboxyC 1-4 alkyldextran polyalcohol 것을 특징으로 하는Characterized by 방법. Way. 제 3항에 있어서,The method of claim 3, wherein 카르복시C1-4알킬덱스트란폴리알콜을 구성하는 덱스트란폴리알콜은 덱스트란폴리알콜은 덱스트란에 과잉의 과요오드산나트륨과 수소화붕소나트륨을 순차적으로 작용시켜 제조한 것을 특징으로 하는Dextran polyalcohol constituting the carboxy C 1-4 alkyldextran polyalcohol is characterized in that the dextran polyalcohol is prepared by sequentially acting excess sodium iodide and sodium borohydride on the dextran 방법.Way. 제 3항에 있어서,The method of claim 3, wherein 카르복시C1-4알킬덱스트란폴리알콜은 카르복시메칠덱스트란폴리알콜인 것을 특징으로 하는CarboxyC 1-4 alkyldextran polyalcohol is characterized in that carboxymethyldextran polyalcohol 방법.Way. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 락톤환을 가지는 의약화합물은 항종양제 또는 항염증제인 것을 특징으로 하는The pharmaceutical compound having a lactone ring is characterized in that the anti-tumor agent or anti-inflammatory agent 방법.Way. 제 1항에 또는 제 2항에 있어서,The method according to claim 1 or 2, 락톤환을 가지는 의약화합물은 (1S,9S)-1-아미노-9-에칠-5-플루오로-2,3-디히드로-9-히드록시-4-메칠-1H,12H-벤조[de]피라노 [3',4;:6,7] 인돌리지노[1,2-b]퀴놀린-10,13(9H,15H)-디온인 것을 특징으로 하는The pharmaceutical compound having a lactone ring is (1S, 9S) -1-amino-9-ethyl-5-fluoro-2,3-dihydro-9-hydroxy-4-methyl-1H, 12H-benzo [de] Pyrano [3 ', 4;: 6,7] indolinino [1,2-b] quinoline-10,13 (9H, 15H) -dione 방법.Way.
KR1019980709945A 1996-06-06 1997-06-05 Manufacturing method of drug complex KR100481434B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980709945A KR100481434B1 (en) 1996-06-06 1997-06-05 Manufacturing method of drug complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8-144522 1996-06-06
KR1019980709945A KR100481434B1 (en) 1996-06-06 1997-06-05 Manufacturing method of drug complex

Publications (2)

Publication Number Publication Date
KR20000016371A KR20000016371A (en) 2000-03-25
KR100481434B1 true KR100481434B1 (en) 2006-10-24

Family

ID=41739434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980709945A KR100481434B1 (en) 1996-06-06 1997-06-05 Manufacturing method of drug complex

Country Status (1)

Country Link
KR (1) KR100481434B1 (en)

Also Published As

Publication number Publication date
KR20000016371A (en) 2000-03-25

Similar Documents

Publication Publication Date Title
KR20000016558A (en) Drug complexes
EP0955064B1 (en) Process for producing drug complexes
EP0640622B1 (en) Polysaccharide derivative and drug carrier
US6811996B1 (en) DDS compounds and method for assaying the same
KR100581443B1 (en) Drug Composites
JP2009287036A (en) Medicine complex
KR20170046141A (en) Polyoxazoline antibody drug conjugates
JPH1192405A (en) Medicinal complex
KR100481434B1 (en) Manufacturing method of drug complex
US8642555B2 (en) Prodrugs
WO2023232144A1 (en) Oligosaccharide linker, linker-supported material comprising oligosaccharide linker, antibody-drug conjugate having sugar chain remodeling, preparation method therefor and use thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee