KR100481082B1 - Method for manufacturing concrete blended with oyster shell and the concrete of the same - Google Patents

Method for manufacturing concrete blended with oyster shell and the concrete of the same Download PDF

Info

Publication number
KR100481082B1
KR100481082B1 KR10-2002-0022762A KR20020022762A KR100481082B1 KR 100481082 B1 KR100481082 B1 KR 100481082B1 KR 20020022762 A KR20020022762 A KR 20020022762A KR 100481082 B1 KR100481082 B1 KR 100481082B1
Authority
KR
South Korea
Prior art keywords
oyster shell
concrete
oyster
weight
parts
Prior art date
Application number
KR10-2002-0022762A
Other languages
Korean (ko)
Other versions
KR20030084195A (en
Inventor
양은익
심재설
윤길림
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to KR10-2002-0022762A priority Critical patent/KR100481082B1/en
Publication of KR20030084195A publication Critical patent/KR20030084195A/en
Application granted granted Critical
Publication of KR100481082B1 publication Critical patent/KR100481082B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 연안지역 굴양식장에서 발생하는 폐기물인 굴패각을 재활용한 굴패각을 혼합한 콘크리트 및 그 제조방법에 관한 것으로, 굴패각을 100 내지 120℃의 건조로에서 건조시키는 단계, 상기 건조된 굴패각을 2.1 내지 2.7조립률을 가진 굴패각으로 분쇄하는 단계, 콘크리트에 사용되는 전체 잔골재 중 일정비율을 상기 분쇄된 굴패각으로 대체하여 시멘트, 잔골재, 굵은 골재, 혼화제 및 물과 혼합하는 단계를 통하여 굴패각을 혼합한 콘크리트를 제조할 수 있다.The present invention relates to a concrete mixed with oyster shells recycled oyster shells, which are wastes generated in coastal oyster farms, and a method of manufacturing the same, and drying the oyster shells in a drying furnace at 100 to 120 ° C., wherein the dried oyster shells are 2.1 to 2.7 Crushing the oyster shell with the granulation rate, the concrete mixed with the oyster shell through the step of mixing with the cement, fine aggregate, coarse aggregate, admixture and water by replacing a certain proportion of the total fine aggregate used in concrete with the crushed oyster shell can do.

Description

굴패각을 혼합한 콘크리트 및 그 제조 방법{METHOD FOR MANUFACTURING CONCRETE BLENDED WITH OYSTER SHELL AND THE CONCRETE OF THE SAME}Concrete mixed with oyster shells and method for manufacturing the same {METHOD FOR MANUFACTURING CONCRETE BLENDED WITH OYSTER SHELL AND THE CONCRETE OF THE SAME}

본 발명은 연안지역에 발생하는 폐기물인 굴패각을 재활용하여, 콘크리트 제조에 사용되는 전체 잔골재 중 일부를 분쇄된 굴패각으로 대체하여 혼합한 콘크리트 및 그 제조 방법에 관한 것이다.The present invention relates to a concrete and a method of manufacturing the same by mixing oyster shells, which are wastes generated in coastal areas, by replacing some of the total fine aggregates used for concrete production with crushed oyster shells.

콘크리트는 일반적으로 시멘트, 잔골재, 굵은 골재 및 물을 적당량 혼합하거나, 필요한 물성에 따라 소량의 혼화제를 첨가하여 제조된다.Concrete is generally produced by mixing an appropriate amount of cement, fine aggregate, coarse aggregate and water, or by adding a small amount of admixture according to the required physical properties.

그런데, 잔골재는 건설구조상의 안정성문제로 법적 기준치에 허용되는 모래를 사용하여야만 한다. 모래는 일반적으로 하천에서 채취되고 있는데, 건설시장의 확대와 더불어 그 채취량이 점차 감소하고 있고, 적합한 모래를 확보하는데 어려움이 있으며, 그에 따른 제조 원가가 상승하고, 불량 모래 사용시 콘크리트의 물성에 악영향을 미칠 수 있다. 또한 무차별한 채취로 인한 자연파괴 및 환경파괴의 문제점이 대두되고 있다. By the way, fine aggregate must use sand which is allowed to legal standard because of stability of construction structure. Sand is generally collected in rivers, and with the expansion of the construction market, its collection is gradually decreasing, and it is difficult to secure suitable sand, thereby increasing the manufacturing cost and adversely affecting the properties of concrete when using bad sand. Can be crazy In addition, the problems of natural and environmental destruction due to indiscriminate sampling are emerging.

한편, 연안지역에서는 굴양식으로 인한 폐기물인 굴패각이 대량 발생하고 있으나 이 중 극히 일부만이 비료, 칼슘의 원료등으로 재활용되고 있고, 대부분의 굴패각은 재활용되지 않고 매립되거나 주변에 불법으로 쌓아두는 형식으로 방치되고 있다. 따라서 굴패각에 대한 매립지의 확보가 곤란함은 물론 차후 매립지의 처리와 누출수에 의한 환경피해, 환경오염이 발생하며, 쌓아두는 경우 심각한 악취와 오염으로 위생과 주거환경에 악영향을 미친다. 따라서, 버려지는 굴패각을 재활용한 환경친화적인 건설자재에 대한 연구가 진행되고 있다.On the other hand, in coastal areas, oyster shells, which are wastes due to oyster farming, are produced in large quantities, but only a portion of them are recycled as raw materials for fertilizer and calcium. Most of the oyster shells are not recycled, but are buried or illegally stacked around them. It is neglected. Therefore, it is difficult to secure landfills for oyster shells, as well as environmental damage and environmental pollution due to subsequent disposal of landfills and leaks, and when accumulated, severe odors and pollution may adversely affect hygiene and residential environment. Therefore, research is being conducted on environmentally friendly construction materials by recycling discarded oyster shells.

이에 본 발명은 상기한 바의 제반 문제점을 해소하기 위해 고안된 것으로, 원료 확보가 용이하며, 원가를 점감하고, 요구되는 물성을 유지할 수 있으며, 폐기물을 재활용함으로써 환경오염을 방지할 수 있는 콘크리트 및 그 제조방법을 제공함에 그 목적이 있는 것이다.Accordingly, the present invention is designed to solve the above problems, it is easy to secure the raw material, reduce the cost, can maintain the required physical properties, and concrete that can prevent environmental pollution by recycling waste The purpose is to provide a manufacturing method.

상기한 바의 목적을 달성하기 위한 본 발명의 콘크리트는 시멘트, 잔골재, 굵은 골재, 혼화제 및 물을 혼합함으로써 제조되는 콘크리트에 있어서 상기 잔골재의 일부를 조립률 2.1 내지 2.7을 가진 분쇄된 굴패각으로 대체한 것이다. 그리고 상기 혼화제는 시멘트 100중량부에 대하여 일정한 중량부의 AE감수제를 포함하는 것도 가능하다, 또 상기 분쇄된 굴패각은 전체 잔골재 100중량부 중 5 내지 10중량부인 것이 바람직하다.Concrete of the present invention for achieving the above object is to replace a part of the fine aggregate in the concrete produced by mixing cement, fine aggregate, coarse aggregate, admixture and water with a crushed oyster shell having an assembly rate of 2.1 to 2.7 will be. In addition, the admixture may include a certain weight part of the AE reducing agent relative to 100 parts by weight of cement, and the crushed oyster shell is preferably 5 to 10 parts by weight of 100 parts by weight of the total fine aggregate.

그리고 본 발명에 따른 콘크리트의 제조 방법은 굴패각을 건조로에 넣고 100 내지 120℃로 가열하여 건조시키는 단계, 건조된 굴패각을 조립률 2.1 내지 2.7의 입자로 분쇄시키는 단계, 전체 잔골재 중 일부를 상기 분쇄된 굴패각으로 대체하여 시멘트, 잔골재, 굵은 골재, 혼화제 및 물을 혼합하는 단계로 이루어 진다. 그리고, 콘크리트의 작업성 및 내구성을 높이기 위해 상기 혼화제로는 상기 시멘트 100중량부에 대하여 일정한 중량부의 AE감수제를 사용하는 것이 바람직하다. 또 상기 분쇄된 굴패각은 콘크리트 제조에 필요한 전체 잔골재 100중량부 중 5 내지 10중량부를 사용하는 것이 바람직하다.And the method for producing concrete according to the present invention comprises the steps of putting the oyster shell in a drying furnace and drying by heating to 100 to 120 ℃, crushing the dried oyster shell into particles of the granulation rate of 2.1 to 2.7, a part of the total fine aggregate It consists of mixing cement, fine aggregate, coarse aggregate, admixture and water in place of oyster shell. In addition, in order to increase the workability and durability of concrete, it is preferable to use a constant weight part of the AE reducing agent with respect to 100 parts by weight of the cement as the admixture. In addition, the crushed oyster shell is preferably used 5 to 10 parts by weight of 100 parts by weight of the total fine aggregate required for concrete production.

이하, 본 발명의 굴패각을 혼합한 콘크리트 및 그 제조 방법을 상세히 설명한다.Hereinafter, concrete and a manufacturing method of the mixed oyster shell of the present invention will be described in detail.

본 발명에 따른 굴패각을 혼합한 콘크리트는 시멘트, 잔골재, 굵은 골재, 혼화제 및 물을 혼합함으로써 제조되는 콘크리트에 상기 잔골재의 일부를 조립률 2.1 내지 2.7을 가진 분쇄된 굴패각으로 대체한 것이다.Concrete mixed with oyster shell according to the present invention is to replace a part of the fine aggregate in the concrete produced by mixing cement, fine aggregate, coarse aggregate, admixture and water with a crushed oyster shell having a granulation rate of 2.1 to 2.7.

상기 굴패각을 혼합한 콘크리트에 사용되는 분쇄된 굴패각은 조립률이 낮고, 장시간 건조되었기 때문에 종래의 배합비로는 슬럼프(SLUMP)가 작아서 작업 또는 시공하기에 어려움이 있다. 따라서, 작업성 또는 시공성을 개선하는 한편 내구성에 필요한 적절한 공기량을 포함하기 위하여 연행공기(ENTAINED AIR)를 발생시키는 혼화제가 첨가될 필요가 있다. 이러한 혼화제로는 AE감수제를 사용하는 것이 좋고 시멘트 100중량부에 대하여 0.3중량부의 AE감수제를 사용하는 것이 바람직하다.Since the crushed oyster shell used in the concrete mixed with the oyster shell has a low assembly rate and has been dried for a long time, the slump (SLUMP) is small in the conventional compounding ratio, which makes it difficult to work or construct. Therefore, it is necessary to add a admixture for generating ETAINED AIR in order to improve the workability or workability while including the appropriate amount of air required for durability. It is preferable to use an AE reducing agent as such admixture, and it is preferable to use 0.3 weight part of AE water reducing agent with respect to 100 weight part of cement.

상기 분쇄된 굴패각은 콘크리크 기준 물성에 적합하게 혼합하는 것이 필요한데, 전체 잔골재 100중량부 중 5 내지 10중량부인 것이 바람직하다.The crushed oyster shell is required to be properly mixed to the concrete properties of the concrete, preferably 5 to 10 parts by weight of 100 parts by weight of the total fine aggregate.

본 발명에 따른 굴패각을 혼합한 콘크리트의 제조 방법은, 굴패각을 건조로에 넣고 100 내지 120℃에서 가열하여 건조시키는 단계; 상기 건조된 굴패각을 조립률 2.1 내지 2.7인 굴패각으로 분쇄하는 단계; 전체 잔골재 중 일부를 상기 분쇄된 굴패각으로 대체하여 시멘트, 잔골재, 굵은 골재, 혼화제 및 물을 혼합하는 단계로 이루어진다.Method for producing concrete mixed oyster shell according to the present invention, the step of putting the oyster shell in a drying furnace and drying by heating at 100 to 120 ℃; Grinding the dried oyster shell into oyster shells having a granulation ratio of 2.1 to 2.7; A part of the total fine aggregate is replaced with the crushed oyster shell, and the cement, fine aggregate, coarse aggregate, admixture and water are mixed.

상기 온도에서 건조시키는 것은 굴패각을 원활하게 분쇄하기 위하여 수분을 제거하기 위함이다.The drying at the temperature is for removing moisture to smoothly crush the oyster shell.

상기 건조된 굴패각은 조크러셔(JAW Crusher)에 넣어 분쇄하고, 5mm이하의 채에 통과시켜 조립률이 2.1 내지 2.7 인 분쇄된 굴패각을 얻는다.The dried oyster shell is put in a jaw crusher (JAW Crusher) and pulverized, passed through the 5mm or less to obtain a crushed oyster shell with a granulation rate of 2.1 to 2.7.

여기서, 상기의 분쇄된 굴패각은 일반 잔골재로 사용되는 모래의 조립률( 일반적으로 3.44 정도)보다 낮은 조립률을 가지므로 낮은 슬럼프(Slump)로 인해 콘크리트의 작업성이 감소되며, 내구성 증진에 필요한 충분한 공기량을 제공하지 못한다. 따라서 이러한 작업성 및 내구성을 높이기 위해 혼화제의 첨가가 요구되는데, 상기 혼화제로는 시멘트 100중량부에 대하여 0.3중량부의 AE감수제를 사용하는 것이 바람직하다.Here, the crushed oyster shell has a lower assembly rate than the sand (generally about 3.44) of the sand used as the general fine aggregate, so the workability of the concrete is reduced due to the low slump, and is sufficient to increase durability. It does not provide air volume. Therefore, in order to improve such workability and durability, the addition of a admixture is required. As the admixture, it is preferable to use 0.3 parts by weight of an AE reducing agent based on 100 parts by weight of cement.

그리고, 상기 분쇄된 굴패각은 콘크리트 제조에 필요한 전체 잔골재 100중량부 중 5 내지 10중량부를 사용하는 것이 바람직하다.In addition, the crushed oyster shell is preferably used 5 to 10 parts by weight of 100 parts by weight of the total fine aggregate required for concrete production.

이하는 상기의 방법에 의해 제조되는 콘크리트가 가지는 물성을 실험한 것이다.The following is a test of the physical properties of the concrete produced by the above method.

콘크리트 제조에 필요한 시멘트는 1종 포틀랜드시멘트를 사용하였으며, 잔골재는 비중 2.61, 흡수율 0.81%, 조립률 3.44인 모래를 사용하였고, 굵은골재는 비중 2.74, 흡수율 0.60%, 골재최대지름 25mm인 쇄석을 사용하였다.Cement needed for concrete production was used one type of Portland cement. Fine aggregates used sand with specific gravity 2.61, water absorption rate 0.81%, assembly rate 3.44, and coarse aggregates used crushed stone with specific gravity 2.74, water absorption rate 0.60%, aggregate maximum diameter 25mm. It was.

본 발명에 따른 콘크리트 제조에 필요한 분쇄된 굴패각을 만들기 위하여는 먼저, 실험에 사용될 굴패각을 건조로에 넣어 100 내지 120℃에서 24시간 가열 건조시키고, 건조된 굴패각을 조크러셔(JAW Crusher)를 사용하여 분쇄하고, 5mm체를 통과하도록 하여 조립률 2.1을 가진 분쇄된 굴패각 및 조립률 2.7을 가진 분쇄된 굴패각을 만들었다.In order to make the crushed oyster shell required for the production of concrete according to the present invention, first put the oyster shell to be used in the experiment in a drying furnace and dried by heating at 100 to 120 ℃ 24 hours, the dried oyster shell crushed using a jaw crusher (JAW Crusher) Then, it was passed through a 5mm sieve to make a crushed oyster shell having a granulation ratio 2.1 and a crushed oyster shell having a granulation ratio 2.7.

상기 분쇄된 굴패각은 표 1에서 조립률을 기준으로 A타입 굴패각과 B타입 굴패각으로 규정하여 실험하였다.The crushed oyster shell angle was tested by specifying the A type oyster shell and B type oyster shell on the basis of the assembly rate in Table 1.

[표 1]TABLE 1

굴패각 종류Oyster shell type 비중importance 흡수율(%)Absorption rate (%) 조립률Assembly rate 타입 AType A 2.392.39 4.404.40 2.72.7 타입 BType B 2.12.1

한편, 굴패각의 혼합에 따른 시공성 저하를 보상하기 위하여 혼화제로는 연행공기(Entrained air)를 발생시킬 수 있는 AE감수제를 시멘트 100중량부에 대하여 0.3중량부 첨가하였다.Meanwhile, in order to compensate for the deterioration in workability due to mixing of oyster shells, 0.3 parts by weight of an AE reducing agent capable of generating entrained air was added to 100 parts by weight of cement.

실험의 콘크리트 배합비는 기준배합의 목표 슬럼프를 7 내지 8 cm로, 공기량은 AE감수제를 첨가한 경우에 4 내지 6%를 만족시키도록 하였다.The concrete mixing ratio of the experiment was 7 to 8 cm for the target slump of the standard mixture, and the amount of air was to satisfy 4 to 6% when the AE water reducing agent was added.

실험에 사용한 배합비 중에서 AE감수제를 제외한 배합을 정리하여 나타내면 표 2와 같고 배합비는 해양 콘크리트의 내구성 확보를 위해 요구되는 W/C(물/시멘트)의 기준치를 만족하는 배합이며, 설계기준강도 300 kgf/cm2를 목표로 하였다.Table 2 shows the formulations except the AE water reducing agent among the mixing ratios used in the experiment, and the mixing ratio is the formulation that satisfies the standard value of W / C (water / cement) required for securing durability of marine concrete, and the design reference strength is 300 kgf. / cm 2 was aimed at.

[표 2]TABLE 2

배합종류Type of compound W/C(%)W / C (%) S/a(%)S / a (%) 단위량(kg/m3)Unit weight (kg / m 3 ) WW CC SS GG NNONNO 4545 43.243.2 180180 400400 725(0)725 (0) 10021002 OA05OB05OA05OB05 4545 43.443.4 180180 400400 689(36)689 (36) 998998 OA10OB10OA10OB10 4545 43.643.6 180180 400400 653(73)653 (73) 995995 OA20OB20OA20OB20 4545 44.044.0 180180 400400 580(145)580 (145) 988988

()잔골재의 대체재료로 사용된 굴패각 투입량, W:물, C:시멘트, S:모래, G:굵은 골재, a:모래+굵은 골재Oyster shell input used as a substitute for fine aggregates, W: water, C: cement, S: sand, G: coarse aggregate, a: sand + coarse aggregate

상기의 배합비에 의해 만들어진 공시체는 표 3과 같이 분류하였다.The specimens produced by the above compounding ratios were classified as shown in Table 3.

[표 3]TABLE 3

명칭designation AE감수제 첨가여부Whether to add AE reducing agent 굴패각 종류Oyster shell type 굴패각 대체율(%)Oyster Shell Replacement Rate (%) NNONNO radish -- 00 OA05OA10OA20OA05OA10OA20 radish 타입 AType A 5102051020 OB05OB10OB05OB10 타입 BType B 510510 RA05RA10RA20RA05RA10RA20 U 타입 AType A 5102051020 RA05RA10RA05RA10 타입 BType B 510510

실험은 굴패각 대체율에 따른 굳지 않은 콘크리트(Fresh Concrete)의 시공특성 평가(슬럼프 및 공기량의 변화)와 경화한 콘크리트(Hardened Concrete)의 역학적 특성(압축강도, 쪼갬 인장강도, 탄성계수의 변화)을 알아보고자 하였다. The experiment was carried out to evaluate the construction characteristics of fresh concrete (change of slump and air volume) and mechanical properties (compressive strength, split tensile strength, modulus of elastic modulus) of hardened concrete according to oyster shell replacement rate. I wanted to see.

[실험예 1]Experimental Example 1

굴패각을 혼합한 콘크리트의 작업성 또는 시공성을 알아보기 위해 굴패각 대체율에 따른 굳지 않은 콘크리트의 슬럼프(Slump) 변화 실험을 하였다.In order to investigate the workability or workability of the oyster shell mixed concrete, the slump change experiment of the unconsolidated concrete was performed according to the oyster shell replacement rate.

낮은 슬럼프 수치는 작업성 또는 시공성이 나쁨을 의미한다.Low slump values mean poor workability or workability.

실험은 조립률이 2.1 인 분쇄된 굴패각(B 타입)및 2.7인 분쇄된 굴패각(A 타입)을 각각 전체 잔골재 100중량부 중 0 내지 20중량부 범위에서 변화시켜 배합 직후의 슬럼프치를 측정하였다.In the experiment, crushed oyster shell (type B) having a granulation rate of 2.1 and crushed oyster shell (type A) having a value of 2.7 were respectively changed in the range of 0 to 20 parts by weight of 100 parts by weight of the total aggregate, and the slump value immediately after the mixing was measured.

한편, 시공성 개선의 정도를 알아보기 위해 혼화제를 첨가하지 않은 경우와 시멘트 100중량부에 대하여 0.3중량부의 AE감수제를 첨가한 경우로 나누어 실험하였다.On the other hand, in order to determine the degree of workability improvement, the experiment was divided into the case where no admixture was added and the case where 0.3 parts by weight of AE reducing agent was added to 100 parts by weight of cement.

이에 대한 결과를 도 1에 나타내었다.The results are shown in FIG. 1.

도 1로부터 알 수 있는 바와 같이 AE감수제를 첨가하지 않은 굳지 않은 콘크리트에서는 분쇄된 굴패각의 대체율이 5%증가함에 따라 슬럼프가 약 3cm저하되는 것을 알 수 있다.As can be seen from Figure 1 in the unconsolidated concrete without the AE reducing agent it can be seen that the slump is reduced by about 3cm as the replacement rate of the crushed oyster shell increases by 5%.

반면, AE감수제를 첨가한 경우, 슬럼프 8 내지 9cm 이상을 만족하는 경우는 A타입인 경우 대략 대체율 10%까지, B타입인 경우 약 대체율 8%까지 양호함을 알 수 있다.On the other hand, when the AE reducing agent is added, when the slump of 8 to 9 cm or more is satisfied, the replacement rate is approximately 10% for the A type, and the replacement rate is about 8% for the B type.

[실험예 2]Experimental Example 2

도 2는 분쇄된 굴패각의 대체율에 따른 공기량 변화를 나타낸 것이다.Figure 2 shows the change in air volume according to the replacement rate of the crushed oyster shell.

콘크리트의 내구성이 증진되기 위해서는 적정량 이상의 공기량을 가져야 한다.In order to increase the durability of the concrete, it must have a proper amount of air.

따라서, A타입의 분쇄된 굴패각, B타입의 분쇄된 굴패각 및 이들 각각의 시료에 AE감수제를 첨가한 경우로 나누어 공기실 압력방법에 따른 공기량 측정 시험을 하였고, 그 결과를 도 2에 나타내었다.Therefore, the air amount measurement test according to the air chamber pressure method was divided into A type crushed oyster shells, B type crushed oyster shells, and the case where AE water reducing agent was added to each of these samples, and the results are shown in FIG. 2.

도 2를 살펴 보면, AE감수제를 첨가하지 않은 경우에는 굴패각의 대체율에 관계없이 2.0% 이하의 거의 일정한 공기량을 보인다. 이것은 콘크리트 내부에 존재하는 공기가 모두 비빔 및 성형시에 혼합되는 갇힌공기(entrapped air)이기 때문이다. 이러한 공기량는 내구성 증진에 기여를 하지 못할 뿐만 아니라 해양콘크리트 기준에 부족한 공기량이다. 2, when the AE water reducing agent is not added, the air volume is almost constant at 2.0% or less regardless of the replacement rate of the oyster shell. This is because all of the air present inside the concrete is entrapped air that is mixed during bibeam and forming. This amount of air not only contributes to the increase in durability, but is also insufficient in marine concrete standards.

반면, 시멘트 100중량부에 대하여 AE감수제 0.3중량부를 첨가한 경우에서는 비교적 양호한 공기량을 보이는 것을 알 수 있다. 이는 AE감수제의 첨가에 따라 연행 공기(entrainned air)의 발생으로 공기량이 크게 개선되었기 때문이다.On the other hand, when 0.3 parts by weight of the AE reducing agent is added to 100 parts by weight of cement, it can be seen that a relatively good amount of air is shown. This is because the amount of air is greatly improved by the generation of entrained air according to the addition of the AE reducing agent.

특히, AE감수제를 혼합한 A타입 콘크리트의 경우는 대체율 10%까지 양호한 공기량을 포함하고 있고, AE감수제를 혼합한 B타입 콘크리트의 경우는 5%에서 양호한 공기량을 포함하고 있음을 알 수 있다.In particular, it can be seen that in the case of the A-type concrete in which the AE water reducing agent is mixed, a good air amount is included up to a replacement rate of 10%.

[실험예 3]Experimental Example 3

도 3은 분쇄한 굴패각의 대체율에 따른 블리딩률 변화를 나타낸 것이다.Figure 3 shows the change in bleeding rate according to the replacement rate of the crushed oyster shell.

도 3을 보면, 블리딩률의 변화는 분쇄된 굴패각의 조립률, AE감수제의 첨가 유무에서는 큰 차이를 보이지 않았고, 분쇄된 굴패각의 대체율에 따라 큰 차이를 보였다.Referring to FIG. 3, the change in the bleeding rate did not show a significant difference in the granulation rate of the crushed oyster shells and the presence or absence of the addition of an AE reducing agent.

굴패각의 대체율이 5%이상인 경우에는 블리딩률이 현저하게 개선되는 것을 볼 수 있다.When the replacement rate of oyster shell is 5% or more, the bleeding rate can be seen to be remarkably improved.

[실험예 4]Experimental Example 4

표 4는 분쇄한 굴패각 대체율에 따른 응결시간 변화를 나타내는 것이다.Table 4 shows the change in setting time according to the replacement rate of the crushed oyster shell.

[표 4]TABLE 4

대체율(%) % Substitution 혼화제 첨가여부 Whether admixture is added 응결시간(시간:분)Condensation time (hour: minute) A 타입A type B 타입B type 초결First 종결closing 타설온도(℃)Pouring temperature (℃) 초결First 종결closing 타설온도(℃)Pouring temperature (℃) 00 radish 5:205:20 7:107:10 21.321.3 5:205:20 7:107:10 21.321.3 55 6:306:30 8:508:50 18.618.6 5:305:30 7:207:20 21.121.1 1010 5:205:20 7:307:30 21.221.2 5:305:30 7:307:30 21.921.9 2020 4:404:40 7:007:00 21.021.0 -- -- -- 55 U 7:107:10 9:409:40 18.318.3 8:008:00 10:4010:40 17.517.5 1010 6:206:20 8:208:20 21.721.7 7:207:20 10:1010:10 16.716.7 2020 5:205:20 7:207:20 21.321.3 -- -- --

도 4(a)는 A타입 굴패각일때 분쇄한 굴패각의 혼합에 따른 응결시간 변화를 그래프로 나타낸 것이고, 도 4(b)는 B타입 굴패각일때 분쇄한 굴패각의 혼합에 따른 응결시간 변화를 그래프로 나타낸 것이다.Figure 4 (a) is a graph showing the change in the set-up time according to the mixing of the crushed oyster shell when the type A oyster shell, Figure 4 (b) shows the change in the set-up time according to the mixing of the crushed oyster shell when the type B oyster shell will be.

콘크리트의 역학적 특성에 있어서 가장 중요한 특성 중에 하나가 강도발현이라 할 수 있으며, 이러한 강도발현은 콘크리트의 응결 경화과정의 응결시간을 측정하여 평가할 수 있다.One of the most important properties in the mechanical properties of concrete is strength expression, which can be evaluated by measuring the setting time of the concrete's setting and curing process.

굴패각의 종류, 굴패각의 대체율 및 AE감수제 첨가 유무를 변수로 하여 각 시료의 응결 경화 시간을 측정하여 상기 표 4 및 도 4에 나타내었다.The type of oyster shell, the replacement rate of the oyster shell and the presence or absence of the AE reducing agent were measured, and the curing time of each sample was measured and shown in Table 4 and FIG. 4.

경화 종결시간을 보면, 굴패각의 종류 및 대체율에 관계없이 거의 일정한 종결시간을 나타내는 것을 알수 있다. 그러나 AE감수제를 첨가하는 경우에는 굴패각 종류 및 대체율에 관계없이 약 1시간 정도 종결시간이 늦어지는 결과를 보였다. 이와 같은 결과는 일반적으로 AE감수제를 첨가하는 콘크리트에서 발생할 수 있는 현상이다.From the hardening termination time, it can be seen that almost constant termination time is shown regardless of the type of oyster shell and the replacement rate. However, in case of adding AE reducing agent, the termination time was delayed about 1 hour regardless of the type of oyster shell and replacement rate. This result is generally a phenomenon that can occur in concrete to which the AE reducing agent is added.

실험 결과 콘크리트의 종결 시간은 굴패각의 혼합율에 크게 영향을 받지 않았으며 굴패각 투입으로 인한 이상응결 등의 문제는 발생하지 않았다. 분쇄한 굴패각을 잔골재의 대체재료로써 전체 잔골재 100중량부에 대하여 20중량부 범위 내에서 사용하는 경우에도 응결시간 상의 문제점은 없다고 판단된다.As a result of the experiment, the end time of concrete was not significantly affected by the mixing rate of oyster shells and there were no problems such as abnormal condensation due to oyster shell input. Even if the crushed oyster shell is used within 20 parts by weight with respect to 100 parts by weight of the total fine aggregate as a substitute material for fine aggregate, there is no problem in the setting time.

[실험예 5]Experimental Example 5

표 5는 굴패각의 종류, 대체율, AE감수제 사용 유무에 따른 굴패각을 혼합한 경화한 콘크리트의 압축강도, 쪼갬인장강도, 탄성계수를 나타낸 것이다.Table 5 shows the compressive strength, splitting tensile strength, and modulus of elasticity of hardened concrete mixed with oyster shell according to type, replacement rate, and use of AE reducing agent.

[표 5] (단위: kgf/cm2)[Table 5] (Unit: kgf / cm 2 )

배합종류Type of compound 압축강도Compressive strength 쪼갬 인장강도Split tensile strength 탄성계수Modulus of elasticity 3일3 days 7일7 days 28일28 days 7일7 days 28일28 days 28일28 days NNONNO 236236 331331 411411 26.226.2 29.529.5 3.333.33 OA05OA05 259259 358358 462462 29.529.5 28.228.2 3.283.28 OA10OA10 308308 355355 425425 26.026.0 27.927.9 3.123.12 OA20OA20 313313 356356 423423 25.825.8 32.632.6 3.033.03 OB05OB05 272272 359359 390390 22.822.8 28.828.8 3.173.17 OB10OB10 283283 366366 434434 28.328.3 27.127.1 3.123.12 RA05RA05 253253 336336 414414 -- -- 3.163.16 RA10RA10 247247 314314 349349 -- -- 2.862.86 RA20RA20 311311 363363 415415 -- -- 2.952.95 RB05RB05 239239 292292 380380 -- -- 2.942.94 RB10RB10 292292 365365 423423 -- -- 3.113.11

도 5(a)는 AE감수제를 첨가하지 않은 굴패각을 혼합한 콘크리트의 압축강도를 그래프로 나타낸 것이다.Figure 5 (a) is a graph showing the compressive strength of the concrete mixed with oyster shell without adding the AE reducing agent.

도 5(b)는 AE감수제를 첨가한 굴패각을 혼합한 콘크리트의 압축강도를 그래프로 나타낸 것이다.Figure 5 (b) is a graph showing the compressive strength of the concrete mixed with oyster shell added to the AE water reducing agent.

도 5(a)에서, AE감수제를 첨가하지 않은 굴패각을 혼합한 콘크리트의 초기재령(3일)에서의 압축강도는 굴패각을 혼합하지 않은 NNO기준배합에 비해 모두 높은 강도를 나타내었으며, 굴패각의 대체율이 증가할수록 압축강도는 증가하는 경향을 보이고 있다.In FIG. 5 (a), the compressive strength at the early age (3 days) of the concrete mixed with oyster shells without the AE water reducing agent was higher than that of the NNO standard mixture without oyster shells. As this increases, the compressive strength tends to increase.

B타입의 굴패각을 5%혼합한 배합(OB05)의 경우를 제외하고는 재령 28일에서의 압축강도도 NNO배합에 비해 높은 압축강도를 보이고 있다.The compressive strength at 28 days of age is higher than that of NNO, except in the case of 5% mixed oyster shell of type B (OB05).

도 5(b)에서, AE감수제를 첨가한 굴패각을 혼합한 콘크리트의 초기재령(3일)에서의 압축강도는 굴패각을 혼합하지 않은 NNO기준배합에 비해 역시 모두 높은 강도를 나타내었으나, 재령이 증가할수록 NNO기준배합의 압축강도에 근접하거나 낮아지는 결과를 보이고 있다. 이는 AE감수제 첨가에 의한 연행공기(entrained air)의 효과에 기인하는 것으로, 분쇄된 굴패각의 대체율에 기인하는 것이 아니다.In FIG. 5 (b), the compressive strength at the early age (3 days) of the concrete mixed with oyster shells added with the AE water reducing agent was also higher than that of the NNO standard mixture without mixing the oyster shells, but the age was increased. As the result, the compressive strength of the NNO standard formulation decreases or approaches. This is due to the effect of entrained air by the addition of AE reducing agent, not due to the replacement rate of the crushed oyster shell.

[실험예 6]Experimental Example 6

도 6은 굴패각의 혼합에 따른 인장강도 변화를 그래프로 나타낸 것이다.6 is a graph showing the change in tensile strength according to the mixing of the oyster shell.

도 6에서, 쪼갬인장강도는 압축강도 발현에서와 같은 굴패각 혼합에 따른 뚜렷한 경향을 찾아내기는 어렵지만 전체적으로 초기재령(3일)에서의 인장강도 발현은 굴패각을 혼합함에 따라 증가함을 보였다. 그러나 재령 28일에서의 인장강도는 NNO기준배합의 인장강도보다 다소 저하되는 경향을 보였다.In FIG. 6, it was difficult to find a distinct tendency due to the mixing of oyster shells as in the compressive strength expression, but overall, the tensile strength at early age (3 days) increased with mixing oyster shells. However, the tensile strength at 28 days tended to be slightly lower than the tensile strength of the NNO standard formulation.

[실험예 7]Experimental Example 7

도 7은 굴패각 혼합에 따른 콘크리트의 탄성계수 변화를 나타낸 것이다.Figure 7 shows the change in the elastic modulus of the concrete according to the oyster shell mixing.

도 7에서, 굴패각의 대체율이 증가할수록 콘크리트의 탄성계수가 대체로 감소하는 것을 알 수 있는 데, 이는 굴패각의 탄성계수가 잔골재의 탄성계수에 비해 작기 때문이다.In FIG. 7, it can be seen that the elastic modulus of the concrete generally decreases as the replacement rate of the oyster shell increases, since the elastic modulus of the oyster shell is smaller than that of the fine aggregate.

이상에서 살펴 본 바와 같이, 본 발명에 따른 콘크리트는 잔골재로 모래만을 사용한 종래의 콘크리트의 물성과 동일한 물성을 가지고, 연안의 폐기물인 굴패각을 재활용함으로써 자원활용의 효과 및 환경오염을 방지할 수 있을 뿐 아니라, 콘크리트 제조에 소용되는 비용을 낮추어 건설비용 절감의 효과가 있다. As described above, the concrete according to the present invention has the same physical properties as those of the conventional concrete using only sand as fine aggregate, and can only prevent the effect of resource utilization and environmental pollution by recycling the oyster shell, which is a coastal waste. Rather, it is effective in reducing construction costs by lowering the costs used to manufacture concrete.

도 1은 분쇄한 굴패각의 대체율에 따른 슬럼프 변화를 나타낸 그래프,1 is a graph showing a slump change according to the replacement rate of the crushed oyster shell,

도 2는 분쇄한 굴패각의 대체율에 따른 공기량 변화를 나타낸 그래프,2 is a graph showing the change in air volume according to the replacement rate of the crushed oyster shell,

도 3은 분쇄한 굴패각의 대체율에 따른 블리딩률 변화를 나타낸 그래프,3 is a graph showing the change in bleeding rate according to the replacement rate of the crushed oyster shell,

도 4는 분쇄한 굴패각의 대체율에 따른 응결시간 변화를 나타낸 그래프로서,4 is a graph showing the change in setting time according to the replacement rate of the crushed oyster shell,

(a)는 굴패각 A타입의 경우,(a) is for oyster shell A type,

(b)는 굴패각 B타입의 경우의 그래프,(b) is a graph of oyster shell B type,

도 5는 굴패각의 대체율에 따른 압축강도 변화를 나타낸 그래프로서,5 is a graph showing the change in compressive strength according to the replacement rate of oyster shell,

(a)는 혼화제 무첨가의 경우,(a) is the absence of admixtures,

(b)는 혼화제 첨가의 경우의 그래프,(b) is a graph in the case of admixture addition,

도 6은 굴패각의 대체율에 따른 인장강도 변화를 나타낸 그래프,Figure 6 is a graph showing the change in tensile strength according to the replacement rate of oyster shell

도 7은 굴패각 대체율에 따른 콘크리트의 탄성계수 변화를 나타낸 그래프이다.7 is a graph showing the change in the elastic modulus of concrete according to the oyster shell replacement rate.

Claims (6)

시멘트, 잔골재, 굵은 골재, 혼화제 및 물을 혼합함으로써 제조되는 콘크리트에 있어서, 상기 잔골재가 조립률 2.1 내지 2.7을 가진 분쇄된 굴패각을 포함하r고, 상기 분쇄된 굴패각은 전체 잔골재 100중량부 중 5 내지 10 중량부인 것을 특징으로 하고, 상기 혼화제는 시멘트 100중량부에 대하여 AE감수제 0.3 중량부인 것을 특징으로 하는 굴패각을 혼합한 콘크리트.In concrete prepared by mixing cement, fine aggregate, coarse aggregate, admixture and water, the fine aggregate includes a crushed oyster shell having a granulation ratio of 2.1 to 2.7, wherein the crushed oyster shell is 5 of 100 parts by weight of the total fine aggregate. To 10 parts by weight, characterized in that the admixture is mixed with oyster shells, characterized in that 0.3 parts by weight of AE reducing agent with respect to 100 parts by weight of cement. 삭제delete 삭제delete 굴패각을 건조로에 넣고 100 내지 120℃에서 가열하여 건조시키는 단계; 상기 건조된 굴패각을 조립률 2.1 내지 2.7을 가진 굴패각으로 분쇄하는 단계; 상기 분쇄된 굴패각을 시멘트, 잔골재, 굵은 골재, 혼화제 및 물과 혼합하는 과정으로 이루어지며, 상기 혼합과정에 있어서 상기 혼화제는 시멘트 100 중량부에 대하여 AE감수제 0.3 중량부이고, 상기 분쇄된 굴패각은 전체 잔골재 100 중량부 중 5 내지 10중량부인 것을 특징으로 하는 굴패각을 혼합한 콘크리트의 제조 방법.Placing the oyster shell in a drying furnace and drying by heating at 100 to 120 ° C .; Grinding the dried oyster shell into oyster shells having a granulation ratio of 2.1 to 2.7; The crushed oyster shell is made of a process of mixing with cement, fine aggregate, coarse aggregate, admixture, and water. In the mixing process, the admixture is 0.3 parts by weight of an AE reducing agent based on 100 parts by weight of cement, and the crushed oyster shell is total Method for producing concrete mixed oyster shell, characterized in that 5 to 10 parts by weight of 100 parts by weight of the aggregate aggregate. 삭제delete 삭제delete
KR10-2002-0022762A 2002-04-25 2002-04-25 Method for manufacturing concrete blended with oyster shell and the concrete of the same KR100481082B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0022762A KR100481082B1 (en) 2002-04-25 2002-04-25 Method for manufacturing concrete blended with oyster shell and the concrete of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0022762A KR100481082B1 (en) 2002-04-25 2002-04-25 Method for manufacturing concrete blended with oyster shell and the concrete of the same

Publications (2)

Publication Number Publication Date
KR20030084195A KR20030084195A (en) 2003-11-01
KR100481082B1 true KR100481082B1 (en) 2005-04-07

Family

ID=32380429

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0022762A KR100481082B1 (en) 2002-04-25 2002-04-25 Method for manufacturing concrete blended with oyster shell and the concrete of the same

Country Status (1)

Country Link
KR (1) KR100481082B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111268960A (en) * 2019-12-02 2020-06-12 哈尔滨工程大学 Cement-based paint for inducing sessile organisms on surface of ocean engineering and preparation method thereof
KR20210120164A (en) 2020-03-25 2021-10-07 원광대학교산학협력단 Mortar composition using oyster shell as fine aggregate and using a large amount of blast furnace slag fine powder
KR102398854B1 (en) 2022-02-11 2022-05-16 서울시립대학교 산학협력단 3D Additive Manufacturing Method of Recycled Oyster Shell Powder Mixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111268961B (en) * 2019-12-02 2021-12-24 哈尔滨工程大学 Cement concrete oyster attachment base with rough surface and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228905A (en) * 1993-01-28 1994-08-16 Senkon:Kk Manufacturing method of concrete block, block sole plate and concrete block and concrete mixer
JPH07309685A (en) * 1994-05-12 1995-11-28 Ohbayashi Corp Luminous concrete plate
KR960029274A (en) * 1995-01-04 1996-08-17 박형식 Road boundary stone using oyster shell
JPH09165252A (en) * 1995-12-13 1997-06-24 Karui:Kk Cement mortar containing shell and its product
KR20000053838A (en) * 2000-04-21 2000-09-05 최재승 The brick of shell bark
KR20010060399A (en) * 1999-12-21 2001-07-07 김진갑 Oyster Concrete Composition For Producing Structure Such As Environmental Friendly Fishing Structure And The Like
KR100334654B1 (en) * 1999-12-06 2002-04-27 박정수 Admixure synthesizing method for construction materials by using oyster shell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228905A (en) * 1993-01-28 1994-08-16 Senkon:Kk Manufacturing method of concrete block, block sole plate and concrete block and concrete mixer
JPH07309685A (en) * 1994-05-12 1995-11-28 Ohbayashi Corp Luminous concrete plate
KR960029274A (en) * 1995-01-04 1996-08-17 박형식 Road boundary stone using oyster shell
JPH09165252A (en) * 1995-12-13 1997-06-24 Karui:Kk Cement mortar containing shell and its product
KR100334654B1 (en) * 1999-12-06 2002-04-27 박정수 Admixure synthesizing method for construction materials by using oyster shell
KR20010060399A (en) * 1999-12-21 2001-07-07 김진갑 Oyster Concrete Composition For Producing Structure Such As Environmental Friendly Fishing Structure And The Like
KR20000053838A (en) * 2000-04-21 2000-09-05 최재승 The brick of shell bark

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111268960A (en) * 2019-12-02 2020-06-12 哈尔滨工程大学 Cement-based paint for inducing sessile organisms on surface of ocean engineering and preparation method thereof
KR20210120164A (en) 2020-03-25 2021-10-07 원광대학교산학협력단 Mortar composition using oyster shell as fine aggregate and using a large amount of blast furnace slag fine powder
KR102398854B1 (en) 2022-02-11 2022-05-16 서울시립대학교 산학협력단 3D Additive Manufacturing Method of Recycled Oyster Shell Powder Mixture

Also Published As

Publication number Publication date
KR20030084195A (en) 2003-11-01

Similar Documents

Publication Publication Date Title
Bheel et al. Influence of binary blend of corn cob ash and glass powder as partial replacement of cement in concrete
Bheel et al. Effect of rice husk ash and water-cement ratio on strength of concrete
Nagarajan et al. Experimental study on partial replacement of cement with coconut shell ash in concrete
CN110498647B (en) Fiber-reinforced recycled fine aggregate cement-based composite material
Khan et al. Development of environment-friendly concrete through partial addition of waste glass powder (WGP) as cement replacement
Bheel et al. Study of fresh and hardened properties of concrete using cement with modified blend of millet husk ash as secondary cementitious material
Alengaram et al. Influence of sand content and silica fume on mechanical properties of palm kernel shell concrete
Kakade et al. Light-weight aggregate concrete by using coconut shell
KR100481082B1 (en) Method for manufacturing concrete blended with oyster shell and the concrete of the same
CN113582641A (en) Inorganic mixture prepared from construction waste recycled aggregate and preparation method thereof
CN112110696B (en) Concrete for super-retarding secondary structure
US10870603B2 (en) Hemp straw ash as a supplementary cementitious material
Ogunbode et al. Turning waste to wealth: Potential of laterized concrete using cassava peels ash (CPA) blended cement
Ndububa et al. The potential use of fonio husk ash as a pozzolana in concrete
Dauda Exploring the Potential of Alternative Pozzolona Cement for the Northern Savannah Ecological Zone in Ghana
Ahmed et al. Mechanical properties of sugarcane straw waste ash used as binder in concrete production
Alshndah et al. Recycling of wheat straw aggregates of end-of-life vegetal concrete: Experimental investigation to develop a new building insulation material
Wajid et al. Use of Rice Husk Ash as Partial Replacement of Cement in Sandcrete Blocks
Guendouz et al. Recycling of rubber waste in sand concrete
JP3338843B2 (en) Cement admixture and cement composition
Mohamadali Effect on properties of concrete using agro-west as replacement of sand
Jeleniewicz et al. Influence of ground waste glass addition on concrete prepared with their participation properties
Sellakkannu et al. EXPERIMENTAL STUDY ON USING SHREDDED TYRES IN CONCRETE AS PARTIALLY REPLACEMENT OF COARSEAGGREGATE
El Bast M El Bast et al. PROPERTIES OF CONCRETE CONTAINING CRUSHED LIMESTONE AS TOTAL REPLACEMENT OF NATURAL SAND AND RECYCLED ENGINE OIL
SAND THE USAGE OF RICE HUSK ASH IN THE

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140207

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150213

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160211

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180208

Year of fee payment: 14