KR100481054B1 - Method of Absorption Filter Element for Air-Cleaning - Google Patents

Method of Absorption Filter Element for Air-Cleaning Download PDF

Info

Publication number
KR100481054B1
KR100481054B1 KR10-2002-0036543A KR20020036543A KR100481054B1 KR 100481054 B1 KR100481054 B1 KR 100481054B1 KR 20020036543 A KR20020036543 A KR 20020036543A KR 100481054 B1 KR100481054 B1 KR 100481054B1
Authority
KR
South Korea
Prior art keywords
filter material
adsorption
weight
manufacturing process
slurry
Prior art date
Application number
KR10-2002-0036543A
Other languages
Korean (ko)
Other versions
KR20040001372A (en
Inventor
안병길
임형미
최종일
Original Assignee
요업기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 요업기술원 filed Critical 요업기술원
Priority to KR10-2002-0036543A priority Critical patent/KR100481054B1/en
Publication of KR20040001372A publication Critical patent/KR20040001372A/en
Application granted granted Critical
Publication of KR100481054B1 publication Critical patent/KR100481054B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • B01D39/2062Bonded, e.g. activated carbon blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 집진기용 싸이클론과 실내공기 공조용 집진시스템에서 사용되는 분진 제거용 필터소재의 제조방법에 관한 것으로서, 단섬유 형태의 아크릴 섬유와 흡착특성이 우수한 흡착 무기물 분말을 슬러리 혼합방식으로 혼합시킨 후, 제지 제조공정의 습식부직포 제조공정을 변형시킨 필터소재 제조용 습식 부직포 제조공정을 통해 제조됨으로써 연속 제조공정이 용이하고 우수한 분지 제거능력과 냄새 제거용 흡착 기능이 혼합된 대기정화용 흡착필터 소재의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a dust removal filter material used in a cyclone for dust collector and a dust collecting system for indoor air conditioning. A slurry mixing method is used in which short fiber-type acrylic fibers and adsorption inorganic powder having excellent adsorption characteristics are mixed. After that, it is manufactured through the wet nonwoven fabric manufacturing process for manufacturing the filter material, which is modified from the wet nonwoven fabric manufacturing process of the paper manufacturing process, and thus, the continuous manufacturing process is easy and the preparation of the air purification adsorption filter material with excellent basin removal ability and odor removal adsorption is mixed. It is about a method.

Description

대기정화용 흡착필터소재의 제조방법{Method of Absorption Filter Element for Air-Cleaning} Method of manufacturing adsorption filter material for air purification {Method of Absorption Filter Element for Air-Cleaning}

본 발명은 집진기용 싸이클론과 실내공기 공조용 집진시스템에서 사용되는 분진 제거용 필터소재의 제조방법에 관한 것으로서, 더욱 상세하게는 오피스텔 빌딩, 백화점, 지하상가, 지하철역사, 병원, 제약회사, 식품공장, 자동차 생산라인, 발전소 등의 공조시스템에 사용할 수 있으며, 그 외의 냄새 제거 등의 흡착기능이 요구되는 에어컨 필터, 휀코일 필터, 자동차용 에어컨필터, 마스크 등과 같이 여러 용도의 필터소재에 다양하게 사용될 수 있으며, 단섬유 형태의 아크릴 섬유와 흡착특성이 우수한 무기물 분말을 슬러리 혼합방식으로 혼합시킨 후, 제지 제조공정의 습식부직포 제조공정을 변형시킨 필터소재 제조용 습식 부직포 제조공정을 통해 제조됨으로써 연속 제조공정이 용이하고 우수한 분지 제거능력과 냄새 제거용 흡착 기능이 혼합된 대기정화용 흡착필터 소재의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing dust removal filter material used in cyclone for dust collector and dust collection system for indoor air conditioning. More specifically, officetel building, department store, underground mall, subway station, hospital, pharmaceutical company, food It can be used in air conditioning systems such as factories, automobile production lines, and power plants, and it can be used in various filter materials such as air conditioner filters, shock coil filters, automotive air conditioner filters, and masks that require adsorption functions such as odor removal. It can be used, and the continuous manufacturing by mixing the acrylic fiber in the form of short fiber and the inorganic powder with excellent adsorption properties by the slurry mixing method, and then manufactured through the wet nonwoven fabric manufacturing process for manufacturing the filter material modified the wet nonwoven fabric manufacturing process of the paper manufacturing process. Easy to process and combines excellent basin removal ability and adsorption function for odor removal It relates to a method of purification adsorption filter material.

종래의 대기정화용 필터소재는 폴리프로필렌, 폴리에스테르 및 폴리아세탈 등의 고분자 합성섬유를 직포(woven fiber) 또는 부직포(non-woven fabric) 형태로 가공하여 만들어지는 백필터(bag filter) 형태의 필터소재와, 세라믹 분말 또는 고분자 분말들을 압축소결하여 만들어지는 소결필터(sintering filter) 형태의 필터소재로 크게 분류할 수 있다. 그러나 이러한 필터소재들은 공기 중의 미세 분진만을 제거하기 위한 소재로서 실내 공기중에 포함되어 있는 각종 냄새, 균 및 담배연기 등을 효과적으로 제거하기 위한 흡착능력이 미흡한 단점을 지니고 있다. The conventional filter material for air purification is a filter material in the form of a bag filter made by processing polymer synthetic fibers such as polypropylene, polyester, and polyacetal in the form of woven fiber or non-woven fabric. And, it can be broadly classified into a filter material of the sintering filter (sintering filter) made by compression sintering ceramic powder or polymer powder. However, these filter materials have a disadvantage of insufficient adsorption ability to effectively remove various odors, bacteria and tobacco smoke contained in the indoor air as a material for removing only fine dust in the air.

기존의 대기정화용 필터소재가 갖는 이러한 흡착기능의 부재를 보완하기 위해 활성탄소 부직포가 전세계적으로 개발되어 대기정화용 필터소재로 사용되고 있으나, 활성탄소 부직포의 경우 제조공정이 복잡하여 필터소재의 제조원가를 상승시키는 문제가 있으며, 아울러 미세분진 제거용 필터소재를 활성탄소 부직포와 함께 사용해야 하는 문제점 또한 야기시키고 있는 실정이다. Activated carbon nonwoven fabrics have been developed worldwide to supplement the absence of these adsorptive functions of existing air purification filter materials and are used as air purification filter materials.However, in the case of activated carbon nonwoven fabrics, the manufacturing process is complicated and the manufacturing cost of the filter materials is increased. In addition, there is also a problem that causes the use of a fine dust removal filter material with an activated carbon nonwoven fabric.

또한 종래의 대기정화용 필터소재는 5㎛ 미만의 미세분진 제거를 위해 매우 미세한 기공을 지니게 함으로써 공조시스템의 운전초기에 필터소재의 눈막힘 현상을 유발시켜 공조시스템용 필터소재의 내구성이 단축되는 문제점을 지니고 있다. 종래의 공조시스템용 필터소재가 갖는 이러한 눈막힘 현상, 즉 가동시간의 단축문제점을 해결하기 위해서는 공조시스템에서의 여과면적, 즉 필터소재의 사용을 증가시켜야 하므로 공조시스템의 설치비용 증가와 함께 공조시스템의 보수관리비가 많이 드는 단점 또한 갖고 있다. In addition, the conventional air purification filter material has a very fine pores for removing fine dust of less than 5㎛ cause a clogging phenomenon of the filter material at the beginning of operation of the air conditioning system to reduce the durability of the filter material for the air conditioning system I have it. In order to solve the problem of clogging of the conventional air conditioning system filter material, that is, shortening of operating time, it is necessary to increase the filtration area of the air conditioning system, that is, the use of the filter material. It also has the disadvantage of high maintenance cost.

종래의 대기정화용 필터소재가 지니고 있는 상기의 문제점들을 해결하기 위해 이의 성상을 보완한 대기정화용 필터소재, 즉 종래의 부직포 및 직포의 필터소재에 기공성 고분자 필름을 접착시킴으로써 심층여과와 표면여과의 두 기능을 함께 지닌 내구성 향상 필터소재가 개발되었다. 일예로, 미국특허 공보 제5205938A호 및 제4917942A호에서는 기공성 폴리에스테르 또는 폴리프로필렌 필름을 부직포 표면에 접착시킨 필터소재를 개시하고 있는데, 이는 대기중의 미세분진 제거와 탈진을 원활하게 하는 등의 여과성능은 향상시켰으나, 종래의 대기정화용 필터소재가 안고 있는 근본적인 문제점, 즉 냄새 및 담배연기 제거 등을 위한 흡착기능 부여와 필터소재의 내구성에 대한 근본적인 향상 등의 문제를 해결하지 못하였다. In order to solve the above problems of the conventional filter material for air purification, the filter material for air purification, that is, complementing the properties of the conventional filter material, that is, by bonding the porous polymer film to the filter material of the conventional non-woven fabric and woven fabric, both deep filtration and surface filtration Durable filter materials with functionality have been developed. For example, U.S. Patent Nos. 5,059,382 and 4,17,942, A disclose a filter material in which a porous polyester or polypropylene film is adhered to a surface of a nonwoven fabric, such as to remove fine dust in the air and to facilitate dust removal. The filtration performance has been improved, but the fundamental problems of the conventional air purification filter materials, such as the adsorption function for removing odor and tobacco smoke and the fundamental improvement of the durability of the filter material, have not been solved.

이에, 본 발명은 상기와 같은 종래의 대기정화용 필터소재가 갖고 있는 제반 문제점들을 해결하기 위하여, 아크릴 섬유와 흡착특성이 우수한 무기물 분말을 슬러리 혼합방식으로 혼합시킨 후, 제지 제조공정에서 사용되는 습식 부직포 제조공정을 변형시켜 필터소재 제조용 습식 부직포 제조공정을 통해 대기정화용 흡착 필터소재를 제조하도록 함으로써 필터소재의 연속 제조공정이 용이하고, 우수한 내구성의 미세분진 제거능력, 냄새 제거용 흡착기능 등이 함께 하도록 고안된 다기능성 필터소재를 제공하는 데 그 목적이 있다. Thus, the present invention is to solve the problems of the conventional air purification filter material as described above, after mixing the acrylic fiber and the inorganic powder having excellent adsorption characteristics by a slurry mixing method, the wet nonwoven fabric used in the paper manufacturing process By modifying the manufacturing process to manufacture the adsorption filter material for purifying the atmosphere through the wet nonwoven fabric manufacturing process for manufacturing the filter material, the continuous manufacturing process of the filter material is easy, and the excellent durability of fine dust removal and the odor removal adsorption function are combined. The purpose is to provide a multifunctional filter material designed.

이외에 대기정화용 필터소재에 흡착기능이 가미됨으로써 종래의 대기정화용 필터소재에 비하여 30∼40% 정도 설치면적을 감소시킬 수 있고, 흡착 기능 적용에 의한 설치비 및 보수 관리비의 비용이 매우 저렴한 특징을 지니고 있으며, 또한 재료비가 매우 저렴한 단섬유 형태의 아크릴 섬유를 주원료로 사용하고, 대량생산이 가능한 습식 부직포 제조공정을 도입함으로써 제조원가 측면에서도 매우 경제적인 필터소재를 제공하는 데도 그 목적이 있다. In addition, the adsorption function is added to the air purification filter material, which reduces the installation area by about 30 to 40% compared to the conventional air purification filter material, and has a very low cost of installation and maintenance and management costs by applying the adsorption function. In addition, the main purpose is to provide a very economical filter material in terms of manufacturing cost by using a short fiber type acrylic fiber, which is a very low material cost as a main raw material, and introducing a wet nonwoven fabric manufacturing process capable of mass production.

또한 본 발명은 각종 빌딩 공조기용 집진시스템은 물론, 지하철, 병원 등에서 발생되는 유해가스 및 냄새 제거용 공조시스템에도 적용될 수 있는 대기정화용 흡착필터소재를 제공하는 데 그 목적이 있다. In addition, an object of the present invention is to provide an air purification adsorption filter material that can be applied to air conditioning systems for removing harmful gases and odors generated in subways, hospitals, and the like, as well as various building air conditioners.

상기와 같은 목적을 달성하기 위한 본 발명의 대기정화용 필터소재의 제조방법은 입경이 0.05~1㎛인 흡착 무기물 분말 5∼40중량%, 단섬유 형태의 폐아크릴 섬유 15∼40중량% 및 물 20∼80중량%를 혼합하여 슬러리 형태로 가공하여 펄퍼에서 아크릴 섬유를 해리하고 슬러리를 혼합하는 공정; 성형기에서 필터소재를 성형하는 공정; 압축기에서의 탈수공정; 및 건조기에서의 건조공정을 포함하는 것임을 그 특징으로 한다. In order to achieve the above object, the present invention provides a method for preparing the filter material for purifying the air, wherein the particle diameter is 0.05 to 1 μm, 5 to 40 wt% of the adsorbed inorganic powder, 15 to 40 wt% of the short fiber waste acrylic fiber, and water 20 Mixing 80% by weight to form a slurry to dissociate the acrylic fibers in the pulper and mix the slurry; Molding the filter material in a molding machine; Dewatering process in the compressor; And a drying step in the dryer.

또한, 단섬유 형태의 폐아크릴 섬유 15∼40중량%와 물 20∼80중량%를 혼합하여 슬러리 형태로 가공하여 펄퍼에서 아크릴 섬유를 해리하고 슬러리를 혼합하는 공정; 상기 슬러리와 입경이 0.1~1mm인 입상의 흡착 무기물 분말 15∼40중량%를 동시에 성형기에 투입하면서 성형기에서 필터소재를 성형하는 공정; 압축기에서의 탈수공정; 및 건조기에서의 건조공정을 포함하는 것임을 그 특징으로 한다. In addition, 15 to 40% by weight of the waste fiber in the form of short fibers and 20 to 80% by weight of water is mixed and processed into a slurry form to dissociate the acrylic fibers in the pulper and to mix the slurry; Molding the filter material in the molding machine while simultaneously injecting the slurry and 15 to 40% by weight of the granular adsorption inorganic powder having a particle diameter of 0.1 to 1 mm into the molding machine at the same time; Dewatering process in the compressor; And a drying step in the dryer.

이와같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명의 필터소재를 연속 제조공정을 거쳐 제조하는 공정의 순서도를 도 1 및 도 2에 나타내었다. 이를 참조하여 설명하면 다음과 같다.1 and 2 show flowcharts of a process of manufacturing the filter material of the present invention through a continuous manufacturing process. This will be described with reference to the following.

먼저, 도 1의 경우는 흡착 무기물 분말의 입자크기가 미립일 때 경우의 공정도로서, 원료물질인 단섬유 형태의 아크릴 섬유와 흡착 무기물 분말 및 물을 소정비율로 혼합한 후, 아크릴 섬유의 해리와 슬러리의 혼합을 위해 펄퍼(Pulper)에 첨가하여 일정한 교반속도로 혼합공정을 수행한다.First, FIG. 1 is a process chart when the particle size of the adsorbent inorganic powder is fine, and the acrylic fiber of the short fiber form as the raw material, the adsorbed inorganic powder and water are mixed at a predetermined ratio, and then the dissociation of the acrylic fiber and The mixture is added to a pulper for mixing the slurry, and the mixing process is performed at a constant stirring speed.

단섬유 형태의 아크릴 섬유는 폐아크릴 섬유를 사용할 수 있는 바, 폐아크릴 섬유를 사용할 경우라면 섬유 세척 등의 전처리를 거칠 수 있다. 폐아크릴 섬유는 아크릴 섬유 제조공장 및 재활용 수집 회사 등에서 대량으로 얻어질 수 있는 바, 이와같이 얻어진 폐아크릴 섬유를 사용하면 된다. Acrylic fiber in the form of short fibers can be used waste acrylic fiber, if the waste acrylic fiber can be subjected to pre-treatment, such as fiber washing. The waste acrylic fiber can be obtained in large quantities in an acrylic fiber manufacturing plant and a recycling collection company, and the waste acrylic fiber thus obtained may be used.

단섬유 형태의 아크릴 섬유의 첨가량은 15∼40중량%인 것이 바람직한데, 만일 그 첨가량이 15중량% 미만이면 다량의 물 사용으로 무기 흡착소재 및 기타 소재들의 사용이 과다한 문제점이 발생하고 40중량% 초과면 슬러리의 혼합이 어려운 문제가 발생할 수 있다. It is preferable that the addition amount of the acrylic fiber in the form of short fibers is 15 to 40% by weight. If the amount is less than 15% by weight, the use of a large amount of water causes an excessive problem of using inorganic adsorption materials and other materials, and 40% by weight. If exceeded, mixing of the slurry may be difficult.

그리고, 흡착 무기물 분말로는 특별히 한정되는 것은 아니나, 입자크기가 0.05∼100㎛인 활성탄, 제올라이트, 백토 및 점토 등을 들 수 있다. 그 첨가량은 5∼40중량%이며, 물의 첨가량은 20∼80중량%인 것이 바람직하다. 흡착 무기물 분말의 첨가량이 40중량%를 초과하면 습식 슬러리 제조공정의 이행이 어려운 문제점이 있다. In addition, the adsorbent inorganic powder is not particularly limited, and examples thereof include activated carbon, zeolite, clay, clay and the like having a particle size of 0.05 to 100 µm. The addition amount is 5 to 40 weight%, and it is preferable that the addition amount of water is 20 to 80 weight%. If the amount of the adsorbed inorganic powder exceeds 40% by weight, it is difficult to implement the wet slurry manufacturing process.

상기와 같이 펄퍼에서 혼합된 일정량의 슬러리를 성형공정으로 투입하여 목적하는 필터소재로 성형한다. As described above, a predetermined amount of the slurry mixed in the pulper is introduced into a molding process to be molded into a desired filter material.

그 다음, 압축공정을 통해 수분제거를 위한 압착과정을 수행하여 최소량의 수분을 함유한 습식 부직포로 성형한다. 압축공정시 압력은 1∼10kgf/㎠ 정도이면 되고, 압축 후 수분의 양은 5∼10% 정도인 것이 바람직하다. Next, a compression process for removing moisture is performed through a compression process to form a wet nonwoven fabric containing a minimum amount of water. Pressure during compression process is 1 ~ 10kg f / ㎠ It should just be about, and it is preferable that the quantity of moisture after compression is about 5 to 10%.

마지막으로, 압축성형된 습식 부직포를 건조롤러에서 건조시킨다. 건조시 온도는 80∼100℃이면 되고, 이 온도 범위 이상이 되면 아크릴 부직포 소재의 변형이 발생하는 문제가 있을 수 있다.Finally, the compression molded wet nonwoven fabric is dried in a drying roller. When drying, the temperature should be 80 to 100 ° C. If the temperature is above this temperature range, deformation of the acrylic nonwoven material occurs. There may be a problem.

한편, 흡착 무기물 분말로서 상기와 같이 미세한 것이 아닌 입상의 0.1∼1mm 크기의 무기물 미립자를 사용할 경우라면 단섬유 아크릴 섬유와 물과 함께 혼합하여 슬러리로 제조하게 되면 가라앉게 되어 균일한 분산이 이루어질 수 없으므로 도 2에 나타낸 바와 같이 단섬유 아크릴 섬유와 물만을 혼합한 다음 이 슬러리를 성형공정에 투입하면서 별도로 준비한 입상의 흡착 무기물 분말을 성형공정에 투입하는 것이 바람직하다. On the other hand, in the case of using inorganic fine particles of granular 0.1-1mm size, which are not as fine as the above-mentioned adsorption inorganic powder, when mixed with short-fiber acrylic fibers and water to make a slurry, they will sink and cannot be uniformly dispersed. As shown in FIG. 2, it is preferable to mix the short-fiber acrylic fibers and water only, and then to add the slurry to the molding process, and to separately prepare granular adsorbent inorganic powder into the molding process.

입상의 흡착 무기물 분말을 사용하더라도 성형공정에 이은 압축공정 및 건조공정의 조건의 순서나 조건 등은 미세한 무기물 미립자를 사용한 것과 동일하다. Even when granular adsorption inorganic powder is used, the order and conditions of the compression process and the drying process following the forming process are the same as those of using fine inorganic fine particles.

위와같은 제조공정을 연속적으로 수행함으로써 필터소재의 제조비용이 매우 저렴한 특징을 지니고 있다. By continuously performing the above manufacturing process has a feature that the manufacturing cost of the filter material is very low.

한편, 건조된 흡착 필터소재 표면에 미세분진 제거능력을 보다 향상시키기 위해서 건조 후 별도의 정전기 부직포 등을 열접착시키는 공정을 부가할 수도 있다. 이때 사용할 수 있는 정전기 부직포의 일예로는 표면전하밀도가 50∼300μC/㎡이며, 통기도가 20∼30CC/㎟sec인 폴리프로필렌 정전기 부직포 등을 들 수 있으나, 이에 한정되는 것은 아니다. 그리고, 열접착은 100∼160℃의 온도조건에서 수행하는 것이 바람직하다. On the other hand, in order to further improve the fine dust removal ability on the surface of the dried adsorption filter material may be added a step of heat-bonding a separate electrostatic nonwoven fabric or the like after drying. Examples of the electrostatic nonwoven fabric that can be used at this time include a polypropylene electrostatic nonwoven fabric having a surface charge density of 50 to 300 µC / m 2 and a ventilation of 20 to 30 CC / mm 2 sec, but is not limited thereto. In addition, the thermal bonding is preferably carried out at a temperature of 100 ~ 160 ℃.

상기와 같이 연속 제조공정에서 필터소재의 건조가 완료된 후, 적용될 필터시스템의 규격에 맞도록 재단하면 본 발명에 따른 대기정화용 흡착 필터소재를 얻을 수 있다.After the drying of the filter material in the continuous manufacturing process as described above, if the cut to meet the specifications of the filter system to be applied can be obtained the adsorption filter material for atmospheric purification according to the present invention.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.

실시예 1Example 1

흡착 무기물 분말로 활성탄을 선정하였으며, 실험에 사용된 활성탄의 평균입자크기를 1㎛ 이하로 분쇄하여 사용하였다. 평균입자크기가 1㎛ 이하가 되도록 분쇄시킨 활성탄 15중량%, 단섬유 형태의 아크릴 섬유(아크릴 제조공장으로부터 얻어진 부산물 폐아크릴 섬유) 25중량% 및 물 60중량%를 혼합한 뒤, 펄퍼(pulper)에서 1,000rpm으로 5시간 동안 교반시켜 아크릴 섬유의 해리공정을 수행하였다. Activated carbon was selected as the adsorbent inorganic powder, and the average particle size of the activated carbon used in the experiment was ground to 1 μm or less. 15% by weight of activated carbon pulverized to an average particle size of 1 μm or less, 25% by weight of short-fiber type acrylic fiber (by-product waste acrylic fiber obtained from an acrylic manufacturing plant), and 60% by weight of water, followed by pulper At 1000 rpm for 5 hours, the acrylic fiber was dissociated.

활성탄 분말과 아크릴 섬유가 균일하게 혼합된 일정량의 슬러리를 필터소재성형기에 넣은 후, 10kgf/㎠의 압력을 가하는 압축공정을 거쳐 90℃의 건조롤러를 통과시킴으로써 활성탄 분말이 함유된 흡착 아크릴 필터소재를 제조하였다. A certain amount of slurry uniformly mixed with activated carbon powder and acrylic fiber was put into the filter material molding machine, and then passed through a drying roller at 90 ° C. through a compression process applying a pressure of 10 kgf / cm 2 to obtain an adsorptive acrylic filter material containing activated carbon powder. Prepared.

실시예 2Example 2

상기 실시예 1과 동일한 방법으로 필터소재를 제조하되, 다만 흡착 무기물 분말로 제올라이트를 사용하였다. 이때, 제올라이트의 평균입자크기 역시 1㎛ 이하로 분쇄하여 첨가하였으며, 제올라이트와 아크릴 섬유 및 물의 첨가량과 필터소재 가공방법은 상기 실시예 1과 동일하다. A filter material was manufactured in the same manner as in Example 1, except that zeolite was used as the adsorbed inorganic powder. At this time, the average particle size of the zeolite was also added by grinding down to 1㎛ or less, the addition amount of the zeolite, acrylic fiber and water and the filter material processing method is the same as in Example 1.

실시예 3Example 3

상기 실시예 1과 동일한 방법으로 필터소재를 제조하되, 다만 흡착 무기물 분말로 활성 백토를 사용하였다. 이때, 활성백토의 평균입자크기 역시 1㎛ 이하로 분쇄하여 사용하였으며, 활성백토, 아크릴 섬유 및 물의 첨가량과 필터소재 가공방법은 상기 실시예 1과 동일하다. A filter material was prepared in the same manner as in Example 1, except that activated clay was used as the adsorbed inorganic powder. At this time, the average particle size of activated clay was also used to grind to 1㎛ or less, the amount of activated clay, acrylic fiber and water and the filter material processing method is the same as in Example 1.

실시예 4Example 4

상기 실시예 1과 동일한 방법으로 필터소재를 제조하되, 다만 직경 0.5mm의 입상 활성탄 10중량%를 별도로 준비하여 슬러리와 함께 성형기 내부에 첨가하였다. 필터소재의 성형방법은 상기 실시예 1과 동일하다. A filter material was prepared in the same manner as in Example 1, except that 10 wt% of granular activated carbon having a diameter of 0.5 mm was separately prepared and added together with the slurry into the molding machine. Forming method of the filter material is the same as in Example 1.

실시예 5Example 5

상기 실시예 1과 동일한 방법으로 필터소재를 제조한 다음 ESCD, 즉 표면전하밀도가 200μC/㎡이며, 통기도가 40CC/㎟sec인 폴리프로필렌 정전기 부직포를 필터소재 표면에 열접착시켰다. 즉, 흡착필터 소재 표면에 정전기를 띄는 정전기 부직포를 열접착시킴으로써 정전기 부직포에 의한 미세 분진 제거능력을 향상시킨 흡착 필터소재를 제조하였다. The filter material was manufactured in the same manner as in Example 1, and then ESCD, that is, a polypropylene electrostatic nonwoven fabric having a surface charge density of 200 μC / m 2 and a permeability of 40 CC / mm 2 sec was thermally bonded to the surface of the filter material. That is, by adhering the electrostatic nonwoven fabric having static electricity on the surface of the adsorption filter material, an adsorption filter material having improved fine dust removal ability by the electrostatic nonwoven fabric was prepared.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 방법으로 필터 소재를 제조하되, 다만 흡착 무기물 분말을 첨가하지 않은 아크릴 섬유 부직포를 제조하였다. 즉 아크릴 섬유 40중량%와 물 60중량%로 혼합된 슬러리를 상기 실시예 1과 같은 필터소재 가공방법으로 가공하여 필터소재를 제조하였다.A filter material was prepared in the same manner as in Example 1, except that an acrylic fiber nonwoven fabric was prepared in which no adsorption inorganic powder was added. That is, a filter material was manufactured by processing the slurry mixed with 40% by weight of acrylic fiber and 60% by weight of water by the same filter material processing method as in Example 1.

비교예 2Comparative Example 2

흡착 필터소재가 접착되지 않은 폴리프로필렌 정전기 부직포만으로 구성된 필터소재를 제조하였다. A filter material composed of only a polypropylene electrostatic nonwoven fabric to which the adsorption filter material was not bonded was prepared.

실험예 1Experimental Example 1

상기 실시예 1 내지 5 및 비교예 1 내지 2에 따라 얻어진 필터소재의 단면을 SEM을 이용한 표면구조 관찰 방법으로 관찰하여, 그 결과를 도 3a∼3c에 나타내었다. The cross section of the filter material obtained according to Examples 1 to 5 and Comparative Examples 1 to 2 was observed by a surface structure observation method using SEM, and the results are shown in FIGS. 3A to 3C.

도 3a는 비교예 1에 따라 얻어진 필터소재의 단면을 SEM으로 촬영한 것이고, 도 3b는 실시예 1에 따라 얻어진 필터소재, 그리고 도 3c는 실시예 4에 따라 얻어진 필터소재의 단면을 SEM으로 촬영한 것이다.3A is a SEM photograph of the cross section of the filter material obtained according to Comparative Example 1, FIG. 3B is a SEM photograph of the filter material obtained according to Example 1, and FIG. 3C is a SEM photograph of the filter material obtained according to Example 4. It is.

도 3a 및 도 3c에 나타낸 바와 같이, 본 발명에 따라 얻어진 필터소재는 필터소재 내부에 아크릴 섬유와 흡착 무기물 분말이 고르게 분포되어 있으며 기공을 형성하고 있음을 알 수 있다. 그러나, 도 3c에 따르면 큰 입자크기의 입상 활성탄이 섬유와 섬유에 의해 형성되는 부직포 섬유 구조내에 위치함을 알 수 있다.As shown in Figures 3a and 3c, the filter material obtained according to the present invention can be seen that the acrylic fiber and the adsorbent inorganic powder are evenly distributed and form pores in the filter material. However, according to Figure 3c it can be seen that the granular activated carbon of large particle size is located in the nonwoven fabric structure formed by the fibers and fibers.

실험예 2Experimental Example 2

상기 실시예 1 내지 5 및 비교예 1 내지 2에서 얻은 대기정화용 필터소재의 평균기공크기를 측정하기 위해 "Bubble Point Tester"를 사용하였으며, 실험에 사용된 필터소재의 크기는 직경 28mm, 두께 5mm이었다. "Bubble Point Tester" was used to measure the average pore size of the air purification filter material obtained in Examples 1 to 5 and Comparative Examples 1 and 2, the size of the filter material used in the experiment was 28mm in diameter, 5mm in thickness. .

"Bubble Point Tester"에 의한 평균기공크기 측정결과는 다음 표 2와 같다. The average pore size measurement result by "Bubble Point Tester" is shown in Table 2 below.

실 시 예Example 비교예Comparative example 1One 22 33 44 55 1One 22 평균기공크기(㎛)Average pore size (㎛) 55 44 55 55 44 66 1010

실험예 3Experimental Example 3

상기 실시예 1 내지 5 및 비교예 1 내지 2에서 얻어진 흡착필터 소재들의 여과시험을 다음과 같은 방법으로 수행하였으며, 실험에 사용된 여과시험기의 개략도를 도 4에 나타내었다. Filtration test of the adsorption filter materials obtained in Examples 1 to 5 and Comparative Examples 1 to 2 was performed by the following method, and a schematic view of the filtration tester used in the experiment is shown in FIG. 4.

공조용 필터소재의 여과성능 시험을 위해 필터소재의 성능시험기에 대한 KS 규격인 KS B 6141 중에서 형식 3의 규격에 준하여 시험기를 제작하였다.In order to test the filtration performance of the air conditioning filter material, a tester was manufactured according to the type 3 standard of KS B 6141 which is the KS standard for the performance tester of the filter material.

분진공급기(1)로부터 일정량의 미세분진과 공기를 공급하면 공급된 미세분진과 공기가 여과시험기의 시험용 필터유닛(2)을 통과하여 송풍기(6)로 향하는 과정에서 여과시험기의 출력부에 설치된 절대포집필터(4)를 분리하여 절대포집필터에 침착된 미세분진의 무게를 계산하여 시험용 필터소재의 여과효율을 측정하였으며, 그 결과를 다음 표 2에 나타내었다. When a certain amount of fine dust and air are supplied from the dust feeder 1, the supplied fine dust and air pass through the test filter unit 2 of the filtration tester to the blower 6, and are installed in the output of the filtration tester. The filter 4 was separated to calculate the weight of the fine dust deposited on the absolute filter and the filtration efficiency of the test filter material was measured. The results are shown in Table 2 below.

필터소재의 여과시험을 수행할 때, 필터소재의 여과효율은 공기에 미세 카본블랙 분진을 0.5g/min씩 첨가하였으며, 초기의 공기유속을 3.93m/sec로 조정하였다. 여과시험에 사용된 필터소재의 단면적을 1,000㎠로 조절하여 여과시험을 수행하였다. 분진 첨가량이 총 32g이 되면 여과시험을 중지하고, 그때까지의 여과효율을 측정하였다. 여과시험은 2시간 동안 수행하였으며, 통과분진 포집용 절대포집필터를 분리하여 절대포집필터가 포집한 분진의 무게와 공급한 분진의 무게를 측정하여 여과효율을 측정하였으며, 여과효율은 다음 식 1에 의해 계산하였다. In performing the filtration test of the filter material, the filtration efficiency of the filter material was added 0.5g / min of fine carbon black dust to the air, the initial air flow rate was adjusted to 3.93m / sec. The filtration test was performed by adjusting the cross-sectional area of the filter material used for the filtration test to 1,000 cm 2. When the total amount of dust added was 32 g, the filtration test was stopped and the filtration efficiency up to that time was measured. The filtration test was carried out for 2 hours, and the filtration efficiency was measured by measuring the weight of the collected dust and the weight of the collected dust by separating the absolute collecting filter for passing dust collection. Calculated by

(식 1)(Equation 1)

상기 식에서, W1은 공급한 전체 미세분진의 무게(g), W2는 포집용 절대포집 필터에 포집된 미세분진의 무게(g)이다.In the above formula, W 1 is the weight (g) of the total fine dust supplied, W 2 is the weight (g) of the fine dust collected in the absolute collection filter for collecting.

실 시 예Example 비교예Comparative example 1One 22 33 44 55 1One 22 여과효율(%)Filtration efficiency (%) 99.899.8 99.899.8 99.899.8 99.899.8 99.999.9 99.899.8 99.999.9

상기 표 2의 대기정화용 필터소재의 여과효율 실험결과로부터, 필터소재의 평균기공크기가 4∼6㎛인 본 발명의 필터소재들의 여과효율은 모두 99.8% 이상으로, 우수한 여과효율을 나타냄을 알 수 있다. From the filtration efficiency test results of the filter material for atmospheric purification of Table 2, the filtration efficiency of the filter materials of the present invention having an average pore size of 4 ~ 6㎛ of the filter material are all 99.8% or more, showing excellent filtration efficiency have.

비교예 1, 즉 아크릴 섬유만으로 제작된 필터소재와 정전기 부직포인 비교예 2의 여과효율 역시 99.8% 이상의 우수한 여과효율을 나타내었다. The filtration efficiency of Comparative Example 1, that is, the filter material made of only acrylic fibers and Comparative Example 2, which is an electrostatic nonwoven fabric, also showed excellent filtration efficiency of 99.8% or more.

따라서, 실시예 필터소재들과 비교예 필터소재들의 미세분진 제거능력은 거의 유사하게 나타남을 알 수 있다. Therefore, it can be seen that the fine dust removal ability of the filter material and the comparative filter material shown in Example is almost similar.

실험예 4Experimental Example 4

상기 실시예 1 내지 5 및 비교예 1 내지 2에 따라 얻어진 필터소재의 흡착능력을 실험하기 위하여 KS M 1802의 메틸렌 블루 흡착실험법을 적용하였으며, 적용된 흡착 실험법은 다음과 같다.In order to test the adsorption capacity of the filter material obtained in Examples 1 to 5 and Comparative Examples 1 to 2, the methylene blue adsorption test method of KS M 1802 was applied, and the adsorption test method applied was as follows.

흡착실험은 KS M 1802에 의해 UV 흡수량을 고려하여 온도희석방법을 변형하여 수행하였다. 인산이수소칼륨 9.08g을 증류수에 녹여 1,000㎖가 되도록 한 다음, 인산이수소이나트륨(12수화물) 23.88g을 물에 녹여 역시 1,000㎖가 되게 하였다. 앞에서 제조한 인산이수소칼륨 용액과 인산이수소이나트륨 용액을 부피비 4:6의 비율로 혼합하여 인산염 완충액을 만들었다. 1.5g의 메틸렌 블루를 1,000㎖의 인산염 완충액에 넣어 완전히 용해한 후, 100㎖를 채취하여 200㎖ 플라스크에 넣고 흡착능력을 시험할 필터소재 0.4g을 넣었다. 125rpm으로 쉐이킹(shaking)하여 매시간 0.1㎖를 채취하여 증류수 9.9㎖를 넣어 희석시켰다. 인산염 완충액을 대조액으로 하여 665nm에서 UV측정을 하였다. 검량선을 작성하여 필터소재의 흡착농도를 측정하였다.Adsorption experiment was performed by modifying the temperature dilution method in consideration of the UV absorption amount by KS M 1802. 9.08 g of potassium dihydrogen phosphate was dissolved in distilled water to make 1,000 ml, and then 23.88 g of disodium dihydrogen phosphate (12 hydrate) was dissolved in water to make 1,000 ml. A phosphate buffer was prepared by mixing the potassium dihydrogen phosphate solution and the disodium dihydrogen phosphate solution in a ratio of 4: 6 by volume. 1.5 g of methylene blue was completely dissolved in 1,000 ml of phosphate buffer, and 100 ml of the sample was collected and placed in a 200 ml flask. 0.4 g of a filter material to be tested for adsorption capacity was added thereto. Shaking at 125 rpm, 0.1 ml of the sample was taken every hour, and 9.9 ml of distilled water was added and diluted. UV measurements were performed at 665 nm using phosphate buffer as a control. A calibration curve was prepared to measure the adsorption concentration of the filter material.

평형 흡착실험은 메틸렌 블루의 농도를 달리하여 1,000㎖의 증류수에 넣어 완전히 용해시킨 후, 100㎖를 채취하여 200㎖ 플라스크에 넣고, 흡착능력을 시험할 필터소재 0.1g을 넣어 200㎖를 섞어 희석시켜 UV를 측정하였다.In the equilibrium adsorption experiment, the concentration of methylene blue was changed to 1,000 ml of distilled water to completely dissolve it. Then, 100 ml was collected and put into a 200 ml flask. Then, 0.1 g of the filter material to be tested for adsorption capacity was mixed and diluted with 200 ml. UV was measured.

실시예와 비교예에 따른 필터소재의 메틸렌 블루 흡착시험 결과를 도 5에 도시하였다. Methylene blue adsorption test results of the filter material according to the Example and Comparative Example are shown in FIG.

도 5의 대기정화용 필터소재의 흡착능력 시험결과에서 보면, 본 발명에 따른 필터소재의 흡착능력이 매우 우수하게 나타남을 알 수 있다. From the results of the adsorption capacity test of the filter material for atmospheric purification of Figure 5, it can be seen that the adsorption capacity of the filter material according to the present invention is very excellent.

메틸렌 블루를 이용한 흡착실험에서는 우선 농도를 달리한 메틸렌 블루 수용액의 UV 흡수량을 측정한 후, 이것을 이용하여 검량선을 그린 다음, 흡착실험을 수행한 후 줄어든 피크의 양이 흡착량이므로 검량곡선에 맞춰 흡착량을 추정할 수 있다. In the adsorption experiment using methylene blue, first measure the UV absorption amount of the methylene blue aqueous solution with different concentrations, draw a calibration curve using this, and then perform the adsorption experiment. Quantity can be estimated.

흡착실험 결과 그래프는 메틸렌 블루의 농도변화를 나타내는 x축과 흡착된 메틸렌 블루의 농도변화를 y축에 나타내며, x축의 변화가 거의 없는 부분에서 흡착된 메틸렌 블루의 농도가 필터소재의 흡착량을 나타낸다. 대기정화용 필터소재의 흡착시험의 농도가 필터소재의 흡착량을 나타낸다. As a result of adsorption experiment, the graph shows the concentration of methylene blue adsorbed on the x-axis and the concentration of methylene blue adsorbed on the y-axis, and the concentration of methylene blue adsorbed on the filter material in the area where there is little change in the x-axis. . The concentration of the adsorption test of the filter material for atmospheric purification indicates the adsorption amount of the filter material.

대기정화용 필터소재의 흡착시험 결과인 도 5에서 보면, 본 발명의 대기정화용 필터소재들의 흡착능력이 매우 우수함을 알 수 있다. As shown in FIG. 5, the adsorption test result of the air purification filter material, it can be seen that the adsorption capacity of the air purification filter material of the present invention is very excellent.

구체적으로, 실시예 4의 경우 560mg/g의 흡착량을 나타내며, 실시예 1은 535mg/g, 실시예 5는 505mg/g, 실시예 2는 420mg/g, 실시예 3는 378mg/g의 우수한 흡착능력을 각각 나타내고 있음을 알 수 있다. 그러나, 흡착 무기분말이 첨가되지 않은 비교예 1의 경우 흡착량이 34mg/g으로 거의 흡착능력이 없었으며, 비교예 2의 경우 역시 흡착량이 21mg/g으로 매우 낮은 흡착기능을 나타내었다. Specifically, in the case of Example 4 shows an adsorption amount of 560 mg / g, Example 1 is 535 mg / g, Example 5 is 505 mg / g, Example 2 is 420 mg / g, Example 3 is excellent of 378 mg / g It can be seen that the adsorption capacity is shown respectively. However, in the case of Comparative Example 1, in which the adsorption inorganic powder was not added, the adsorption amount was almost as low as 34 mg / g, and in Comparative Example 2, the adsorption amount was also very low as 21 mg / g.

이상과 같이 본 발명에서 제조한 흡착 무기물이 첨가된 대기공조용 흡착 필터소재는 아크릴 섬유를 주원료로 사용하고, 흡착특성이 우수한 무기물 흡착분말을 아크릴 섬유 표면과 아크릴 섬유 사이에 침착시킴으로써 아크릴 섬유에 의한 우수한 미세 분진 제거능력과 함께 흡착 무기물에 의한 유해가스 및 악취제거가 용이한 흡착특성을 나타내었다. 아울러, 연속 제조공정이 가능한 습식 부직포 제조공정을 채택함으로써 대량생산이 용이하고, 그에 따른 경제적인 면에서도 탁월한 효과를 발휘할 수 있으며, 얻어진 대기정화용 흡착 필터소재를 각종 오피스 빌딩, 지하철, 병원, 공항, 항만, 대형 지하아케이드 등의 공조시스템용 필터소재로 사용할 경우, 우수한 여과특성과 함께 흡착특성에 의한 유해가스 및 악취제거 능력이 탁월함으로써 실내 공기의 질을 향상시킬 수 있고, 더 나아가 국민의 삶의 질을 향상시킬 수 있다.As described above, the air-conditioning adsorption filter material to which the adsorption inorganic material is added according to the present invention uses acrylic fiber as a main raw material, and an inorganic adsorption powder having excellent adsorption characteristics is deposited between the surface of the acrylic fiber and the acrylic fiber to form an acrylic fiber. In addition to excellent fine dust removal ability, adsorption characteristics that are easy to remove harmful gases and odors by the adsorbed inorganic materials were shown. In addition, by adopting a wet nonwoven fabric manufacturing process capable of a continuous manufacturing process, mass production is easy, and it is possible to exert an excellent effect in terms of economics, and the obtained air purification adsorption filter material is used for various office buildings, subways, hospitals, airports, When used as a filter material for air conditioning systems such as ports and large underground arcades, the quality of indoor air can be improved by providing excellent filtration characteristics and excellent ability to remove harmful gases and odors by adsorption characteristics. Can improve the quality.

도 1은 미립의 흡착 무기물 분말을 사용한 흡착 필터소재의 제조공정 순서도이고, 1 is a flow chart of the manufacturing process of the adsorption filter material using particulate adsorption inorganic powder,

도 2는 입상의 흡착 무기물 분말을 사용한 흡착 필터소재의 제조공정 순서도이며,Figure 2 is a flow chart of the manufacturing process of the adsorption filter material using the granular adsorption inorganic powder,

도 3은 흡착 필터소재의 단면을 SEM으로 촬영한 사진(×400)으로서, 3 is a SEM photograph of a cross section of an adsorption filter material (× 400).

도 3a는 비교예 1에 의해 얻어진 흡착 필터 소재의 단면을 SEM으로 촬영한 사진(×400)이고, 3A is a SEM photograph of a cross section of the adsorption filter material obtained in Comparative Example 1 (x400),

도 3b는 실시예 1에 의해 얻어진 흡착 필터 소재의 단면을 SEM으로 촬영한 사진(×400)이며,3B is a SEM photograph of a cross section of the adsorption filter material obtained in Example 1 (x400),

도 3c는 실시예 4에 의해 얻어진 흡착 필터 소재의 단면을 SEM으로 촬영한 사진(×400)이고,FIG. 3C is a SEM photograph of a cross section of the adsorption filter material obtained in Example 4, and FIG.

도 4는 대기정화용 필터소재의 여과특성을 측정하기 위한 여과시험기 개략도이고,4 is a schematic view of a filtration tester for measuring the filtration characteristics of the filter material for atmospheric purification,

도 5는 대기정화용 필터소재의 메틸렌 블루 흡착실험 결과이다. 5 is a methylene blue adsorption test results of the filter material for atmospheric purification.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1 - 분진공급기 2 - 필터 유닛1-Dust Feeder 2-Filter Unit

3 - 디지털 마노메타(manometer) 4 - 절대포집 필터(absolute filter)3-Digital Manometer 4-Absolute Filter

5 - 풍속계 6 - 송풍기5-Anemometer 6-Blower

Claims (7)

(정정)입경이 0.05~1㎛인 흡착 무기물 분말 5∼40중량%, 단섬유 형태의 폐아크릴섬유 15∼40중량% 및 물 20∼80중량%로 혼합하여 펄퍼에서 아크릴 섬유를 해리하고 슬러리를 혼합하는 공정;(Correction) Mixing 5-40% by weight of the adsorbed inorganic powder with a particle diameter of 0.05-1 μm, 15-40% by weight of waste acrylic fiber in the form of short fibers , and 20-80% by weight of water, dissociated the acrylic fiber from the pulp and slurry Mixing process; 상기 슬러리를 필터소재로 성형하는 공정;Molding the slurry into a filter material; 성형물을 압축기에서 탈수하는 공정; 및 Dewatering the moldings in a compressor; And 건조기에서 건조하는 공정을 포함하는 대기정화용 흡착 필터소재의 제조방법.A method for producing an adsorption filter material for atmospheric purification, which comprises a step of drying in a dryer. (정정)단섬유 형태의 폐아크릴섬유 15∼40중량% 및 물 20∼80중량%로 혼합하여 펄퍼에서 아크릴 섬유를 해리하고 슬러리를 혼합하는 공정;(Correction) mixing 15 to 40% by weight of waste acrylic fibers in the form of short fibers and 20 to 80% by weight of water to dissociate the acrylic fibers from the pulp and mix the slurry; 상기 슬러리와 입경이 0.1~1mm인 입상의 흡착 무기물 입자 15∼40중량%를 동시에 성형기에 투입하면서 필터소재로 성형하는 공정;Molding the slurry into a filter material while simultaneously introducing 15 to 40% by weight of the granular adsorption inorganic particles having a particle diameter of 0.1 to 1 mm into a molding machine; 압축기에서 탈수하는 공정; 및 Dehydration in a compressor; And 건조기에서 건조하는 공정을 포함하는 대기정화용 흡착 필터소재의 제조방법.A method for producing an adsorption filter material for atmospheric purification, which comprises a step of drying in a dryer. (삭제)(delete) (삭제)(delete) (삭제)(delete) 제 1 항 또는 제 2 항에 있어서, 건조된 필터소재 표면에 정전기를 띄는 정전기 부직포를 열접착시키는 단계를 더 포함하는 것을 특징으로 하는 대기정화용 흡착필터 소재의 제조방법.The method of claim 1 or 2, further comprising thermally bonding an electrostatic nonwoven fabric having static electricity to the dried filter material surface. (삭제)(delete)
KR10-2002-0036543A 2002-06-28 2002-06-28 Method of Absorption Filter Element for Air-Cleaning KR100481054B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0036543A KR100481054B1 (en) 2002-06-28 2002-06-28 Method of Absorption Filter Element for Air-Cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0036543A KR100481054B1 (en) 2002-06-28 2002-06-28 Method of Absorption Filter Element for Air-Cleaning

Publications (2)

Publication Number Publication Date
KR20040001372A KR20040001372A (en) 2004-01-07
KR100481054B1 true KR100481054B1 (en) 2005-04-07

Family

ID=37313132

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0036543A KR100481054B1 (en) 2002-06-28 2002-06-28 Method of Absorption Filter Element for Air-Cleaning

Country Status (1)

Country Link
KR (1) KR100481054B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2429043C1 (en) * 2010-03-19 2011-09-20 Осиненко Евгений Петрович Filter device (versions)
KR102205738B1 (en) * 2019-06-19 2021-01-20 (재)한국건설생활환경시험연구원 Method of Performance Evaluating for a Harmful Dust Filtering Net

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456142A (en) * 1987-08-24 1989-03-03 Japan Exlan Co Ltd Deodorizing sheet
US4904343A (en) * 1985-04-23 1990-02-27 American Cyanamid Company Non-woven activated carbon fabric
JPH04122402A (en) * 1990-09-10 1992-04-22 Osaka Gas Co Ltd Molded body and its production
KR20000000187A (en) * 1999-09-29 2000-01-15 이충중 Deodorant filter and its manufacturing method
JP2000117021A (en) * 1998-10-09 2000-04-25 Mitsubishi Paper Mills Ltd Air cleaning filter
US6200368B1 (en) * 1998-06-10 2001-03-13 Valeo Combined filter device for filtering out particles and gases
KR100311832B1 (en) * 1999-08-18 2001-11-03 장재석 Synthetic Fibre with the Properties of Antibiotics, Deorderising and Far-infrared Ray Emmision
KR20010095349A (en) * 2000-12-26 2001-11-07 김기진 Activated carbon filter preform for water purifying and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904343A (en) * 1985-04-23 1990-02-27 American Cyanamid Company Non-woven activated carbon fabric
JPS6456142A (en) * 1987-08-24 1989-03-03 Japan Exlan Co Ltd Deodorizing sheet
JPH04122402A (en) * 1990-09-10 1992-04-22 Osaka Gas Co Ltd Molded body and its production
US6200368B1 (en) * 1998-06-10 2001-03-13 Valeo Combined filter device for filtering out particles and gases
JP2000117021A (en) * 1998-10-09 2000-04-25 Mitsubishi Paper Mills Ltd Air cleaning filter
KR100311832B1 (en) * 1999-08-18 2001-11-03 장재석 Synthetic Fibre with the Properties of Antibiotics, Deorderising and Far-infrared Ray Emmision
KR20000000187A (en) * 1999-09-29 2000-01-15 이충중 Deodorant filter and its manufacturing method
KR20010095349A (en) * 2000-12-26 2001-11-07 김기진 Activated carbon filter preform for water purifying and its manufacturing method

Also Published As

Publication number Publication date
KR20040001372A (en) 2004-01-07

Similar Documents

Publication Publication Date Title
EP1309398B1 (en) Use of expanded perlite products with controlled particle size distribution as a flatting agent in paints
JP2010284649A (en) Nanofiber filter medium
KR20100075456A (en) Filter element and filter unit
KR101823915B1 (en) Method for preparing air purifying filter impregnated with cellulose and/or powdered activated-carbon
ATE468901T1 (en) CLEANABLE HIGHLY EFFICIENT FILTER MATERIAL STRUCTURE AND USE THEREOF
AU2001261621A1 (en) Expanded perlite products with controlled particle size distribution
TW200948460A (en) Filtration media for the removal of basic molecular contaminants for use in a clean environment
CA2401513A1 (en) Combined vapour and particulate filter
JPH0866341A (en) Odor-absorbing filter for vacuum cleaner
KR100481054B1 (en) Method of Absorption Filter Element for Air-Cleaning
CN105831850A (en) Anti-haze anion bamboo charcoal spinning face mask
CN104524864B (en) The preparation method of the material of a kind of adsorption cleaning PM2.5
CN109224627B (en) Atmospheric particulate filtering material
KR101603273B1 (en) Mask using loess for cleaning air
JPS61136436A (en) Malodor absorbing material and its preparation
CN205326755U (en) Automotive air -conditioning filter
JP2009227511A (en) Inorganic hydrothermally solidified body, method of manufacturing the same and material using hydrothermally solidified body
Hajar et al. Filter aids influence on pressure drop across a filtration system
CN106183726B (en) A kind of Vehicular air purifying device
JP2008228762A (en) Sound absorptive dust removing filter and cleaner using the same
JP2000167323A (en) Adsorbable sheet and air purifying filter
US20090001021A1 (en) Air filtration media comprising non-metal-doped precipitated silica and/or silicon-based gel materials
JPH08168619A (en) Filter material
JPH03207414A (en) Calcium phosphate-based filter
Hajar et al. The Effects of Newly Formulated Filter Aids Material Loading on Pressure Drop and Particle Penetration

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090310

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee