KR100475254B1 - Novel structural fibrous carbon - Google Patents

Novel structural fibrous carbon Download PDF

Info

Publication number
KR100475254B1
KR100475254B1 KR10-2002-0051113A KR20020051113A KR100475254B1 KR 100475254 B1 KR100475254 B1 KR 100475254B1 KR 20020051113 A KR20020051113 A KR 20020051113A KR 100475254 B1 KR100475254 B1 KR 100475254B1
Authority
KR
South Korea
Prior art keywords
carbon
surface area
specific surface
fibrous
fibrous carbon
Prior art date
Application number
KR10-2002-0051113A
Other languages
Korean (ko)
Other versions
KR20040019537A (en
Inventor
김동철
Original Assignee
주식회사 동운인터내셔널
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동운인터내셔널 filed Critical 주식회사 동운인터내셔널
Priority to KR10-2002-0051113A priority Critical patent/KR100475254B1/en
Publication of KR20040019537A publication Critical patent/KR20040019537A/en
Application granted granted Critical
Publication of KR100475254B1 publication Critical patent/KR100475254B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

본 발명은 sp2 원자구조의 탄소원자들이 2차원적으로 견고하게 결합되어 형성된 탄소 육각망면들이 3.345 ~ 3.8Å의 면간 거리로 규칙적인 배열에 의해 전체적으로 3.5 ~ 500 ㎚의 직경과 직경의 10 배 이상의 길이로 섬유상 형상을 나타내고, 적어도 2 개 이상의 상기 탄소 육각망면들로 구성된 단위구조가 인접 단위구조에 대하여 적어도 10 ㎚ 이상 벌어져 있고, 그로 인해 비표면적이 200 내지 1,000 ㎡/g인 것을 특징으로 하는 섬유상 탄소를 제공하는 것이다. 본 발명에 따른 섬유상 탄소는 이제껏 보고된 바가 없는 전혀 새로운 구조의 탄소재료로서, 종래의 탄소나노튜브와 비교하여 비표면적이 2 ~ 6 배 정도 넓고, 그로 인해 높은 이중층 캐패시턴스를 나타낸다. 따라서, 높은 비표면적과 도전성의 탄소재료를 필요로하는 다양한 응용분야에 사용될 수 있으며, 특히, 전기이중층 캐패시터용 전극재로서 유용하게 사용될 수 있다.According to the present invention, carbon hexagonal meshes formed by spherically bonding two-dimensional carbon atoms of the sp 2 atomic structure have a diameter of 3.5 to 500 nm and a ten times greater than the diameter by a regular arrangement with an interplanar distance of 3.345 to 3.8 Å. A fibrous shape having a length, and having a unit structure composed of at least two carbon hexagonal network surfaces having at least 10 nm apart from adjacent unit structures, thereby having a specific surface area of 200 to 1,000 m 2 / g. To provide carbon. The fibrous carbon according to the present invention is a carbon material having a completely new structure, which has not been reported so far, and has a specific surface area of about 2 to 6 times wider than that of conventional carbon nanotubes, thereby showing a high double layer capacitance. Therefore, it can be used in various applications requiring a high specific surface area and conductive carbon material, and can be particularly useful as an electrode material for electric double layer capacitors.

Description

신규 구조의 섬유상 탄소 {NOVEL STRUCTURAL FIBROUS CARBON} New structured fibrous carbon {NOVEL STRUCTURAL FIBROUS CARBON}

본 발명은 신규한 구조의 섬유상 탄소에 관한 것으로서, 더욱 상세하게는, sp2 원자구조의 탄소원자들이 2차원적으로 견고하게 결합되어 형성된 탄소 육각망면들이 3.345 ~ 3.8Å의 면간 거리로 규칙적인 배열에 의해 전체적으로 3.5 ~ 500 ㎚의 직경과 직경의 10 배 이상의 길이로 섬유상 형상을 나타내고, 적어도 2 개 이상의 상기 탄소 육각망면들로 구성된 단위구조가 인접 단위구조에 대하여 적어도 10 ㎚ 이상 벌어져 있고, 그로 인해 비표면적이 200 내지 1,000 ㎡/g인 것을 특징으로 하는 섬유상 탄소를 제공하는 것이다.The present invention relates to a novel structured fibrous carbon, and more particularly, carbon hexagonal meshes formed by spherically bonding two-dimensional carbon atoms of sp 2 atomic structure are regularly arranged at an interplanar distance of 3.345 to 3.8 Å. Exhibits a fibrous shape with a diameter of 3.5 to 500 nm and a length of at least 10 times the diameter, and a unit structure composed of at least two or more carbon hexagonal network planes is separated by at least 10 nm with respect to an adjacent unit structure. It is to provide a fibrous carbon, characterized in that the specific surface area is 200 to 1,000 m 2 / g.

최근, 플로렌(fullerene), 탄소나노튜브(carbon nanotube), 탄소나노섬유(carbon nanofiber) 등으로 대표되는 나노크기의 탄소소재는 많은 관심을 불러일으키고 있다. 그 중, 탄소나노섬유는 sp2 원자구조의 탄소원자들이 견고하게 결합되어있는 탄소 육각망면들이 섬유축에 대해 일정한 방향으로 직경 2 ~ 100 ㎚와 길이 5 ~ 100 ㎛로서 연속적으로 배열되어있는 동소체 물질이다.Recently, nano-sized carbon materials represented by fullerene, carbon nanotubes, carbon nanofibers, etc. have attracted much attention. Among them, carbon nanofibers are allotropic materials in which carbon hexagonal meshes, in which carbon atoms of sp 2 atomic structure are firmly bonded, are continuously arranged with a diameter of 2 to 100 nm and a length of 5 to 100 μm in a predetermined direction with respect to the fiber axis. to be.

이러한 탄소나노섬유는 일반적으로 탄소를 함유하는 기체상의 화합물을 고온에서 분해시켜 금속촉매상에서 섬유형태로 성장시켜 제조될 수 있으며, 반응조건에 따라 다양한 형태(straight type, spiral type, helical type, branched type)의 탄소나노섬유가 얻어진다. Such carbon nanofibers can be prepared by generally decomposing a gaseous compound containing carbon at a high temperature and growing it in a fiber form on a metal catalyst. ) Carbon nanofibers are obtained.

탄소나노섬유는 미시적 관점에서 크게 4 종류의 구조로 구별되기도 하는데, 탄소 육각망면들이 섬유축과 일정한 각도로 배열되어있는 헤링본 구조(herringbone structure), 탄소 육각망면들이 섬유축과 수직을 이루며 배열되어있는 평판 구조(platelet structure), 탄소 육각망면들이 섬유축에 대해 나선상으로 감겨져 있는 나선 구조(spiral structure), 탄소 육각망면들이 섬유축과 수직을 이루며 배열되어있는 리본형 구조(ribbon-like)가 있다. 이들 미시적 구조는 촉매의 종류, 조성 및 제조조건, 합성온도, 반응 가스의 종류 및 량 압력 등 다양한 요인들에 의해 결정된다.Carbon nanofibers can be classified into four types of structures from the microscopic point of view. Herringbone structure in which carbon hexagonal meshes are arranged at an angle with the fiber axis, and carbon hexagonal network surfaces are arranged perpendicular to the fiber axis. There is a platelet structure, a spiral structure in which the carbon hexagonal meshes are spirally wound about the fiber axis, and a ribbon-like arrangement in which the carbon hexagonal network surfaces are arranged perpendicular to the fiber axis. These microstructures are determined by various factors such as catalyst type, composition and preparation conditions, synthesis temperature, reaction gas type and amount pressure.

탄소나노섬유를 구성하는 각각의 탄소 육각망면은 인접한 탄소 육각망면과 대략 3.345 ~ 3.8 Å의 거리를 두고 배열되며, 이러한 구조에 기반한 탄소나노섬유의 전체 비표면적은 일반적으로 20 ~ 200 ㎡/g의 범위에 있다. 따라서, 탄소나노섬유는 높은 전도성, 비표면적, 강도 등을 이용하는 다양한 분야에 사용되고 있고, 그것의 응용 분야 역시 점차 넓어지고 있다. 그러한, 예들 중의 하나가 전기이중층 캐패시터이다.Each carbon hexagonal network constituting the carbon nanofibers is arranged at a distance of approximately 3.345 to 3.8 과 from the adjacent carbon hexagonal network. The total specific surface area of the carbon nanofibers based on such a structure is generally 20 to 200 m 2 / g. Is in range. Therefore, carbon nanofibers are used in various fields using high conductivity, specific surface area, strength, and the like, and their application fields are also gradually being widened. One such example is an electric double layer capacitor.

전기이중층 캐패시터는, 전극과 전해질의 계면에 형성되는 전기이중층에 전해질 상에는 이온들을, 전극 상에는 전자를 충전시켜 전하를 저장하였다가 필요시 사용하는 장치이다. 전기이중층 캐패시터는 2차 전지에 비해 충방전 속도가 빠르므로, 고전류밀도 방전조건에서 유리하며, 고사이클 특성의 장점을 가지고 있다. An electric double layer capacitor is a device for storing electric charge by charging ions on an electrolyte and electrons on an electrode in an electric double layer formed at an interface between an electrode and an electrolyte. Since the electric double layer capacitor has a faster charge / discharge rate than the secondary battery, it is advantageous in high current density discharge conditions and has the advantage of high cycle characteristics.

전기이중층 캐패시터는 이중층 캐패시턴스(double-layer capacitance)와 등가직렬저항(equivalent series resistance, ESR)이 직렬로 연결된 등가 회로(equivalent circuit)로 구성된다. 이때, 이중층 캐패시턴스는 전극의 표면적에 비례하며, ESR은 전극의 저항, 전해질 용액의 저항 및 전극 기공 내 전해질의 저항의 합이다. 이중층 캐패시터에 저장할 수 있는 전하량은 충방전 속도가 증가할수록 감소하는데, 이는 ESR의 크기에 의해 결정된다. 즉, ESR이 클수록 전하 저장 용량은 감소하고 이러한 현상은 충방전 속도가 증가할수록 심해진다. An electric double layer capacitor is composed of an equivalent circuit in which double-layer capacitance and equivalent series resistance (ESR) are connected in series. In this case, the double layer capacitance is proportional to the surface area of the electrode, and ESR is the sum of the resistance of the electrode, the resistance of the electrolyte solution, and the resistance of the electrolyte in the electrode pores. The amount of charge that can be stored in the double layer capacitor decreases as the charge and discharge rate increases, which is determined by the size of the ESR. That is, the larger the ESR, the lower the charge storage capacity, and this phenomenon becomes worse as the charge / discharge rate increases.

따라서, 전기이중층 캐패시터의 전극재료는 다음과 같은 조건을 만족하여야 한다: 1) 비표면적이 커서 이중층 캐패시턴스가 커야 하고, 2) 전극재료의 전기 전도도가 높아 전극의 저항이 작아야 하며, 3) 전극의 기공 내에서 전해질의 저항이 작아야 한다.Therefore, the electrode material of the electric double layer capacitor must satisfy the following conditions: 1) the large surface area of the double layer capacitance is large due to the large specific surface area, 2) the resistance of the electrode must be small due to the high electrical conductivity of the electrode material, and 3) the electrode The resistance of the electrolyte in the pores should be small.

지금까지 전기이중층 캐패시터의 전극재료로는 분말 형태의 활성탄, 활성탄소섬유 등이 사용되고 있다. 그러나, 이들 재료는 비표면적에 비해 발현되는 캐패시턴스가 낮고, 높은 비표면적을 발현하는 경우에는 저밀도, 고저항 등이 발생하여 전극의 밀도가 낮아지며, 캐패시턴스 발현시 IR 저항이 높아지는 문제점 등을 가지고 있다. Until now, powdered activated carbon, activated carbon fiber, and the like have been used as electrode materials for electric double layer capacitors. However, these materials have a problem of having low capacitance expressed compared to specific surface area, low density, high resistance, etc. when the high specific surface area is expressed, resulting in low electrode density, and high IR resistance during capacitance expression.

한편, 전기전도성, 강도 등이 우수한 탄소나노섬유는 이들 활성탄, 활성탄소섬유 등의 대체 재료로서 고려되고 있다. 그러나, 종래의 탄소나노섬유는 앞서 설명한 바와 같이, 비표면적이 20 ~ 200 ㎡/g 으로서 작으므로, 유기계의 2극 테스트의 경우에 이중층 캐패시턴스가 2 ~ 8 F/g 으로 작다. 따라서, 높은 비표면적과 도전성을 가지며 그에 따라 캐패시턴스가 높은 탄소재료에 대한 요구가 더욱 높아지고 있다.On the other hand, carbon nanofibers having excellent electrical conductivity, strength and the like are considered as alternative materials such as activated carbon and activated carbon fibers. However, since the conventional carbon nanofibers have a small specific surface area of 20 to 200 m 2 / g as described above, the double layer capacitance is small to 2 to 8 F / g in the case of the organic bipolar test. Therefore, there is a higher demand for a carbon material having a high specific surface area and conductivity, and thus high capacitance.

또한, 전기이중층 캐패시터에 한정되지 않고, 높은 비표면적과 도전성의 탄소재료를 필요로 하는 다양한 분야가 존재한다. 그러한 대표적인 예로서, 2차 전지용 전극, 촉매 담체, 수소 저장매체, 전자파 차폐제, 정전기 방지용 도전성 코팅제, 흡착제, 필터 등을 들 수 있다. In addition, not only an electric double layer capacitor, but also various fields that require a high specific surface area and a conductive carbon material exist. Representative examples thereof include an electrode for a secondary battery, a catalyst carrier, a hydrogen storage medium, an electromagnetic wave shielding agent, an antistatic conductive coating agent, an adsorbent, a filter, and the like.

따라서, 본 발명은 이러한 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 일거에 해결하는 것을 목적으로 한다.Therefore, an object of the present invention is to solve the problems of the prior art and the technical problems that have been requested from the past.

즉, 본 발명은 목적은 높은 도전성과 더불어 높은 비표면적을 필요로 하는 다양한 응용분야에 사용될 수 있는 신규한 구조의 탄소재료를 제공하는 것이다. 특히, 전기이중층 캐패시터용 전극재로서 사용될 수 있는 높은 비표면적과 높은 이중층 캐패시턴스를 가진 신규 구조의 섬유상 탄소를 제공하는 것이다.That is, an object of the present invention is to provide a carbon material having a novel structure that can be used in various applications requiring high conductivity and high specific surface area. In particular, it is to provide a novel structure of fibrous carbon having a high specific surface area and a high double layer capacitance which can be used as an electrode material for an electric double layer capacitor.

본 발명의 다른 목적은 이러한 탄소재료를 사용한 제품들을 제공하는 것이다.Another object of the present invention is to provide products using such carbon materials.

본 발명자들은 심도있는 연구와 수많은 실험을 반복한 끝에, 탄소 육각망면들의 단위구조가 일정한 거리 이상으로 벌어져있는 섬유상 탄소를 제조할 수 있었고, 이들의 특성을 확인함으로써, 본 발명에 이르게 되었다. 이는 이제껏 전혀 보고된 바가 없는 새로운 구조의 탄소재료이다.After repeated studies and numerous experiments, the present inventors have been able to produce fibrous carbon in which the unit structures of carbon hexagonal mesh planes are separated by a predetermined distance, and the present invention has been confirmed by confirming their characteristics. This is a new structure of carbon material that has not been reported at all.

본 발명에 따른 신규 구조의 섬유상 탄소는, 탄소 육각망면들의 단위구조가 적어도 10 ㎚ 이상 벌어져 있고, 200 내지 1000 ㎡/g의 비표면적을 가지는 것을 특징으로 한다.The fibrous carbon of the novel structure according to the present invention is characterized in that the unit structure of the carbon hexagonal network faces is at least 10 nm wide and has a specific surface area of 200 to 1000 m 2 / g.

상기 "탄소 육각망면"이란, sp2 원자구조의 탄소원자들이 2차원적으로 견고하게 결합되어있는 탄소구조 시트(graphene sheet)로서, 이들 탄소 육각망면의 규칙적인 배열에 의해 대략 3.5 ~ 500 ㎚의 직경과 직경의 10 배 이상의 길이를 가지며, 전체적으로 섬유상의 형상을 형성한다.The "carbon hexagonal network" is a carbon structure sheet (graphene sheet) in which carbon atoms of sp 2 atomic structure are firmly bonded in two dimensions. It has a diameter and a length of 10 times or more, and forms a fibrous shape as a whole.

탄소 육각망면의 "단위구조"란, 이들 탄소 육각망면들이 상호간에 3.345 ~ 3.8Å의 간격으로 규칙적으로 배열되어있는, 적어도 2 개 이상의 탄소 육각망면들로 이루어진 구조를 의미한다. 바람직하게는, 단위구조를 이루는 탄소 육각망면들의 수는 30 내지 120 이다.The term "unit structure" of the carbon hexagonal network means a structure consisting of at least two carbon hexagonal network surfaces, in which these carbon hexagonal network surfaces are regularly arranged at intervals of 3.345 to 3.8 mm3 from each other. Preferably, the number of carbon hexagonal network faces constituting the unit structure is 30 to 120.

이러한 단위구조들이 상호간에 적어도 10 ㎚ 이상으로 벌어짐으로 인해 섬유상 탄소의 비표면적이 증가하게 되는데, 단위구조를 이루는 탄소 육각망면들의 수와 벌어진 거리 등에 따라 비표면적은 달라진다. 단위구조의 벌어진 거리는 특별히 제한되는 것은 아니지만, 바람직하게는 10 내지 40 ㎚ 이다. 단위구조의 벌이진 거리가 10 ㎚ 이하인 경우에는 상기 설정된 범위의 비표면적을 가질 수 없으며, 반대로 벌어진 거리가 너무 클 경우에는 구조적 안정성이 떨어져서, 일반적으로 탄소재료에 요구되는 형상 또는 물성을 발휘하기 어렵게 된다. 경우에 따라서는, 높은 비표면적을 갖지만 상기와 같은 조건, 즉, 탄소 육각망면들의 단위구조가 일정한 거리만큼 벌어진다는 조건을 만족하지 못하는 탄소재료가 존재할 수도 있지만, 이는 탄소 육각망면들의 배열이 일부 붕괴 및/또는 재배열됨으로 인해 높은 비표면적을 가지게 되는 경우로서, 궁극적으로 섬유상 탄소에 요구되는 물성중의 하나인 높은 강도를 유지할 수 없다.As the unit structures are spread to each other at least 10 nm or more, the specific surface area of the fibrous carbon increases, and the specific surface area varies depending on the number and distance of the carbon hexagonal networks forming the unit structure. The stretched distance of the unit structure is not particularly limited, but is preferably 10 to 40 nm. If the gap distance of the unit structure is 10 nm or less, it may not have a specific surface area within the above set range. On the contrary, if the gap distance is too large, the structural stability is poor, and it is difficult to exert the shape or physical properties required for the carbon material. do. In some cases, there may be a carbon material which has a high specific surface area but does not satisfy the above conditions, i.e., the unit structure of the carbon hexagonal nets is extended by a certain distance, but this is because the arrangement of the carbon hexagonal nets is partially collapsed. And / or as a result of the rearrangement to have a high specific surface area, ultimately one of the properties required for fibrous carbon cannot maintain a high strength.

상기 탄소 육각망면들은 섬유축에 대해 직각으로 배열된 구조일 수도 있고, 또는 섬유축에 대해 일정한 각도로 배열된 구조일 수도 있다. 이러한 다양성은 본 발명의 섬유상 탄소를 제조할 때 사용된 재료의 특성에 따라 결정될 수 있고 또는 반응조건 등에 따라 달라질 수도 있다. The carbon hexagonal network surfaces may be a structure arranged at right angles to the fiber axis, or may be a structure arranged at an angle with respect to the fiber axis. This variety can be determined according to the properties of the materials used when producing the fibrous carbon of the present invention or may vary depending on the reaction conditions and the like.

본 발명에 따른 섬유상 탄소의 비표면적 200 ~ 1000 ㎡/g 은 종래의 탄소나노섬유의 비표면적과 비교하여 2 ~ 6 배 정도 큰 값이다. 따라서, 본 발명에 따른 섬유상 탄소를 예를 들어 전기이중층 캐패시터의 전극 소재로서 사용하는 경우에는 높은 비표면적으로 인해 높은 이중층 캐패시턴스를 발휘하게 된다.The specific surface area of the fibrous carbon of the present invention 200 ~ 1000 m 2 / g is a value of about 2 to 6 times larger than the specific surface area of conventional carbon nanofibers. Therefore, when the fibrous carbon according to the present invention is used as an electrode material of, for example, an electric double layer capacitor, a high double layer capacitance is exhibited due to the high specific surface area.

본 발명에 따른 신규 구조의 섬유상 탄소를 제조하는 방법은 다음과 같다.The method for producing fibrous carbon of the novel structure according to the present invention is as follows.

즉, 본 발명에 따른 신규 구조의 섬유상 탄소는, 탄소나노섬유와 수산화칼륨(KOH)의 중량비 1 : 1 내지 1 : 6 의 혼합물을 불활성 분위기하에서 400 내지 1,000℃ 로 0.5 내지 5 시간 동안 처리하는 과정을 포함하는 방법에 의해 제조된다.That is, the fibrous carbon of the novel structure according to the present invention is a process of treating a mixture of carbon nanofibers and potassium hydroxide (KOH) in a weight ratio of 1: 1 to 1: 6 at 400 to 1,000 ° C. under an inert atmosphere for 0.5 to 5 hours. It is prepared by a method comprising a.

원료로서의 상기 탄소나노섬유는, 일반적으로 공지된 다양한 방법에 의해 제조되는 직경 3.5 내지 500 ㎚의 탄소나노섬유라면 특별히 제한되는 것은 아니며, 앞서 설명한 바와 같이, 헤링본 구조(herringbone structure), 평판 구조(platelet structure), 나선 구조(spiral structure) 등의 미시적 구조를 가진 탄소나노섬유가 모두 사용될 수 있다. 그러나, 상기 탄소나노섬유는 이들로 한정되지 않으며, 아직 밝혀지지 않은 미시적 구조의 나노섬유, 복합체, 응집체, 혼합체 등을 모두 포함할 수 있다. The carbon nanofibers as raw materials are not particularly limited as long as they are carbon nanofibers having a diameter of 3.5 to 500 nm, which are generally manufactured by various known methods. As described above, a herringbone structure and a platelet are used. Carbon nanofibers having a microscopic structure such as a structure, a spiral structure, and the like can all be used. However, the carbon nanofibers are not limited thereto, and may include all of nanofibers, composites, aggregates, mixtures, and the like, of which the microstructure is not yet disclosed.

상기 수산화칼륨이 단위구조를 벌리는 반응기전은 명확히 알 수 없으나, 탄소나노섬유와의 혼합 중량비가 1 : 1 이하인 경우에는 단위구조의 벌어짐 현상이 거의 관찰되지 않으며, 반대로 혼합 중량비가 1 : 6 이상인 경우에는 수산화칼륨을 다량으로 사용하므로 경제적이지 못하다. 더욱 바람직한 혼합 중량비는 1 : 3 내지 1 : 5 이다. 경우에 따라서는, 상기 혼합물에는 활성 반응을 촉진하거나 반응률을 높이기 위한 기타 화합물 또는 혼합물이 첨가될 수도 있으며, 본 발명의 구성 및 효과를 손상시키지 않는 범위라면, 이들의 첨가는 본 발명의 범주에 포함되는 것으로 해석되어야 한다.Although the reactor before the potassium hydroxide spreads the unit structure is not clearly known, when the mixing weight ratio with carbon nanofibers is less than 1: 1, the phenomenon of unit structure is hardly observed, on the contrary, when the mixing weight ratio is 1: 6 or more. It is not economical because it uses a large amount of potassium hydroxide. More preferred mixing weight ratio is 1: 3 to 1: 5. In some cases, other compounds or mixtures may be added to the mixture to promote an active reaction or increase the reaction rate, and the addition thereof is included in the scope of the present invention so long as the composition and effects of the present invention are not impaired. Should be interpreted as

혼합물은 불활성 분위기에서 처리되며, 예를 들어, Ar, N2 등의 분위기가 사용될 수 있다. 액상에서의 반응이므로 압력이 특별히 영향을 미치지 않으며, 바람직하게는 상압에서 실행한다.The mixture is treated in an inert atmosphere, for example, an atmosphere such as Ar, N 2 or the like may be used. Since the reaction is in a liquid phase, the pressure does not particularly affect, and is preferably performed at normal pressure.

한편, 반응온도가 400℃ 이하이면, 소망하는 효과를 거두기가 어렵고, 1,000℃ 이상이면 고온 형성을 위한 장치가 필요하므로 경제적이지 못하다. 더욱 바람직한 반응온도는 650 내지 900℃이다. On the other hand, if the reaction temperature is 400 ° C. or less, it is difficult to achieve a desired effect, and if it is 1,000 ° C. or more, an apparatus for forming a high temperature is not economical. More preferable reaction temperature is 650-900 degreeC.

반응시간이 0.5 시간 이하일 때에는 소망하는 효과를 거두기가 어렵고 5 시간 이상일 때에는 경제적이지 못하므로 바람직하지 않다. 더욱 바람직한 반응시간은 0.8 내지 2 시간이다.When the reaction time is 0.5 hours or less, it is not preferable because it is difficult to achieve the desired effect, and when it is 5 hours or more, it is not economical. More preferred reaction time is 0.8 to 2 hours.

탄소 육각망면들의 단위구조를 벌리는 반응(이하, '활성화 반응'이라고 칭하기도 함)을 위한 이들 인자들은 상호 상관관계를 가진다. 예를 들어, 다량의 수산화칼륨을 사용하는 경우에는 반응시간을 짧게 할 수 있고, 또는 반응온도를 높게 하는 경우에는 반응시간을 상대적으로 짧게 할 수 있다. 따라서, 섬유상 탄소의 형상 및 물성을 유지하는 한편 단위구조의 벌어짐 거리가 적어도 10 ㎚ 이상이 되면서 더욱 높은 비표면적을 부여하기 위한 최적의 조건은, 이들 반응 인자들의 적절한 조합을 통해 이루어질 수 있다.These factors for the reaction of spreading the unit structure of carbon hexagonal networks (hereinafter, also referred to as 'activation reaction') have a mutual correlation. For example, when a large amount of potassium hydroxide is used, the reaction time can be shortened, or when the reaction temperature is high, the reaction time can be shortened relatively. Thus, optimum conditions for imparting a higher specific surface area while maintaining the shape and physical properties of the fibrous carbon while the bulging distance of the unit structure is at least 10 nm or more can be achieved through an appropriate combination of these reaction factors.

경우에 따라서는, 활성화 반응 후 잔존하는 수산화칼륨의 완전한 제거를 위하여 산처리 및/또는 증류수 세척 과정을 더 거칠 수 있다. In some cases, acid treatment and / or distilled water washing may be further performed to completely remove potassium hydroxide remaining after the activation reaction.

그러나, 본 발명은 상기 방법으로 제한됨이 없이, 탄소 육각망면들의 단위구조가 적어도 10 ㎚ 이상 벌어지고 그로 인해 200 내지 1,000 ㎡/g의 비표면적을 갖는 섬유상 탄소를 제조하는 방법이라면 어느 것이라도 무방하며, 이들 방법들은 본 발명의 범주에 포함되는 것으로 해석되어야 한다.However, the present invention is not limited to the above method, and may be any method for producing fibrous carbon having a unit surface structure of carbon hexagonal network surfaces of at least 10 nm or more, and thus having a specific surface area of 200 to 1,000 m 2 / g. However, these methods should be construed as being included in the scope of the present invention.

본 발명은 또한 상기 섬유상 탄소를 이용한 각 응용 분야의 제품에 관한 것으로서, 그러한 예로는, 앞서 설명한 바와 같이, 전기이중층 캐패시터용 전극, 2차 전지용 전극, 촉매 담체, 수소 저장매체, 전자파 차폐제, 정전기 방지용 도전성 코팅제, 흡착제, 필터 등을 들 수 있다. 그 중에서도, 본 발명에 따른 섬유상 탄소를 전기이중층 캐패시터용 전극재로서 사용하는 경우에는 종래의 것과 비교하여 매우 높은 이중층 캐패시턴스를 나타낸다. 탄소재료를 이용한 이들 제품들의 제조방법은 이미 공지되어있으므로, 이에 대한 설명은 본 명세서에서 생략한다.The present invention also relates to a product of each application field using the fibrous carbon, and examples thereof include, as described above, an electrode for an electric double layer capacitor, an electrode for a secondary battery, a catalyst carrier, a hydrogen storage medium, an electromagnetic shielding agent, and an antistatic agent. Conductive coating agents, adsorbents, filters, and the like. Especially, when the fibrous carbon which concerns on this invention is used as an electrode material for electric double layer capacitors, it shows very high double layer capacitance compared with the conventional thing. Since the manufacturing method of these products using a carbon material is already known, the description is abbreviate | omitted in this specification.

이하, 본 발명에 따른 실시예를 참조하여 발명의 내용을 더욱 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples according to the present invention, but the scope of the present invention is not limited thereto.

[실시예]EXAMPLE

1. One. 실험에 사용된 화합물들Compounds Used in Experiments

실험에 사용될 탄소나노섬유의 제조를 위해서는 금속촉매가 필요하며, 이러한 촉매 제조를 위한 물질들인 질산구리(Cu(NO3)3·H2O), 질산니켈(Ni(NO 3)3·H2O), 중탄산암모늄(NH4HCO3) 및 수산화칼륨은, Wako Inc.(일본)으로 구입한 것을 사용하였다. 수소 가스(>99.9999%), 에틸렌 가스(99.9%) 및 헬륨 가스(>99.9999%)는 Asahi Sanso Inc.(일본)로부터 구입하여 정제하지 않고 사용하였다.Metal catalysts are required for the production of carbon nanofibers used in the experiments, and materials for preparing such catalysts are copper nitrate (Cu (NO 3 ) 3 · H 2 O) and nickel nitrate (Ni (NO 3 ) 3 · H 2 O), ammonium bicarbonate (NH 4 HCO 3 ) and potassium hydroxide were those purchased from Wako Inc. (Japan). Hydrogen gas (> 99.9999%), ethylene gas (99.9%) and helium gas (> 99.9999%) were purchased from Asahi Sanso Inc. (Japan) and used without purification.

2.2. 실험에 사용된 탄소나노섬유의 제조Preparation of Carbon Nanofibers Used in Experiments

Best and Russell 논문(Best RJ, Russell WW. Nickel, copper and some of their alloys as catalysts for ethylene hydrogenation. J. Am. Chem. Soc. 1954; 76: 838-842)에 기술되어있는 바에 따라, 중탄산암모늄을 사용하여 질산염 용액으로부터 탄산구리 및 탄산니켈을 침전시켜서, 탄소나노섬유의 제조에 사용될 구리/니켈 합금 촉매를 제조하였다.Ammonium bicarbonate, as described in the Best and Russell paper (Best RJ, Russell WW. Nickel, copper and some of their alloys as catalysts for ethylene hydrogenation. J. Am. Chem. Soc. 1954; 76: 838-842). Copper and nickel carbonate were precipitated from the nitrate solution using to prepare a copper / nickel alloy catalyst for use in the production of carbon nanofibers.

탄소나노섬유의 제조를 위하여, 종래 린드버그(Lindberg) 수평 관상로로 가열한 수정 유동 반응기를 사용하였다. MKS 유량 제어기를 사용하여 반응기내로의 가스 흐름을 정밀하게 확인 및 제어함으로써, 조성물이 일정하게 전달되도록 하였다. 반응로의 반응기 중앙에 위치한 알루미늄 보트에 30 ~ 50 ㎎의 분말상 촉매 시편을 넣고, 10%의 H2/He 혼합물내에서 적당한 온도로 2 시간 동안 환원시킨 후, 반응계를 헬륨 가스로 30 분간 일소시켰다. 그런 다음, 반응 가스인 C2H4/H2 혼합물을 미리 정해진 시간 동안 촉매상에 흘려보냈다. 반응계를 상온으로 냉각시킨 후, 일정한 시간동안 침적된 탄소의 량을 측정하였다.For the production of carbon nanofibers, a modified flow reactor heated in a Lindberg horizontal tubular furnace was used. The MKS flow controller was used to precisely identify and control the flow of gas into the reactor, allowing for constant delivery of the composition. 30-50 mg of powdered catalyst specimens were placed in an aluminum boat located in the center of the reactor in the reactor, reduced to a suitable temperature for 2 hours in a 10% H 2 / He mixture, and the reaction system was purged with helium gas for 30 minutes. . Then, the reaction gas C 2 H 4 / H 2 mixture was flowed over the catalyst for a predetermined time. After the reaction system was cooled to room temperature, the amount of carbon deposited for a predetermined time was measured.

3.3. 신규 구조의 섬유상 탄소의 제조Preparation of Fibrous Carbon of New Structure

통상적인 직립식 관상로로 가열한 스테인리스 스틸 유동 반응기를 사용하여, 상기에서 제조된 탄소나노섬유와 KOH의 중량비 1:4의 혼합물(1 g 탄소나노섬유/4 g KOH)을 스테인리스 스틸 포트에 넣고, 아르곤 분위기에서 미리 설정된 시간 동안 설정된 온도로 가열하였다. 시간 및 온도의 설정은 이후 설명하는 바와 같이 다양하게 변화시켜 행하였다.Using a stainless steel flow reactor heated by a conventional upright tube furnace, a mixture of carbon nanofibers and KOH in a weight ratio of 1: 4 (1 g carbon nanofibers / 4 g KOH) was placed in a stainless steel pot. , And heated to a set temperature for a predetermined time in an argon atmosphere. Setting of time and temperature was performed in various changes as demonstrated later.

4.4. 분석방법Analysis method

결정성에 관한 데이터는 X-선 회전분석기(Rigaku, CuKα target)를 사용하여 모았으며, 결정성에 관한 파라미터(d002)는 Gakushin(JSPS)법에 따라 계산하였다.Data on crystallinity were collected using an X-ray rotation analyzer (Rigaku, CuKα target), and the parameter on crystallinity (d 002 ) was calculated according to the Gakushin (JSPS) method.

시료에 대해 150℃로 8 시간동안 탈기시킨 후, 표면적 분석기(Sorptomatic 1990TM, FISONS Instruments)를 사용하여 질소의 흡착 및 탈착에 의해 BET 표면적을 측정하였다. 또한, 주사전자현미경(JSM-6320FTM, JEOL)과 고해상도 투과전자현미경(JEM-100CXTM, JEOL)을 사용하여 탄소나노섬유의 나노구조와 몰포로지를 확인하였으며, 라만 분광기(NRS-2000BTM, JASCO)를 사용하여 탄화도의 변화를 측정하였다. 514.5 ㎚의 Ar 이온 레이저광이 사용되었다.After degassing at 150 ° C. for 8 hours on the sample, the BET surface area was measured by adsorption and desorption of nitrogen using a surface area analyzer (Sorptomatic 1990 , FISONS Instruments). In addition, the scanning electron microscope (JSM-6320F TM, JEOL) and high resolution transmission electron microscope using (JEM-100CX TM, JEOL) were ensure nanostructure and morphology of the carbon nanofiber, and Raman spectroscopy (NRS-2000B TM, JASCO) was used to measure the change in carbonization. 514.5 nm Ar ion laser light was used.

5.5. 이중층 캐패시턴스의 측정Measurement of Double Layer Capacitance

캐패시턴스는 코인형 스테인리스 셀에서 측정하였다. 테스트 셀은 한 쌍의 전극과 테트라에틸암모늄 테트라플루오로보레이트(Et4NBF4)를 프로필렌 카보네이트 용매에 1 몰 농도로 녹인 전해질로 구성하였다.Capacitance was measured in a coin-type stainless steel cell. The test cell consisted of an electrolyte in which a pair of electrodes and tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) were dissolved in 1 mol of propylene carbonate solvent.

6.6. 비표면적에 대한 반응 온도 및 시간의 영향Effect of reaction temperature and time on specific surface area

하기 표 1에서 보는 바와 같은 3 종류의 탄소나노섬유를 합성하여 KOH 활성을 행하였다. 실시예 1의 탄소나노섬유(CNF-1)에 대해서는 500 ~ 1,000℃의 온도범위에서 100℃ 간격으로 1 시간 동안 반응시켰다. 그 결과, 도 1에서 볼 수 있는 바와 같이, 600℃ 이상에서 활성 효과가 있는 것으로 확인되었다. 900℃에서 1 시간동안 반응시킨 결과, 비표면적이 107 ㎡/g에서 429 ㎡/g으로 크게 향상되었다. 도 2에서 보는 바와 같이, 반응 시간은 대략 3 시간 정도일 때 최적이고, 4 시간 이상에서는 비표면적이 다소 줄어드는 것으로 확인되었다. Three kinds of carbon nanofibers as shown in Table 1 were synthesized, and KOH activity was performed. The carbon nanofibers (CNF-1) of Example 1 were reacted for 1 hour at intervals of 100 ° C. in a temperature range of 500 to 1,000 ° C. As a result, as can be seen in Figure 1, it was confirmed that there is an active effect at 600 ℃ or more. After 1 hour of reaction at 900 ° C, the specific surface area was greatly improved from 107 m 2 / g to 429 m 2 / g. As shown in FIG. 2, the reaction time was optimal when about 3 hours, and the specific surface area was found to decrease slightly over 4 hours.

실시예Example d002 (㎚)d 002 (nm) 평균직경(㎚)Average diameter (nm) 비표면적 (㎡/g)Specific surface area (㎡ / g) 활성화전Before activation 활성화후After activation 1 (CNF-1)1 (CNF-1) 0.34120.3412 150150 105105 511511 2 (CNF-2)2 (CNF-2) 0.34100.3410 110110 110110 461461 3 (CNF-3)3 (CNF-3) 0.35060.3506 4040 229229 17651765

7.7. 탄소나노섬유의 종류에 따른 KOH 활성화의 효과Effect of KOH Activation on Carbon Nanofibers

상기 표 1은 3 종류의 탄소나노섬유를 900℃에서 3 시간 동안 반응시킨 결과를 나타낸 것으로서, 상기 조건에서 탄소나노섬유의 비표면적이 대략 5 배 정도 증가한 것을 알 수 있는바, 이는 새로운 구조의 탄소재료가 생성되었음을 의미한다.Table 1 shows the results of reacting three types of carbon nanofibers at 900 ° C. for 3 hours, and it can be seen that the specific surface area of the carbon nanofibers increased by approximately five times under the above conditions, which is a new structure of carbon. It means that the material has been created.

8.8. 표면 변경의 구조Structure of surface change

XRD로부터의 구조 파라미터를 생성된 섬유상 탄소에 대해 계산한 결과, 탄소나노섬유의 결정성은 KOH 활성화가 진행됨에 따라 감소하였음을 확인하였다(도 3 참조). 라만의 결과(도시하지 않음)도 유사한 경향을 보였으며, 이는 탄소나노섬유가 흑연 성질을 상실하였음을 의미하고, 그러한 극단적인 예는 도 4a(활성전) 및 4b(활성후)와 같다. 900℃에서 3 시간 동안의 활성화 전의 TEM 영상(도 5a 및 5b)과 활성화 후의 TEM 영상(도 6a 및 6b)은, 헤링본 미시구조가 KOH 활성화 후에도 유지되는 반면에, 탄소 육각망면들이 일정한 단위로서 간격이 벌어져서, 결과적으로 흑연 성질이 감소함을 보여주고 있다. 특히, 도 6a 및 6b를 보면 30 ~ 120 개의 육각망면들의 단위구조가 벌어져있음을 볼 수 있으며, 이러한 구조는 일찍이 보고된 바가 없는 전혀 새로운 구조이다. As a result of calculating the structural parameters from the XRD on the generated fibrous carbon, it was confirmed that the crystallinity of the carbon nanofibers decreased as KOH activation proceeded (see FIG. 3). Raman results (not shown) also showed a similar trend, meaning that carbon nanofibers lost graphite properties, such extreme examples being shown in Figures 4a (before activation) and 4b (after activation). TEM images before activation (FIGS. 5A and 5B) and TEM images after activation (FIGS. 6A and 6B) for 3 hours at 900 ° C., while the herringbone microstructure was maintained after KOH activation, the carbon hexagonal meshes were spaced as regular units This opens up, showing that the graphite properties are reduced as a result. In particular, in Figures 6a and 6b it can be seen that the unit structure of the 30 to 120 hexagonal network surface is open, this structure is a completely new structure has not been reported earlier.

9.9. 섬유상 탄소의 이중층 캐패시턴스Double layer capacitance of fibrous carbon

이중층 캐패시턴스에 대한 실험 결과가 도 7에 도시되어있는바, ~ 100 ㎡/g의 비표면적을 가진 탄소나노섬유의 캐패시턴스는 ~ 6 F/g 이었으나, KOH의 활성화 이후, 활성 탄소나노섬유의 캐패시턴스는 비표면적이 ~ 500 ㎡/g으로 늘어남에 따라 ~ 21 F/g으로 증가하였다. 활성 탄소섬유 또는 메조페이스 피치계 탄소섬유와 같은 전극 재료와 비교할 때, 본 발명에 따른 섬유상 탄소는 상대적으로 작은 비표면적을 가지고도 높은 캐패시턴스를 발휘함을 알 수 있다. Experimental results for the double layer capacitance is shown in Figure 7, the capacitance of the carbon nanofibers having a specific surface area of ~ 100 ㎡ / g was ~ 6 F / g, after activation of KOH, the capacitance of the activated carbon nanofibers As the specific surface area increased to ~ 500 m 2 / g, it increased to ~ 21 F / g. Compared with electrode materials such as activated carbon fibers or mesophase pitch-based carbon fibers, it can be seen that the fibrous carbon according to the present invention exhibits high capacitance even with a relatively small specific surface area.

본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형이 가능할 것이다.Those skilled in the art to which the present invention pertains may make various applications and modifications within the scope of the present invention based on the above contents.

본 발명에 따른 섬유상 탄소는 이제껏 보고된 바가 없는 전혀 새로운 구조의 탄소재료로서, 종래의 탄소나노섬유와 비교하여 비표면적이 2 ~ 6 배 정도 넓고, 그로 인해 높은 이중층 캐패시턴스를 나타낸다. 따라서, 높은 비표면적과 도전성의 탄소재료를 필요로하는 다양한 응용분야에 사용될 수 있으며, 특히, 전기이중층 캐패시터용 전극재로서 유용하게 사용될 수 있다.The fibrous carbon according to the present invention is a carbon material having a completely new structure, which has not been reported so far, and has a specific surface area of about 2 to 6 times wider than that of conventional carbon nanofibers, thereby showing a high double layer capacitance. Therefore, it can be used in various applications requiring a high specific surface area and conductive carbon material, and can be particularly useful as an electrode material for electric double layer capacitors.

도 1은 실시예 1에 따른 탄소나노섬유(CNF-1)의 반응온도에 따른 활성도 및 비표면적의 변화를 나타낸 그래프이고;1 is a graph showing changes in activity and specific surface area according to reaction temperature of carbon nanofibers (CNF-1) according to Example 1;

도 2는 실시예 1에 따른 탄소나노섬유(CNF-1)의 반응시간에 따른 비표면적의 변화를 나타낸 그래프이고;2 is a graph showing a change in specific surface area according to reaction time of carbon nanofibers (CNF-1) according to Example 1;

도 3은 실시예 1에 따른 탄소나노섬유(CNF-1)의 반응시간에 따른 XRD 스텍트라 구조 파라미터의 변화를 나타낸 그래프이고;Figure 3 is a graph showing the change in XRD stack structure parameters with the reaction time of carbon nanofibers (CNF-1) according to Example 1;

도 4a 및 4b는 실시예 3에 따른 탄소나노섬유(CNF-3)의 활성전과 후의 주사전자현미경(SEM) 사진이고;4A and 4B are scanning electron microscope (SEM) photographs before and after activation of carbon nanofibers (CNF-3) according to Example 3;

도 5a 및 5b는 실시예 1에 따른 탄소나노섬유(CNF-1)의 활성전의 투과전자현미경(TEM) 사진(×150,000, ×600,000)이고; 5A and 5B are transmission electron microscope (TEM) photographs (× 150,000, × 600,000) before activation of carbon nanofibers (CNF-1) according to Example 1;

도 6a 및 6b는 실시예 1에 따른 탄소나노섬유(CNF-1)의 활성후의 투과전자현미경(TEM) 사진(×150,000, ×600,000)이고;6A and 6B are transmission electron microscope (TEM) photographs (× 150,000, × 600,000) after activation of carbon nanofibers (CNF-1) according to Example 1;

도 7은 본 발명의 실시예에 따른 섬유상 탄소와, 종래의 피치계 활성탄소섬유, 코크 등의 비표면적에 따른 이중층 캐패시턴스의 변화를 나타낸 그래프이다. 7 is a graph showing the change of the double layer capacitance according to the specific surface area of the fibrous carbon and the pitch-based activated carbon fiber, coke and the like according to an embodiment of the present invention.

Claims (6)

sp2 원자구조의 탄소원자들이 2차원적으로 견고하게 결합되어 형성된 탄소 육각망면들이 3.345 ~ 3.8Å의 면간 거리로 규칙적인 배열에 의해 전체적으로 3.5 ~ 500 ㎚의 직경과 직경의 10 배 이상의 길이로 섬유상 형상을 나타내고, 적어도 2 개 이상의 상기 탄소 육각망면들로 구성된 단위구조가 인접 단위구조에 대하여 적어도 10 ㎚ 이상 벌어져 있고, 그로 인해 비표면적이 200 내지 1,000 ㎡/g인 것을 특징으로 하는 섬유상 탄소.Carbon hexagonal meshes formed by spherically bonding two-dimensional carbon atoms of sp 2 atoms are formed into a fibrous structure with a diameter of 3.5 to 500 ㎚ and a length of more than 10 times the diameter by regular arrangement with an interplanar distance of 3.345 to 3.8 Å. A fibrous carbon exhibiting a shape, wherein a unit structure composed of at least two carbon hexagonal network surfaces is at least 10 nm wider than an adjacent unit structure, whereby the specific surface area is 200 to 1,000 m 2 / g. 제 1 항에 있어서, 상기 단위구조를 이루는 탄소 육각망면들의 수가 30 ~ 120 인 것을 특징으로 하는 섬유상 탄소. The fibrous carbon according to claim 1, wherein the number of carbon hexagonal mesh planes forming the unit structure is 30 to 120. 제 1 항에 있어서, 상기 단위구조의 벌어진 거리가 10 ~ 40 ㎚ 인 것을 특징으로 하는 섬유상 탄소.The fibrous carbon according to claim 1, wherein the gap of the unit structure is 10 to 40 nm. 제 1 항에 있어서, 상기 탄소 육각망면들이 섬유축에 대해 직각으로 배열된 구조이거나, 또는 섬유축에 대해 일정한 각도로 배열된 구조인 것을 특징으로 하는 섬유상 탄소.The fibrous carbon according to claim 1, wherein the carbon hexagonal net faces are arranged at right angles to the fiber axis, or are arranged at an angle with respect to the fiber axis. 제 1 항에 있어서, 상기 섬유상 탄소의 미시구조가 헤링본 구조(herringbone structure), 평판 구조(platelet structure), 나선 구조(spiral structure) 또는 리본형 구조(ribbon-like)인 것을 특징으로 하는 섬유상 탄소.The fibrous carbon according to claim 1, wherein the microstructure of the fibrous carbon is a herringbone structure, a platelet structure, a spiral structure, or a ribbon-like structure. 제 1 항 내지 제 5 항 어느 하나에 따른 섬유상 탄소를 전극재로서 사용한 전기이중층 캐패시터.An electric double layer capacitor using the fibrous carbon according to any one of claims 1 to 5 as an electrode material.
KR10-2002-0051113A 2002-08-28 2002-08-28 Novel structural fibrous carbon KR100475254B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0051113A KR100475254B1 (en) 2002-08-28 2002-08-28 Novel structural fibrous carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0051113A KR100475254B1 (en) 2002-08-28 2002-08-28 Novel structural fibrous carbon

Publications (2)

Publication Number Publication Date
KR20040019537A KR20040019537A (en) 2004-03-06
KR100475254B1 true KR100475254B1 (en) 2005-03-10

Family

ID=37324321

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0051113A KR100475254B1 (en) 2002-08-28 2002-08-28 Novel structural fibrous carbon

Country Status (1)

Country Link
KR (1) KR100475254B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335106A (en) * 1998-03-25 1999-12-07 Shimadzu Corp Production of carbon
KR20010042303A (en) * 1998-03-31 2001-05-25 크레머, 포프 Lithium battery and electrode
KR20020040644A (en) * 2000-11-24 2002-05-30 김동철 Multi-walled carbon nanotube and a manufacturing method thereof
KR20020040645A (en) * 2000-11-24 2002-05-30 김동철 Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335106A (en) * 1998-03-25 1999-12-07 Shimadzu Corp Production of carbon
KR20010042303A (en) * 1998-03-31 2001-05-25 크레머, 포프 Lithium battery and electrode
KR20020040644A (en) * 2000-11-24 2002-05-30 김동철 Multi-walled carbon nanotube and a manufacturing method thereof
KR20020040645A (en) * 2000-11-24 2002-05-30 김동철 Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them

Also Published As

Publication number Publication date
KR20040019537A (en) 2004-03-06

Similar Documents

Publication Publication Date Title
Liang et al. Recent advances in electrospun nanofibers for supercapacitors
Poudel et al. Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors
Yue et al. Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries
KR102182553B1 (en) Method for manufacturing single atom catalyst supported on carbon carrier
US7887772B2 (en) Ultrafine porous graphitic carbon fiber and preparation method thereof
Abouali et al. Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors
Li et al. A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors
Ge et al. Elastic and hierarchical porous carbon nanofibrous membranes incorporated with NiFe 2 O 4 nanocrystals for highly efficient capacitive energy storage
Mukhiya et al. Engineering nanohaired 3D cobalt hydroxide wheels in electrospun carbon nanofibers for high-performance supercapacitors
WO2017123162A1 (en) Free-standing mof-derived hybrid porous carbon nanofiber mats
Wang et al. Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators
Lal et al. An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite
Ma et al. Synthesis of mesoporous ribbon-shaped graphitic carbon nanofibers with superior performance as efficient supercapacitor electrodes
Zhou et al. A modified “gel-blowing” strategy toward the one-step mass production of a 3D N-doped carbon nanosheet@ carbon nanotube hybrid network for supercapacitors
KR101610354B1 (en) Production method of a metal oxide supported carbon nano fiber electrode using electro deposition method, and an energy storage device and a filter using the same
Ye et al. Interface engineering integrates fractal-tree structured nitrogen-doped graphene/carbon nanotubes for supercapacitors
Zheng et al. Large-scale synthesis of nitrogen-rich hierarchically porous carbon as anode for lithium-ion batteries with high capacity and rate capability
Mohapatra et al. Designing binder-free, flexible electrodes for high-performance supercapacitors based on pristine carbon nano-onions and their composite with CuO nanoparticles
Barik et al. Polymer-derived electrospun Co3O4@ C porous nanofiber network for flexible, high-performance, and stable supercapacitors
Guo et al. High-performance MnO2@ MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors
Ndiaye et al. High-performance asymmetric supercapacitor based on vanadium dioxide/activated expanded graphite composite and carbon-vanadium oxynitride nanostructures
El-Shafei et al. Free-standing interconnected carbon nanofiber electrodes: new structural designs for supercapacitor application
Li et al. Interpenetrating framework with three-dimensionally ordered macroporous carbon substrates and well-dispersed Co3O4 nanocrystals for supercapacitor
Hsiao et al. Hierarchical nanostructured electrospun carbon fiber/NiCo2O4 composites as binder‐free anodes for lithium‐ion batteries
Zhang et al. Synthesis and capacitive properties of carbonaceous sphere@ MnO2 rattle-type hollow structures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130214

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170525

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180626

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190225

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20200225

Year of fee payment: 16