KR100470669B1 - A method for manufacturing high strength cold-rolled enamel steel sheet with superior fishscale resistance - Google Patents

A method for manufacturing high strength cold-rolled enamel steel sheet with superior fishscale resistance Download PDF

Info

Publication number
KR100470669B1
KR100470669B1 KR10-2000-0049504A KR20000049504A KR100470669B1 KR 100470669 B1 KR100470669 B1 KR 100470669B1 KR 20000049504 A KR20000049504 A KR 20000049504A KR 100470669 B1 KR100470669 B1 KR 100470669B1
Authority
KR
South Korea
Prior art keywords
steel sheet
enamel
fish scale
annealing
cold
Prior art date
Application number
KR10-2000-0049504A
Other languages
Korean (ko)
Other versions
KR20020016267A (en
Inventor
류재화
윤정봉
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2000-0049504A priority Critical patent/KR100470669B1/en
Publication of KR20020016267A publication Critical patent/KR20020016267A/en
Application granted granted Critical
Publication of KR100470669B1 publication Critical patent/KR100470669B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 가전제품의 부품 또는 건축외장재, 욕조 등으로 사용되는 법랑용 냉연강판의 제조방법에 관한 것으로서, 중탄소강에 적정 합금원소를 첨가하고, 냉간압하량 및 흑연화를 위한 소둔을 제어하여 강판 내에 흑연을 미세하게 분포시킴으로써, 내피쉬시스케일성이 우수하고 법랑소성처리후 피쉬스케일이 발생되지 않고 PEI 밀착지수≥85, 항복강도≥30kg/㎟인 법랑강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for manufacturing cold rolled steel sheet for enamel used as parts of home appliances, building exterior materials, bathtubs, etc., by adding an appropriate alloy element to medium carbon steel, and controlling the cold rolling amount and annealing for graphitization By finely dispersing graphite in the inside, it is to provide a method for producing an enamel steel sheet having excellent fish scale resistance, no fish scale after enamel annealing, PEI adhesion index ≥ 85 and yield strength ≥ 30 kg / mm 2. There is a purpose.

상기 목적을 달성하기 위한 본 발명은, The present invention for achieving the above object,

중량%로, C:0.1~0.5%, Mn:0.1~0.5%, Al:0.01~0.1%, N:0.001~0.015%, B:0.0005~0.005%를 함유하고, Si는 Mn+0.06/C-0.21≤Si≤1.5%를 만족하도록 첨가되며, 잔부 Fe 및 불가피한 불순물들을 함유하는 열연강판을 600℃ 이상의 온도로 권취하고, 산세한 다음, 10% 이상의 냉간압하량으로 냉간압연하고, 600~720℃의 온도범위에서 소둔하는 것을 특징으로 하는 내피쉬스케일성이 우수한 고강도 냉연법랑강판의 제조방법을 기술적 요지로 한다.By weight%, C: 0.1-0.5%, Mn: 0.1-0.5%, Al: 0.01-0.1%, N: 0.001-0.015%, B: 0.0005-0.005%, Si contains Mn + 0.06 / C- It is added to satisfy 0.21≤Si≤1.5%, and the hot rolled steel sheet containing the balance Fe and unavoidable impurities is wound to a temperature of 600 ° C or higher, pickled, and cold rolled to a cold rolling load of 10% or higher, and 600 to 720 ° C. Technical method for producing a high strength cold rolled enamel steel sheet having excellent fish scale resistance, characterized by annealing at a temperature range of.

Description

내피쉬스케일성이 우수한 고강도 냉연법랑강판의 제조방법{A METHOD FOR MANUFACTURING HIGH STRENGTH COLD-ROLLED ENAMEL STEEL SHEET WITH SUPERIOR FISHSCALE RESISTANCE}Manufacturing method of high strength cold rolled enamel steel sheet with excellent fish scale resistance {A METHOD FOR MANUFACTURING HIGH STRENGTH COLD-ROLLED ENAMEL STEEL SHEET WITH SUPERIOR FISHSCALE RESISTANCE}

본 발명은 가전제품의 부품 또는 건축외장재, 욕조 등으로 사용되는 법랑용 냉연강판의 제조방법에 관한 것으로서, 보다 상세하게는 내피쉬스케일성이 우수하고, 법랑처리후 높은 강도를 가지는 법랑용 냉연강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an enameled cold rolled steel sheet used as a component of home appliances or a building exterior material, a bath, etc. More specifically, the enameled cold rolled steel sheet having an excellent fish scale resistance and high strength after enamel processing It relates to a manufacturing method of.

법랑용 강판에서 가장 중요하게 요구되는 성질중의 하나는 내피쉬스케일성이다. 피쉬스케일(fish scale)은 법랑처리후 법랑층이 강판표면에서 고기 비늘과 같이 떨어지는 현상으로, 피쉬스케일이 발생하면 외관상으로도 불량할 뿐 아니라, 강판 기지가 외부로 노출되기 때문에 내부식성이 치명적으로 나빠진다.One of the most important properties required for enamel steel sheet is fish scale resistance. Fish scale is a phenomenon in which the enamel layer falls on the surface of the steel sheet after being enameled, like meat scales. When fish scale occurs, the fish scale is not only bad in appearance but also exposed to the outside. Worse

상기 피쉬스케일 결함은 수소에 의해 발생되는 결함으로, 발생원인은 다음과 같다. 즉, 법랑소성처리시에는 강판의 온도가 높아 수소의 고용도가 증가하지만, 소성처리후에는 강판의 온도가 낮아져 고용되었던 수소가 강판 표면으로 확산되어 법랑층을 파괴하고 대기중으로 빠져나감으로 인해 발생하는 것이다.The fish scale defect is a defect generated by hydrogen, and the causes are as follows. In other words, during enameling, the temperature of the steel sheet increases due to the high solubility of hydrogen.However, after firing, the temperature of the steel sheet decreases, causing the hydrogen to diffuse to the surface of the steel sheet, destroying the enamel layer and escaping into the atmosphere. It is.

이와 같은 피쉬스케일 결함을 방지하기 위해서는, 강판중에 수소가 모일 수 있는 위치를 만들어 주어야 하는데, 이 때 주로 개재물이나 석출물을 이용한다.In order to prevent such fish scale defects, it is necessary to make a position where hydrogen can be collected in the steel sheet, and in this case, inclusions or precipitates are mainly used.

일례로, 일본특개 소61-276958호와 대한민국 특허출원번호 97-42333호는 피쉬스케일 방지를 위해 주로 티타늄을 이용하는 방법을 제안한다. 그러나, 티타늄은 산화성이 매우 강한 원소로, 다량 첨가하는 경우에는 연속주조 작업시 산화물을 생성하여 노즐막힘 문제를 자주 유발하므로, 연속주조 작업성을 나쁘게 한다. 또한, 티타늄 탄화물은, 법랑층과 반응하여 법랑처리후 기포결함을 많이 발생시킨다.For example, Japanese Patent Laid-Open No. 61-276958 and Korean Patent Application No. 97-42333 propose a method of using titanium mainly for fish scale prevention. However, titanium is a very oxidizing element, and when a large amount is added, oxides are frequently generated during continuous casting operations, causing nozzle clogging problems, thereby deteriorating continuous casting workability. In addition, titanium carbide reacts with the enamel layer to generate a lot of bubble defects after the enamel treatment.

이러한 기포결함을 줄이고 성형성을 향상하기 위한 기술로서, 일본 특개평10-17992호와 대한민국 특허출원번호 98-35267호에서는, 탄소함량을 극도로 낮추고 티타늄을 제어하는 방법을 제안하고 있지만, 이들 강은 강도가 너무 낮아서 적은 충격에도 쉽게 변형되며, 제품의 두께도 두꺼워지는 단점이 있다.As a technique for reducing such bubble defects and improving formability, Japanese Patent Application Laid-Open No. 10-17992 and Korean Patent Application No. 98-35267 propose a method of extremely low carbon content and controlling titanium. Silver strength is so low that it is easily deformed even with a small impact, there is a disadvantage that the thickness of the product is also thick.

강도저하의 문제점을 해결하기 위한 기술로, 대한민국 특허출원번호 97-62730호에서는 P을 다량 첨가하고 있으나, P은 슬라브 제조중 편석이 심해 슬라브제조를 어렵게 하고, 강도증가도 충분치 못한 문제가 있다.As a technique for solving the problem of the strength degradation, Korean Patent Application No. 97-62730 is adding a large amount of P, P is difficult to manufacture slabs due to severe segregation during slab manufacturing, there is also a problem that the strength increase is not enough.

이에, 본 발명자는 상기한 종래기술들의 문제점을 해결하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 중탄소강에 적정 합금원소를 첨가하고, 냉간압하량 및 흑연화를 위한 소둔을 제어하여 강판 내에 흑연을 미세하게 분포시킴으로써, 내피쉬시스케일성이 우수하고 법랑소성처리후 피쉬스케일이 발생하지 않고 PEI 밀착지수≥85, 항복강도≥30kg/㎟인 법랑강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have repeatedly conducted research and experiments to solve the problems of the prior arts, and based on the results, the present invention adds an appropriate alloy element to the medium carbon steel, And finely distribute the graphite in the steel sheet by controlling the annealing for graphitization, so that the fish scale is excellent and the fish scale does not occur after the enamel annealing treatment and the PEI adhesion index ≥ 85 and the yield strength ≥ 30 kg / mm 2 To provide a method for producing a steel sheet, the purpose is.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C:0.1~0.5%, Mn:0.1~0.5%, Al:0.01~0.1%, N:0.001~0.015%, B:0.0005~0.005%를 함유하고, Si는 Mn+0.06/C-0.21≤Si≤1.5%를 만족하도록 첨가되며, 잔부 Fe 및 불가피한 불순물들을 함유하는 열연강판을 600℃ 이상의 온도로 권취하고, 산세한 다음, 10% 이상의 냉간압하량으로 냉간압연하고, 600~720℃의 온도범위에서 소둔하는 것을 특징으로 하는 내피쉬스케일성이 우수한 고강도 냉연법랑강판의 제조방법에 관한 것이다.The present invention for achieving the above object, by weight%, containing C: 0.1 ~ 0.5%, Mn: 0.1 ~ 0.5%, Al: 0.01 ~ 0.1%, N: 0.001 ~ 0.015%, B: 0.0005 ~ 0.005% Si is added to satisfy Mn + 0.06 / C-0.21 ≦ Si ≦ 1.5%, and the hot rolled steel sheet containing the remaining Fe and unavoidable impurities is wound to a temperature of 600 ° C. or higher, pickled, and then subjected to cold pressure of 10% or more. Cold rolling in a quantity, and annealing in a temperature range of 600 ~ 720 ℃ relates to a method for producing a high strength cold rolled enamel steel sheet excellent in fish scale resistance.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 발명자는 냉연강판의 흑연화에 영향을 미치는 강중 C, Si, B, Mn, Al, N의 작용과 열간압연, 냉간압연 및 소둔 등의 제조조건을 종합적으로 연구한 결과, 합금원소와 제조조건을 적절히 조절함으로써 내피쉬스케일성이 우수하면서도 강도가 높은 강을 제조할 수 있음을 알수 있었다. The inventors of the present invention comprehensively study the action of C, Si, B, Mn, Al, N and manufacturing conditions such as hot rolling, cold rolling and annealing in steels that affect the graphitization of cold rolled steel sheet. By properly adjusting the manufacturing conditions, it was found that steel with high fish scale resistance and high strength could be manufactured.

즉, 강중 흑연입자를 미세하게 석출시키고, 법랑소성처리중 흑연입자에 모여있던 탄소가 기지로 확산되면서 흑연입자가 공공이 되게 하여 수소가 저장될 수 있는 공간을 제공함으로써, 법랑처리후 기지의 강도를 크게 높인 것이다. 이를 위해, 냉간가공이 쉬운 범위내에서 흑연화 촉진원소인 C와 Si의 함량을 조절하고, 흑연화 핵생성 위치로 작용하는 극소량의 B을 첨가하고, 탈산제로 첨가되는 Al량과 강중에 존재하는 N를 적절히 제어하고, 흑연화 억제원소인 Mn의 함량을 억제하고 열간압연 및 냉간압연조건과 소둔열처리조건을 적절히 제어한 것이다.That is, the graphite particles in the steel are finely precipitated, and the carbon collected in the graphite particles during enamel annealing diffuses to the base, which causes the graphite particles to become vacant, thereby providing a space for storing hydrogen. Will greatly increase. To this end, within the range of easy cold working, the content of C and Si, which are graphitization promoting elements, is controlled, a very small amount of B, which acts as a graphitization nucleation site, is added, and the amount of Al added to the deoxidizer and the steel is present. N is appropriately controlled, the content of Mn which is a graphitization inhibiting element is suppressed, and hot rolling, cold rolling and annealing heat treatment conditions are appropriately controlled.

이하, 강성분의 수치한정이유에 대하여 설명한다.The reason for numerical limitation of the steel component is described below.

본 발명에서 C는 세멘타이트의 흑연화에 가장 중요한 역할을 하는 원소로, 그 함량이 적으면 합금첨가량이 많아지고, 흑연화하는데도 시간이 많이 걸리기 때문에, 하한치를 0.1%로 제한하는 것이 바람직하다. 상기 C는 그 함량이 많을수록 흑연입자수가 증가하여 법랑처리후 공공의 수가 증가하지만, 열연강판의 후가공이 어려워지고, 용접성이 크게 저하되기 때문에, 상한은 0.5%로 제한하는 것이 바람직하다.In the present invention, C is an element which plays the most important role in the graphitization of cementite, and if the content thereof is small, the amount of alloy addition increases, and it takes a long time to graphitize, so it is preferable to limit the lower limit to 0.1%. The higher the content of C, the higher the number of graphite particles and the higher the number of pores after enameling. However, the upper limit is preferably limited to 0.5% because the post-processing of the hot rolled steel becomes difficult and the weldability is greatly reduced.

Mn은 흑연화를 억제하는 원소이기 때문에, 그 함량이 적을수록 흑연화에는 유리하여 상한을 0.5%로 제한하는 것이 바람직하다. 그러나, 그 함량이 너무 적으면 강도가 낮고 열간가공성이 나빠지므로, 하한을 0.1%로 제한하는 것이 바람직하다.Since Mn is an element that suppresses graphitization, the smaller the content thereof, the more favorable the graphitization, and the upper limit thereof is preferably limited to 0.5%. However, if the content is too small, the strength is low and the hot workability is deteriorated, so it is preferable to limit the lower limit to 0.1%.

Al은 탈산제이면서 흑연화를 촉진하는 원소이지만, 그 함량이 0.01% 미만이면 흑연화 촉진효과가 거의 없기 때문에, 0.01% 이상 첨가하는 것이 바람직하다. 그러나, 그 함량이 0.1%를 초과하면 흑연화 촉진효과는 거의 포화되고, 강중 개재물이 증가하여 강판의 가공성이 저하되기 때문에, 상한은 0.1%로 설정하는 것이 바람직하다.Al is a deoxidizer and an element which promotes graphitization, but if the content is less than 0.01%, since it has almost no graphitization promoting effect, it is preferable to add 0.01% or more. However, if the content exceeds 0.1%, the graphitization promoting effect is almost saturated, and the inclusions in the steel increase and the workability of the steel sheet is lowered. Therefore, the upper limit is preferably set to 0.1%.

N는 흑연의 핵생성 위치로서 가장 효과적으로 작용하며, 보론과 반응해 BN을 형성하는 원소로서, 그 함량이 지나치게 적으면 BN의 형성이 어렵기 때문에, 0.001% 이상 함유시키는 것이 바람직하다. 그러나, 그 함량이 너무 많으면 강판의 연성이 저하되기 때문에, 상한을 0.015%로 제한하는 것이 바람직하다N acts most effectively as a nucleation site of graphite and is an element that reacts with boron to form BN. If the content is too small, it is difficult to form BN, and therefore it is preferable to contain it at 0.001% or more. However, if the content is too high, the ductility of the steel sheet is lowered, so it is preferable to limit the upper limit to 0.015%.

B은 흑연의 핵생성 위치로 작용하여 흑연화 속도를 높이고 흑연을 미세하게 분포시키는데 중요한 원소로서, 이와 같은 효과를 얻기 위해서는 0.0005% 이상 첨가한다. 그러나, 그 함량이 지나치게 많으면 그 효과가 포화되고, 또한 슬라브 제조시 균열발생의 우려가 있기 때문에, 그 상한을 0.005%로 한정하는 것이 바람직하다.B is an important element for increasing the graphitization rate and finely distributing the graphite by acting as a nucleation position of the graphite, and is added at least 0.0005% to obtain such an effect. However, if the content is too large, the effect is saturated and there is a fear of cracking during slab production. Therefore, the upper limit is preferably limited to 0.005%.

Si은 흑연화 촉진원소로, C 및 Mn의 함량에 따라 흑연석출에 미치는 영향이 달라지기 때문에, 그 함량은 C 및 Mn의 함량과 함께 고려해야 한다. 그 결과, 흑연석출을 가능하게 하기 위해서는, 상기 Si의 함량이 하기 식1을 만족해야 한다.Si is a graphitization promoting element, and the effect of graphite on the precipitation of graphite depends on the contents of C and Mn, so the content should be considered together with the contents of C and Mn. As a result, in order to enable graphite precipitation, the content of Si must satisfy the following formula (1).

[관계식 1][Relationship 1]

Si≥Mn+0.06/C-0.21Si≥Mn + 0.06 / C-0.21

그러나, 상기 Si의 함량이 1.5%를 넘으면 흑연화는 상당히 촉진되지만, 소재의 경도상승으로 냉간가공성이 저하되어 후가공이 힘들고, 적스케일이 많이 발생하여 강판의 표면품질이 저하되기 때문에, 상한을 1.5%로 설정하는 것이 바람직하다.However, when the content of Si exceeds 1.5%, graphitization is considerably promoted, but the cold workability is lowered due to the increase in hardness of the material, which makes it difficult to post-process, and the red scale is generated so that the surface quality of the steel sheet is lowered, so the upper limit is 1.5. It is preferable to set it to%.

다음은 본 발명에서 사용하는 제조조건에 대해서 설명한다.Next, manufacturing conditions used in the present invention will be described.

상기와 같이 조성된 슬라브를 재가열한 다음, 열연공정을 통해 조직을 미세화시키기 위해, 통상의 열간압연조건인 Ar3 이상의 온도에서 열간압연을 마무리한다. 그 후, 600℃ 이상의 온도에서 권취한 다음, 산세를 행하고, 10% 이상의 냉간압하율로 냉간압연하고, 600~720℃의 온도범위에서 소둔한다.After reheating the slab formed as described above, in order to refine the structure through the hot rolling process, hot rolling is finished at a temperature of Ar 3 or more, which is a normal hot rolling condition. Then, it winds up at the temperature of 600 degreeC or more, and then pickling is carried out, cold-rolled at the cold reduction rate of 10% or more, and annealed in the temperature range of 600-720 degreeC.

상기 권취온도를 600℃ 이상으로 설정한 이유는, 그 온도가 600℃ 미만이면 열연강판의 강도가 증가하여 냉간압연시 부하가 증가하기 때문이다.The reason why the winding temperature is set to 600 ° C. or higher is that when the temperature is less than 600 ° C., the strength of the hot rolled steel sheet increases and the load during cold rolling increases.

또한, 상기 냉간압연시 압하율을 10% 이상으로 설정한 이유는, 냉간압연을 행하면 기지와 석출물인 BN사이에 공극이 발생할 뿐 아니라, 생성된 전위를 통해 탄소의 이동이 용이하여 흑연화가 촉진되는데, 이와 같은 효과를 얻기 위해서는 적어도 10%의 냉간압하량이 요구되기 때문이다.In addition, the reason why the cold rolling reduction rate is set to 10% or more is that when cold rolling is performed, not only voids occur between the base and the precipitate BN, but also carbon is easily moved through the generated potential to promote graphitization. This is because at least 10% of the cold reduction is required to obtain such an effect.

또한, 상기 소둔온도를 600~720℃의 온도범위로 설정한 이유는 다음과 같다. 즉, 상기 소둔온도가 600℃ 미만이면 C의 확산속도가 느려 흑연화 진행속도가 느리게 되고, 720℃보다 높으면 C가 오스테나이트에 고용되어 흑연화가 일어나지 않기 때문이다.In addition, the reason for setting the annealing temperature in the temperature range of 600 ~ 720 ℃ is as follows. That is, if the annealing temperature is less than 600 ° C, the diffusion rate of C is slow and the graphitization progression rate is slow.

이상과 같이 제조된 강판을 이용하여 법랑부품을 가공한 후, 통상의 법랑소성처리온도인 800~850℃에서 소성처리하면, 피쉬스케일 발생을 억제하는데 필요한 충분한 공공(vacancy)을 확보할 수 있기 때문에, 피쉬스케일 발생이 없는 고강도 제품을 얻을 수 있다.After processing the enamel parts using the steel sheet manufactured as described above, and firing at 800 to 850 ° C., which is the normal enamel firing temperature, sufficient vacancies necessary for suppressing fish scale generation can be secured. It is possible to obtain a high strength product without generating fish scale.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1)(Example 1)

합금성분이 흑연입자 석출 및 법랑특성에 미치는 영향을 알아보기 위하여, 합금성분을 하기 표1과 같이 변화시키고, 기타 제조조건은 동일하게 하였다. 하기 표1에서, 종래강(1)는 대한민국 특허출원번호 97-62730호의 P 첨가 고강도 냉연법랑용강이고, 종래강(2)는 일반냉연용 법랑강이다.In order to investigate the effect of the alloy component on the graphite particle precipitation and enamel characteristics, the alloy component was changed as shown in Table 1 below, and the other manufacturing conditions were the same. In Table 1 below, the conventional steel (1) is a P-added high-strength cold-rolled enamel steel of Korea Patent Application No. 97-62730, the conventional steel (2) is a general cold-rolled enamel steel.

먼저, 하기 표1과 같은 성분의 강들을 1200℃로 가열하여 2시간 동안 유지한 후, 900℃의 온도에서 열간압연을 마무리하고, 650℃로 권취하여 두께 2.0mm의 열간압연 강판을 제조하였다. 그 후, 산세를 행하고, 40%의 냉간압하율로 냉간압연을 실시하여 두께 1.2mm의 냉간압연 강판을 제조하였다. 이와 같이 제조된 냉연강판의 흑연화를 위해, 비산화성 분위기하 680℃의 온도에서 15시간 동안 BAF 소둔을 행하였다. 한편, 종래강(1),(2)는 탄소의 함량이 낮은 강으로, 상기 제조방법과 동일한 식으로 제조하지만, 흑연화를 위한 BAF소둔은 행하지 않으며, 대신에 연속소둔을 실시한다. First, steels of the components shown in Table 1 below were heated to 1200 ° C. and maintained for 2 hours. Then, hot rolling was finished at a temperature of 900 ° C., and wound at 650 ° C. to prepare a hot rolled steel sheet having a thickness of 2.0 mm. Thereafter, pickling was performed and cold rolling was performed at a cold reduction rate of 40% to prepare a cold rolled steel sheet having a thickness of 1.2 mm. For graphitization of the thus produced cold rolled steel sheet, BAF annealing was performed at a temperature of 680 ° C. for 15 hours in a non-oxidizing atmosphere. On the other hand, conventional steels (1) and (2) are steels with a low carbon content, and are manufactured in the same manner as the above production method, but BAF annealing for graphitization is not performed, but continuous annealing is performed instead.

그 다음, 발명강(1)~(3) 및 비교강(1)~(3)을 절단하여 흑연량을 측정하고, 그 결과를 하기 표2에 나타내었다.Then, the inventive steels (1) to (3) and the comparative steels (1) to (3) were cut to measure the amount of graphite, and the results are shown in Table 2 below.

또한, 피쉬스케일 발생정도를 측정하기 위해서, 상기 냉연강판의 시편을 70℃, 10% 황산용액에서 5분간 침적하여 산세를 실시하고, 온수로 세척한 후 85℃, 3.6g/ℓ탄산소다+1.2g/ℓ붕사수용액에 5분간 침적하여 중화처리하였다. 그 후, 전처리가 완료된 시편 양면에 유약을 도포하고 200℃에서 10분간 건조하고, 830℃에서 5분간 소성처리를 실시한 후 공냉하여 법랑처리를 완료하였다. 이 때, 소성로 분위기의 노점은 30℃로 피쉬스케일이 발생하기 쉬운 가혹한 조건으로 하였다. 법랑처리가 끝난 시편을 200℃ 유지로에서 20시간 동안 유지하여 피쉬스케일 가속처리후 폭 70mm, 길이 150mm에서 발생한 피쉬스케일 결함수를 육안으로 조사하여, 그 결과를 하기 표2에 나타내었다.In addition, in order to measure the degree of fish scale, the specimen of the cold-rolled steel sheet was immersed in 70 ° C, 10% sulfuric acid solution for 5 minutes and pickled, washed with warm water, and then heated to 85 ° C, 3.6 g / l sodium carbonate + 1.2 It was neutralized by dipping for 5 minutes in ag / l borax solution. Thereafter, glaze was applied to both surfaces of the specimen after the pretreatment was completed, dried at 200 ° C. for 10 minutes, calcined at 830 ° C. for 5 minutes, and then cooled by air to complete enameling. At this time, the dew point of a kiln atmosphere was made into harsh conditions in which fish scale is easy to generate | occur | produce at 30 degreeC. The enameled specimens were kept in a 200 ° C. holding furnace for 20 hours to visually investigate the number of fish scale defects occurring at 70 mm in width and 150 mm in length after fish scale acceleration treatment, and the results are shown in Table 2 below.

법랑 밀착성은 밀착시험기기(ASTM C313-78 규격에 의한 시험기기)를 이용하여 PEI 밀착지수로 평가하였고, 그 결과는 하기 표2에 나타내었다.Enamel adhesion was evaluated by the PEI adhesion index using the adhesion test equipment (test equipment according to ASTM C313-78 standard), the results are shown in Table 2 below.

한편, 법랑처리후 소지강판의 강도를 측정하기 위해, 소둔강판을 830℃에서 5분간 유지하는 법랑소성처리 조건에 해당하는 열처리를 실시한 후 ASTM-sub size의 시편을 가공하여 항복강도를 측정하고, 그 결과를 하기 표2에 나타내었다.On the other hand, in order to measure the strength of the steel sheet after enamel processing, after the heat treatment corresponding to the enamel annealing condition that maintains the annealing steel sheet at 830 ℃ for 5 minutes, processed the specimen of ASTM-sub size to measure the yield strength, The results are shown in Table 2 below.

구분division 화학성분(wt%)Chemical composition (wt%) 흑연화를 위한 최소Si함량(wt%)Minimum Si content (wt%) for graphitization CC SiSi MnMn AlAl BB NN 발명강1Inventive Steel 1 0.20.2 0.50.5 0.20.2 0.050.05 0.0020.002 0.0070.007 0.290.29 발명강2Inventive Steel 2 0.30.3 0.50.5 0.20.2 0.050.05 0.00180.0018 0.0060.006 0.190.19 발명강3Invention Steel 3 0.40.4 0.50.5 0.20.2 0.050.05 0.00210.0021 0.0060.006 0.140.14 비교강1Comparative Steel 1 0.050.05 1.51.5 0.20.2 0.050.05 0.0020.002 0.0070.007 1.191.19 비교강2Comparative Steel 2 0.20.2 0.20.2 0.20.2 0.050.05 0.0020.002 0.0060.006 0.290.29 비교강3Comparative Steel 3 0.20.2 0.50.5 0.20.2 0.050.05 0.0060.006 0.290.29 종래강1Conventional Steel 1 0.0015%C-0.13%Mn-0.075%P-0.03%S-0.072%Ti-0.0031%N0.0015% C-0.13% Mn-0.075% P-0.03% S-0.072% Ti-0.0031% N 종래강2Conventional Steel 2 0.0039%C-0.15%Mn-0.010%P-0.013%S-0.122%Ti-0.0075%N0.0039% C-0.15% Mn-0.010% P-0.013% S-0.122% Ti-0.0075% N

구분division 강판특성Steel plate characteristic 법랑특성Enamel 법랑처리후특성Characteristics after enamel processing 흑연량(%)Graphite amount (%) 피쉬스케일발생수Fish Scale Occurrences 법랑층 두께(㎛)Enamel layer thickness (㎛) PEI밀착지수(%)PEI adhesion index (%) 항복강도(kg/㎟)Yield strength (kg / ㎡) 발명강1Inventive Steel 1 0.60.6 00 130130 9595 3333 발명강2Inventive Steel 2 0.90.9 00 120120 9191 3131 발명강3Invention Steel 3 1.41.4 00 110110 9090 3232 비교강1Comparative Steel 1 00 105105 125125 8080 2323 비교강2Comparative Steel 2 00 9090 115115 7575 3030 비교강3Comparative Steel 3 00 120120 135135 7878 3131 종래강1Conventional Steel 1 00 123123 9999 18.518.5 종래강2Conventional Steel 2 55 129129 8181 9.89.8

상기 표1,2에 나타난 바와 같이, 발경강(1)~(3)은 강판상태에서 석출된 흑연량이 많아, 소상처리후 충분한 공공을 확보할 수 있으므로, 피쉬스케일이 전혀 발생되지 않았다. 또한, 밀착지수도 높고 법랑처리후 항복강도도 비교강 대비 동등 이상이었다. As shown in Tables 1 and 2, the hardened steels (1) to (3) had a large amount of graphite precipitated in the state of the steel sheet, and sufficient pore size could be ensured after the small-phase treatment, so that no fish scale was generated. In addition, the adhesion index was high and the yield strength after enamel treatment was equal to or higher than that of the comparative steel.

반면에, 비교강(1)은 Si함량은 높으나 C함량이 낮아서, 흑연이 전혀 석출되지 않았고, 이로 인하여 법랑특성 및 항복강도가 낮았다. 비교강(2)는 Si의 함량이 낮고, 비교강(3)은 B이 첨가되지 낮아서, 흑연이 전혀 석출되지 않았고, 이에 따라 법랑특성이 양호하지 않았다. On the other hand, the comparative steel (1) has a high Si content but a low C content, no graphite was precipitated at all, thereby lowering the enameling properties and yield strength. The comparative steel 2 had a low content of Si, and the comparative steel 3 had no B added, so that no graphite was precipitated at all, and thus, the enamel property was not good.

한편, 종래강(1)은 법랑특성은 우수하였으나, C함량이 낮기 때문에, 본 발명에서 목적하는 흑연입자가 생성되지 않았다. 이로 인하여, 법랑처리후 항복강도가 낮았다. 또한, 종래강(2)도 C함량이 낮아서, 법랑처리후 항복강도가 낮았다. On the other hand, the conventional steel (1) was excellent in enameling properties, but because of the low C content, the graphite particles desired in the present invention was not produced. Because of this, yield strength was low after enamel processing. In addition, the conventional steel (2) also had a low C content and a low yield strength after enameling.

(실시예2)Example 2

냉간압하량이 흑연석출량과 피쉬스케일 발생에 미치는 영향을 알아보기 위하여, 실시예 1의 발명강(1)에 대해 하기 표3과 같이, 냉간압하량을 변화시키고 나머지는 실시예1과 동일한 식으로 하였다. 그 후, 실시예 1과 같은 조건으로 법랑처리를 실시하고, 피쉬스케일 발생정도를 조사하여, 그 결과를 하기 표3에 나타내었다. In order to examine the effect of the cold rolling amount on the graphite deposition amount and the fish scale generation, as shown in Table 3 below for the invention steel (1) of Example 1, the cold rolling amount is changed and the rest is the same as in Example 1 It was. Thereafter, the enameling treatment was carried out under the same conditions as in Example 1, and the degree of fish scale was investigated. The results are shown in Table 3 below.

구분division 냉간압하량(%)Cold rolling load (%) 흑연량(%)Graphite amount (%) 피쉬스케일수Fish Scale 발명재1Invention 1 00 0.120.12 00 발명재2Invention 2 2020 0.140.14 00 발명재3Invention 3 4040 0.150.15 00 비교재1Comparative Material 1 0.080.08 1010

상기 표3에 나타난 바와 같이, 발명재(1)~(3)은 냉간압하량이 10% 이상으로 본 발명의 조건을 만족시켜, 흑연석출량이 많고 피쉬스케일도 전혀 발생하지 않았다. 그 이유는, 냉간압하량이 10% 이상이면, 강판의 소성변형에 의해 BN과 기지의 계면에서 계면분리가 일어나 흑연이 석출하기 쉽고, 또한 전위를 따라 탄소의 이동이 용이하여 흑연석출속도가 빨라지기 때문이다.As shown in Table 3, the inventive materials (1) to (3) satisfy the conditions of the present invention with a cold reduction amount of 10% or more, and a large amount of graphite precipitated and no fish scale occurred. The reason is that if the cold reduction amount is 10% or more, the plastic deformation of the steel sheet causes interfacial separation at the interface between BN and the matrix, leading to precipitation of graphite, and easy movement of carbon along the dislocation, thereby increasing the graphite deposition rate. Because.

반면에, 비교재(1)은 냉간압연을 실시하지 않았기 때문에, 흑연 석출량이 적고 피쉬스케일도 발생하였음을 알 수 있다. On the other hand, since the comparative material 1 was not cold rolled, it can be seen that the amount of graphite precipitated was small and fish scale was also generated.

(실시예3)Example 3

소둔온도가 흑연량과 내피쉬스케일성에 미치는 영향을 알아보기 위해, 실시예 1의 발명강(1)에 대해 하기 표4와 같이, 소둔온도를 변화시키고 나머지는 실시예1과 동일한 식으로 하였다. 그 후, 실시예 1과 같은 조건으로 법랑처리를 실시하고, 피쉬스케일 발생정도를 조사하여, 그 결과를 하기 표4에 나타내었다.In order to determine the effect of the annealing temperature on the graphite amount and the fish scale resistance, as shown in Table 4 below, the annealing temperature of the invention steel (1) of Example 1 was changed to the same manner as in Example 1. Thereafter, enameling was performed under the same conditions as in Example 1, and the degree of fish scale was investigated. The results are shown in Table 4 below.

구분division 소둔온도(℃)Annealing Temperature (℃) 흑연량(%)Graphite amount (%) 피쉬스케일수Fish Scale 발명재4Invention 4 620620 0.20.2 00 발명재5Invention 5 650650 0.40.4 00 발명재6Invention 6 680680 0.60.6 00 발명재7Invention 7 710710 0.50.5 00 비교재2Comparative Material 2 560560 0.020.02 4040 비교재3Comparative Material 3 590590 0.080.08 2020 비교재4Comparative Material 4 740740 00 110110

상기 표4에 나타난 바와 같이, 흑연화를 위한 소둔에 있어서, 온도조건이 본 발명범위인 600~720℃를 만족하는 발명재(4)~(7)은, 흑연이 많이 석출되고, 피쉬스케일도 발생하지 않았음을 알 수 있다. As shown in Table 4, in the annealing for graphitization, the invention materials (4) to (7) that satisfies the 600 ~ 720 ℃ temperature conditions of the present invention range, a lot of graphite precipitates, fish scale It can be seen that it did not occur.

반면에, 소둔온도가 600℃ 미만으로 낮은 비교재(2),(3)은 석출되는 흑연량이 적어, 피쉬스케일이 발생하였고, 소둔온도가 720℃ 보다 높은 비교재(4)는 C가 오스테나이트에 고용되어 흑연이 석출되지 않기 때문에, 피쉬스케일이 많이 발생하였다. On the other hand, the comparative materials (2) and (3) having annealing temperature lower than 600 ° C. had a small amount of graphite precipitated, resulting in fish scale, and the comparative materials (4) having an annealing temperature higher than 720 ° C. showed austenite. Since a solid solution does not precipitate in graphite, many fish scales generate | occur | produced.

상기한 바와 같은, 본 발명에 의하면 냉연강판 내에 흑연입자를 미세하게 석출시켜 법랑소성처리시 쉽게 공공을 확보할 수 있기 때문에, 법랑제품에서 가장 큰 문제점중의 하나인 피쉬스케일 발생을 완전하게 방지할 수 있다. 또한, 소성처리시 흑연의 재고용에 따른 고강도의 법랑제품을 얻을 수 있다. 이에 따라, 가전제품이나 건축외장재의 내충격성도 향상시키고, 제품의 무게를 감소시켜 법랑강판의 수요확대에 크게 기여할 수 있는 효과가 있는 것이다. As described above, according to the present invention, since fine particles of graphite are precipitated in the cold rolled steel sheet, the pores can be easily secured during the enameling process, thereby completely preventing the occurrence of fish scale, which is one of the biggest problems in the enameled product. Can be. In addition, it is possible to obtain a high-strength enamel product in accordance with the re-stocking of graphite during the firing process. Accordingly, the impact resistance of home appliances or building exterior materials is also improved, and the weight of the product can be reduced, thereby greatly contributing to the expansion of demand for enamel steel sheets.

Claims (1)

중량%로, C:0.1~0.5%, Mn:0.1~0.5%, Al:0.01~0.1%, N:0.001~0.015%, B:0.0005~0.005%를 함유하고, Si는 Mn+0.06/C-0.21≤Si≤1.5%를 만족하도록 첨가되며, 잔부 Fe 및 불가피한 불순물들을 함유하는 열연강판을 600℃ 이상의 온도로 권취하고, 산세한 다음, 10% 이상의 냉간압하량으로 냉간압연하고, 600~720℃의 온도범위에서 소둔하는 것을 특징으로 하는 내피쉬스케일성이 우수한 고강도 냉연법랑강판의 제조방법By weight%, C: 0.1-0.5%, Mn: 0.1-0.5%, Al: 0.01-0.1%, N: 0.001-0.015%, B: 0.0005-0.005%, Si contains Mn + 0.06 / C- It is added to satisfy 0.21≤Si≤1.5%, and the hot rolled steel sheet containing the balance Fe and unavoidable impurities is wound to a temperature of 600 ° C or higher, pickled, and cold rolled to a cold rolling load of 10% or higher, and 600 to 720 ° C. Method for producing a high strength cold rolled enamel steel sheet having excellent fish scale resistance, characterized by annealing in the temperature range of
KR10-2000-0049504A 2000-08-25 2000-08-25 A method for manufacturing high strength cold-rolled enamel steel sheet with superior fishscale resistance KR100470669B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0049504A KR100470669B1 (en) 2000-08-25 2000-08-25 A method for manufacturing high strength cold-rolled enamel steel sheet with superior fishscale resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0049504A KR100470669B1 (en) 2000-08-25 2000-08-25 A method for manufacturing high strength cold-rolled enamel steel sheet with superior fishscale resistance

Publications (2)

Publication Number Publication Date
KR20020016267A KR20020016267A (en) 2002-03-04
KR100470669B1 true KR100470669B1 (en) 2005-03-07

Family

ID=19685126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0049504A KR100470669B1 (en) 2000-08-25 2000-08-25 A method for manufacturing high strength cold-rolled enamel steel sheet with superior fishscale resistance

Country Status (1)

Country Link
KR (1) KR100470669B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996714B (en) * 2009-08-11 2011-12-07 天津经纬电材股份有限公司 Enameled flat wire extruding and cladding process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348229A (en) * 1980-08-22 1982-09-07 Nippon Steel Corporation Enamelling steel sheet
JPS63183128A (en) * 1987-01-26 1988-07-28 Nkk Corp Manufacture of cold rolled steel sheet for enamel having superior fish scale resistance
KR940013637A (en) * 1992-12-29 1994-07-15 정명식 Enamel steel plate with excellent fish scale resistance and manufacturing method
JPH07242997A (en) * 1994-03-08 1995-09-19 Kawasaki Steel Corp Cold rolled steel sheet for porcelain enameling, having high strength after firing of porcelain enamel, and its production
JPH08269540A (en) * 1995-03-30 1996-10-15 Kawasaki Steel Corp Production of hot rolled steel plate for porcelain enameling, excellent in fishscale resistance
JPH11236648A (en) * 1998-02-24 1999-08-31 Sumitomo Metal Ind Ltd Cold rolled steel sheet for porcelain enameling and its production
KR20000015390A (en) * 1998-08-28 2000-03-15 이구택 Method for producing steel plate of good formability for enamelling
KR20000043783A (en) * 1998-12-29 2000-07-15 이구택 Method for producing cold rolled enamel steel sheet with high strength having excellent fish scaling resistance and adhering property

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348229A (en) * 1980-08-22 1982-09-07 Nippon Steel Corporation Enamelling steel sheet
JPS63183128A (en) * 1987-01-26 1988-07-28 Nkk Corp Manufacture of cold rolled steel sheet for enamel having superior fish scale resistance
KR940013637A (en) * 1992-12-29 1994-07-15 정명식 Enamel steel plate with excellent fish scale resistance and manufacturing method
JPH07242997A (en) * 1994-03-08 1995-09-19 Kawasaki Steel Corp Cold rolled steel sheet for porcelain enameling, having high strength after firing of porcelain enamel, and its production
JPH08269540A (en) * 1995-03-30 1996-10-15 Kawasaki Steel Corp Production of hot rolled steel plate for porcelain enameling, excellent in fishscale resistance
JPH11236648A (en) * 1998-02-24 1999-08-31 Sumitomo Metal Ind Ltd Cold rolled steel sheet for porcelain enameling and its production
KR20000015390A (en) * 1998-08-28 2000-03-15 이구택 Method for producing steel plate of good formability for enamelling
KR20000043783A (en) * 1998-12-29 2000-07-15 이구택 Method for producing cold rolled enamel steel sheet with high strength having excellent fish scaling resistance and adhering property

Also Published As

Publication number Publication date
KR20020016267A (en) 2002-03-04

Similar Documents

Publication Publication Date Title
US8491735B2 (en) Steel sheet for vitreous enameling and method for producing the same
EP0386758B1 (en) Steel sheets for porcelain enameling and method of producing the same
KR101289415B1 (en) Enameling steel sheet with surface defect free and manufacturing method thereof
KR102043795B1 (en) Enamelling cold-rolled steel sheet having excellent anti-fishscaling, and method of manufacturing the same
KR102169455B1 (en) Porcelain enamel steel sheet excellent in fish scale resistance and enamel adhesion property and manufacturing method thereof
KR970011629B1 (en) Method of manufacturing cold rolling sheet
KR100470669B1 (en) A method for manufacturing high strength cold-rolled enamel steel sheet with superior fishscale resistance
KR102179214B1 (en) Cold-rolled steel sheet for enamel and method of manufacturing the same
KR20000015390A (en) Method for producing steel plate of good formability for enamelling
KR100627475B1 (en) Method for manufacturing a high-strength hot rolled steel sheet havigng superior surface properties by using mini mill process
KR100401981B1 (en) A method for manufacturing two-sides enameled and hot-rolled steel sheets having superior fish scale resistance
KR100570891B1 (en) Manufacturing method of ferritic stainless steel
KR101657799B1 (en) Galvanized steel sheet having excellent elogation and method for manufacturing the same
KR20000043783A (en) Method for producing cold rolled enamel steel sheet with high strength having excellent fish scaling resistance and adhering property
KR100525646B1 (en) Fabrication method of hot rolled steel plate for enamel
KR100402009B1 (en) A method for manufacturing a hot rolled sheet steel for the both side enamel coating
KR100361753B1 (en) Method for manufacturing hot rolled enamel steel sheet using thin slab direct rolling
KR100525645B1 (en) Fabrication method of hot rolled steel plate for enamel
CN117004887A (en) Steel plate for daily enamel products and preparation method thereof
KR20020041027A (en) A cold rolled steel sheet for direct-on enamel applications with excellent adherence
JPH02156043A (en) Al killed steel sheet for porcelain enameling and its production
KR100347570B1 (en) Method for manufacturing steel sheet for enameled ironware with excellent formability and surface property
KR100506634B1 (en) Manufacturing method of hot coil for enameled ironware
WO2023057106A1 (en) Hot-rolled enamelling steel sheet and method for its production
KR960007432B1 (en) Making method of high strength cold rolling steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120104

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130107

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee