KR100469920B1 - Non-halogen fire retardant material and method thereof - Google Patents

Non-halogen fire retardant material and method thereof Download PDF

Info

Publication number
KR100469920B1
KR100469920B1 KR10-2002-0028972A KR20020028972A KR100469920B1 KR 100469920 B1 KR100469920 B1 KR 100469920B1 KR 20020028972 A KR20020028972 A KR 20020028972A KR 100469920 B1 KR100469920 B1 KR 100469920B1
Authority
KR
South Korea
Prior art keywords
nitrogen
phosphorus
compound
flame retardant
metal
Prior art date
Application number
KR10-2002-0028972A
Other languages
Korean (ko)
Other versions
KR20030091136A (en
Inventor
권수한
이대희
현동호
조현덕
김상범
Original Assignee
주식회사 두본
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두본 filed Critical 주식회사 두본
Priority to KR10-2002-0028972A priority Critical patent/KR100469920B1/en
Publication of KR20030091136A publication Critical patent/KR20030091136A/en
Application granted granted Critical
Publication of KR100469920B1 publication Critical patent/KR100469920B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

무기물옥사이드, 하이드록사이드 또는 기타 금속계 난연제와 질소계 난연제를 인산과 동시에 합성시켜 각각의 장단점을 모두 충족 시킬수 있는 새로운 비할로겐 난연제 및 그 제조방법이 개시된다. 상기한 비할로겐 난연제 및 그 제조방법은 멜라닌계, 우레아계, 아민계 또는 아마이드계 등의 기존 질소계에 인을 붙이는 질소-인계반응 공정 중에 무기물옥사이드, 하이드록사이드 또는 금속화합물을 같이 포함시켜 인계화합물을 반응시킨 다음, 고온으로 가열 축합시킴을 특징으로 하는 금속 솔트화된 질소-인계 난연제의 제조방법을 제공함으로써 달성된다.Disclosed are a new non-halogen flame retardant and a method of preparing the same, which can simultaneously synthesize inorganic oxides, hydroxides or other metal-based flame retardants and nitrogen-based flame retardants with phosphoric acid to satisfy each of the advantages and disadvantages. The non-halogen flame retardant and the method for preparing the same include phosphorus-based compounds including inorganic oxides, hydroxides or metal compounds in a nitrogen-phosphorus reaction process in which phosphorus is attached to existing nitrogen-based compounds such as melanin-based, urea-based, amine-based or amide-based compounds. It is achieved by providing a process for preparing a metal salted nitrogen-phosphorous flame retardant characterized by reacting a compound and then heat condensing it to a high temperature.

Description

비할로겐 난연제 및 그 제조방법{Non-halogen fire retardant material and method thereof}Non-halogen flame retardant and its manufacturing method {Non-halogen fire retardant material and method

고분자는 인간의 삶에 있어서 매우 중요한 역할을 하고 있으며 생활 주변에서 쉽게 찾아볼 수 있는 생활의 일부분이 되었다. 그래서 일상 생활에서 고분자의 기능이 더욱 다양해지고 있고 특히 화재가 발생했을 시 불에 타지 않는 난연의 기능은 인간의 안전과 관련된 매우 중요한 요소의 일부분이 되었다. 따라서 고분자의 난연은 그 기능 및 성능 면에서 더욱 다양해지고 있다. 종래의 난연은 브롬이나 염소가 포함된 할로겐계 난연제가 주로 사용되었다.Polymers play a very important role in human life and have become a part of life that can be easily found around them. Therefore, the function of the polymer is becoming more diverse in daily life, and the function of flame retardant, which does not burn in the event of fire, has become a part of a very important factor related to human safety. Therefore, the flame retardancy of the polymer is becoming more diverse in terms of its function and performance. Conventional flame retardant is mainly used a halogen-based flame retardant containing bromine or chlorine.

이 할로겐계 난연제는 연쇄연소의 라디칼을 정지시켜 연소를 중지시키는 매우 뛰어난 난연성을 가지고 있어 현재까지도 많이 사용되고 있다. 그리고 무기물인 안티몬계와 혼용 사용할 경우에는 그 효과가 더욱 향상되는 특징이 있다. 그러나 이러한 할로겐 난연제는 연소 시 유독가스의 발생으로 인하여, 인체에 유해할 뿐 아니라 환경에도 좋지 않은 영향을 미친다. 그래서 할로겐 난연제에 대한 사용 규제가 강화되고 있고 최근 환경단체뿐 아니라 국가별 법적 규제도 점차 강화되고 있다. 또한 할로겐 난연제와 같이 사용되고 있는 안티몬계도 독성이 있는 것으로 그사용 또한 제한되게 되었다. 그래서 최근에 비할로겐 난연제에 대한 연구가 활발히 진행되고 있고 다양한 것들이 개발되고 있다. 비할로겐 난연제의 종류로는 인계, 무기물옥사이드나 하이드록사이드계, 질소화합물계, 실리콘계 등이 있다. 그러나 아직까지 할로겐 난연제의 성능을 따라갈 만한 난연제의 개발이 이루어지지 않고 있어 이에 대한 연구가 매우 필요하다. 인계 난연제는 여러 가지 종류의 유도체들이 개발되어 사용되고 있으며, 난연성은 좋지만 물성적인 면에서 취약한 점이 많고, 무기물옥사이드나 하이드록사이드계는 난연성이 약하여 많은 량을 첨가해야하는 단점이 있다.This halogen flame retardant has a very excellent flame retardancy which stops combustion by stopping radicals of chain combustion and is still used a lot. And when used in combination with inorganic antimony system is characterized in that the effect is further improved. However, these halogen flame retardants are not only harmful to the human body due to the generation of toxic gases during combustion, but also adversely affect the environment. As a result, regulations on the use of halogen flame retardants have been strengthened, and legal regulations by countries as well as environmental organizations have recently been tightened. In addition, antimony-based compounds used with halogen flame retardants are also toxic and their use has been limited. Recently, research on non-halogen flame retardants has been actively conducted and various things have been developed. Examples of the non-halogen flame retardant include phosphorus, inorganic oxides and hydroxides, nitrogen compounds, and silicones. However, the development of flame retardants to match the performance of the halogen flame retardant has not been made so much research is necessary. Phosphorus-based flame retardants have been developed and used in various kinds of derivatives, good flame retardancy but many physically weak points in terms of properties, inorganic oxide or hydroxide-based flame retardant has a disadvantage of having to add a large amount.

질소화합물계나, 실리콘계도 단독으로는 난연성을 부여하기 어려운 정도의 난연으로 각각의 장단점을 보완한 새로운 난연제의 개발이 필요하게 되었다.Nitrogen compounds and silicones are also flame retardant to the extent that it is difficult to impart flame retardancy by itself. Therefore, it is necessary to develop a new flame retardant supplementing the advantages and disadvantages.

본 발명은 상기한 문제점들을 해소하고 신규 난연제 개발의 필요성을 충족시키기 위한 것으로서 무기물옥사이드나 하이드록사이드 또는 기타 금속계 난연제와 질소계 난연제를 인산과 동시에 합성시켜, 각각의 장단점을 모두 충족시킬 수 있는 난연제 및 그 제조방법을 제공하는데 주목적이 있다. 본 발명의 또다른 목적은 상기 제조된 난연제를 고분자 및 기타 용도의 난연제로 응용하는 방법을 제공하는데 있다.The present invention is to solve the above problems and to meet the need for the development of a new flame retardant, a flame retardant that can meet both of the advantages and disadvantages by synthesizing inorganic oxide, hydroxide or other metal flame retardant and nitrogen flame retardant simultaneously with phosphoric acid And a manufacturing method thereof. It is another object of the present invention to provide a method of applying the prepared flame retardant as a flame retardant for polymers and other uses.

현재 비할로겐 난연제의 종류로는 금속옥사이드나 하이드록사이드계, 질소화합물계, 인계, 실리콘계 등이 있다. 여기서 사용되는 비할로겐 난연제의 종류들은각각의 장단점을 서로 지니고 있다. 그래서 효과적인 복합성질의 난연제를 제조하기 위해서 위의 각 비할로겐 난연제들을 합성 시부터 같이 반응시켜, 상호간의 단점을 보완하고, 장점을 극대화시키는데 주안점을 두었다. 본 발명에서의 기본 베이스 화합물로는 이미 여러 가지 용도로 사용되는 난연제인 멜라민 포스페이트, 멜라민피로포스페이트, 멜라민폴리포스페이트, 암모늄포스페이트, 암모늄폴리포스페이트 등과 같이 질소 화합물과 인이 결합된 제품의 성질을 이용하고, 같이 복합반응 시키는 첨가 무기계 화합물은 알루미늄옥사이드나 하이드록사이드, 마그네슘옥사이드나 하이드록사이드, 삼산화 또는 오산화안티몬, 진크옥사이드나 진크하이드록사이드, 진크보레이트, 모리브덴옥사이드, 제올라이트, 하이드로탈사이트, 등 일반적으로 고분자에 쓰이거나 난연성을 나타내는데 도움을 줄 수 있는 무기물을 주로 사용한다. 즉 질소-인계 난연제인 멜라민이나 암모늄포스페이트계의 단점을 보완하는데 무기물계 비할로겐 난연제의 종류가 기여하게 하고 이것들을 인과 같이 반응시킴으로서 고분자에 있어서 물리적인 성질 및 난연성을 향상시키는 효과를 가져오게 한다. 이것은 질소-인계 난연제를 합성한 후에 무기계 화합물을 첨가하는 것보다 난연성이 우수하고 질소대비 인의 함량도 훨씬 증가시킬 수 있기 때문이다. 또한 일부 무기계는 인화합물과 반응하여 새로운 난연효과를 증대시킬 수 있으며, 질소-인계만의 합성 후 분쇄보다 분쇄성도 우수하고, 혼합에 대한 물리적인 단점도 해결할수 있어 여러 가지 면에서 효과적인 새로운 고분자 난연제를 생산한다. 특히 고분자에 첨가되었을 때의 물리적인 성질이 기존 질소-인계의 것보다 훨씬 향상될 수 있다.Currently, non-halogen flame retardants include metal oxides, hydroxides, nitrogen compounds, phosphorus, and silicon. The non-halogen flame retardants used here have their advantages and disadvantages. Therefore, in order to prepare an effective composite flame retardant, each of the above non-halogen flame retardants were reacted together at the time of synthesis, so as to complement the disadvantages of each other and maximize the advantages. The basic base compound in the present invention uses the properties of products in which nitrogen compounds and phosphorus are combined, such as melamine phosphate, melamine pyrophosphate, melamine polyphosphate, ammonium phosphate, ammonium polyphosphate, etc., which are already used for various purposes. For example, the additive inorganic compound to be complex-reacted may be aluminum oxide or hydroxide, magnesium oxide or hydroxide, trioxide or antimony pentoxide, zinc oxide or zinc hydroxide, zinc borate, molybdenum oxide, zeolite, hydrotalcite, In general, inorganic materials that are used in polymers or can help to show flame retardancy are mainly used. That is, the inorganic non-halogen flame retardant type contributes to supplementing the shortcomings of melamine or ammonium phosphate, which are nitrogen-phosphorous flame retardants, and reacts them with phosphorus, thereby improving the physical properties and flame retardancy in the polymer. This is because the synthesis of the nitrogen-phosphorus flame retardant is superior to the flame retardancy than the addition of the inorganic compound and can increase the content of phosphorus relative to nitrogen. In addition, some inorganic compounds can increase the new flame retardant effect by reacting with the phosphorus compound, and have better grinding properties than the pulverization after the synthesis of nitrogen-phosphorus alone, and can solve the physical disadvantages of mixing. To produce. In particular, the physical properties of the polymer when added to it can be much improved than that of the existing nitrogen-phosphorus.

상기와 같은 본발명의 목적을 달성하기 위하여,In order to achieve the above object of the present invention,

본 발명은 1차로 기존 질소계(멜라민계, 우레아계, 아민계, 아마이드계 등)에 인을 붙이는 질소-인계 반응 제조공정 중에 무기물옥사이드나 하이드록사이드, 또는 기타 금속화합물을 같이 포함시켜, 인계화합물과 반응시키고, 2차로 이것을 높은 온도로 가열하여 축합시켜, 금속솔트화된 질소-인계난연제를 제조하는 방법이다. 이때 1차로 반응시키는 제조공정은 질소계 물질 1종류 또는 2종류(0.1-99%까지)이상 혼합한 것에 무기물옥사이드나 하이드록사이드, 또는 기타 금속화합물을 위의 질소계 화합물 1종 또는 2종류이상 혼합한 것에 대해 무게 비율로 0.1-99%까지 혼합한 다음 인계화합물을(질소계화합물 1 mole대비 1-3 mole까지)서서히 첨가시키면서 0-150℃의 온도 사이에서 반응을 진행시킴이 바람직하다. 여기서 사용할 수 있는 질소계 중 멜라민계 화합물은 멜라민(melamine), 멜람(melam), 멜렘(melem), 멜론(melon), 아멜린(ammeline), 아멜리드(ammelide), 우레이도멜라민(2-ureidomelamine), 메틸렌 디멜라민, 에틸렌디멜라민, 트리메틸렌 디멜라민, 테트라메틸렌디멜라민, 헥사메틸렌 디멜라민, 데카메틸렌디멜라민, 도데카메틸렌디멜라민, p-페닐렌 디멜라민, 1,3-사이클로헥실렌디멜라민, p-크실렌 디멜라민, 디에틸렌 트리멜라민, 트리에틸렌 테트라멜라민, 테트라에틸렌펜타멜라민과 헥사에틸렌 헵타멜라민, 멜라민 사아누레이트 또는 적어도 한 개 이상의 치환체가 메틸, 페닐, 카르복시메틸, 2-카르복시에틸, 시아노메틸, 2-시아노에틸 등으로 치환된 멜라민 시아누레이트 화합물을 포함할 수 있다.The present invention primarily includes an inorganic oxide, hydroxide, or other metal compound in the nitrogen-phosphorus reaction manufacturing process for attaching phosphorus to existing nitrogen-based (melamine-based, urea-based, amine-based, amide-based, etc.). A method of producing a metal salted nitrogen-phosphorus flame retardant by reacting with a compound and condensing it by heating it to a high temperature secondly. At this time, the manufacturing process of the first reaction is a mixture of one or two or more kinds of nitrogen-based materials (up to 0.1-99%) and one or two or more kinds of nitrogen-based compounds with inorganic oxides, hydroxides or other metal compounds. It is preferable to mix up to 0.1-99% by weight with respect to the mixture, and then proceed with the reaction between 0-150 ° C. while slowly adding phosphorus compounds (up to 1-3 moles of 1 mole of nitrogen compounds). Among the nitrogen-based compounds that can be used here are melamine, melam, melam, memel, melon, ammeline, ammelide, ureidomelamine, and 2-ureidomelamine. ), Methylene dimelamine, ethylenedimelamine, trimethylene dimelamine, tetramethylenedimelamine, hexamethylene dimelamine, decamethylenedimelamine, dodecamethylenedimelamine, p-phenylene dimelamine, 1,3-cyclohexylene Dimelamine, p-xylene dimelamine, diethylene trimelamine, triethylene tetramelamine, tetraethylenepentamamine and hexaethylene heptamelamine, melamine saanurate or at least one substituent is methyl, phenyl, carboxymethyl, 2-carboxy Melamine cyanurate compounds substituted with ethyl, cyanomethyl, 2-cyanoethyl, and the like.

또 사용할 수 있는 기타 질소계 화합물은 암모늄카보네이트, 알킬카바메이트, 암모늄설파메이트, 아민, 에틸아민, 디에틸아민, 아마이드, 폴리아마이드, 아미딘, 알디민, 알킬아놀아민, 알킬이소시아네이트, 설퍼아믹액시드, 디시안디아마이드,우레아, 우레아카보네이트, 디에틸아미노우레아, 우레아화합물, 티오우레아, 티오우레아유도체, 니트릴, 케티민, 암모늄카보네이트, 암모늄바이카보네이트, 아미노구아니딘, 아세토구아나민 (acetoguanamine), 벤조구아나민(benzoguanamine),구아니딘카보네이트, 구아니딘, 시아누릭산 및 유도체, 포스파젠 및 유도체 등이 있다.Other nitrogen compounds that may be used include ammonium carbonate, alkyl carbamate, ammonium sulfamate, amine, ethylamine, diethylamine, amide, polyamide, amidine, aldimine, alkylanolamine, alkyl isocyanate, and sulfur Mixic acid, dicyanamide, urea, ureacarbonate, diethylaminourea, urea compound, thiourea, thiourea derivatives, nitrile, ketimine, ammonium carbonate, ammonium bicarbonate, aminoguanidine, acetoguanamine, acetoguanamine Guanamine (benzoguanamine), guanidine carbonate, guanidine, cyanuric acid and derivatives, phosphazenes and derivatives, and the like.

같이 반응공정에 첨가시키는 금속화합물의 종류에는 알루미늄옥사이드나 하이드록사이드 또는 카보네이트, 마그네슘옥사이드나 하이드록사이드 또는 카보네이트, 칼슘옥사이드나 하이드록사이드 또는 카보네이트, 진크옥사이드나 하이드록사이드 또는 카보네이트, 실리콘옥사이드나 하이드록사이드 또는 카보네이트, 실리카, 알카리메탈실리케이트, 메탈실리케이트, 삼산화안티몬 또는 오산화안티몬, 바륨옥사이드나 하이드록사이드또는 카보네이트, 진크보레이트, 보릭엑시드 등 보릭화합물, 모리브덴옥사이드나 하이드록사이트, 제올라이트, 하이드로탈사이트, 탈크, 그라파이트, 그라파이트화합물, 티타늄옥사이드 등을 사용할 수 있다.The kinds of metal compounds added to the reaction process may include aluminum oxide, hydroxide or carbonate, magnesium oxide or hydroxide or carbonate, calcium oxide or hydroxide or carbonate, zinc oxide or hydroxide or carbonate, silicon oxide, Hydroxide or carbonate, silica, alkali metal silicate, metal silicate, antimony trioxide or antimony pentoxide, barium oxide or hydroxide or carbonate, zinc borate, boric acid, boric compounds such as boric acid, molybdenum oxide or hydroxide, zeolite, Hydrotalcite, talc, graphite, graphite compounds, titanium oxide and the like can be used.

위의 화합물들과 같이 반응시키는 인계 화합물은 포스포릭액시드, 올소포스포릭액시드, 피로포스포릭액시드, 트리포스포릭앳시드, 메타포스포릭앳시드, 포스포러스액시드, 하이드로포스포러스액시드, 포스피닉액시드, 포스피노스액시드, 포스파인옥사이드, 포스포러스트리할라이드, 포스포러스옥시할라이드, 포스포러스옥사이드, 모노메탈하이드로겐포스페이트, 암모니아디하이드로겐포스페이트, 브로메이트 포스페이트, 알카리메탈디하이드로겐포스페이트, 할로게네이티드포스페이트, 유기포스포러스화합물, 알킬포스파인, 알킬크로로포스파인, 알킬포스파이트, 유기산포스페이트, 디알킬하이드로겐포스파이트, 아릴하이드로겐포스페이트, 하이드로유기디포스포네이트에스터, 아릴포스파이트, 디알킬포스포네이트, 트리알킬포스파이트, 할로게네이티드포스포네이트에스터 등이 있다. 1차 반응을 완료한 후 150℃에서 수분 또는 용제를 완전히 건조시킨 후 서서히 가열하여,150-450℃까지 각각의 분해온도 특성에 따라 30분에서 10시간 까지 충분히 축합시켜, 반응을 완결함이 바람직하다. 여기서 암모니아 또는 기타 발생되는 물질은 감압으로 제거해 주며, 반응이 완결된 후 각종 분쇄기로 분쇄를 하여, 고분자 난연에 응용 한다. 이때 입자의 크기는 미세할수록 좋으나 0.2-50㎛사이의 분포를 가지며, 평균입자는 20㎛이하가 좋다. 이 새로운 난연제는 각각의 용도에 따라 다른 유기인계 난연제와 같이 사용할 수 있으며, 같이 사용 가능한 인계 난연제는 트리페닐포스페이트(triphenyl phosphate) 및 트리알킬페닐포스페이트(trialkylphenyl phosphate), 트리크레실포스페이트(tricrecylphosphate), 프로필레이티드트리페닐포스페이트(propylated triphenylphosphate), 부틸레이티드트리페닐포스페이트(butylated triphenyl phosphate),트리에틸포스페이트(triethylphosphate), 트리부틸포스페이트(tributyl phosphate), 레소시놀디포스페이트(resorcinoldiphosphate), 비스페놀디포스페이트Phosphorous compounds reacted with the above compounds are phosphoric acid, olsophosphoric acid, pyrophosphoric acid, triphosphoric acid, metaphosphoric acid, phosphorus acid, hydrophosphorus acid, Phosphonic Acid, Phosphos Oxide, Phosphine Oxide, Phosphorustrihalide, Phosphorus Oxyhalide, Phosphorus Oxide, Monometal Hydrogen Phosphate, Ammonia Dihydrogen Phosphate, Bromate Phosphate, Alkaline Metal Dihydrogen Phosphates, halogenated phosphates, organophosphorus compounds, alkyl phosphines, alkyl chlorophosphines, alkyl phosphites, organic acid phosphates, dialkylhydrogen phosphates, arylhydrogen phosphates, hydroorganic diphosphonates, aryl phosphates Pit, Dialkyl Phosphate, Trialkyl Phosphite, Hal Geneyi lactide and the like phosphonate ester. After completion of the first reaction, it is preferable to completely dry the water or solvent at 150 ° C., and then gradually heat it, and then condensate sufficiently for 30 minutes to 10 hours according to each decomposition temperature characteristic up to 150-450 ° C. to complete the reaction. Do. Here, ammonia or other generated substances are removed under reduced pressure, and after completion of the reaction, are pulverized by various pulverizers and applied to polymer flame retardant. At this time, the finer the particle size is, the better the distribution is between 0.2-50 μm and the average particle size is 20 μm or less. This new flame retardant can be used with other organophosphorus flame retardants depending on the application. The phosphorus flame retardants can be used together with triphenyl phosphate, trialkylphenyl phosphate, tricrecylphosphate, Propylated triphenylphosphate, butylated triphenyl phosphate, triethylphosphate, tributyl phosphate, resorcinol diphosphate, bisphenol diphosphate

(bisphenoldiphosphate), 디메틸메틸포스포네이트(dimethyl methyl phosphonate),폴리포스페이트에스터(polyphosphate ester), 올리고머릭오가노포스페이트(oligomeric organophosphate), 에틸피로카데콜포스페이트, 디피로카데콜바이포스페이트,폴에틸에틸렌옥시포스페이트(polyethylene ethyleneoxy phosphate),메틸네오펜틸포스페이트(methylneopentylphosphate), 펜타에리스리톨디에틸포스페이트(pentaeritritoldiethylphosphate), 펜타에리스리톨 디페닐포스페이트(pentaeritritoldiphenylphosphate), 메틸네오펜틸포스포네이트(methylneopentylphosphonate),디사이크로펜틸디포스페이트 (dicyclopentyldiphosphate), 디네오펜틸바이포스페이트(dineopentylbiphosphate), 등이 있고 본 발명의 비 할로겐 난연제의 적용 및 응용사용 가능한 고분자는 폴리염화비닐, 폴리에스터, 페놀계수지, 아민계수지, 폴리에틸렌수지 호모 및 블록코폴리머 또는 그 공중합체, 폴리프로필렌수지 호모 및 블록코폴리머 또는 공중합체, 폴리페닐렌에테르, 폴리페닐렌옥사이드, 폴리우레탄수지, 헤테로사이클비닐컴파운드, 폴리에틸렌텔레프탈레이트, 아크릴로니트릴수지, 비닐아세테이트와스타이렌공중합체, 폴리카보네이트, 폴리스티렌, 아크릴로니트릴부타디엔스타이렌 공중합체, 스타이렌아크로니트릴코폴리머, 폴리에테르, 하이임펙트폴리스타이렌, 폴리부타디엔, 아로마틱비닐컴파운드, 폴리설폰, 폴리옥시메틸렌, 비닐아세테이트스타이렌공중합체, 폴리이미드, 나이론수지, 페노플라스트, 아미노플라스트, 퓨란, 폴리아마이드, 폴리테트라플루오르에틸렌,메타아그릴로니트릴수지, 실리콘계수지, 사이크릭불포화수지, 우레탄실리케이트, 셀룰로즈에스터, 크로리네이티드러버, 셀룰로즈에테르, 시아노에틸셀룰로즈, 셀룰로즈아세테이트 등이다. 또한 고분자 이외에도 제지, 고무, 목재, 도료 등에도 응용할 수 있다.(bisphenoldiphosphate), dimethyl methyl phosphonate, polyphosphate ester, oligomeric organophosphate, ethyl pyrocatechol phosphate, dipyrocatechol biphosphate, polyethylethyleneoxy Phosphate (polyethylene ethyleneoxy phosphate), methyl neopentyl phosphate (methylneopentyl phosphate), pentaerythritol diethyl phosphate, penta erythritol diphenyl phosphate (pentaeritritol diphenyl phosphate), methyl neopentyl phosphonate (methylneopent dimethyl phosphate) dicyclopentyldiphosphate, dineopentylbiphosphate, and the like, and the polymers to which the non-halogen flame retardant of the present invention can be applied and applied include polyvinyl chloride, polyester, phenol resin, amine resin, polyethylene resin homo and block copolyol. Or copolymers thereof, polypropylene resin homo and block copolymers or copolymers, polyphenylene ether, polyphenylene oxide, polyurethane resin, heterocycle vinyl compound, polyethylene terephthalate, acrylonitrile resin, vinyl acetate and styrene Styrene copolymer, polycarbonate, polystyrene, acrylonitrile butadiene styrene copolymer, styrene acrylonitrile copolymer, polyether, high impact polystyrene, polybutadiene, aromatic vinyl compound, polysulfone, polyoxymethylene, vinyl acetate styrene Copolymer, Polyimide, Nylon Resin, Phenoplast, Aminoplast, Furan, Polyamide, Polytetrafluoroethylene, Methagrylonitrile Resin, Silicone Resin, Cyclic Unsaturated Resin, Urethane Silicate, Cellulose Ester, Chlorinate Tide rubber, cellulose ether, Such as a cyano ethyl cellulose, cellulose acetate. In addition to the polymer, it can be applied to papermaking, rubber, wood, paint, and the like.

이하에서는 바람직한 실시예를 통하여 본 발명을 설명한다.Hereinafter, the present invention will be described through preferred embodiments.

(실시예 1)(Example 1)

멜라민200g과 마그네슘옥사이드40g을 스테인레스 반응기(1.5L)에 넣고 10-20분 정도 교반하여 섞어준다. 80%수용액 상태의 인산 155.3g을 서서히 첨가하면서 반응을 시키고, 발열에 의해서 발생되는 수분은 잘 증발할 수 있도록 열어준다. 발열반응이 어느 정도 완료되면 온도를 150℃까지 서서히 증가시켜, 수분을 완전히 증발시킨다. 분말상태로 교반을 계속 하면서 고온(300-450℃)으로 온도를 계속 올려 1시간 이상 반응을 진행시킨 후 온도를 서서히 상온으로 내려 분쇄하여 샘플 1을 얻는다.Melamine 200g and magnesium oxide 40g into a stainless reactor (1.5L) was stirred and mixed for 10-20 minutes. The reaction is slowly added with 155.3 g of 80% aqueous phosphoric acid. The moisture generated by the exotherm is opened to evaporate well. When the exothermic reaction is completed to some degree, the temperature is gradually increased to 150 ° C., and the water is completely evaporated. While continuing stirring in a powder state, the temperature was continuously raised to a high temperature (300-450 ° C.) for 1 hour or more, and then the temperature was gradually lowered to room temperature to obtain sample 1.

(실시예 2)(Example 2)

멜라민200g과 알루미늄하이드록사이드150g을 스테인레스 반응기(3L)에 넣고200 g of melamine and 150 g of aluminum hydroxide were added to a stainless reactor (3 L).

10-20분 정도 교반하여 섞어준다. 80%수용액 상태의 인산 200g을 서서히 첨가하면서 반응을 시키고, 발열에 의해서 발생되는 수분은 잘 증발할 수 있도록 열어준다. 발열반응이 어느 정도 완료되면 온도를 150℃까지 서서히 증가시켜, 수분을 완전히 증발시킨다. 분말상태로 교반을 계속 하면서 고온(300-450℃)으로 온도를 계속 올려 1시간 이상 반응을 진행시킨 후 온도를 서서히 상온으로 내려 분쇄 하여 샘플 2를 얻는다.Stir for 10-20 minutes and mix. 200g of 80% aqueous solution of phosphoric acid is slowly added, and the moisture generated by exotherm is opened to evaporate well. When the exothermic reaction is completed to some degree, the temperature is gradually increased to 150 ° C., and the water is completely evaporated. While continuing to stir in a powder state, the temperature is continuously raised to a high temperature (300-450 ° C.) for 1 hour or more, and then the temperature is gradually lowered to room temperature to obtain sample 2.

(실시예 3)(Example 3)

멜라민200g과 우레아 97.96g 그리고 진크보레이트 100g을 스테인레스 반응기(3L)에 넣고 10-20분 정도 교반하여 섞어준다. 80%수용액 상태의 인산 350g을 서서히 첨가하면서 반응을 시키고, 발열에 의해서 발생되는 수분은 잘 증발할 수 있도록 열어준다. 발열반응이 어느 정도 완료되면 온도를 150℃까지 서서히 증가 시켜, 수분을 완전히 증발시킨다. 분말상태로 교반을 계속 하면서 고온(300-450℃)으로 온도를 계속 올려 1시간 이상 반응을 진행시킨 후 온도를 서서히 상온으로 내려 분쇄하여 샘플 3을 얻는다.200g of melamine, 97.96g of urea and 100g of ginkborate are added to a stainless reactor (3L) and mixed by stirring for 10-20 minutes. The reaction is performed by slowly adding 350 g of 80% aqueous phosphoric acid, and the moisture generated by the exotherm is opened to evaporate well. After the exothermic reaction is completed to some extent, the temperature is gradually increased to 150 ° C. to completely evaporate the moisture. While continuing to stir in a powder state, the temperature is continuously raised to a high temperature (300-450 ° C.) for 1 hour or more, and then the temperature is gradually lowered to room temperature to obtain sample 3.

(실시예 4)(Example 4)

멜라민200g과 우레아 97.96g 그리고 마그네슘하이드록사이드 80g을 스테인레스 반응기(3L)에 넣고 10-20분 정도 교반하여 섞어준다. 80%수용액 상태의 인산 320g을 서서히 첨가하면서 반응을 시키고, 발열에 의해서 발생되는 수분은 잘 증발할 수 있도록 열어준다. 발열반응이 어느 정도 완료되면 온도를 150℃까지 서서히 증가시켜, 수분을 완전히 증발시킨다. 분말상태로 교반을 계속 하면서 고온(300-450℃)으로 온도를 계속 올려 1시간 이상 반응을 진행시킨 후 온도를 서서히 상온으로 내려 분쇄하여 샘플 4를 얻는다.200 g of melamine, 97.96 g of urea and 80 g of magnesium hydroxide are added to a stainless reactor (3 L) and stirred for 10-20 minutes to mix. The reaction is slowly added with 320 g of 80% aqueous phosphoric acid, and the moisture generated by the exotherm is opened to evaporate well. When the exothermic reaction is completed to some degree, the temperature is gradually increased to 150 ° C., and the water is completely evaporated. While continuing to stir in a powder state, the temperature is continuously raised to a high temperature (300-450 ° C.), and the reaction is performed for 1 hour or more, and then the temperature is gradually lowered to room temperature to obtain sample 4.

(난연성 평가)(Flame retardancy evaluation)

폴리프로필렌(호모폴리머, 1차산화방지제 500ppm, 2차산화방 지제1,000ppm)에 위에서 합성한 샘플1 에서 샘플4 까지를 200℃에서 니딩(Kneading)을 한 다음,트윈스크루엑스트루더(Twin-screw extruder)에서 펠렛화 한 후, 측정 샘플을 만들었다.The polypropylene (homopolymer, 500 ppm primary antioxidant, 1,000 ppm secondary antioxidant) was kneaded from Sample 1 to Sample 4 synthesized above at 200 ° C., followed by Twin-screw After pelleting in an extruder, a measurement sample was made.

▲ 측정항목▲ Metric

- Flame retardancy : UL-94(Underlighter Laboratories Incorporation)Flame retardancy UL-94 (Underlighter Laboratories Incorporation)

- Oxygen index : ASTM D2863에 의한 Oxygen indexOxygen index: Oxygen index according to ASTM D2863

▲ 난연제 적용실험표▲ Test Table for Flame Retardants

(*) Polypropylene(Homopolymer, 1차산화방지제Irganox 1010: 500ppm,(*) Polypropylene (Homopolymer, primary antioxidant Irganox 1010: 500 ppm,

2차산화방지제 Irgafos 168: 1,000ppm)Secondary antioxidant Irgafos 168: 1,000 ppm)

본 발명은 효과적인 비할로겐 난연제의 제조방법 및 고분자에서의 응용에 관한 것으로 1차로 기존 질소계(멜라민계, 우레아계, 아민계, 아마이드계 등)에 인을 붙이는 질소-인계 반응 제조공정 중에 무기물옥사이드나 하이드록사이드, 또는 기타 금속화합물을 같이 포함시켜, 인계화합물과 반응시키고, 2차로 이것을 높은 온도로 가열하여 축합시켜, 금속솔트화된 질소-인계난연제를 제조하는 방법이다. 즉질소-인계 난연제인 멜라민 이나 암모늄포스페이트계의 단점을 보완하는데 무기물계 비할로겐 난연제의 종류가 기여하게 하고 이것들을 인과 같이 반응시킴으로서 고분자에 있어서 물리적인 성질 및 난연성을 향상시키는 효과를 가져오게 하였다. 이것은 질소-인계 난연제를 합성한 후에 무기계 화합물을 첨가하는 것보다 난연성이 우수하고 질소대비 인의 함량도 훨씬 증가시킬 수 있다. 또한 일부 무기계는 인화합물과 반응하여 새로운 난연효과를 증대시킬 수 있으며, 질소-인계만의 합성 후 분쇄보다 분쇄성도 우수하고, 혼합에 대한 물리적인 단점도 해결할 수 있어 여러 가지 면에서 효과적인 새로운 고분자 난연제이다. 또한 이 새로운 난연제는 분해온도가 높아 고분자 이외에도 제지, 고무, 목재, 도료 등에도 응용할 수 있다.The present invention relates to a method for preparing an effective non-halogen flame retardant and its application in a polymer, and is an inorganic oxide oxide during a process for preparing nitrogen-phosphorus reaction which first attaches phosphorus to existing nitrogen-based (melamine-based, urea-based, amine-based, amide-based, etc.). Or a hydroxide or other metal compound together, react with a phosphorus compound, and condensate it by heating it to a high temperature for the second time to produce a metal salted nitrogen-phosphorus flame retardant. In other words, the inorganic non-halogen flame retardants contribute to supplementing the shortcomings of the melamine- or ammonium phosphate-based nitrogen-phosphorous flame retardant, and reacting them with phosphorus to improve the physical properties and flame retardancy in the polymer. This is superior to the flame retardancy than the addition of the inorganic compound after the synthesis of the nitrogen-phosphorous flame retardant and can increase the content of phosphorus relative to nitrogen. In addition, some inorganic compounds can increase the new flame retardant effect by reacting with the phosphorus compound, and have better grinding properties than the pulverization after the synthesis of nitrogen-phosphorus alone, and also solve the physical disadvantages of mixing, which is effective in many ways. to be. In addition, the new flame retardant has a high decomposition temperature and can be applied to paper, rubber, wood, paint, etc. in addition to polymers.

Claims (5)

멜라민계, 우레아계, 아민계 또는 아마이드계 등의 기존 질소계에 인을 붙이는 질소-인계 반응 공정중에 무기물옥사이드, 하이드록사이드 또는 금속화합물을 같이 포함시켜 인계화합물을 반응시킨 다음, 고온으로 가열축합시킴을 특징으로 하는 금속 솔트화된 질소-인계 난연제의 제조방법.In the nitrogen-phosphorus reaction process that attaches phosphorus to existing nitrogen-based compounds such as melamine-based, urea-based, amine-based or amide-based compounds, the inorganic compound, hydroxide or metal compound is included together to react the phosphorus-based compound and then heat-condensed at high temperature. Method for producing a metal salted nitrogen-phosphorous flame retardant characterized in that the. 제 1 항에 있어서, 상기 인계 화합물의 반응공정은 질소계 물질 1종류 또는 2종류(0.1~99%까지)이상 혼합한 것에 무기물옥사이드, 하이드록사이드 또는 금속화합물을 상기 질소계 화합물을 혼합한 것에 대해 무게 비로 0.1~99%까지 혼합한 다음, 질소계 화합물 1몰 대비 1~3몰까지 인계 화합물을 서서히 첨가시키면서 150℃ 이하의 온도에서 반응시킴을 특징으로 하는 금속 솔트화된 질소-인계 난연제의 제조방법.The process of claim 1, wherein the reaction step of the phosphorus compound is a mixture of one or two or more nitrogen compounds (up to 0.1% to 99%) with an inorganic oxide, hydroxide or metal compound mixed with the nitrogen compound. Of the metal salted nitrogen-phosphorous flame retardant, characterized by mixing at a weight ratio of 0.1 to 99%, and then reacting at a temperature of 150 ° C. or less while gradually adding a phosphorus compound to 1 to 3 moles relative to 1 mole of the nitrogen compound. Manufacturing method. 제 1 항에 있어서, 상기 고온가열축합은, 인계화합물을 반응시킨 다음 150℃에서 수분 또는 용제를 완전히 건조시킨후 150~450℃까지의 각각의 분해온도 특성에 따라 30분~10시간 동안 축합 반응시키는 것임을 특징으로 하는 금속 솔트화된 질소-인계 난연제의 제조방법.The method of claim 1, wherein the high temperature heat condensation is a condensation reaction for 30 minutes to 10 hours depending on the decomposition temperature characteristics from 150 to 450 ℃ after completely reacting the phosphorus-based compound at 150 ℃ water or solvent Method for producing a metal salted nitrogen-phosphorous flame retardant, characterized in that. 제 1 항에 있어서, 상기 질소-인계 반응 공정은 스테인레스 반응기에서10~20분 교반하여 행해짐을 특징으로 하는 금속 솔트화된 질소-인계 난연제의 제조방법.The method of claim 1, wherein the nitrogen-phosphorus reaction process is performed by stirring for 10-20 minutes in a stainless reactor. 제 1 항 내지 제 4 항의 방법으로 제조되는 질소-인계 난연제로서, 무기물옥사이드, 하이드록사이드 또는 금속화합물을 함유하고 있는 비할로겐 난연제.A non-halogen flame retardant prepared by the method of claims 1 to 4, which contains inorganic oxides, hydroxides or metal compounds.
KR10-2002-0028972A 2002-05-24 2002-05-24 Non-halogen fire retardant material and method thereof KR100469920B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0028972A KR100469920B1 (en) 2002-05-24 2002-05-24 Non-halogen fire retardant material and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0028972A KR100469920B1 (en) 2002-05-24 2002-05-24 Non-halogen fire retardant material and method thereof

Publications (2)

Publication Number Publication Date
KR20030091136A KR20030091136A (en) 2003-12-03
KR100469920B1 true KR100469920B1 (en) 2005-02-02

Family

ID=32384305

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0028972A KR100469920B1 (en) 2002-05-24 2002-05-24 Non-halogen fire retardant material and method thereof

Country Status (1)

Country Link
KR (1) KR100469920B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144114B1 (en) 2010-10-25 2012-05-24 경기대학교 산학협력단 Phosphoric flame retardant for Polyurethane foam and Preparing method thereof
KR101424596B1 (en) * 2012-06-27 2014-07-31 주식회사 두본 Preparation method of flame retardant using melaminephosphate
KR20160105621A (en) 2015-02-27 2016-09-07 경기대학교 산학협력단 Synthetic method of new phosphorus flame retardant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060065057A (en) * 2004-12-09 2006-06-14 주식회사 두본 A retardancy using melamine phosphate contained cyanurate and method for same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231829A (en) * 1995-02-23 1996-09-10 Toshiba Chem Corp Epoxy resin composition for casting
JPH11236500A (en) * 1997-12-05 1999-08-31 General Electric Co <Ge> Flame-retardant polyketone composition
KR20010028371A (en) * 1999-09-21 2001-04-06 성재갑 Thermoplastic polybutylene terephthalate resin composition having flame-resistance
JP2001279091A (en) * 2000-03-31 2001-10-10 Asahi Kasei Corp Flame-retardant reinforced polyamide composition
US6423251B1 (en) * 1996-09-30 2002-07-23 David H. Blount Urea and borates for fire and termite control
JP2003206294A (en) * 2002-01-08 2003-07-22 Yamanaka Kagaku Kogyo Kk Condensation reaction product of phosphoric acid, sulfuric acid and urea and its use as flame retardant
JP2003306679A (en) * 2002-04-12 2003-10-31 Nicca Chemical Co Ltd Flame retardant, flame-retarding method and flame- retarded material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231829A (en) * 1995-02-23 1996-09-10 Toshiba Chem Corp Epoxy resin composition for casting
US6423251B1 (en) * 1996-09-30 2002-07-23 David H. Blount Urea and borates for fire and termite control
JPH11236500A (en) * 1997-12-05 1999-08-31 General Electric Co <Ge> Flame-retardant polyketone composition
KR20010028371A (en) * 1999-09-21 2001-04-06 성재갑 Thermoplastic polybutylene terephthalate resin composition having flame-resistance
JP2001279091A (en) * 2000-03-31 2001-10-10 Asahi Kasei Corp Flame-retardant reinforced polyamide composition
JP2003206294A (en) * 2002-01-08 2003-07-22 Yamanaka Kagaku Kogyo Kk Condensation reaction product of phosphoric acid, sulfuric acid and urea and its use as flame retardant
JP2003306679A (en) * 2002-04-12 2003-10-31 Nicca Chemical Co Ltd Flame retardant, flame-retarding method and flame- retarded material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144114B1 (en) 2010-10-25 2012-05-24 경기대학교 산학협력단 Phosphoric flame retardant for Polyurethane foam and Preparing method thereof
KR101424596B1 (en) * 2012-06-27 2014-07-31 주식회사 두본 Preparation method of flame retardant using melaminephosphate
KR20160105621A (en) 2015-02-27 2016-09-07 경기대학교 산학협력단 Synthetic method of new phosphorus flame retardant

Also Published As

Publication number Publication date
KR20030091136A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
US11692077B2 (en) Polymer composition containing a phosphonate flame retardant
CN104039927B (en) The preparation method of melamine phosphate flame retardant
Lu et al. Recent developments in the chemistry of halogen-free flame retardant polymers
AU2005281698B2 (en) Polyphosphate derivative of a 1,3,5-triazine compound, method for producing the same and its use
Ray et al. Halogen-free flame-retardant polymers
AU2001234222B2 (en) Salt of a melamine condensation product and a phosphorus-containing acid
KR20020042637A (en) Intumescent polymer compositions
Klatt Nitrogen-based flame retardants
Joseph et al. Phosphorus-based flame retardants
JPH0680819A (en) Self-extinguishing polymer composition
EP1116773B1 (en) Flame retardant composition and flame-retardant resin composition
KR100469920B1 (en) Non-halogen fire retardant material and method thereof
EP0045835A1 (en) Self-extinguishing polymeric compositions
Morgan et al. Nitrogen‐Based Flame Retardants
JP2024026858A (en) Flame retardant composition and flame-retardant thermoplastic polyurethane composition
Schartel Multicomponent flame retardants
EP4011827A1 (en) Poly/mono-hypophosphite hydrogen diphosphite compound, and preparation and use thereof
Sinha Ray et al. Types of flame retardants used for the synthesis of flame-retardant polymers
CN105492520B (en) The fire retardant and its manufacturing method prepared by amide derivatives
TWI855127B (en) Flame retardant composition and flame retardant thermoplastic polyurethane composition
US20120292582A1 (en) Ammonium salts of 9,10-dihydro-10-hydroxy-9-oxa-10-phospha-phenanthrene-10-one
KR20060065057A (en) A retardancy using melamine phosphate contained cyanurate and method for same
Palve et al. Recent Developments in Nitrogen-and Phosphorous-Based Flame Retardants for Polyurethanes
Wang et al. Phosphorus-Based Flame Retardants for Polyurethanes: Synthesis and Mechanistic Studies
KR101257289B1 (en) Flame resistant composition containing Phosphor-Nitrogen compound and thermoplastic resin composition containing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130124

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140124

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150122

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160126

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170124

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180125

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20200122

Year of fee payment: 16