KR100464697B1 - Process of High Flow Thermoplastic Resin Having Good Moldability - Google Patents

Process of High Flow Thermoplastic Resin Having Good Moldability Download PDF

Info

Publication number
KR100464697B1
KR100464697B1 KR10-2001-0084979A KR20010084979A KR100464697B1 KR 100464697 B1 KR100464697 B1 KR 100464697B1 KR 20010084979 A KR20010084979 A KR 20010084979A KR 100464697 B1 KR100464697 B1 KR 100464697B1
Authority
KR
South Korea
Prior art keywords
reactor
flow rate
thermoplastic resin
total flow
high flow
Prior art date
Application number
KR10-2001-0084979A
Other languages
Korean (ko)
Other versions
KR20030055441A (en
Inventor
선호룡
임진규
김길성
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR10-2001-0084979A priority Critical patent/KR100464697B1/en
Publication of KR20030055441A publication Critical patent/KR20030055441A/en
Application granted granted Critical
Publication of KR100464697B1 publication Critical patent/KR100464697B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명의 고유동 열가소성 수지는 제1반응기에서 스티렌 단량체가 제1, 제2반응기로 투입되는 전체유량을 F, 제1반응기로 투입되는 전체유량을 F1, 제2반응기로 투입되는 전체유량을 F2, 제1반응기의 반응기 내용적을 V1, 제1반응기에서 반응액이 점하는 내용적을 V1'라고 했을 때, F = F1+ F2,6.2 ≤ F1/F2≤ 7.2, 2.4 ≤ V1/V1' ≤ 3.0 의 조건으로 연속괴상중합하고; 제2반응기에서 제2반응기의 반응기 내용적을 V2, 제2반응기에서 반응액이 점하는 내용적을 V2'라고 했을 때, 2.4 ≤ V2/V2' ≤ 4.8, F = F1+ F2의 조건 하에 최종 펠릿 기준으로 탄화수소 화합물 2.0∼2.5 중량%를 연속적으로 투입하여 연속괴상중합하고; 그리고 제2반응기로부터 생성된 중합물로부터 미반응 단량체를 분리한 후 펠릿 형태로 절단하여 제조되고, 평균분자량이 18∼25만이고, 유동성이 9.5∼12.0이고, 황색도가 1.0 이하이다.In the high flow thermoplastic resin of the present invention, the total flow rate of the styrene monomer to the first and second reactors in the first reactor is F, the total flow rate to the first reactor is F 1 , and the total flow rate to the second reactor. F 2 , when the reactor volume of the first reactor is V 1 and the volume of the reaction solution in the first reactor is V 1 ′, F = F 1 + F 2, 6.2 ≤ F 1 / F 2 ≤ 7.2, 2.4 Continuous bulk polymerization under the condition of? V 1 / V 1 '? 3.0; When the contents of the reactor of the second reactor in the second reactor is V 2 , and the contents of the reaction solution in the second reactor are V 2 ′, 2.4 ≤ V 2 / V 2 '≤ 4.8, F = F 1 + F 2 Continuous bulk polymerization by continuously adding 2.0 to 2.5% by weight of a hydrocarbon compound on a final pellet basis under the condition of; The unreacted monomer is separated from the polymer produced from the second reactor and then cut into pellets. The average molecular weight is 18 to 250,000, the fluidity is 9.5 to 12.0, and the yellowness is 1.0 or less.

Description

이형성이 우수한 고유동 열가소성 수지의 제조방법{Process of High Flow Thermoplastic Resin Having Good Moldability}Process of High Flow Thermoplastic Resin Having Good Moldability

발명의 분야Field of invention

본 발명은 이형성이 우수한 고유동 열가소성 수지의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 제1반응기에서의 반응조건을 조절하여 체류시간을 조절하고, 제2반응기에서는 고온유지 및 반응시간을 줄일 수 있도록 반응조건을 조절하며 연속괴상중합하여 고형분(폴리스티렌) 함량이 일정범위이고, 분자량이 특정범위에 해당하는 열가소성 수지를 제조함으로써, 황색도가 양호하고 유동성이 우수할 뿐만 아니라 이형성이 크게 향상되어 식음료 용기, 오디오 제품 케이스, 냉장고 내부부품, 잡화용기 등의 제조에 유용한 고유동 열가소성 수지의 제조방법에 관한 것이다.The present invention relates to a method for producing a high flow thermoplastic resin having excellent release properties. More specifically, the present invention controls the residence time by adjusting the reaction conditions in the first reactor, the reaction conditions to adjust the reaction conditions to reduce the high temperature maintenance and reaction time in the second reactor and solids (polystyrene) content by continuous bulk polymerization By producing a thermoplastic resin having a certain range and a molecular weight in a specific range, not only the yellowness is good and the fluidity is excellent, but also the releasability is greatly improved, thereby manufacturing food and beverage containers, audio product cases, refrigerator internal parts, and general merchandise containers. A method for producing a high flow thermoplastic resin useful in the present invention.

발명의 배경Background of the Invention

일반적으로 식음료 용기, 오디오 제품 케이스, 냉장고 내부부품, 잡화용기 등의 제조에는 고유동 폴리스티렌이 사용되어왔다. 이러한 고유동 폴리스티렌을 제조하기 위한 종래 기술로는 다수의 반응기를 사용하고, 제조공정이 용액중합으로 진행되며, 원료용액을 모두 제1반응기에 투입하여 중합하는 방법들이 있으며, 상기 방법들은 일본 및 미국 특허문헌 등을 통해 다수 알려져 있다.In general, high-flow polystyrene has been used to manufacture food and beverage containers, audio product cases, refrigerator internal parts, and general merchandise containers. Conventional techniques for producing such high-flow polystyrene, using a plurality of reactors, the production process proceeds to solution polymerization, there is a method of polymerizing all the raw material solution to the first reactor, the methods are Japan and the United States Many are known through patent documents.

그러나, 상기 방법에 의할 경우 유동성이 좋은 폴리스티렌을 얻을 수 있지만 반응기의 수가 많아 생산성이 떨어질 뿐만 아니라, 품종 교체시 불량 발생량이 많아지는 단점이 있다. 또한, 솔벤트(EB, MEK)를 이용한 용액중합으로 반응이 이루어지기 때문에 투명성을 제일의 우수조건으로 삼고 있는 폴리스티렌에는 제품의 저급화를 가져오게 된다.However, according to the above method, it is possible to obtain polystyrene having good fluidity, but there are disadvantages in that the number of reactors not only decreases productivity, but also increases the amount of defects when breeding. In addition, since the reaction is carried out by solution polymerization using solvents (EB, MEK), polystyrene, which has transparency as the best condition, brings about lowering of the product.

이에 본 발명자들은 상기한 종래 기술의 문제점을 해결하기 위하여, 2개의 반응기로 연속괴상중합함으로써 황색도가 양호하면서 유동성이 뛰어난 폴리스티렌 수지의 제조방법을 개발하기에 이르렀다.In order to solve the problems of the prior art, the present inventors have developed a method for producing a polystyrene resin having good yellowness and excellent fluidity by continuous bulk polymerization in two reactors.

본 발명의 목적은 유동성이 뛰어난 열가소성 수지의 제조방법을 제공하기 위한 것이다.An object of the present invention is to provide a method for producing a thermoplastic resin excellent in fluidity.

본 발명의 다른 목적은 황색도가 양호하고 유동성이 우수할 뿐만 아니라 이형성이 크게 향상되어 식음료 용기, 오디오 제품 케이스, 냉장고 내부부품, 잡화용기 등의 제조에 유용한 고유동 열가소성 수지의 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method of producing a high flow thermoplastic resin useful in the manufacture of food and beverage containers, audio product cases, refrigerator internal parts, general merchandise containers, etc., as well as good yellowness and excellent fluidity. It is for.

본 발명의 상기 및 기타의 목적들은 모두 하기에 설명되는 본 발명에 의해서 달성될 수 있다. 이하 본 발명의 내용을 하기에 상세히 설명한다.Both the above and other objects of the present invention can be achieved by the present invention described below. Hereinafter, the content of the present invention will be described in detail.

도 1은 본 발명에 따른 이형성이 우수한 고유동 열가소성 수지를 제조하기 위한 연속괴상중합장치를 모식적으로 나타낸 개략도이다.1 is a schematic diagram schematically showing a continuous block polymerization apparatus for producing a high flow thermoplastic resin having excellent release properties according to the present invention.

* 도면의 주요부호에 대한 간단한 설명 *Brief description of the main symbols in the drawing

1 : 스티렌 단량체가 제1, 제2반응기로 투입되는 전체유량(F)1: total flow rate (F) in which styrene monomer is introduced into the first and second reactors

2 : 스티렌 단량체가 제1반응기로 투입되는 전체유량(F1)2: total flow rate of the styrene monomer to the first reactor (F 1 )

3 : 스티렌 단량체가 제2반응기로 투입되는 전체유량(F2)3: total flow rate of the styrene monomer to the second reactor (F 2 )

4 : 제1반응기의 반응기 내용적(V1)4: reactor content of the first reactor (V 1 )

5 : 제1반응기에서 반응액이 점하는 내용적(V1')5: the volume of the reaction solution in the first reactor (V 1 ')

6 : 제2반응기의 반응기 내용적(V2)6: reactor volume of the second reactor (V 2 )

7 : 제2반응기에서 반응액이 점하는 내용적(V2')7: Content (V 2 ') of the reaction solution in the second reactor

발명의 요약Summary of the Invention

본 발명의 고유동 열가소성 수지는 스티렌 단량체(원료용액)를 제1반응기와 제2반응기에서 연속적으로 괴상중합하여 폴리스티렌을 제조함에 있어서, 상기 스티렌 단량체의 전체 투입 유량의 비율을 조절하여 제1반응기와 제2반응기에 분리 투입하여 제조된다.In the high flow thermoplastic resin of the present invention, in the production of polystyrene by continuously bulk polymerizing a styrene monomer (a raw material solution) in a first reactor and a second reactor, the ratio of the total input flow rate of the styrene monomer is adjusted to It is prepared by separating the second reactor.

제1반응기에서는 스티렌 단량체를 고유동 수지로 생성할 수 있는 조건인 적정한 분자량의 폴리스티렌을 만드는 핵심 반응이 진행되고, 제2반응기에서는 연속적으로 이동되는 제1반응기의 반응물에 저분자량 폴리스티렌 생성을 억제하고, 추가의 반응을 부여하여 최종 고형분의 비율을 상승시키고, 수지에 우수한 유동특성 및 이형성을 부여하기 위하여 석유로부터 추출한 탄화수소 화합물이 적당량 첨가된다.In the first reactor, a core reaction for producing polystyrene having an appropriate molecular weight, which is a condition for producing styrene monomer into a high flow resin, is performed. In order to give additional reaction to increase the ratio of the final solid content, an appropriate amount of hydrocarbon compound extracted from petroleum is added in order to give the resin excellent flow characteristics and release property.

본 발명에 따른 고유동 열가소성 수지는 제1반응기에서 스티렌 단량체 투입유량 및 반응시간을 하기식(A)∼(C)의 조건으로 유지하며 연속괴상중합하고; 제2반응기에서 반응조건을 하기식(D)의 조건으로 유지하며 연속괴상중합하고; 그리고 제2반응기에서 생성된 중합물(고형분)로부터 미반응 단량체를 분리하여 제조된다:The high flow thermoplastic resin according to the present invention is subjected to continuous bulk polymerization while maintaining the styrene monomer input flow rate and reaction time in the first reactor under the conditions of the following formulas (A) to (C); Continuous block polymerization while maintaining the reaction conditions in the second reactor under the conditions of the following formula (D); And by separating the unreacted monomer from the polymer (solids) produced in the second reactor:

F = F1+ F2(A)F = F 1 + F 2 (A)

6.2 ≤ F1/F2≤ 7.2 (B)6.2 ≤ F 1 / F 2 ≤ 7.2 (B)

2.4 ≤ V1/V1' ≤ 3.0 (C)2.4 ≤ V 1 / V 1 '≤ 3.0 (C)

2.4 ≤ V2/V2' ≤ 4.8 (D)2.4 ≤ V 2 / V 2 '≤ 4.8 (D)

상기식에서, F는 스티렌 단량체가 제1, 제2반응기로 투입되는 전체유량이고,F1은 스티렌 단량체가 제1반응기로 투입되는 전체유량이고, F2는 스티렌 단량체가 제2반응기로 투입되는 전체유량이고, V1은 제1반응기의 반응기 내용적이고, V1'는 제1반응기에서 반응액이 점하는 내용적이고, V2는 제2반응기의 반응기 내용적이고, V2'는 제2반응기에서 반응액이 점하는 내용적임.In the above formula, F is the total flow rate of the styrene monomer to the first, second reactor, F 1 is the total flow rate of the styrene monomer to the first reactor, F 2 is the total flow rate of the styrene monomer to the second reactor. Flow rate, V 1 is the reactor content of the first reactor, V 1 ′ is the content of the reaction liquid in the first reactor, V 2 is the reactor content of the second reactor, and V 2 ′ is the reaction in the second reactor. It is the amount that the amount occupies.

본 발명에 따른 제조방법에서 제1반응기에서 연속괴상중합은 130∼140 ℃에서 시행되고, 제2반응기에서 연속괴상중합은 170∼190 ℃로 시행된다. 상기와 같은 방법으로 얻어진 폴리스티렌의 함량은 고형분 기준으로 제2반응기에서 60∼75 중량%이고, 최종 펠릿 수지의 평균 분자량은 18∼25만이고, 유동성이 9.5∼12.0이고, 황색도가 1.0 이하이다.In the production method according to the present invention, the continuous block polymerization is performed at 130 to 140 ° C. in the first reactor, and the continuous block polymerization is performed at 170 to 190 ° C. in the second reactor. The content of polystyrene obtained by the above method is 60 to 75% by weight in the second reactor on a solids basis, the average molecular weight of the final pellet resin is 18 to 250,000, the fluidity is 9.5 to 12.0, the yellowness is 1.0 or less .

발명의 구체예에 대한 상세한 설명Detailed Description of the Invention

이하 본 발명의 고내열 열가소성 수지를 제조하는 방법을 보다 구체적으로 설명하면 다음과 같다.Hereinafter, a method of manufacturing the high heat resistant thermoplastic resin of the present invention will be described in more detail.

우선 제1반응기 및 제2반응기에서는 스티렌 단량체가 저장된 탱크로부터 스티렌 단량체를 연속적으로 공급받는다. 본 발명에서 사용될 수 있는 스티렌 단량체는 스티렌; α-에틸스티렌 및 α-메틸스티렌과 같은 옆사슬 알킬치환 스티렌류; 비닐크실렌, O-t-부틸스티렌, P-t-부틸스티렌 및 P-메틸 스티렌과 같은 핵알킬 치환 스티렌류; 모노클로로 스티렌, 디클로로 스티렌,트리브로모 스티렌 및 테트라 히드로 스티렌과 같은 활로겐화스티렌; P-히드록시 스티렌; 및 O-메록시 스티렌이 있다. 이 중에서 일반적으로 스티렌이 가장 많이 사용된다.First, in the first reactor and the second reactor, the styrene monomer is continuously supplied from the tank in which the styrene monomer is stored. Styrene monomers that can be used in the present invention include styrene; side chain alkyl-substituted styrenes such as α-ethylstyrene and α-methylstyrene; Nuclear alkyl substituted styrenes such as vinyl xylene, O-t-butylstyrene, P-t-butylstyrene and P-methyl styrene; Halogenated styrenes such as monochloro styrene, dichloro styrene, tribromo styrene and tetrahydro styrene; P-hydroxy styrene; And O-methoxy styrene. Of these, styrene is most commonly used.

(1) 제1반응기에서의 중합(1) Polymerization in the first reactor

원료용액(스티렌 단량체)이 제1, 제2반응기로 투입되는 전체유량을 F, 원료용액이 제1반응기로 투입되는 전체유량을 F1, 원료용액이 제2반응기로 투입되는 전체유량을 F2, 제1반응기의 반응기 내용적을 V1, 제1반응기에서 반응액이 점하는 내용적을 V1'라고 했을 때, F = F1+ F2,6.2 ≤ F1/F2≤ 7.2, 2.4 ≤ V1/V1' ≤ 3.0 의 조건으로, 제1차반응기의 교반기 회전수를 30 회/분으로 조절하여 130∼140 ℃에서 연속괴상중합한다.The total flow rate of the raw material solution (styrene monomer) to the first and second reactors is F, the total flow rate of the raw material solution to the first reactor is F 1 , and the total flow rate of the raw material solution to the second reactor is F 2. When the reactor content of the first reactor is V 1 , and the content of the reaction solution in the first reactor is V 1 ′, F = F 1 + F 2, 6.2 ≤ F 1 / F 2 ≤ 7.2, 2.4 ≤ V Under the condition of 1 / V 1 '≤ 3.0, the stirrer rotational speed of the first reactor was adjusted to 30 times / min to continuously bulk polymerize at 130 to 140 ° C.

F1/F2〉7.2 의 경우에는 적정한 분자량의 폴리스티렌이 형성될 수 없고, F1/F2< 6.2 의 경우에는 반응물의 점도가 지나치게 높아져서 이송 불량이 발생하여 제2반응기의 온도 조절이 어려울 뿐만 아니라, 제2반응기에서 저분자량 폴리스티렌이 다량 발생하여 원하는 고유동 수지를 얻을 수 없다. 또한, 제1반응기에서 6.2 ≤ F1/F2≤ 7.2, F = F1+ F2의 조건을 유지하는 이유는 2개의 반응기를 효과적으로 이용하여 점도조절을 하고, 반응물의 이송을 원활하게 하며, 적정한 분자량의 스티렌 수지가 이형성이 우수하면서 고유동성을 갖도록 하기 위한 것이다.In the case of F 1 / F 2 > 7.2, polystyrene of the appropriate molecular weight cannot be formed, and in the case of F 1 / F 2 <6.2, the viscosity of the reactants becomes too high, resulting in poor transport, making it difficult to control the temperature of the second reactor. However, a large amount of low molecular weight polystyrene is generated in the second reactor, so that a desired high flow resin cannot be obtained. In addition, the reason for maintaining the condition of 6.2 ≤ F 1 / F 2 ≤ 7.2, F = F 1 + F 2 in the first reactor is to effectively control the viscosity using the two reactors, to facilitate the transfer of the reactants, It is for making styrene resin of moderate molecular weight excellent in mold release property, and having high fluidity.

V1/V1' > 3.0 의 경우에는 점도가 지나치게 높아져 교반기의 부하가 증가하여 운전이 어려울 뿐 아니라, 비상상황 발생시 대처할 수 있는 시간 부족으로 위험에처하게 된다. 반면, V1/V1' < 2.4 의 경우에는 원하는 함량의 고형분을 얻을 수 없으며, 분자량이 저하되어 원하는 수지를 얻을 수 없다.In the case of V 1 / V 1 '> 3.0, the viscosity becomes too high to increase the load of the stirrer, making it difficult to operate and endangering the lack of time to cope with emergencies. On the other hand, in the case of V 1 / V 1 '<2.4, the solid content of the desired content cannot be obtained, and the molecular weight is lowered to obtain the desired resin.

결국, 제1반응기에서 상기 반응조건을 유지함으로써 솔벤트를 사용하지 않는 연속괴상중합에서 원활한 반응물의 이송이 가능하고, 평균분자량 18∼25만의 고유동 양이형성 수지를 얻을 수 있다.As a result, by maintaining the reaction conditions in the first reactor, it is possible to smoothly transfer the reactants in the continuous bulk polymerization without using a solvent, thereby obtaining a high flow cationic resin having an average molecular weight of 18 to 250,000.

제1반응기에서 반응이 진행된 중합물은 제2반응기로 연속적으로 공급되어 연속괴상중합된다.The polymerized product in the first reactor is continuously supplied to the second reactor and subjected to continuous bulk polymerization.

(2) 제2반응기에서의 중합(2) Polymerization in Second Reactor

원료용액(스티렌 단량체)이 제1, 제2반응기로 투입되는 전체유량을 F, 원료용액이 제1반응기로 투입되는 전체유량을 F1, 원료용액이 제2반응기로 투입되는 전체유량을 F2, 제2반응기의 반응기 내용적을 V2, 제2반응기에서 반응액이 점하는 내용적을 V2'라고 했을 때, 2.4 ≤ V2/V2' ≤ 4.8, F = F1+ F2의 조건을 유지하고, 반응기의 회전수를 20 회/분으로 고정하여 170∼190 ℃에서 고형분이 65∼75 중량%가 되도록 연속괴상중합한다. 또한, 여기에 최종 펠릿 기준으로 탄화수소 화합물을 2.0∼2.5 중량% 연속적으로 투입한다.The total flow rate of the raw material solution (styrene monomer) to the first and second reactors is F, the total flow rate of the raw material solution to the first reactor is F 1 , and the total flow rate of the raw material solution to the second reactor is F 2. When the content of the reactor in the second reactor is V 2 , and the content of the reaction solution in the second reactor is V 2 ′, the conditions of 2.4 ≤ V 2 / V 2 '≤ 4.8, F = F 1 + F 2 The reactor is fixed at 20 revolutions per minute, and subjected to continuous bulk polymerization at 170 to 190 占 폚 so that the solid content is 65 to 75% by weight. In addition, 2.0 to 2.5% by weight of the hydrocarbon compound is continuously added to the final pellets.

본 발명에 사용 가능한 탄화수소 화합물은 일반적으로 말하는 화이트 오일(white oil)이 있다.Hydrocarbon compounds usable in the present invention are generally referred to as white oil.

제2반응기에서 V2/V2' > 4.8 의 경우에는 고형분의 함량이 감소되어 생산성이 떨어지고, V2/V2' < 2.4 의 경우에는 저분자량 생성이 많아져 고유동의 수지를 얻을 수 없으며, 발열량 증대로 중합온도 조절이 어렵다.The 2 V in the reactor 2 / V 2 For "For a> 4.8, the content of solid matter is reduced drop in productivity, V 2 / V 2 '< 2.4 is turned more low molecular weight generated can not be obtained the specific consent resin, It is difficult to control the polymerization temperature due to the increase in calorific value.

제2반응기에서 온도를 170 ℃ 미만으로 유지하면 생산성의 감소를 가져오며, 191 ℃ 이상으로 유지하면 고분자량 생성비율이 낮아 원하는 고유동 수지를 얻을 수 없다.Maintaining the temperature below 170 ° C. in the second reactor results in a decrease in productivity. If the temperature is maintained above 191 ° C., a high molecular weight production rate is low to obtain a desired high flow resin.

따라서, 제2반응기의 반응조건을 2.4 ≤ V2/V2' ≤ 4.8, F = F1+ F2, 170∼190 ℃로 유지하고, 탄화수소 화합물 2.0∼2.5 중량%를 연속적으로 투입함으로써 가치 있는 생산성을 유지하면서 이형성이 우수한 고유동성의 폴리스티렌을 얻을 수 있다.Therefore, the reaction conditions of the second reactor are maintained at 2.4 ≤ V 2 / V 2 '≤ 4.8, F = F 1 + F 2 , 170 to 190 ° C, and 2.0 to 2.5% by weight of the hydrocarbon compound is continuously added. It is possible to obtain a high flow polystyrene with excellent release properties while maintaining productivity.

제1반응기 또는 제2반응기에 분자량 조절제와 같은 기타의 첨가제가 첨가될 수 있으며, 이는 당업자에 의하여 용이하게 실시될 수 있다. 예를 들어, 대전방지제, 산화방지제 등을 각각의 용도에 따라 적절히 첨가하여 사용할 수 있다.Other additives, such as molecular weight modifiers, may be added to the first reactor or the second reactor, which can be readily performed by one skilled in the art. For example, an antistatic agent, antioxidant, etc. can be added and used suitably according to each use.

제2반응기에서 중합반응이 완료된 반응물은 승온기, 휘발조 등을 거치면서 미반응 단량체를 분리한 후 펠릿 형태로 절단된다. 이 펠릿 형태의 최종 수지의 평균분자량은 18∼25만이고, 유동성이 9.5∼12.0이고, 황색도가 1.0 이하이다.After the polymerization reaction is completed in the second reactor, an unreacted monomer is separated through a temperature riser, a volatilization tank, and the like, and is then cut into pellets. The average molecular weight of the final resin in pellet form was 18 to 250,000, the fluidity was 9.5 to 12.0, and the yellowness was 1.0 or less.

본 발명의 제조방법에 따라 투명성이 양호하며 고유동 특성을 유지하는 이형성이 우수한 폴리스티렌이 추가의 솔벤트 투입 없이 2개의 반응기를 이용하여 효율적으로 제조된다.According to the preparation method of the present invention, polystyrene having good transparency and excellent releasability to maintain high flow characteristics is efficiently manufactured using two reactors without additional solvent addition.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

실시예Example

실시예 1Example 1

제1반응기에서 중합은 원료용액(스티렌 단량체)이 제1, 제2반응기로 투입되는 전체유량을 F, 원료용액이 제1반응기로 투입되는 전체유량을 F1, 원료용액이 제2반응기로 투입되는 전체유량을 F2, 제1반응기의 반응기 내용적을 V1, 제1반응기에서 반응액이 점하는 내용적을 V1'라고 했을 때, F = F1+ F2,F1/F2= 6.7, V1/V1' = 2.82의 반응조건에서 실시하였다. 교반기 회전수를 30 회/분으로, 중합온도를 135 ℃로 연속괴상중합을 하였다.In the first reactor, the polymerization is carried out in which the total flow rate of the raw material solution (styrene monomer) into the first and second reactors is F, the total flow rate of the raw material solution into the first reactor is F 1 , and the raw material solution is introduced into the second reactor. F = F 1 + F 2, F 1 / F 2 = 6.7 when the total flow rate is F 2 , the content of the reactor in the first reactor is V 1 , and the content of the reaction solution in the first reactor is V 1 ′. , V 1 / V 1 '= 2.82 under the reaction conditions. Continuous block polymerization was performed at an agitator speed of 30 times / min and a polymerization temperature of 135 ° C.

제1반응기의 중합물은 제1반응기의 공급유량과 동일하게 제2반응기로 연속 공급하여, 원료용액(스티렌 단량체)이 제1, 제2반응기로 투입되는 전체유량을 F, 원료용액이 제1반응기로 투입되는 전체유량을 F1, 원료용액이 제2반응기로 투입되는 전체유량을 F2, 제2반응기의 반응기 내용적을 V2, 제2반응기에서 반응액이 점하는 내용적을 V2'라고 했을 때, V2/V2' = 3.7, F = F1+ F2로 유지하였다. 반응기의 회전수는 20 회/분으로 고정하고, 반응온도는 182 ℃로 유지했다.The polymer of the first reactor is continuously supplied to the second reactor in the same manner as the supply flow rate of the first reactor, so that the total flow rate of the raw material solution (styrene monomer) into the first and second reactors is F, and the raw material solution is the first reactor. The total flow rate introduced into the reactor F 1 , the total flow rate of the raw material solution into the second reactor, F 2 , the reactor volume of the second reactor V 2 , and the volume of the reaction solution in the second reactor V 2 ′. At that time, V 2 / V 2 ′ = 3.7, F = F 1 + F 2 was maintained. The rotation speed of the reactor was fixed at 20 times / minute, and the reaction temperature was maintained at 182 ° C.

제2반응기에 석유로부터 추출한 탄화수소 화합물인 화이트 오일을 최종 펠릿 내에서 2.0 중량%가 되도록 별도의 저장탱크에서 연속 투입했다.In the second reactor, white oil, a hydrocarbon compound extracted from petroleum, was continuously added in a separate storage tank so as to be 2.0% by weight in the final pellet.

제2반응기에서 얻어진 최종 중합물은 탈휘공정에 연속적으로 보내서 245 ℃까지 승온하여 미반응 단량체등 휘발성분을 제거하여 펠릿 형태로 제조하였다. 얻어진 펠릿 상의 수지에 대해 분자량, 황색도, 유동성을 측정하고, 사출기의 격자금형을 이용하여 이형성을 평가하였다.The final polymer obtained in the second reactor was continuously sent to a devolatilization step and heated up to 245 ° C. to remove volatile components such as unreacted monomers. Molecular weight, yellowness, and fluidity were measured about the obtained resin on pellets, and mold release property was evaluated using the lattice mold of the injection machine.

유동성은 ASTM D1238에 의하여 측정하였다(200 ℃, 5㎏).Flowability was measured by ASTM D1238 (200 ° C., 5 kg).

황색도는 JIS K7105에 의하여 측정하였다.Yellowness was measured by JIS K7105.

분자량은 최종 펠릿 중 시료 5 ㎎을 채취하여 THF 5㎖를 혼합하여 진탕기(shaker)에 넣고 30분간 흔들어 완전히 용해한 후, 이 용액을 SPECTRA-PHYSICS ANALYTICAL社의 젤투과 크로마토그래프(Gel Permeation Chromatograph)로 측정하였다.Molecular weight is 5 mg of the sample in the final pellet, 5 ml of THF is mixed in a shaker and shaken for 30 minutes to completely dissolve the solution, and then the solution is subjected to gel permeation chromatography of SPECTRA-PHYSICS ANALYTICAL. Measured.

이형깨짐 발생율은 금성전선에서 제작한 5.3 OZ 사출기에 이형성 평가용 격자금형을 이용하여 20개 사출하여 깨짐 발생량을 비율로 환산하였다.The release cracking rate was calculated by converting 20 crack generation rates into a 5.3 OZ injection machine manufactured by Venus Cable using a lattice mold for evaluation of release property.

실시예 2Example 2

F1/F2= 7.0으로 하고, 제2반응기에 연속적으로 투입되는 화이트 오일을 2.3 중량%로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.F 1 / F 2 = 7.0 and was carried out in the same manner as in Example 1 except that the white oil continuously added to the second reactor was changed to 2.3% by weight.

실시예 3Example 3

제1반응기의 체류시간을 조절하여 V1/V1' = 2.95로 하고, 제2반응기에 연속적으로 투입되는 화이트 오일을 2.3 중량%로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The residence time of the first reactor was adjusted to V 1 / V 1 ′ = 2.95, and the same procedure as in Example 1 was carried out except that the white oil continuously added to the second reactor was changed to 2.3 wt%.

실시예 4Example 4

제2반응기의 체류시간을 조절하여 V2/V2' = 4.3으로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was conducted except that the residence time of the second reactor was adjusted to V 2 / V 2 ′ = 4.3.

실시예 5Example 5

제2반응기의 온도를 188 ℃로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same process as in Example 1 was conducted except that the temperature of the second reactor was changed to 188 ° C.

실시예 6Example 6

제2반응기에 연속으로 투입되는 화이트 오일을 2.5 중량%로 변경한 것을 제외하고는 실시예1과 동일한 방법으로 시행하였다.The same procedure as in Example 1 was conducted except that the white oil continuously added to the second reactor was changed to 2.5 wt%.

비교실시예 1Comparative Example 1

원료용액(스티렌 단량체)의 반응기 투입비율을 조절하여 F2= 0으로 변경한것을 제외하고는 실시예 1과 동일하게 실시하였다.The reaction was carried out in the same manner as in Example 1 except for changing the reactor input ratio of the raw material solution (styrene monomer) to F 2 = 0.

비교실시예 2Comparative Example 2

제1반응기의 체류시간을 조절하여 V1/V1' = 3.25로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that the residence time of the first reactor was adjusted to V 1 / V 1 ′ = 3.25.

비교실시예 3Comparative Example 3

제2반응기의 체류시간을 조절하여 V2/V2' = 2.1로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that the residence time of the second reactor was adjusted to V 2 / V 2 ′ = 2.1.

비교실시예 4Comparative Example 4

제2반응기의 온도를 195 ℃로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same process as in Example 1 was conducted except that the temperature of the second reactor was changed to 195 ° C.

비교실시예 5Comparative Example 5

제2반응기에 화이트 오일을 2.9 중량%로 변경한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same process as in Example 1 was carried out except that the white oil was changed to 2.9 wt% in the second reactor.

비교실시예 6Comparative Example 6

제2반응기에 연속으로 투입되는 화이트 오일을 3.5 중량%로 조절한 것을 제외하고는 실시예1과 동일한 방법으로 시행하였다.The same procedure as in Example 1 was conducted except that the white oil continuously added to the second reactor was adjusted to 3.5 wt%.

상기 실시예 1∼6 및 비교실시예 1∼6에서 사용된 반응조건과 각 실시예에 따라 제조된 수지에 대한 물성 측정결과를 각각 표 1 및 표 2에 나타내었다.Tables 1 and 2 show the measurement results of the physical properties of the resins prepared according to the examples and the reaction conditions used in Examples 1 to 6 and Comparative Examples 1 to 6, respectively.

실시예Example 1One 22 33 44 55 66 반응조건Reaction condition F1/F2 F 1 / F 2 6.76.7 7.07.0 6.76.7 6.76.7 6.76.7 6.76.7 V1/V1'V 1 / V 1 '' 2.822.82 2.822.82 2.952.95 2.822.82 2.822.82 2.822.82 V2/V2'V 2 / V 2 '' 3.73.7 3.73.7 3.73.7 4.34.3 3.73.7 3.73.7 탄화수소 화합물 (중량%)Hydrocarbon compound (wt%) 2.02.0 2.32.3 2.32.3 2.02.0 2.02.0 2.52.5 제2반응기 온도 (℃)Second reactor temperature (℃) 182182 182182 182182 182182 188188 182182 물성Properties 평균분자량 (Mw x 1,000)Average molecular weight (Mw x 1,000) 200200 220220 190190 230230 240240 200200 황색도 (YI)Yellow Degree (YI) 0.90.9 0.80.8 0.90.9 0.70.7 0.90.9 0.90.9 유동성 (g/10분)Fluidity (g / 10 min) 9.99.9 11.211.2 12.012.0 10.010.0 9.69.6 10.810.8 이형깨짐 발생율 (%)Release Breakage Rate (%) 2.02.0 1.21.2 2.12.1 2.52.5 1.01.0 2.32.3

비교실시예Comparative Example 1One 22 33 44 55 66 반응조건Reaction condition F1/F2 F 1 / F 2 F2=0F 2 = 0 6.76.7 6.76.7 6.76.7 6.76.7 6.76.7 V1/V1'V 1 / V 1 '' 2.822.82 3.253.25 2.822.82 2.822.82 2.822.82 2.822.82 V2/V2'V 2 / V 2 '' 3.73.7 3.73.7 2.12.1 3.73.7 3.73.7 3.73.7 탄화수소 화합물 (중량%)Hydrocarbon compound (wt%) 2.02.0 2.02.0 2.02.0 2.02.0 2.92.9 3.53.5 제2반응기 온도 (℃)Second reactor temperature (℃) 182182 182182 182182 195195 182182 182182 물성Properties 평균분자량 (Mw x 1,000)Average molecular weight (Mw x 1,000) 150150 155155 165165 160160 170170 171171 황색도 (YI)Yellow Degree (YI) 1.31.3 0.90.9 0.70.7 1.51.5 0.90.9 0.90.9 유동성 (g/10분)Fluidity (g / 10 min) 15.515.5 15.015.0 14.614.6 14.014.0 13.513.5 14.514.5 이형깨짐 발생율 (%)Release Breakage Rate (%) 1010 1212 1111 1313 66 55

상기 표 1,2의 결과로부터, 본 발명에 따른 반응조건 하에서 연속괴상중합함으로써 우수한 황색도, 이형성 및 유동성을 갖는 폴리스티렌 수지를 얻을 수 있음을 알 수 있다.From the results of Tables 1 and 2, it can be seen that polystyrene resin having excellent yellowness, mold release property and fluidity can be obtained by continuous bulk polymerization under the reaction conditions according to the present invention.

본 발명은 황색도가 양호하고 유동성이 우수할 뿐만 아니라 이형성이 크게 향상되어 식음료 용기, 오디오 제품 케이스, 냉장고 내부부품, 잡화용기 등의 제조에 유용한 고유동 열가소성 수지의 제조방법을 제공하는 효과를 갖는다.The present invention has the effect of providing a high-flow thermoplastic resin, which is useful for the production of food and beverage containers, audio product cases, refrigerator internal parts, general merchandise containers, etc., as well as good yellowness and excellent fluidity. .

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (4)

제1반응기에서 스티렌 단량체가 제1, 제2반응기로 투입되는 전체유량을 F, 제1반응기로 투입되는 전체유량을 F1, 제2반응기로 투입되는 전체유량을 F2, 제1반응기의 반응기 내용적을 V1, 제1반응기에서 반응액이 점하는 내용적을 V1'라고 했을 때, F = F1+ F2,6.2 ≤ F1/F2≤ 7.2, 2.4 ≤ V1/V1' ≤ 3.0 의 조건으로 연속괴상중합하고;The total flow rate of the styrene monomer to the first and second reactors in the first reactor is F, the total flow rate to the first reactor is F 1 , the total flow rate to the second reactor is F 2 , and the reactor of the first reactor "when called, F = F 1 + F 2 , 6.2 ≤ F 1 / F 2 ≤ 7.2, 2.4 ≤ V 1 / V 1 ' contents information fewer reaction solution points in V 1, a first reactor enemy V 1 ≤ Continuous block polymerization under the condition of 3.0; 제2반응기에서 제2반응기의 반응기 내용적을 V2, 제2반응기에서 반응액이 점하는 내용적을 V2'라고 했을 때, 2.4 ≤ V2/V2' ≤ 4.8, F = F1+ F2의 조건 하에 최종 펠릿 기준으로 탄화수소 화합물 2.0∼2.5 중량%를 연속적으로 투입하여 연속괴상중합하고; 그리고When the contents of the reactor of the second reactor in the second reactor is V 2 , and the contents of the reaction solution in the second reactor are V 2 ′, 2.4 ≤ V 2 / V 2 '≤ 4.8, F = F 1 + F 2 Continuous bulk polymerization by continuously adding 2.0 to 2.5% by weight of a hydrocarbon compound on a final pellet basis under the condition of; And 제2반응기로부터 생성된 중합물로부터 미반응 단량체를 분리한 후 펠릿 형태로 절단하는;Separating the unreacted monomer from the polymer produced from the second reactor and then cutting into pellets; 단계에 의해 제조되는 것을 특징으로 하는 평균분자량이 18∼25만인 고유동 열가소성 수지의 제조방법.A method for producing a high flow thermoplastic resin having an average molecular weight of 18 to 250,000, characterized by being prepared by the step. 제1항에 있어서, 상기 제1반응기의 온도가 130∼140 ℃로 유지되고, 제2반응기의 온도가 170∼190 ℃로 유지되는 것을 특징으로 하는 고유동 열가소성 수지의 제조방법.The method of manufacturing a high flow thermoplastic resin according to claim 1, wherein the temperature of the first reactor is maintained at 130 to 140 ° C and the temperature of the second reactor is maintained at 170 to 190 ° C. 제1항에 있어서, 상기 제2반응기에서 폴리스티렌 고형분 함량이 65∼75 중량%인 것을 특징으로 하는 고유동 열가소성 수지의 제조방법.The method of claim 1, wherein the polystyrene solids content in the second reactor is 65 to 75% by weight. 제1항에 있어서, 상기 탄화수소 화합물이 화이트 오일(white oil)인 것을 특징으로 하는 고유동 열가소성 수지의 제조방법.The method of producing a high flow thermoplastic resin according to claim 1, wherein the hydrocarbon compound is a white oil.
KR10-2001-0084979A 2001-12-26 2001-12-26 Process of High Flow Thermoplastic Resin Having Good Moldability KR100464697B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0084979A KR100464697B1 (en) 2001-12-26 2001-12-26 Process of High Flow Thermoplastic Resin Having Good Moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0084979A KR100464697B1 (en) 2001-12-26 2001-12-26 Process of High Flow Thermoplastic Resin Having Good Moldability

Publications (2)

Publication Number Publication Date
KR20030055441A KR20030055441A (en) 2003-07-04
KR100464697B1 true KR100464697B1 (en) 2005-01-05

Family

ID=32213361

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0084979A KR100464697B1 (en) 2001-12-26 2001-12-26 Process of High Flow Thermoplastic Resin Having Good Moldability

Country Status (1)

Country Link
KR (1) KR100464697B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166260A (en) * 1989-05-24 1992-11-24 Montedipe S.R.L. Process for the continuous bulk production of high impact vinylaromatic (co)polymers
KR970001392A (en) * 1995-06-24 1997-01-24 유현식 Rubber modified styrene resin composition having high gloss and impact resistance and method for producing same
KR100193023B1 (en) * 1995-12-06 1999-06-15 유현식 Process for production of thermoplastic styrene resins with high impact resistnace and high brilliance properties
KR100215508B1 (en) * 1996-09-24 1999-08-16 유현식 The process for manufacturing of thermoplastic resins with high toughness properties
KR20000013236A (en) * 1998-08-06 2000-03-06 유현식 Process for the preparation of high strength thermoplastic resin having a good releasing property
KR20000055443A (en) * 1999-02-06 2000-09-05 유현식 method of preparing thermoplastic resin having excellent release property and antiabrasive property
KR20010058186A (en) * 1999-12-24 2001-07-05 안복현 Process of high tensile strength thermoplastic material with good molding productivity

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166260A (en) * 1989-05-24 1992-11-24 Montedipe S.R.L. Process for the continuous bulk production of high impact vinylaromatic (co)polymers
KR970001392A (en) * 1995-06-24 1997-01-24 유현식 Rubber modified styrene resin composition having high gloss and impact resistance and method for producing same
KR100193023B1 (en) * 1995-12-06 1999-06-15 유현식 Process for production of thermoplastic styrene resins with high impact resistnace and high brilliance properties
KR100215508B1 (en) * 1996-09-24 1999-08-16 유현식 The process for manufacturing of thermoplastic resins with high toughness properties
KR20000013236A (en) * 1998-08-06 2000-03-06 유현식 Process for the preparation of high strength thermoplastic resin having a good releasing property
KR20000055443A (en) * 1999-02-06 2000-09-05 유현식 method of preparing thermoplastic resin having excellent release property and antiabrasive property
KR20010058186A (en) * 1999-12-24 2001-07-05 안복현 Process of high tensile strength thermoplastic material with good molding productivity

Also Published As

Publication number Publication date
KR20030055441A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
KR101576726B1 (en) Heat-resistant san resin, method for preparing the resin and heat-resistant abs resin composition containing the same
KR20190013569A (en) Copolymer and method for preparing the same
KR100464697B1 (en) Process of High Flow Thermoplastic Resin Having Good Moldability
KR100465880B1 (en) Process of the Thermoplastic Resin with High Tensile Strength and High Fluidity
WO2001085802A1 (en) Process for producing styrene resin reduced in content of low-molecular ingredient
KR100465881B1 (en) Process of High Flow Thermoplastic Resin Having Good Moldability
KR100874030B1 (en) Manufacturing method of copolymer of styrene monomer and acrylonitrile monomer
KR100464696B1 (en) Process of High Heat Resistance Thermoplastic Resin
KR100479750B1 (en) method of preparing thermoplastic resin having excellent release property and antiabrasive property
KR100604087B1 (en) Continuous Process of Preparing High-Flow and High-Gloss Rubber-Modified Styrenic Resin
KR100558253B1 (en) Process of high tensile strength thermoplastic material with good molding productivity
KR100215508B1 (en) The process for manufacturing of thermoplastic resins with high toughness properties
KR20000013236A (en) Process for the preparation of high strength thermoplastic resin having a good releasing property
KR102152825B1 (en) Bulk Polymerization process using initiator for HIPS with High Glossy and High Impact property
KR100726485B1 (en) Continuous bulk polymerization process for transparent abs resin
KR101055000B1 (en) Continuous production method of copolymerized heat resistant resin of α-methylstyrene and vinyl cyan compound
US20110054123A1 (en) High Impact Polymers and Methods of Making and Using Same
KR100543926B1 (en) Continuous Process for Preparing High Impact Polystyrene Resin
KR100587649B1 (en) Continous Polymerization Process of Rubber-Modified Styrenic Resin with Super High Impact Property
KR20070070881A (en) Continuous polymerization process of rubber-modified styrenic resin with super high gloss
KR100576325B1 (en) Continuous Process for Preparing High Impact Polystyrene Resin
KR100587650B1 (en) Continous Polymerization Process of Rubber-Modified Styrenic Resin with Good Falling Dart Impact
KR100548632B1 (en) Preparing method for transparent resin by bulk polymerization
KR100556188B1 (en) Continuous Bulk Process of Preparing Rubber-Modified Styrenic Resin
KR20120078604A (en) Continuous process for preparing rubber-modified styrene polymer from conjugated diene

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121105

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130913

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140917

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151124

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161109

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20171114

Year of fee payment: 14