KR100464260B1 - PRIMER SET SPECIFIC TO GENUS STREPTOMYCES, rpoB GENE SEQUNCE, AND IDENTIFICATION METHOD OF GENUS STREPTOMYCES BY USING THE SAME - Google Patents

PRIMER SET SPECIFIC TO GENUS STREPTOMYCES, rpoB GENE SEQUNCE, AND IDENTIFICATION METHOD OF GENUS STREPTOMYCES BY USING THE SAME Download PDF

Info

Publication number
KR100464260B1
KR100464260B1 KR10-2002-0036731A KR20020036731A KR100464260B1 KR 100464260 B1 KR100464260 B1 KR 100464260B1 KR 20020036731 A KR20020036731 A KR 20020036731A KR 100464260 B1 KR100464260 B1 KR 100464260B1
Authority
KR
South Korea
Prior art keywords
dna
kctc
streptomyces
strain
cgcact
Prior art date
Application number
KR10-2002-0036731A
Other languages
Korean (ko)
Other versions
KR20030015124A (en
Inventor
김범준
김정미
국윤호
이근화
천종식
배경숙
Original Assignee
주식회사 바이오메드랩
국윤호
김범준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오메드랩, 국윤호, 김범준 filed Critical 주식회사 바이오메드랩
Priority to US10/486,669 priority Critical patent/US20050282159A1/en
Priority to PCT/KR2002/001318 priority patent/WO2003016534A1/en
Publication of KR20030015124A publication Critical patent/KR20030015124A/en
Application granted granted Critical
Publication of KR100464260B1 publication Critical patent/KR100464260B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 스트렙토미세스속 균주의 rpoB 유전자에 특이적인 PCR 프라이머, 스트렙토미세스속 균주의 동정에 이용될 수 있는 RNA 중합효소 유전자 (rpoB)의 306-bp 분절을 나타내는 폴리뉴클레오타이드, 및 이들을 이용한 스트렙토미세스속 균주를 동정하는 방법에 관한 것이다. 본 발명의 동정법은 생장속도가 느리고 다양한 균종이 존재한다는 문제점, 그리고 물질위주 동정 및 16s rDNA 동정이 갖는 문제점을 해결하여, 간편하고, 경제적이고 정확성이 높은 동정방법을 제공한다는 장점이 있어, 향후 스트렙토미세스속 균주 동정에 널리 이용될 수 있다.The present invention relates to PCR primers specific for rpoB gene of Streptomyces strain, polynucleotides representing 306-bp fragment of RNA polymerase gene ( rpoB ) that can be used for the identification of Streptomyces strain, and Streptomyces genus using them A method for identifying strains. The identification method of the present invention has the advantage of providing a simple, economical and accurate identification method by solving the problem of slow growth rate and the presence of various species, and the problems of material-oriented identification and 16s rDNA identification. It can be widely used to identify Streptomyces strains.

Description

스트렙토미세스속 균주 특이적 프라이머, rpoB 유전자 분절, 및 이들을 이용한 스트렙토미세스속 균종의 동정방법{PRIMER SET SPECIFIC TO GENUS STREPTOMYCES, rpoB GENE SEQUNCE, AND IDENTIFICATION METHOD OF GENUS STREPTOMYCES BY USING THE SAME}Streptomyces strain-specific primers, gene gene segments, and methods for identifying Streptomyces genus strains using the same

[기술분야][Technical Field]

본 발명은 스트렙토미세스 특이적 프라이머 및 스트렙토미세스의 동정방법에 관한 것이다. 더욱 자세하게는,rpoB유전자 분절, 및 이를 이용한 스트렙토미세스속 균주의 탐지 또는 동정방법이다.The present invention relates to the identification of Streptomyces specific primers and Streptomyces. More specifically, the rpoB gene segment and a method for detecting or identifying Streptomyces sp. Strain using the same.

[배경기술][Background]

스트렙토마이신이 발견된 이후로 많은 연구자들에 의해 스트렙토미세스속 균주를 항생물질 생산 균주의 대상으로서 연구를 하기에 이르렀고, 그 결과 많은 항생물질이 발견되었다. 그 후 스트렙토미세스속 균주으로부터 항생물질외에 여러 가지 생리활성 물질들이 계속 분리되면서 스트렙토미세스속 균주에 대한 새로운 항생물질 탐색이 진전되고 있으며, 스트렙토미세스속을 포함한 스트렙토미세스속 균주류 (Actinomycetes)는 항생물질의 생산균으로서 산업적으로나 의학적으로 중요한 미생물로 다루어지게 되었다. 이러한 항생물질의 연구는 세균이나 진균 감염증에 유효한 물질에서 암 이나 바이러스 병에 유효한 물질 탐색까지 발전하고 있으며, 최근에는 내성균, 그람음성 간균 등에 유효한 새로운 항생물질이나 항생물질 유도체의 연구 및 제암 항생물질 연구에까지 활발히 이루어지고 있는 실정이다. 최근에는 항생물질의 대한 내성균의 잦은 출현으로 인하여 특정 속의 병원균에 대해서만 선택적으로 강한 항균활성을 가진 화합물의 탐색이 선호되고 있다. 최근에는 재조합을 이용한 항생제 생산에 연구도 이루어지고 있는 실정이다 (Bachmann BO, Li R, Townsend CA. beta-Lactam synthetase: a new biosynthetic enzyme. Proc Natl Acad Sci U S A. 1998 ;95(16):9082-6).Since the discovery of streptomycin, many researchers have studied Streptomyces spp. As the subject of antibiotic-producing strains. As a result, many antibiotics have been found. Then Streptomyces as various physiologically active substances are still separate addition to the antibiotics from the MRS in strain has been progress in the new antibiotic search for Streptomyces MRS spp, Streptococcus MRS spp Alcohol (Actinomycetes), including Streptomyces Mrs in the antibiotic As a microorganism, it was treated as an industrially and medically important microorganism. The research of these antibiotics is progressing from searching for a substance that is effective for bacterial or fungal infections to a substance that is effective for cancer or viral diseases, and recently, research on new antibiotics or antibiotic derivatives that are effective for resistant bacteria, gram-negative bacillus, and anticancer antibiotics. Until now, the situation is active. Recently, due to the frequent appearance of resistant bacteria against antibiotics, the search for a compound having a strong antimicrobial activity selectively against a specific pathogen is preferred. In recent years, research on the production of antibiotics by recombination has also been conducted (Bachmann BO, Li R, Townsend CA. beta-Lactam synthetase: a new biosynthetic enzyme.Proc Natl Acad Sci US A. 1998; 95 (16): 9082 -6).

스트렙토미세스 속 균주는 그 종 (species)이 가장 다양할 뿐 아니라, 같은 종 내에서도 서로 다른 생리 대사 능력을 보유하고 있는 등 매우 다양하다 (Anderson AS, Wellington EM. The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol. 2001 51(3):797-814.). 지금까지 미생물로부터 탐색된 100,000여종의 생리활성 물질 가운데 약 2/3에 해당되는 64% 정도가 스트렙토미세스속 균주으로부터 발견되어 각종 생리활성 물질의 탐색에 있어서 스트렙토미세스속 균주가 차지하는 비중은 매우 크므로, 생물 소재 산업에 있어서 산업적으로 가장 중요한 미생물로 부각되고 있다. 따라서, 스트렙토미세스속 균주는 농수산업 (육종, 병충해 방제 등), 환경산업 (폐기물 분해처리), 정밀화학산업 (공업화학약품), 식품산업 (원료, 첨가제 등), 반도체 산업 (biosensor), 그리고 의약업 등에서 활용될 수 있는 잠재력도 크다. 천연물을 각종 질병의 예방, 완화 또는 치료의 목적으로 이용하고자 하는 연구가 근래에 들어 적극적으로 진행되고 있다(Emmert EA, Handelsman J. Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol Lett. 1999 1;171(1):1-9 ;Nielsen J. Metabolic engineering: techniques for analysis of targets for genetic manipulations.Biotechnol Bioeng. 1998;58(2-3):125-32;. Hutchinson C, Colombo A. Genetic engineering of doxorubicin production inStreptomyces peucetius: J Ind Microbiol Biotechnol. 1999 Jul;23(1):647-652)Streptomyces spp. Strains are the most diverse, as well as having different physiological metabolic capacity within the same species (Anderson AS, Wellington EM.The taxonomy of Streptomyces and related genera.Int J.) Syst Evol Microbiol. 2001 51 (3): 797-814.). So far, about 2/3 of the 100,000 bioactive substances detected from microorganisms are found in Streptomyces strains, so the strains of the Streptomyces strain are very large in the search for various bioactive substances. It is emerging as one of the most important microorganisms in the biological material industry. Therefore, Streptomyces strains can be used in agricultural and fishery industry (breeding, pest control, etc.), environmental industry (waste decomposition treatment), fine chemical industry (industrial chemicals), food industry (raw materials, additives, etc.), semiconductor industry (biosensor), and medicine. There is also great potential to be used in industry. In recent years, studies on using natural products for the purpose of preventing, alleviating or treating various diseases have been actively conducted (Emmert EA, Handelsman J. Biocontrol of plant disease: a (gram-) positive perspective.FEMS Microbiol Lett. 1999 1; 171 (1): 1-9; Nielsen J. Metabolic engineering: techniques for analysis of targets for genetic manipulations. Biotechnol Bioeng. 1998; 58 (2-3): 125-32; .Hutchinson C, Colombo A. Genetic engineering of doxorubicin production in Streptomyces peucetius : J Ind Microbiol Biotechnol. 1999 Jul; 23 (1): 647-652)

따라서, 스트렙토미세스속 균주를 이용한 항생물질 탐색 연구 그리고, 이에 따른 스트렙토미세스속 균주 분류학 연구는 급속한 진전이 있을 것으로 생각된다. 자연 환경의 오염 정도가 점차 심각해지고 있는 실정에서 국내의 미생물 자원을 확보, 보존하는 작업이 시급함을 알 수 있다. 따라서, 미생물이 생산하는 특이적인 생리활성물질 뿐만 아니라, 그 미생물의 정확한 계통 발생학적인 위치 혹은 분류 또한 중요하다.Therefore, the investigation of antibiotics using Streptomyces spp. And Streptomyces spp. In the situation where the pollution of the natural environment is getting serious, it is urgent to secure and conserve microbial resources in Korea. Therefore, not only the specific bioactive substances produced by microorganisms, but also the precise phylogenetic location or classification of the microorganisms is important.

스트렙토미세스속 균주는 천연 유기화합물의 보고로서 신물질 스크리닝의 대상이 되었고, 대사산물의 생합성 기구에 대한 연구가 많이 이루어졌다. 따라서, 이러한 스트렙토미세스속 균주의 분류는 새로운 균의 분리 동정에 의한 새로운 물질의 탐색 때문에 현재에 있어서 상당한 중요성을 얻고 있다. 현재의 스트렙토미세스속 균주에 의한 새로운 물질의 스크리닝은 물질 위주로 수행되기 때문에 기존의 물질을 생산하는 균주와 중복되는 경우가 상당히 많다. 따라서 이러한 신물질 탐색 방법은 이 스트렙토미세스속 균주의 분류 동정에 의해 새로운 종이나 새로운 균주가 결정된 후에 수행되어야 확률적으로 다양한 신물질을 획득할 가능성이 높다고 볼 수 있다. Streptomyces strains have been the subject of novel substance screening as a report of natural organic compounds, and much research has been done on the biosynthetic mechanism of metabolites. Therefore, the classification of Streptomyces spp. Has gained considerable importance in the present because of the search for new substances by the identification and identification of new bacteria. Screening of new substances by current strains of Streptomyces is highly material-specific, which often overlaps with existing strain-producing strains. Therefore, this new material search method is likely to obtain a variety of new materials if the new species or strains have been determined by the identification of the strain of Streptomyces genus.

현재 스트렙토미세스속 균주의 분류는 기존의 표현형적 특성에 의한 생리학적, 형태학적 혹은 생화학적 특성에 의한 수치 분류법(numerical taxonomy)에 기초하고 있다. 스트렙토미세스속 균주는 세균 중에서 가장 종류가 다양하고 또한 다른 미생물에 비해 상대적으로 발육 속도가 느리기 때문에, 생화학적인 방법 혹은 생리학적인 방법으로 균종 분류가 어렵다는 단점을 가지고 있다 (Skerman, V. B. D., McGowan, V., Sneath, P. H. A. (ed): Approved Lists of Bacterial Names. Int. J. Syst. Bacteriol. 30:225-420 (1980)).Currently, the classification of Streptomyces genus strains is based on numerical taxonomy by physiological, morphological or biochemical properties by existing phenotypic properties. Streptomyces genus has the disadvantage that it is difficult to classify the species by biochemical or physiological methods because it is the most diverse type of bacteria and relatively slow development rate compared to other microorganisms (Skerman, VBD, McGowan, V.). , Sneath, PHA (ed): Approved Lists of Bacterial Names.Int. J. Syst. Bacteriol. 30: 225-420 (1980)).

형질 특성에 의한 분류 방법은 스트렙토미세스 균종의 다수, 느린 성장 속도 (대장균의 세포분열주기: 20분, 스트렙토미세스 분열주기: 2-3 시간) 때문에 확실하게 스트렙토미세스속 균주의 종을 결정하는 데 있어서 시간상의 문제, 그리고 정확성에 있어서 문제점이 있다. 모든 세균의 계통적 관계를 잘 나타내는 시계 분자 (chronometer molecule)을 염기서열 분석방법으로 분석하여 종을 결정하는 분자생물학적 분류법(molecular taxonomy)으로 동정하는 것이 추세다. 16S rDNA의 염기서열 결정에 의한 균 동정 방법은 현재 병원성균을 비롯한 중요한 균들을 분자생물학적인 방법으로 검출하는 키트의 표적으로서 가장 널리 사용되고 있다(미코박테리아균 분류를 위한 Genprobe kit등) .The classification method based on the characteristics of traits is a reliable method for determining the species of Streptomyces strains because of the large number of Streptomyces strains and the slow growth rate (E. coli cell division cycle: 20 minutes, Streptomyces division cycle: 2-3 hours). There is a problem with time and with accuracy. The trend is to identify chronometer molecules that represent the systematic relationships of all bacteria with sequencing methods and identify molecular taxonomy to determine species. The bacterium identification method by sequencing 16S rDNA is most widely used as a target of a kit for detecting pathogens and other important bacteria by molecular biological methods (Genprobe kit for classifying mycobacteria).

16S rDNA과 여러 다른 표적들의 비교염기서열 분석방법 등을 이용한 분자생물학적인 분류방법 (Molecular taxonomy)은, 표적 유전자의 여러 단점들과 비용과 시간상의 문제점 등으로 인하여 정확한 분류가 상당히 어려운 실정이다 (Ueda K, Seki T, Kudo T, Yoshida T, Kataoka M. Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol. 1999 Jan;181(1):78-82). 첫째로, 염기서열 분석에 의한 비교염기서열 분석 방법으로 균을 동정하기 위해서는 비록 염기서열 변이가 심한 과변이영역(hypervariable region)이 존재하지만, 정확한 균 동정을 위해서는 전체 1.5 kbp의 염기서열을 분석해야 되기 때문에 시간상 또한 비용상으로 큰 문제점이 있다. 이런 단점은 앞으로 DNA 칩에 의한 동정 방법을 개발하는데 있어서 많은 올리고뉴클레오타이드를 심어야 한다는 문제점이 있다. 두 번째로, 스트렙토미세스속 균주 속과 같이 450 종 이상이 되는 많은 자료를 분석하기 위해서는 많은 비용이 소요된다. 따라서, 현재 다른 균종 들의 16S rDNA의 데이터베이스는 현재 Genbank 상에 확실히 확립되어 있지만, 스트렙토미세스속 균주는 일부 균종을 제외하고는 전체 균종의 16s rDNA 데이터베이스가 아직까지 완벽하게 확립되어 있지 않다. 세 번째로, 16S rDNA에 의한 분류 방법의 가장 치명적인 약점으로는 어떤 균종에서는 이들이 전체 염색체상에서 다수 사본 유전자(multi-copy gene)로 존재하고 또한 이렇게 존재하는 대립형질(allele)의 염기서열이 서로 다른 염기서열로 존재하고 있다는 보고가 있다 (Ueda K, Seki T, Kudo T, Yoshida T, Kataoka M. Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol. 1999 Jan;181(1):78-82).Molecular taxonomy using 16S rDNA and comparative sequencing of several different targets is difficult to accurately classify due to various disadvantages of the target gene, cost and time issues (Ueda). K, Seki T, Kudo T, Yoshida T, Kataoka M. Two distinct mechanisms cause heterogeneity of 16S rRNA.J Bacteriol. 1999 Jan; 181 (1): 78-82). First, in order to identify bacteria by comparative sequencing method by sequencing method, although there are hypervariable regions with severe sequencing, the entire 1.5 kbp sequence must be analyzed for accurate bacterial identification. There is a big problem in terms of time and cost as well. This drawback has the problem of planting many oligonucleotides in the future development of identification methods by DNA chips. Secondly, it is costly to analyze many data of more than 450 species, such as the genus Streptomyces. Thus, while a database of 16S rDNA of other species is currently clearly established on Genbank, Streptomyces strains are not yet fully established 16s rDNA database of the entire species except for some species. Third, the most deadly weakness of the classification method by 16S rDNA is that in some species, they exist as multi-copy genes on the whole chromosome and also have different allele sequences. It has been reported to exist as a nucleotide sequence (Ueda K, Seki T, Kudo T, Yoshida T, Kataoka M. Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol. 1999 Jan; 181 (1): 78-82).

또한, 한 균주에서 여러 16S rDNA의 염기서열이 존재하여, 염기서열 분석상에서 기술적으로 상당한 문제점으로 작용한다. 즉, 스트렙토미세스속 균주의 표적 유전자인 16s rDNA를 중합효소 연쇄반응으로 증폭시킨 후에 이 산물의 서열분석을 직접적으로 하지 못하고, 반드시 벡터에 클로닝시킨 후 여러 클론을 제조하고 이들의 염기서열을 분석해야 한다는 문제점이 있다.In addition, there are several sequences of 16S rDNA in one strain, which poses a significant technical problem in sequencing. In other words, 16s rDNA, a target gene of Streptomyces spp., Was amplified by polymerase chain reaction, and this product was not directly sequenced. Cloning into a vector was required to prepare several clones and to analyze their base sequences. There is a problem.

따라서, 16S rDNA 이외에 스트렙토미세스속 균주의 동정에 이용될 대체 시계분자의 선택이 필요하고, 이를 이용한 스트렙토미세스속 균주 동정방법의 확립이 필요하다.Therefore, in addition to 16S rDNA, it is necessary to select an alternative clock molecule to be used for the identification of Streptomyces spp., And to establish a method for identifying Streptomyces spp.

상기와 같은 문제점을 해결하고자, 본 발명은 스트렙토미세스속 균주의 rpoB 유전자에 특이적인 프라이머를 제공하는 것이다.In order to solve the above problems, the present invention is to provide a primer specific for rpoB gene of Streptomyces sp.

본 발명의 또다른 목적은 스트렙토미세스속 균주 동정에 이용될 수 있는rpoB유전자 분절을 제공하는 것이다.Another object of the present invention is to provide an rpoB gene segment that can be used for the identification of Streptomyces sp.

본 발명의 또다른 목적은 상기 스트렙토미세스속 균주의 rpoB 분절을 이용하여 스트렙토미세스속 균종의 동정방법을 제공하고자 한다.Another object of the present invention is to provide a method for identifying Streptomyces spp. Using the rpoB segment of the Streptomyces spp.

도 1은 종래에 염기서열이 분석된 여러 세균의rpoB염기서열 중에서 본 발명의 표적으로 사용된 306-bp 부위를 취하여 작성된 계통도를 나타낸다.Figure 1 shows a schematic diagram created by taking the 306-bp site used as a target of the present invention among rpoB nucleotide sequences of various bacteria conventionally analyzed.

도 2는 본 발명에 따른, 스트렙토미세스속 균주 특이적rpoB프라이머와S. coelicolor,M. smegmatis,M. tuberculosis,M. leprae4 주의rpoB염기서열을 배열한 그림이다.FIG. 2 is a diagram illustrating the rpoB sequences of Streptomyces strain specific rpoB primers and S. coelicolor , M. smegmatis , M. tuberculosis , and M. leprae 4 strains.

도 3은 본 발명에 따른 스트렙토미세스속 특이적rpoB프라이머로 하여 증폭된 표준균주의 352-bprpoB분절에 대한 전기영동 사진이다.Figure 3 is an electrophoresis picture of the 352-bp rpoB fragment of the standard strain amplified with Streptomyces specific rpoB primer according to the present invention.

도 4는 스트렙토미세스 24주의 염기서열 상동성 또는 동질성(similarity value) 결과를 나타낸다.Figure 4 shows the nucleotide sequence homology or homogeneity (similarity value) results of the streptomyces 24 weeks.

도 5는 스트렙토미세스 표준 균주 102주의 306-bprpoB유전자 분절 계통수를 나타낸다.Figure 5 shows the 306-bp rpoB gene segment phylogeny of Streptomyces standard strain 102 strain.

도 6은rpoB306-bp 분절을 이용한 비교염기서열 분석에 의한 8주의 비표준균주의 종수준에서의 동정 결과를 나타내며, 도 6a는S. olivichromogenes1주의동정예이고, 도 6b는S. peucetius2주의 동정예이고, 도 6c는S. hydroscopicus3주의 동정예이고, 도 6d는S. albus2주의 동정예를 나타낸다.Figure 6 shows the results of identification at the species level of non-standard strains of 8 weeks by comparative base sequence analysis using rpoB 306-bp segment, Figure 6a is an example of identification of S. olivichromogenes 1 week, Figure 6b is S. peucetius 2 weeks 6c shows an identification of 3 strains of S. hydroscopicus , and FIG. 6d shows an identification of 2 strains of S. albus .

본 발명은 스트렙토미세스속 균주의rpoB유전자에 특이적인 프라이머, 스트렙토미세스속 균주rpoB분절 및rpoB분절의 서열정보를 이용한 스트렙토미세스속 균주의 효과적인 탐지 또는 동정방법에 관한 것이다.The present invention relates to an effective detection or identification method of Streptomyces strain using sequence information of the rpoB gene, Streptomyces strain rpoB segment and rpoB segment of Streptomyces strain.

스트렙토미세스속 균주의 동정 및 분류방법상의 문제점을 감안하여, 본 발명자들은 모든 스트렙토미세스속 균주의 PCR 증폭에 사용되는 프라이머 쌍을 제공하고, 이를 이용하여 스트렙토미세스속 균주 표준균주 162종을 대상으로 새로운 대체 표적 유전자인 RNA 중합효소 (rpoB)의 유전자 분절 (306-bp)의 염기서열을 분석하여 데이터베이스를 구축하였다. 또한, 목적 균주의rpoB분절을 증폭하여, 상기 데이터베이스와 비교 분석함으로써 새로운 스트렙토미세스속 균주 탐지 또는 동정방법을 개발하게 되었다.In view of the problems in the identification and classification of Streptomyces sp. Strains, the present inventors have provided primer pairs used for PCR amplification of all Streptomyces sp. A database was constructed by analyzing the nucleotide sequence of the gene fragment (306-bp) of the alternative target gene RNA polymerase ( rpoB ). In addition, by amplifying the rpoB fragment of the target strain, and compared with the database to develop a new Streptomyces strain detection or identification method.

본 발명은 스트렙토미세스속 균주를 탐지 또는 동정하기 위한 스트렙토미세스속 균주의rpoB분절을 나타내는 폴리뉴클레오타이드, 또는 이들의 단편에 관한 것이다.The present invention relates to polynucleotides representing rpoB segments of Streptomyces strains for detecting or identifying Streptomyces strains, or fragments thereof.

스트렙토미세스속 균주를 분류 동정하는데 있어서의 16S rDNA를 대체할 수 있는 대체 분자로서 본 발명에서는 RNA 중합효소 서브유니트 B를 코딩하는 306-bp의rpoB유전자 분절을 사용하였다. 어떤 유전자가 세균의 계통적 관계를 잘 반영하는 시계분자가 되기 위해서는 일정한 요건을 만족해야 한다.As a replacement molecule capable of substituting 16S rDNA for classifying Streptomyces strains, in the present invention, a 306-bp rpoB gene segment encoding RNA polymerase subunit B was used. In order for a gene to be a clock molecule that reflects the systematic relationship of a bacterium, certain requirements must be met.

첫째로, 표적 유전자가 모든 세균에서 기능적으로 필수적이고 보존되어야 한다. 대표적인 시계 분자인 16S rDNA은 단백질 합성에 필수적인 역할을 담당하기 때문에 모든 세균이 이 유전자를 보유하고 있고, 또한 각 세균사이의 유전자 변이가 진화상의 시간 관계를 잘 나타낸다. 본 발명에서 표적으로 사용한rpoB유전자도 세균의 전사에 관여하는 필수 효소이기 때문에 이러한 조건을 충족시킨다. 둘째로, 표적 유전자의 유전자 변이가 진화를 반영하는 시간적 요소에 의해서만 일어나야 한다. 즉 균종간 선택압 (selection pressure)에 의한 lateral transfer에 의한 염기서열 변이가 일어나지 않는다. 본 연구에 표적으로 사용하고 있는rpoB유전자는 균 종간의 염기서열 변이가 일어나지 않는다. 셋째로, 표적유전자는 균의 계통적 관계를 나타내기에 적절한 속간 다양성 (interspecies variation)과 같은 속내의 균종 사이의 보존성 (intraspecies conservation)을 보여야 한다.rpoB유전자는 여러 논문 (Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Chae GT, Kim EC, Cha CY, Kook YH. Identification of mycobacterial species by comparative sequenceanalysis of the RNA polymerase gene (rpoB). J Clin Microbiol 1999 Jun;37(6):1714-20; Lee SH, Kim BJ, Kim JH, Park KH, Kim SJ, Kook YH. Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene (rpoB) sequences.J Clin Microbiol. 2000 Jul;38(7):2557-62.)에서 이 조건을 충족시킴이 확인된다.First, target genes must be functionally necessary and conserved in all bacteria. Since 16S rDNA, a representative clock molecule, plays an essential role in protein synthesis, every bacterium has this gene, and the genetic variation between each bacterium shows an evolutionary time relationship. The rpoB gene used as a target in the present invention also satisfies these conditions because it is an essential enzyme involved in the transcription of bacteria. Second, the genetic variation of the target gene should only be caused by temporal factors that reflect evolution. In other words, the nucleotide sequence does not occur by lateral transfer due to selection pressure between species. The rpoB gene, which is used as a target of this study, does not cause sequence variation between species. Third, the target gene should show the conservation of the species within the genus, such as interspecies variation, which is appropriate for showing the phylogenetic relationship. The rpoB gene has been described in several articles (Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Chae GT, Kim EC, Cha CY, Kook YH. Identification of mycobacterial species by comparative sequenceanalysis of the RNA polymerase gene ( rpoB ) .J Clin Microbiol 1999 Jun; 37 (6): 1714-20; Lee SH, Kim BJ, Kim JH, Park KH, Kim SJ, Kook Y H. Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene (rpoB) sequences. J Clin Microbiol. 2000 Jul; 38 (7): 2557-62.

상기 306-bprpoB분절은 RNA 중합효소 서브유니트를 구성하는 아미노산 중에서 여러 eubacteria 사이에서 아미노산 및 염기서열이 가장 보존되어 있고 또한 전체 RNA 중합효소중에서 이 효소 기능상에서 가장 중요한 부위로 알려져 있다. 또한 결핵균과 대장균에서 리팜핀 내성과 연관되어 있다는 306-bp 부위를 표적으로 사용하고자 한다(Telenti, A., P. Imboden, F. Marchesi, D. Lowrie, S. Cole, M. J. Colston, L. Matter, K. Schopfer, and T. Bodmer. 1993. Detection of rifampin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647-650). 이 부위는 또한 모든 진성세균(eubacteria) 사이에서도 아미노산이 보존되어 있는 매우 보존도가 높은 영역(Highly conserved region) 5와 6 (HCR5, HCR6)에 의해 둘러싸여 있다. 이러한 이유로 이 부분의 유추된 염기서열은 스트렙토미세스속 균주 특이적인 프라이머쌍의 제조를 가능하게 한다(Boor, K. J., M. L. Dunkan, and C. W. Price. 1995. Genetic and transcriptional organization of the region encoding the subunit of Bacillus subtilis RNA polymerase. J. Biol. Chem. 270:20329-20336).The 306-bp rpoB segment is the most conserved amino acid and sequence among the various eubacteria among the amino acids constituting the RNA polymerase subunit, and is known as the most important site in the enzyme function of the total RNA polymerase. We also aim to target 306-bp sites associated with rifampin resistance in Mycobacterium tuberculosis and E. coli (Telenti, A., P. Imboden, F. Marchesi, D. Lowrie, S. Cole, MJ Colston, L. Matter, K. Schopfer, and T. Bodmer. 1993. Detection of rifampin-resistance mutations in Mycobacterium tuberculosis.Lancet 341: 647-650). This site is also surrounded by highly conserved regions 5 and 6 (HCR5, HCR6), where amino acids are preserved among all eubacteria. For this reason, the inferred sequences of this region enable the preparation of Streptomyces strain specific primer pairs (Boor, KJ, ML Dunkan, and CW Price. 1995. Genetic and transcriptional organization of the region encoding the subunit of Bacillus subtilis RNA polymerase. J. Biol. Chem. 270: 20329-20336).

어떤 부위가 동정 및 진단의 표적으로 적합하기 위해서는 이 부위가 세균사이의 계통적 관계를 잘 나타내는 시계분자 인지를 살펴보아야 한다. 따라서 본 발명의rpoB306-bp 영역이 시계분자로서 적절한지를 알아보기 위해서, 다른 목적으로 염기서열이 분석된 여러 세균의rpoB염기서열 중에서 본 발명의 표적으로 사용된 306-bp 부위를 취하여 계통도를 작성한다(도 1). 도1에서와 같이 기존 세균을 정확히 그램 (-), 그램(+), 원시그룹(ancient group)으로 확실히 구분됨을 확인할 수 있다. 이런 사실은 본rpoB306-bp 영역이 세균의 균 동정에 이용될 수 있는 시계분자임을 보여준다.In order for a site to be a suitable target for identification and diagnosis, it must be examined whether it is a clock molecule that shows a systematic relationship between bacteria. Therefore, in order to find out whether the rpoB 306-bp region of the present invention is appropriate as a clock molecule, a 306-bp region used as a target of the present invention is generated from the rpoB sequences of various bacteria whose base sequences have been analyzed for other purposes. (FIG. 1). As shown in Figure 1, it can be seen that the existing bacteria are clearly divided into gram (-), gram (+), and primitive groups. This fact shows that this rpoB 306-bp region is a clock molecule that can be used to identify bacteria.

기존의 시계분자로 널리 사용되던 16s rDNA 와 비교하여 본발명의 rpo B 306-bp 분절은 다음과 같은 장점이 있다.Compared to 16s rDNA, which is widely used as a conventional clock molecule, the rpo B 306-bp segment of the present invention has the following advantages.

(i) 16S rDNA을 표적으로 하여 비교염기서열 분석 방법에 의하여 정확한 균 동정을 하기 위해서는 거의 1.5 kbp 정도의 전체 유전자를 분석해야 한다. 그러나,rpoB유전자는 단지 306-bp의 염기서열 분석만으로도 정확한 균 동정이 가능하다. 스트렙토미세스속 균주 분류에 있어서rpoB유전자 분절의 유용성은 스트렙토미세스속 균주 속과 계통분류학적으로 가장 근사한 미코박테리움 속 균종 분류에서의 성공적인 실험 등에서 간접적으로 유추할 수 있다. 이러한 차이는 동정에 있어서의 비용을 몇 배 절약할 수 있다는 이점이 있다.(i) In order to accurately identify the target by 16S rDNA by comparative sequencing method, the whole gene of about 1.5 kbp should be analyzed. But,rpoBGenes can be accurately identified by only 306-bp sequencing. In classifying Streptomyces strainsrpoBThe utility of gene segments can be inferred indirectly from successful experiments in Streptomyces spp. And Mycobacterium spp. This difference has the advantage that the cost of identification can be saved several times.

(ii) 16S rDNA 를 이용한 스트렙토미세스속 균주 동정방법에 있어서 가장 큰 단점은 어떤 종에서는 16s rDNA 가 다수 사본으로 존재하고, 또한 이들 각 사본의 염기서열이 서로 다르기 때문에, 16s rDNA 의 직접 염기서열 분석방법으로 할 수 없다는 것이다. 즉, 클로닝 작업 후에 여러 클론의 염기서열 분석을 해야 한다.따라서 직접 염기서열 분석 방법에 비해 노동력과 시간, 비용이 수배가 더 소모된다. 그러나, 스트렙토미세스속 균주의rpoB유전자는 단지 하나의 오페론만이 존재하는 것이 확인되었기 때문에 모든 종의 rpoB 유전자 서열을 직접 염기서열 분석 방법으로 분석할 수 있다.(ii) The biggest disadvantage of the Streptomyces strain identification method using 16S rDNA is the direct sequencing of 16s rDNA, because 16s rDNA exists in several species and the nucleotide sequence of each copy is different in some species. It can't be done in a way. In other words, after cloning, multiple clones must be sequenced, which requires several times more labor, time, and cost than direct sequencing. However, since only one operon was found in the rpoB gene of the Streptomyces genus strain, the rpoB gene sequence of all species can be directly analyzed by sequencing method.

(iii) 16S rDNA는 과변이 부위의 염기서열 길이가 서로 달라 염기서열 배열(alignment)상에서 갭(gap)이 존재한다. 그러나, 본 연구에서 표적으로 사용할rpoB분절은 갭이 존재하지 않고 모두 같은 크기 (306-bp)의 염기서열을 갖는다. 따라서, 이러한 특성은 염기서열 배열이나 염기서열을 결정하는 데 있어서 상당한 장점으로 작용한다.(iii) 16S rDNA has a gap in nucleotide sequence due to different nucleotide sequence lengths of hypermutated regions. However, the rpoB segments to be used as targets in this study do not have gaps and all have the same size (306-bp) sequences. Therefore, this property is a significant advantage in determining the sequence sequence or sequence.

(iv) 16S rDNA는 염기서열 데이터베이스가 1980년 중반부터 수행되어 왔고, 스트렙토미세스속 균주 전체의 염기서열은 아직 분석되지 않았지만, 산발적으로 여러 다른 연구자에 의해 수행되어 왔다. 이런 염기서열은 분석방법이 기술적으로 완전하지 못할 때 이루어진 것이 많다. 따라서, 얻어진 16s rDNA데이터베이스는 문제가 많다. 그러나, 본 발명의 스트렙토미세스속 균주의rpoB염기서열은 Genbank 상에서 전부 새롭기 때문에, 독자적인 스트렙토미세스속 균주 분류용 데이터베이스를 구축할 수 있다.(iv) 16S rDNA has been performed by the base sequence database since the mid-1980s, and the sequencing of the entire Streptomyces strain has not been analyzed yet, sporadicly by different researchers. These sequences are often made when the method is not technically complete. Therefore, the obtained 16s rDNA database has many problems. However, since the rpoB sequences of the Streptomyces sp. Strain of the present invention are entirely new on Genbank, a unique database for classifying Streptomyces sp. Strains can be constructed.

도 2에 나타낸 숫자는 스트렙토미세스 세올리콜로의 RNA 중합효소의 서브유닛의 아미노산 순서를 나타낸다. 중합효소 연쇄반응의 증폭산물의 크기는 266번째 아미노산의 코돈중 2번째 염기에서부터 383번째 아미노산의 코돈중 2번째 염기까지 총 352-bp의 유전자 분절이다. 염기서열 분석은 274번째 아미노산 코돈의 2번째 염기에서부터 아미노산 376코돈의 첫번째 염기까지 총 306-bp을 대상으로 한다. 아미노산 332에서 354까지의 총 69-bp는 결핵균에서 리팜핀 내성을 유발하는RIFR부위를 나타낸다. 본 염기서열 분석 부위가 결핵균에서 리팜핀 내성을 유발하는 부위를 포함한다는 것을 보여준다. 별표(*)는 결핵균에서 염기서열 변이가 빈번히 일어나는 핫스팟(hot spot) 부위를 표시한 것이다.The numbers shown in FIG. 2 represent the amino acid sequence of the subunits of RNA polymerase of Streptomyces ceolicolo. The amplification products of the polymerase chain reaction were 352-bp in total, ranging from the second base of the 266 amino acid codon to the second base of the 383 amino acid codon. Sequencing was performed on a total of 306-bp from the second base of the 274th amino acid codon to the first base of the amino acid 376 codon. A total of 69-bp of amino acids 332 to 354 represents the RIFR site that causes rifampin resistance in Mycobacterium tuberculosis. This sequencing site shows that the site contains rifampin resistance in Mycobacterium tuberculosis. An asterisk (*) indicates a hot spot site where sequence variations occur frequently in Mycobacterium tuberculosis.

본 발명에 따라 스트렙토미세스속 균주의rpoB유전자의 306-bp 분절 염기서열 차이를 이용하여 목적 균주을 동정할 수 있다. 예컨대, 이들 염기서열의 차이를 이용한 분자 생물학적인 방법은 모두 본 발명에 적용하여 표준균주의 306-bp 분절과 목적균주의 rpoB유전자 서열을 비교함으로써 스트렙토미세스속 균주를 탐지 또는 동정할 수 있다. 예컨대,rpoB염기서열분석을 하거나, 스트렙토미세스속 균주의 306-bp 분절 또는 이의 단편을 프로브로 사용한 혼성화 방법을 적용하여 동정하는 방법, 또는 상기 스트렙토미세스속 균주의 rpoB 유전자 또는 이의 단편을 포함하는 프로브를 마이크로어레이에 부착하여 시료 균주의rpoB유전자 증폭산물을 반응시켜 분석할 수도 있다.According to the present invention, the target strain can be identified using the 306-bp fragment sequence difference of the rpoB gene of the Streptomyces genus strain. For example, all of the molecular biological methods using the difference of these sequences can be applied to the present invention to detect or identify Streptomyces strains by comparing the r6-B gene sequence of the 306-bp segment of the standard strain with the target strain. For example, rpoB sequencing, hybridization method using a 306-bp segment or fragment thereof of a Streptomyces strain as a probe, or a method comprising the rpoB gene or fragment thereof of the Streptomyces strain It can also be attached to the microarray and analyzed by reacting the rpoB gene amplification product of the sample strain.

본 발명의 일례에서, 스트렙토미세스속 균주 중에서 가장 종 수가 다양하기 때문에 분류체계가 가장 복잡한 스트렙토미세스속 표준 균주 161 종과 희소 스트렙토미세스속 균주 중에서 가장 높은 비율로 분리되는 마이크로모노스포라 표준균주 1종을 포함하는 총 162종의rpoB분절을 증폭시킨 후, 직접 염기서열 분석방법에 의해 각 종의 306-bp의 염기서열을 분석한다. 완성된 162종의 스트렙토미세스속 표준 균주의 염기서열의 다정렬을 수행하여 데이터베이스를 구축하고, 이를 이용하여 계통도를 완성한다. 생화학적 생리학적인 방법으로 분석된 수치계수법과 본 실험에서 완성된rpoB계통도와 서로 비교 분석한다.In one example of the present invention, one of the Streptomyces genus strains because of the most diverse species of the Streptomyces genus standard strain of 161 and the rare strain Streptomyces genus micro strains of the highest strain among the standard strain of one species After amplifying a total of 162 types of rpoB fragments, the nucleotide sequences of each species were analyzed by direct sequencing. A database is constructed by performing a multi-alignment of the nucleotide sequences of the completed 162 Streptomyces genus strains, and completes the schematic by using them. The numerical counts analyzed by biochemical and physiological methods are compared with the rpoB schematics completed in this experiment.

스트렙토미세스속 균주 특이적 프라이머를 이용한 스트렙토미세스속 균주 표준 균주 162 주의 352-bprpoBDNA 분절 증폭을 위해서 다음 표 1a 내지 1b에 나타난 균주를 표준균주로 선정하였다. 비표준 균주는 표 2에 나타냈다. 이들 균주는 대한민국 대전시 유성구 어은동 52번지에 주소를 둔 생명공학연구소 유전자은행에서 받았다.Streptomyces strain standard strain using Streptomyces strain specific primers For the amplification of 352-bp rpoB DNA segment of strain 162 strains, the strains shown in Tables 1a to 1b were selected as standard strains. Nonstandard strains are shown in Table 2. These strains were obtained from the Genetic Bank of Biotechnology Research Institute, located at 52, Eun-dong, Yuseong-gu, Daejeon, Korea.

No.No. 균주명Strain name 출처source No.No. 균주명Strain name 출처source 1One K. azaticaK. azatica KCTC 9699KCTC 9699 4141 S. cinereoruberS. cinereoruber KCTC 9707KCTC 9707 22 K. cystargineaK. cystarginea KCTC 9746KCTC 9746 4242 S.cinereusS.cinereus KCTC 9066KCTC 9066 33 K. griseolaK. griseola KCTC 9671KCTC 9671 4343 S. cinnamonensisS. cinnamonensis KCTC 9708KCTC 9708 44 K. mediocidicaK. mediocidica KCTC 9733KCTC 9733 4444 S. cirratusS. cirratus KCTC 9709KCTC 9709 55 K. phosalacineaK. phosalacinea KCTC 9792KCTC 9792 4545 S. clavuligerusS. clavuligerus KCTC 9095KCTC 9095 66 K. setaeK. setae KCTC 9793KCTC 9793 4646 S. coelicolorS. coelicolor KCTC 9005KCTC 9005 77 M. echinosporaM. echinospora KCTC 9549KCTC 9549 4747 S. coeruleorubidusS. coeruleorubidus KCTC 1743KCTC 1743 88 S. abikoensisS. abikoensis KCTC 9662KCTC 9662 4848 S. collinusS. collinus KCTC 9713KCTC 9713 99 S. achromogenesS. achromogenes KCTC 1740KCTC 1740 4949 S. corchorusiiS. corchorusii KCTC 9715KCTC 9715 1010 S. acrimyciniS. acrimycini KCTC 9679KCTC 9679 5050 S. crystallinusS. crystallinus KCTC 9717KCTC 9717 1111 S. actuosusS. actuosus KCTC 9112KCTC 9112 5151 S. cuspidosporusS. cuspidosporus KCTC 9718KCTC 9718 1212 S. aculeolatusS. aculeolatus KCTC 9680KCTC 9680 5252 S. cyaneusS. cyaneus KCTC 9719KCTC 9719 1313 S. alanosinicusS. alanosinicus KCTC 9683KCTC 9683 5353 S. diasticusS. diasticus KCTC 9142KCTC 9142 1414 S. albireticuliS. albireticuli KCTC 9685KCTC 9685 5454 S. djakartensisS. djakartensis KCTC 9722KCTC 9722 1515 S. albofaciensS. albofaciens KCTC 9747KCTC 9747 5555 S. durhamensisS. durhamensis KCTC 9723KCTC 9723 1616 S. alboflavusS. alboflavus KCTC 9674KCTC 9674 5656 S. echinoruberS. echinoruber KCTC 9725KCTC 9725 1717 S. albogriseolusS. albogriseolus KCTC 9773KCTC 9773 5757 S. ederensisS. ederensis KCTC 9726KCTC 9726 1818 S. albolongusS. albolongus KCTC 9676KCTC 9676 5858 S. ehimensisS. ehimensis KCTC 9728KCTC 9728 1919 S. albonigerS. alboniger KCTC 9014KCTC 9014 5959 S. flaveolusS. flaveolus KCTC 9737KCTC 9737 2020 S. albosporeusS. albosporeus KCTC 9666KCTC 9666 6060 S. flavofuscusS. flavofuscus KCTC 9760KCTC 9760 2121 S. alboviridisS. alboviridis KCTC 9750KCTC 9750 6161 S. fradiaeS. fradiae KCTC 1919KCTC 1919 2222 S. albulusS. albulus KCTC 9668KCTC 9668 6262 S. galilaeusS. galilaeus KCTC 9026KCTC 9026 2323 S. albusS. albus KCTC 1082KCTC 1082 6363 S. globisporusS. globisporus KCTC 9027KCTC 9027 2424 S. almquistiiS. almquistii KCTC 9751KCTC 9751 6464 S. griseochromogenesS. griseochromogenes KCTC 9028KCTC 9028 2525 S. aminophilusS. aminophilus KCTC 9673KCTC 9673 6565 S. griseolusS. griseolus KCTC 9780KCTC 9780 2626 S. antimycoticusS. antimycoticus KCTC 9694KCTC 9694 6666 S. griseoviridisS. griseoviridis KCTC 9080KCTC 9080 2727 S. argenteolusS. argenteolus KCTC 9695KCTC 9695 6767 S. griseusS. griseus KCTC 9781KCTC 9781 2828 S. armeniacusS. armeniacus KCTC 9120KCTC 9120 6868 S. hiroshimensisS. hiroshimensis KCTC 9782KCTC 9782 2929 S. avidiniiS. avidinii KCTC 9757KCTC 9757 6969 S. hygroscopicusS. hygroscopicus KCTC 9113KCTC 9113 3030 S. bacillarisS. bacillaris KCTC 9018KCTC 9018 7070 S. libani libaniS. libani libani KCTC 9033KCTC 9033 3131 S. bambergiensisS. bambergiensis KCTC 9019KCTC 9019 7171 S. limosusS. limosus KCTC 1868KCTC 1868 3232 S. bikiniensisS. bikiniensis KCTC 9172KCTC 9172 7272 S. lincolnensisS. lincolnensis KCTC 9022KCTC 9022 3333 S. cacoi asoensisS. cacoi asoensis KCTC 9700KCTC 9700 7373 S. longwoodensisS. longwoodensis KCTC 9783KCTC 9783 3434 S. capillispiralisS. capillispiralis KCTC 1719KCTC 1719 7474 S. melanogenesS. melanogenes KCTC 9205KCTC 9205 3535 S.carpinensisS.carpinensis KCTC 9128KCTC 9128 7575 S. minutiscleroticusS. minutiscleroticus KCTC 9123KCTC 9123 3636 S.catenulaeS.catenulae KCTC 9223KCTC 9223 7676 S. nitrosporeusS. nitrosporeus KCTC 9761KCTC 9761 3737 S.celluloflavusS.celluloflavus KCTC 9702KCTC 9702 7777 S. noboritoensisS. noboritoensis KCTC 9060KCTC 9060 3838 S.chartreusisS.chartreusis KCTC 9704KCTC 9704 7878 S. nodosusS. nodosus KCTC 9035KCTC 9035 3939 S.chattanoogensisS.chattanoogensis KCTC 1087KCTC 1087 7979 S. nojiriensisS. nojiriensis KCTC 9784KCTC 9784 4040 S.chrysomallusS.chrysomallus KCTC 9705KCTC 9705 8080 S. olivaceoviridisS. olivaceoviridis KCTC 9132KCTC 9132

No.No. 균주명Strain name 출처source No.No. 균주명Strain name 출처source 8181 S. olivochromogenesS. olivochromogenes KCTC 9064KCTC 9064 122122 S.amakusaensisS.amakusaensis KCTC 9753KCTC 9753 8282 S. pactumS. pactum KCTC 9165KCTC 9165 123123 S.aburaviensisS.aburaviensis KCTC 9663KCTC 9663 8383 S. paradoxusS. paradoxus KCTC 9118KCTC 9118 124124 S.albospinusS.albospinus KCTC 9762KCTC 9762 8484 S. peucetiusS. peucetius KCTC 9199KCTC 9199 125125 S.albovinaceousS.albovinaceous KCCM 40177KCCM 40177 8585 S. phaeochromogenesS. phaeochromogenes KCTC 9763KCTC 9763 126126 S.anabdiiS.anabdii KCTC 9687KCTC 9687 8686 S. plicatusS. plicatus KCTC 9040KCTC 9040 127127 S.antibioticusS.antibioticus KCTC 1137KCTC 1137 8787 S. pulveraceusS. pulveraceus KCTC 9766KCTC 9766 128128 S.atroolvaceousS.atroolvaceous KCTC 9017KCTC 9017 8888 S. rameusS. rameus KCTC 9767KCTC 9767 129129 S.aureufaciensS.aureufaciens KCCM 40127KCCM 40127 8989 S. rimosusS. rimosus KCTC 1077KCTC 1077 130130 S.azureusS.azureus KCCM 40485KCCM 40485 9090 S. roseosporusS. roseosporus KCTC 9568KCTC 9568 131131 S.baldaciiS.baldacii KCCM 41326KCCM 41326 9191 S. sclerotialusS. sclerotialus KCTC 9065KCTC 9065 132132 S. candidusS. candidus KCTC 9020KCTC 9020 9292 S. setoniiS. setonii KCTC 9144KCTC 9144 133133 S. caseiusS. caseius KCCM 40740KCCM 40740 9393 S. siovaensisS. siovaensis KCTC 9043KCTC 9043 134134 S. californicusS. californicus KCCM 40605KCCM 40605 9494 S. somaliensisS. somaliensis KCTC 9044KCTC 9044 135135 S. carpinensisS. carpinensis KCTC 9128KCTC 9128 9595 S. spectabilisS. spectabilis KCTC 9218KCTC 9218 136136 S. chromogenesS. chromogenes KCCM 40727KCCM 40727 9696 S. subrutilusS. subrutilus KCTC 9045KCTC 9045 137137 S. cinnamoneusS. cinnamoneus KCCM 40572KCCM 40572 9797 S. tubercidicusS. tubercidicus KCTC 9109KCTC 9109 138138 S. citreofluorescensS. citreofluorescens KCTC 9710KCTC 9710 9898 S. vinaceusS. vinaceus KCTC 9771KCTC 9771 139139 S. coerulescensS. coerulescens KCCM 40508KCCM 40508 9999 S. violarusS. violarus KCTC 9788KCTC 9788 140140 S. coeruleofuscusS. coeruleofuscus KCCM 40506KCCM 40506 100100 S. violascensS. violascens KCTC 9785KCTC 9785 141141 S. coralusS. coralus KCCM 40642KCCM 40642 101101 S. virginiaeS. virginiae KCTC 1747KCTC 1747 142142 S. cremeusS. cremeus KCCM 40509KCCM 40509 102102 S. xantophaeusS. xantophaeus KCTC 9220KCTC 9220 143143 S. cyaneofuscatusS. cyaneofuscatus KCCM 40517KCCM 40517 103103 S. albaduncusS. albaduncus KCTC 1741KCTC 1741 144144 S. disatochromogenesS. disatochromogenes KCCM 40449KCCM 40449 104104 S. althioticusS. althioticus KCTC 9752KCTC 9752 145145 S. erumpensS. erumpens KCTC 9729KCTC 9729 105105 S. ambofaciensS. ambofaciens KCCM 40182KCCM 40182 146146 S. erythraeusS. erythraeus KCCM 40477KCCM 40477 106106 S. anulatusS. anulatus KCCM 40190KCCM 40190 147147 S. eurythermusS. eurythermus KCTC 9731KCTC 9731 107107 S. anthocyanicusS. anthocyanicus KCTC 9755KCTC 9755 148148 S. fimbriatusS. fimbriatus KCCM 11888KCCM 11888 108108 S. celluloseS. cellulose KCTC 9703KCTC 9703 149149 S. flavotriciniS. flavotricini KCCM 40520KCCM 40520 109109 S. chivaensisS. chivaensis KCTC 9786KCTC 9786 150150 S. flavovirensS. flavovirens KCCM 40165KCCM 40165 110110 S. coelescensS. coelescens KCCM 40742KCCM 40742 151151 S. fulvissimusS. fulvissimus KCTC 9773KCTC 9773 111111 S. griseoflavusS. griseoflavus KCCM 12624KCCM 12624 152152 S. fumanusS. fumanus KCCM 40522KCCM 40522 112112 S. humiferusS. humiferus KCTC 9116KCTC 9116 153153 S. gougerotiS. gougeroti KCCM 40681KCCM 40681 113113 S. lividansS. lividans KCTC 1154KCTC 1154 154154 S. griseoruberS. griseoruber KCCM 40658KCCM 40658 114114 S. murinusS. murinus KCTC 9492KCTC 9492 155155 S. griseolosporeusS. griseolosporeus KCTC 9791KCTC 9791 115115 S. pilosusS. pilosus KCCM 40480KCCM 40480 156156 S. griseostramineusS. griseostramineus KCCM 40526KCCM 40526 116116 S. rubiginosusS. rubiginosus KCTC 9042KCTC 9042 157157 S. hachijoenseS. hachijoense KCCM 32306KCCM 32306 117117 S. tendaeS. tendae KCCM 40105KCCM 40105 158158 S. halstediiS. halstedii KCCM 40613KCCM 40613 118118 S. umbrinusS. umbrinus KCCM 40316KCCM 40316 159159 S. humidusS. humidus KCCM 40647KCCM 40647 119119 S. violaceoruberS. violaceoruber KCTC 9787KCTC 9787 160160 S. indigoferusS. indigoferus KCCM 40495KCCM 40495 120120 S. xanthocidicusS. xanthocidicus KCCM 40286KCCM 40286 161161 S. kifunensisS. kifunensis KCTC 9734KCTC 9734 121121 S. yokosukanensS. yokosukanens KCCM 40633KCCM 40633 162162 S. kurssanoviS. kurssanovi KCCM 40527KCCM 40527

No.No. 균주명Strain name 출처source No.No. 균주명Strain name 출처source 1One S. olivichromogenesS. olivichromogenes KCTC 9090KCTC 9090 55 S. hydroscopicusS. hydroscopicus KCTC 9031KCTC 9031 22 S. peucetiusS. peucetius KCTC 9038KCTC 9038 66 S. hydroscopicusS. hydroscopicus KCTC 9069KCTC 9069 33 S. peucetiusS. peucetius KCTC 9242KCTC 9242 77 S. albusS. albus KCTC 1136KCTC 1136 44 S. hydroscopicusS. hydroscopicus KCTC 9030KCTC 9030 88 S. albusS. albus KCTC 1533KCTC 1533

본 발명에서 데이터베이스를 구축할 때 사용한 162 주는 모두 한국생명공학연구원 유전자은행(KCTC)에서 표준균주로 명시된 균주만을 사용하고, 실시예를 보인 균종들은 모두 표준균주의 다른 아형인 균주(표준균주가 아님)를 사용하여 본 데이터베이스가 균종 동정에 적합함을 보였다.In the present invention, all 162 strains used when constructing the database use only the strains designated as standard strains by the Korea Biotechnology Research Institute Gene Bank (KCTC), and all the strains shown in the examples are strains that are different subtypes of the standard strains (not the standard strains). ) Shows that this database is suitable for identification of species.

선정된 스트렙토미세스속 균종을 증폭시킬 수 있는 프라이머를 이용하여 중합효소 연쇄반응을 수행한 결과 162 주의 표준 균종 전부에서 352-bp의rpoB유전자 분절을 생산함을 1% 아가로스 겔 전기영동 상에서 확인할 수 있다(도 2). 얻어진 306-bp rpoB 분절의 염기서열을 서열목록에 서열번호 3 내지 104로 표시한다. 본 발명에서 분석된 162 주의 스트렙토미세스속 균주종의 염기서열 데이타베이스는 Genbank 검색상에서 모두 새로운 염기서열로 밝혀졌다. Polymerase chain reaction using primers capable of amplifying the selected Streptomyces genus resulted in 1% agarose gel electrophoresis to produce 352-bp rpoB gene segments in all 162 standard strains. (FIG. 2). The base sequence of the obtained 306-bp rpoB fragment is represented by SEQ ID NOs: 3 to 104 in the sequence listing. The nucleotide sequence database of 162 strains of Streptomyces spp. Analyzed in the present invention was found to be all new nucleotide sequences on Genbank search .

이렇게 분석된 염기서열을 다정렬 (multialignment) 하여 서로의 염기서열을 비교해 본 결과, 첫째 162 주 표준균주 모두 서로 다른 염기서열을 갖고 있다. 즉 각 종간 염기서열 다양성 (interspecies variation)을 보여준다. 동정의 표적이 되는 유전자는 균종 동정에 이용되기 위해서는 먼저 각 균종 간의 염기서열 다양성이 선행되어야 하는 데 본 실험에서 그 조건을 충족시킴을 확인할 수 있다. 둘째, 162 주의 염기서열 모두 다정렬 상에서 염기서열 삽입(insertion)이나, 탈락 (deletion) 없이 모두 306-bp의 염기를 코딩하고 있다. 즉, 다정렬 상에서 어떠한갭도 존재하지 않는다 16S rDNA는 정렬상에서 높은 빈도로 갭이 존재한다. 다정렬할 때 일반적으로 갭은 그 부위에 해당되는 정렬된 유전자를 전부 제거하여 분석하는 경향이 있기 때문에 전체적인 계통수를 구축하는 데에 오류를 일으킬 확률이 높다고 알려져 있다. 따라서 본 발명에서 사용된rpoB유전자의 우수성을 확인할 수 있다.As a result of comparing the nucleotide sequences of each other by multialigning the analyzed nucleotide sequences, the first 162 strains of the standard strains all have different nucleotide sequences. That is, it shows the interspecies variation between each species. Genes targeted for identification should be preceded by the diversity of sequences between each species in order to be used for the identification of species. Second, all of the 162 nucleotide sequences encode 306-bp bases without polynucleotide insertion or deletion on polysequence. That is, there is no gap on the polyalignment 16S rDNA has a high frequency gap on the alignment. When sorting, gaps are generally known to be prone to error in constructing the entire phylogenetic tree because they tend to analyze all sorted genes corresponding to the site. Therefore, the superiority of the rpoB gene used in the present invention can be confirmed.

다정렬된 162주의 염기서열을 위에서 상술한대로 Mega 소프트웨어를 이용하여 Neighbor-Joining 계통수를 구축하였다. 전체 계통수를 분석하였을 때 102 주 모두 다른 염기서열을 보이면서 162개의 독특한 분절을 보이는 것을 확인할 수 있었다. 또한 161주의 스트렙토미세스 균주가 희소스트렙토미세스속 균주인M. echinospora에 비해 하나의 그룹을 형성함을 확인할 수 있었다(도 5). 또한 161 주의 스트렙토미세스 그룹을 비교하여 보면 현재 분류상에 논란이 되고 있는 키타사토스포라(Kitasatospora)와 스트렙토페르티실륨(Streptoverticillium)그룹이 스트렙토미세스 그룹안에 독특한 소그룹을 형성하고 있음을 확인할 수 있었다. 이 두 그룹은 세포에 메조-DPA (diaminopimelic acid)를 다량 함유하는 등 스트렙토미세스 와 생리 생화학적으로 상당히 다른 특성을 가지고 있기 때문에 다른 속으로 분류하여 명명하고 있으나, 16S rDNA등을 이용한 분자 분류학적 (molecular taxonomy)인 측면에서 보면 독립된 속 (genus)이 아니라 단지스트렙토미세스의 하나의 그룹에 속한다고 보고되고 있다(Zhang Z, Wang Y, Ruan :A proposal to revive the genus Kitasatospora (Omura, Takahashi, Iwai, and Tanaka 1982, Int J Syst Bacteriol. 1997;47(4):1048-54).Neighbor-Joining phylogenies were constructed using Mega software as described above. When analyzing the phylogenetic tree, it was found that all 102 strains showed different sequences and 162 unique segments. In addition, 161 strains of Streptomyces spp.M. echinosporaIt can be seen that forming one group compared to (FIG. 5). In addition, a comparison of the Streptomyces group of 161 states showed that Kitasatospora, which is currently controversial in classification (Kitasatospora)And streptofertisilium (Streptoverticillium)Group Streptomyces It was confirmed that they formed a unique small group within the group. These two groups are classified into different genera because they have significantly different physiological and biochemical properties from streptomyces, such as containing large amounts of meso-DPA (diaminopimelic acid) in cells, but they are classified into different genera, such as 16S rDNA. In terms of molecular taxonomy, it is not just an independent genusStreptomyces(Zhang Z, Wang Y, Ruan: A proposal to revive the genus Kitasatospora (Omura, Takahashi, Iwai, and Tanaka 1982, Int J Syst Bacteriol. 1997; 47 (4): 1048) -54).

본 발명의 306-bprpoB표적 유전자를 이용한 계통수를 비교하여 보면 기존의 분자생물학적 분류에 의한 사실과 유사한 결과를 보여준다. 즉, 본 발명에서 사용한 6개의 키타사토스포라속 균주 (K. azatica, K. crystarginea, K. griseola, K. mediocidica, K. phosalcinea, K. setae)와 3개의 스트렙토페르티실륨속 균주 (S. abikoensis, S. albirecticuli, S. ehimensis)가 전체 스트렙토미세스 그룹의 소 그룹에 속하지만,M. echinospora처럼 독립된 분절을 형성하고 있지 않다 (도 5). Comparing the phylogenetic tree using the 306-bp rpoB target gene of the present invention shows a result similar to the fact by conventional molecular biological classification. That is, the six Kitasatospora strains ( K. azatica, K. crystarginea, K. griseola, K. mediocidica, K. phosalcinea, K. setae ) and three Streptoferticesium strains ( S. abikoensis ) used in the present invention. , S. albirecticuli, S. ehimensis ) belong to the small group of the entire Streptomyces group, but do not form an independent segment like M. echinospora (FIG. 5).

따라서, 본 발명에서 사용된 306-bp의rpoB유전자 분절은 스트렙토미세스속 균주 속의 계통학적인 관계를 잘 반영하는 훌륭한 시계분자 (chronometer molecule)이라고 말할 수 있다. 계통학적인 관계를 잘 반영하는 시계분자가 동정에 유리하다는 관점에서 볼 때, 306-bp의rpoB유전자 분절은 스트렙토미세스속 균주 속 분류 동정에 성공적으로 적용될 수 있을 것이다.Thus, the 306-bp rpoB gene segment used in the present invention can be said to be a good chronometer molecule that well reflects the phylogenetic relationship in Streptomyces spp. In view of the favorable identification of clock molecules reflecting systematic relationships, the 306-bp rpoB gene segment could be successfully applied to the classification of Streptomyces genus.

염기서열 다정렬후 위에 상술한 대로 162주 표준균주의 염기서열 동질성을 조사해보았다. 그 결과 162 주 모두 서로 다른 염기서열 동질성을 보였다. 99.7% (S. acrimyciniS. albogriseolus사이의 염기서열 동질성) 부터 84.6% (M. echinosporaS. lincolensis사이의 염기서열 동질성) 범위의 염기서열 동질성을 보였다(도 4). 101 주의 스트렙토미세스속 균주를M. echinospora의 염기서열과 동질성을 서로 비교하여 보았을 때 모두 90% 미만 (84.6-88.9% 까지의 범위를 보임)의 동질성을 보임을 확인할 수 있었다(도 4). 도 4에서는 24종 스트렙토미세스속 균종을 선택하여 작성한 것이며, 다만 가장 작은 수치부터 높은 수치가 모두 들어가도록 균종을 선택하여 표시하고 있다.After sequence alignment, the sequence homogeneity of the 162 strain standard strain was examined as described above. As a result, all of the 162 strains showed different sequencing. The sequence homogeneity ranged from 99.7% (sequence between S. acrimycini and S. albogriseolus ) to 84.6% (sequence between M. echinospora and S. lincolensis ) (Figure 4). Comparing the nucleotide sequence and homogeneity of M. echinospora strains of the genus Streptomyces genus of 101 strains, all showed a homogeneity of less than 90% (showing up to 84.6-88.9%) (Fig. 4). In FIG. 4, 24 species of Streptomyces spp. Were selected and selected, but the strains were selected and displayed so that all values from the smallest to the highest were entered.

따라서,스트렙토미세스속 균종은 계통학적 관계에서 가장 근접한 희소스트렙토미세스속 균주인. 마이크로모노스포라와도 10% 이상의 염기서열 이질성을 보임을 알 수 있다. 16S rDNA의 염기서열 동질성을 비교하여 보면 마이크로모노스포라는 스트렙토미세스와 모두 95% 이상의 염기서열 동질성을 보이므로 본 특허에서 표적으로 사용한 306-bp의rpoB유전자 분절이 스트렙토미세스속 균주의 속 수준에서 동정에 이점이 있음을 확인할 수 있다.Thus , Streptomyces spp. Are the rarest Streptomyces spp. That are closest in phylogenetic relationship. It can be seen that the sequence of heterogeneity of 10% or more with the micromonospora. Comparing the nucleotide sequence homogeneity of 16S rDNA, both micromonospora show more than 95% sequence homology with Streptomyces, so the 306-bp rpoB gene segment used in this patent was identified at the genus level of the genus Streptomyces strain. It can be seen that there is an advantage.

마이크로모노포라 에키노스포라(M. echinospora)균주를 제외한 스트렙토미세스 101주의 표준균주의 염기서열 동질성을 서로 비교해 본 결과 99.7%에서 88.9% (S. armeniacusS. lincolensis의 염기서열 동질성) 까지 범위의 동질성을 보임을 확인할 수 있다. 따라서 0.3-11.1% 까지의 염기서열 이질성을 보임을 확인할 수 있다. 스트렙토미세스 사이의 염기서열 이질성이 3%를 넘지 않는 16S rDNA에 비해 동정을 위한 표적 유전자의 가장 중요한 특성 중에 하나인 종간 염기서열 변이 (interspecies variation)가 훨씬 높다는 것을 확인할 수 있었다.Comparing the sequence homogeneity of the standard strains of Streptomyces 101 strains excluding M. echinospora strains, 99.7% to 88.9% (sequence of S. armeniacus and S. lincolensis ). It can be confirmed that homogeneity is shown. Therefore, it can be seen that the sequence heterogeneity of 0.3-11.1%. It was confirmed that interspecies variation, which is one of the most important characteristics of the target gene for identification, was much higher than 16S rDNA having no sequence heterogeneity between streptomyces.

본 발명은 스트렙토미세스속 균주의 rpoB 유전자 분절의 증폭을 위한 스트렙토미세스속 균주 속 균주에 특이적인 프라이머에 관한 것이다. 상기 프라이머는 SEQ ID NO: 1 또는 SEQ ID NO:2에 나타난 염기서열을 포함하는 뉴클레오타이드인 것이 바람직하다.The present invention relates to a primer specific for a strain of the genus Streptomyces strain for amplification of the rpoB gene segment of the Streptomyces genus strain. The primer is preferably a nucleotide comprising the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2.

스트렙토미세스속 균주에 특이적인rpoB유전자 분절을 증폭시킬 수 있는 프라이머의 제조는, 스트렙토마이세스속이 계통학적으로 가장 가까운 미코박테리움속 균종의rpoB염기서열과 비교하여 가장 염기서열이 보존된 부위를 각각 정방향, 역방향 프라이머로 선정한다. 그리고, 프라이머쌍으로 증폭된 부위가 대장균과 결핵균의 리팜핀 내성과 연관된 부위를 포함하도록 프라이머를 제조한다. 그 이후에 본 실험에서 분석하고자 하는 스트렙토미세스속 균주 표준 균주 162종의 DNA를 대상으로 제조된 프라이머를 이용한 중합효소 연쇄반응이 모든 스트렙토미세스속 균주 종의 352-bp의rpoB분절을 증폭시킬 수 있는 지 여부를 분석한다.Preparation of primers capable of amplifying rpoB gene segments specific for Streptomyces strain, compared to the rpoB base sequence of Mycobacterium spp. It is selected as a forward and reverse primer. Then, a primer is prepared such that the site amplified by the primer pair includes a site associated with rifampin resistance of E. coli and Mycobacterium tuberculosis. Subsequently, the polymerase chain reaction using primers prepared from 162 DNA of Streptomyces spp strains to be analyzed in this experiment can amplify 352-bp rpoB fragments of all Streptomyces spp strains. Analyze whether or not.

모든 스트렙토미세스속 균주를 증폭시킬 수 있는 프라이머를 제조하기 위해서는, Genbank에서rpoB염기서열 전체가 분석된 스트렙토미세스 코엘리콜로(S. coelicolor(Genbank No. AL160431)), 미코박테리움 스메그마티스(M. smegmatis(Genbank No. U24494)), 미코박테리움 투베르쿨로시스(M. tuberculosis(Genbank No. L27989)), 미코박테리움 레프라에(M. leprae(Genbank No. Z14314)) 총 4 주의rpoB염기서열을 서로 비교 분석한다. 얻어진 정방향 프라이머 부위는 서로 다른 속에 속함에도 불구하고 공히 4 주의 염기서열이 100% 상동성을 보이는, 스트렙토미세스. 코엘리콜리의 RNA 중합효소 서브유닛을 기준으로 아미노산 266 번째 코돈의 2번째 염기에서 부터 아미노산 272 번의 코돈의 세번째 염기까지 총 20개 염기서열 ( 5’-TC GAC CAC TTC GGC AAC CGC-3’)에 해당되는 부위를 선택할 수 있고 SRPOF1으로 명명하였다(도 2). 역방향 프라이머 부위는 비록 완속 발육 미코박테리아 (slow growing mycobacteria)에 속하는 미코박테리움. 투베르쿨로시스와 미코박테리움.레프라에와는 비록 한 개의 염기 차이를 보이지만 신속발육 미코박테리아 (rapid growing mycobacteria)에 속하는 미토박테리움. 스메그마티스와는 100% 상동성을 보이는 20개 염기서열 부위를 선택할 수 있다(도2) 아미노산 383 코돈의 2번째부터 염기에서부터 역방향으로 아미노산 377의 코돈 첫번째 염기까지의 염기서열을. SRPOR1(5’- TC GAT CGG GCA CAT GCG GCC-3’)로 명명하였다. 스트렙토미세스속 균주는 미코박테리움 속 균종과 계통학적이나 생리학적인 특성에서 비교해볼 때, 완속발육균보다는 신속발육균에 더욱 가까운 관계에 있다. 따라서, 본 발명에 따른, 스트렙토미세스속 균주 전체를 증폭시킬 수 있는 SRPOF1과 SRPOR1 프라이머쌍은 계통학적으로 고도로 계산되어 제조된 프라이머라 할 수 있다.To prepare primers capable of amplifying all Streptomyces strains, Streptomyces coelicolor ( S. coelicolor (Genbank No. AL160431)), Mycobacterium smegmatis ( M ), which analyzed the entire rpoB sequence in Genbank. smegmatis (Genbank No. U24494)), Mycobacterium tuberculosis ( M. tuberculosis (Genbank No. L27989)), Mycobacterium leprae ( M. leprae (Genbank No. Z14314)) 4 weeks rpoB Compare sequences to each other. The resulting forward primer sites, although belonging to different genera, show a 100% homology with 4 weeks of sequence, Streptomyces. 20 base sequences from the 2nd base of amino acid 266 codon to the 3rd base of amino acid 272 codon based on the Copolymeric RNA polymerase subunit (5'-TC GAC CAC TTC GGC AAC CGC-3 ') The site corresponding to can be selected and named SRPOF1 (FIG. 2). The reverse primer site is mycobacteria belonging to slow growing mycobacteria though. Tuberculosis and mycobacteria, a mitobacterium belonging to the rapidly growing mycobacteria, although they differ by one base from leprae. 20 nucleotide sequences showing 100% homology with smegmatis can be selected (FIG. 2). The nucleotide sequences from the second base of amino acid 383 codon to the first base of codon of amino acid 377 in reverse direction. SRPOR1 (5'- TC GAT CGG GCA CAT GCG GCC-3 '). Streptomyces strains are more closely related to rapid growth than slow growth compared to Mycobacterium spp. In systematic or physiological characteristics. Therefore, according to the present invention, the SRPOF1 and SRPOR1 primer pairs capable of amplifying the entire Streptomyces genus strain may be referred to as primers that are systematically highly calculated.

본 발명은 다음 단계로 이루어지는 rpoB 유전자 분절을 이용한 스트렙토미세스속 균주의 탐지 또는 동정방법에 관한 것이다:The present invention relates to a method for detecting or identifying a Streptomyces strain using the rpoB gene segment consisting of the following steps:

(1) 스트렙토미세스속 균주의 스트렙토미세스속 균주의 rpoB 분절을 특이적으로 증폭시키는 프라이머를 이용하여, 목적 균주의 rpoB 유전자 분절을 증폭하고(1) amplifying the rpoB gene segment of the desired strain using primers that specifically amplify the rpoB segment of the Streptomyces strain of the Streptomyces strain

(2) 상기 rpoB 유전자 분절의 염기서열을 분석하고,(2) analyzing the nucleotide sequence of the rpoB gene segment,

(3) 단계(2)의 염기서열을 표준균주의 rpoB 유전자 분절의 염기서열과 비교한다.(3) Compare the nucleotide sequence of step (2) with the nucleotide sequence of the rpoB gene segment of the standard strain.

상기 단계 (1)에서, 스트렙토미세스속 균주의 탐지 또는 동정방법에 사용되는 프라이머쌍은 스트렙토미세스속 균주의 rpoB 유전자를 증폭가능한 모든 프라이머를 포함하며, 특히 서열번호 1 또는 2에 나타난 염기서열을 포함하는 폴리뉴클레오타이드가 바람직하다.In the step (1), the primer pair used for the detection or identification of Streptomyces strain includes all the primers capable of amplifying the rpoB gene of the Streptomyces strain, in particular the nucleotide sequence shown in SEQ ID NO: 1 or 2 Polynucleotides are preferred.

상기 스트렙토미세스속 균주에 특이적인 프라이머를 이용하여 목적 균주의 rpoB 유전자 분절을 PCR 기법으로 증폭하여 염기서열을 분석한다. PCR 증폭 및 염기서열은 본 기술분야의 전문가에게 알려진 분석법을 모두 사용할 수 있다( Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Chae GT, Kim EC, Cha CY, Kook YH. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB).J Clin Microbiol. 1999 Jun;37(6):1714-20.)Using the primers specific for the Streptomyces genus strain, the rpoB gene segment of the target strain is amplified by PCR technique to analyze the nucleotide sequence. PCR amplification and sequencing can use any method known to those skilled in the art (Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Chae GT, Kim EC, Cha CY, Kook YH. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol. 1999 Jun; 37 (6): 1714-20.)

표준균주의 rpoB 분절의 데이터베이스는 서열리스트상 서열번호 3 내지 서열번호 164로 표시되는 염기서열이다.The database of the rpoB segment of the standard strain is a nucleotide sequence represented by SEQ ID NO: 3 to SEQ ID NO: 164 in the sequence listing.

표준균주와 목적균주의 rpoB 서열을 분석한 후에 서열비교하여 해당 균주인 것으로 결정을 내릴 때, 정렬된 데이터베이스에 동정하고자 하는 균의 염기서열을 분석하여 데이터베이스에 추가시킨 후에 다시 염기서열 정렬을 수행 (162개의 염기서열 데이터베이스 + 분석하고자 하는 균의 염기서열)한 후 계통도를 완성하면 해당되는 균종에 근접하여 가지를 형성하게 되어 계통도로 균종을 결정할 수도 있다. 또한, 서열 상동성으로 결정하면 99.7% 이상의 상동성을 보이는 균종으로 동정하는 것도 가능하다. 왜냐하면, 모든 균종 사이의 염기서열 변이가 0.3 % 이상이고 또한 각 균종안의 염기서열 상동성이 모두 99.7 % 이상이기 때문이다.After analyzing the rpoB sequences of the standard strain and the target strain, and comparing them with each other, to determine that the strain is the strain, the sequence of the bacteria to be identified in the sorted database is analyzed, added to the database, and the sequencing is performed again. 162 nucleotide sequence database + nucleotide sequence of the bacteria to be analyzed) After completing the phylogeny, branches can be formed close to the corresponding species, and the species can be determined by the phylogeny. In addition, if it is determined by sequence homology, it is also possible to identify species which show homology of 99.7% or more. This is because the nucleotide sequence variation between all species is more than 0.3% and the sequence homology between each species is more than 99.7%.

본 연구에서 구축된 스트렙토미세스속 균주rpoB데이터베이스를 실제로 분류에 적용될 수 있는 지를 검증하기 위하여, 비표준균주 3종 총 8주의 균주를 대상으로rpoB염기서열을 분석하여 비교염기서열분석방법으로 동정을 실시한다. 완성된 162주의 스트렙토미세스속 균주 표준균주 데이터베이스가 실제로 균 동정에 적용될 수 있는 지를 확인하기 위하여, 위에서 상술한대로 비표준균주인 스트렙토미세스.올리비크로모제네스(S. olivichromogenes) 1주 (KCTC 9090),스트렙토미세스.퓨세티우스 2주 (KCTC 9038, KCTC 9242), 스트렙토미세스 히드로스코피쿠스 3주 (KCTC 9030, KCTC 9031, KCTC 9069),그리고 스트렙토미세스 알부스 2주 (KCTC 1136, KCTC 1533) 총 4 종의 8 균주를 대상으로 비교염기서열 분석 방법에 의해 균 동정을 실시한다.Streptomyces strain constructed in this studyrpoBIn order to verify that the database can be applied to the classification, a total of eight strains of three non-standard strainsrpoBThe base sequence is analyzed and identified by comparative base sequence analysis. In order to confirm that the completed 162 strain Streptomyces strain standard strain database can be actually applied to the identification of bacteria, the non-standard strain Streptomyces.S. olivichromogenes) Week 1 (KCTC 9090), Streptomyces. 2 weeks (KCTC 9038, KCTC 9242), Streptomyces hydroscopicus 3 weeks (KCTC 9030, KCTC 9031, KCTC 9069),And Streptomyces albus 2 weeks (KCTC 1136, KCTC 1533) A total of four strains of 8 strains were identified by comparative sequencing method.

그 결과 비표준균주 스트렙토미세스. 올리비크로모제네스 (KCTC9090) 1주는 100% 염기서열 상동성을 가지고 계통수 상에서 정확하게 표준균주인 스트렙토미세스. 올리비크로모제네스 (KCTC9064)에 위치함을 확인할 수 있었다 (도 6A). 비표준균주 스트렙토미세스 퓨세티우스 2주 (KCTC 9038, KCTC 9242)는 각각 100%, 99.7% 염기서열 동질성을 보이면서 계통수 상에서 표준균주인S. peucetius(KCTC 9199)에 위치함을 확인할 수 있었다 (도 6B). 비표준균주인S. hydroscopicus3주 (K CTC 9030, KCTC 9031, KCTC 9069 )는 각각 100%, 99.7%, 997%의 염기서열 동질성을 보이면서 계통수상에서 표준균주인S. hydroscopicus(KCTC 9782)에 위치함을 확인하였다 (도 6c). 마지막으로, 비 표준균주인S. albus2주 (KCTC 1136, KCTC 1533)는 모두 100%염기서열 동질성을 보이면서 계통수 상에서 표준균주인S. albus(KCTC 1082)에 위치함을 확인하였다 (도 6d).As a result, non-standard strain Streptomyces. Olivier Cromogenes (KCTC9090) One strain of Streptomyces is 100% sequence homology and exactly the standard strain on the phylogenetic tree. Olivier Cromogenes It could be confirmed that (KCTC9064) is located (Fig. 6A). Non-standard strain Streptomyces fusethius Two weeks (KCTC 9038, KCTC 9242) showed 100% and 99.7% sequence homogeneity, respectively,S. peucetius(KCTC 9199) was found to be located (Fig. 6B). Nonstandard strainS. hydroscopicus3 weeks (K CTC 9030, KCTC 9031 and KCTC 9069) show 100%, 99.7%, and 997% sequence homogeneity, respectively.S. hydroscopicus(KCTC 9782) was confirmed (Fig. 6c). Finally, non-standard strainsS. albus2 weeks (KCTC 1136, KCTC 1533) are all 100% nucleotide sequence homogeneity, and the standard strain in the phylogenetic treeS. albus(KCTC 1082) was confirmed (Fig. 6d).

결론적으로, 균 동정에 이용될 수 있는 시계분자의 특성으로는 각 종간의 염기서열 다양성 (interspecies variation) 이외에, 같은 종 안에서의 염기서열 보존성 (intraspecies conservation)이 확인되어야 한다. 같은 종 안에서의 염기서열 보존성이 8균주의 비표준균주의 염기서열에 의하여 증명된다. 8주의 비표준균주를 각각의 표준균주와 비교하여 보았을 때, 99.7-100%의 염기서열 상동성을 보였다.그리고, 비교염기서열 분석방법에 의해 8균주의 비표준균주를 100% 동정할 수 있었다.In conclusion, in addition to the interspecies variation of each species, the sequence conservation in the same species should be confirmed. Sequence conservation in the same species is demonstrated by nucleotide sequences of 8 non-standard strains. In comparison with each of the 8 strains, the non-standard strains showed 99.7-100% nucleotide sequence homology, and the non-standard strains were identified by 100%.

다음의 실시예를 들어 본 발명을 더욱 자세히 설명할 것이나, 하기 실시예는 본 발명의 예시에 불과할 뿐 본 발명의 범위가 실시예로 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples, but the following examples are merely illustrative of the present invention, and the scope of the present invention is not limited to the examples.

[실시예]EXAMPLE

균주Strain

국제적으로 공인된 국내 균주 보관 센터인 한국생명공학연구원 유전자은행(KCTC) 에서 보관 중인 스트렙토미세스 161 균주, 마이크로모노스포라 1 균주,총 162 개의 표준균주를 대상으로rpoB염기서열을 분석한다. 또한 구축된 데이터베이스를 이용하여 균주 동정에 이용될 비표준균주로는 3종 총 8주의 균주를 대상으로 비교염기서열 분석방법을 수행한다 (표 1).Micro monospora, Streptomyces 161 strain, in storage at the Korea Biotechnology Research Institute Gene Bank (KCTC), an internationally recognized domestic strain storage center 1 strain,Targeting 162 standard strainsrpoBAnalyze the sequence. In addition, as a non-standard strain to be used for strain identification using the established database, a comparative base sequence analysis method is performed on a total of three strains of eight strains (Table 1).

실시예 1: 스트렙토미세스속 균주 특이Example 1: Streptomyces strain specific rpoBrpoB 프라이머 제조Primer manufacturer

균주 4종은 염기서열을 Genbank에서 선택하여 정렬한 후, 특징적인 프라이머 부위를 창의적으로 선택하기 위해 염기서열을 결정하고, 제노텍사에 의뢰하여 제조하였다. 모든 스트렙토미세스속 균주의rpoB유전자를 증폭시킬 수 있는 프라이머를 제조하기 위해서는, Genbank에서rpoB염기서열 전체가 분석된 스트렙토미세스 코엘리콜로(S. coelicolor(Genbank No. AL160431)), 미코박테리움 스메그마티스(M. smegmatis(Genbank No. U24494)), 미코박테리움 투베르쿨로시스(M. tuberculosis(Genbank No. L27989)), 미코박테리움 레프라에(M. leprae(Genbank No. Z14314)) 총 4 주의rpoB염기서열을 서로 비교분석한다. 얻어진 정방향 프라이머 부위는 서로 다른 속에 속함에도 불구하고 공히 4 주의 염기서열이 100% 상동성을 보이는, 스트렙토미세스. 코엘리콜리의 RNA 중합효소 서브유닛 B을 기준으로 아미노산 266 번째 코돈의 2번째 염기에서 부터 아미노산 273 번의 코돈의 세번째 염기까지 총 20개 염기서열 ( 5’-TC GAC CAC TTC GGC AAC CGC-3’)에 해당되는 부위를 선택할 수 있고 SRPOF1으로 명명하였다 (도 2). 역방향 프라이머 부위는 비록 완속 발육 미코박테리아 (slow growing mycobacteria)에 속하는 미코박테리움. 투베르쿨로시스와 미코박테리움.레프라에와는 비록 한 개의 염기 차이를 보이지만 신속발육 미코박테리아 (rapid growing mycobacteria)에 속하는 미토박테리움. 스메그마티스와는 100% 상동성을 보이는 20개 염기서열 부위를 선택할 수 있다 (도 2) 아미노산 383 코돈의 2번째부터 염기에서부터 역방향으로 아미노산 377의 코돈 첫번째 염기까지의 염기서열을. SRPOR1(5’- TC GAT CGG GCA CAT GCG GCC-3’)로 명명하였다.Four strains were prepared by aligning the nucleotide sequence in Genbank, determining the nucleotide sequence for creative selection of the characteristic primer site, and requesting it from Genotech. To prepare a primer capable of amplifying the rpoB gene of all Streptomyces strains, S. coelicolor (Genbank No. AL160431), Mycobacterium smeg, which analyzed the entire rpoB sequence in Genbank Matisse ( M. smegmatis (Genbank No. U24494)), Mycobacterium tuberculosis ( M. tuberculosis (Genbank No. L27989)), Mycobacterium leprae ( M. leprae (Genbank No. Z14314)) Compare the 4 week rpoB sequences with each other. The resulting forward primer sites, although belonging to different genera, show a 100% homology with 4 weeks of sequence, Streptomyces. A total of 20 nucleotide sequences from the second base of the amino acid 266 codon to the third base of the codon amino acid 273 based on the copolymeric RNA polymerase subunit B of Coelicol (5'-TC GAC CAC TTC GGC AAC CGC-3 ' ) Can be selected and named SRPOF1 (FIG. 2). The reverse primer site is mycobacteria belonging to slow growing mycobacteria though. Tuberculosis and mycobacteria, a mitobacterium belonging to the rapidly growing mycobacteria, although they differ by one base from leprae. 20 nucleotide sequences showing 100% homology with Segmatis can be selected (FIG. 2) from 2nd base of amino acid 383 codon to 1st base codon of amino acid 377 in reverse direction. SRPOR1 (5'- TC GAT CGG GCA CAT GCG GCC-3 ').

실시예 2: 스트렙토미세스속 균주 rpoB 306-bp 분절의 제조Example 2: Preparation of Streptomyces strain rpoB 306-bp segment

1) DNA 추출1) DNA extraction

비드 비터 페놀(Bead beater phenol (BB/P)) 방법을 이용하여 DNA를 추출한다. 균의 집락을 따내, TEN 완충액 (Tris-HCl 10 mM, EDTA 1 mM, NaCl 100 mM: pH 8.0)에 부유시킨 후에 직경 0.1 mm 초자구 (직경 0.1 mm; Biospec Products, Bartlesville, Okla., U.S.A.) 100 ㎕ (packing volume)와 페놀: 클로로포름: 이소프로필알콜 (50:49:1) 용액 100 ㎕를 함께 부유시켜 미니 비터로 1 분간 진탕하여 균체를 파쇄하였다. 균 파쇄액은 12000 rpm으로 5 분간 원심분리하고 상등액(100㎕)을 새로운 튜브에 옮겼다. 그런 후에, 60 ㎕의 이소프로필알콜을 섞고, 다시 15000 rpm으로 15 분간 원심분리 하였다. 침전물은 70% 에탄올로 세척한 후 TE 완충액(pH 8.0, 10 mM Tris-HCl, 1 mM EDTA) 60 ㎕로 DNA를 회수하였다.DNA is extracted using the bead beater phenol (BB / P) method. Colonies were harvested, suspended in TEN buffer (Tris-HCl 10 mM, EDTA 1 mM, NaCl 100 mM: pH 8.0), and then 0.1 mm diameter microspheres (0.1 mm diameter; Biospec Products, Bartlesville, Okla., USA) 100 µl (packing volume) and 100 µl of a phenol: chloroform: isopropyl alcohol (50: 49: 1) solution were suspended together and shaken with a mini beater for 1 minute to disrupt the cells. The bacterial lysate was centrifuged at 12000 rpm for 5 minutes and the supernatant (100 μl) was transferred to a new tube. Thereafter, 60 µl of isopropyl alcohol was mixed and again centrifuged at 15000 rpm for 15 minutes. The precipitate was washed with 70% ethanol and then the DNA was recovered in 60 μl of TE buffer (pH 8.0, 10 mM Tris-HCl, 1 mM EDTA).

2) 중합효소연쇄반응에 의한2) by polymerase chain reaction rpoBrpoB 유전자 증폭Gene amplification

PCR 반응은 2 U의 Taq 중합효소, 10 mM dNTP, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2을 포함하는 AccuPower PCR PreMix (한국, 바이오니아사)을 이용하였다. 상기 제조예 1에서 제조된 프라이머 (제노텍)를 사용하였다. 각각의 스트렙토미세스속 균종의 주형 DNA 50 ng과 제조예 1에서 제조된 프라이머 SRPOF1, SRPOR1각각 20 pmol 넣고, 증류수를 최종 부피가 20 ㎕가 되도록 첨가하여 혼합물을 만들었다. PCR반응은 첫번째 변성은 95℃로 5분, 30 주기로, 변성95℃ 1분 어닐링 62℃ 45초 연장 72℃ 1분 30초, 최종 연장 72℃ 5분으로 수행하였다(Model 9600 thermocycler, Perkin-Elmer cetus). 중합효소 연쇄반응 후, 1% 아가로스 겔 에 전기영동하여 352-bp의 반응산물을 확인하였다.The PCR reaction was performed using AccuPower PCR PreMix (Bionia, Korea) containing 2 U Taq polymerase, 10 mM dNTP, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl 2. The primer (Gennotek) prepared in Preparation Example 1 was used. 50 ng of the template DNA of each Streptomyces spp. And 20 pmol of the primers SRPOF1 and SRPOR1 prepared in Preparation Example 1 were added, and distilled water was added so that the final volume was 20 μl. The PCR reaction was carried out with 5 minutes and 30 cycles of the first denaturation at 95 ° C, denaturation at 95 ° C for 1 minute, annealing at 62 ° C for 45 seconds, extended to 72 ° C for 1 minute and 30 seconds, and finally extended to 72 ° C for 5 minutes (Model 9600 thermocycler, Perkin-Elmer cetus). After the polymerase chain reaction, electrophoresis on 1% agarose gel confirmed the reaction product of 352-bp.

제조예 1에서 제조된 프라이머를 이용하여 중합효소 연쇄반응을 수행한 결과, 162 주의 표준 균종 전부에서 352-bp의rpoB유전자 분절을 생산함을 1% 아가로스 겔 전기영동 상에서 확인할 수 있었다.(도 2) 스트렙토미세스속 균종 뿐만 아니라, 희소스트렙토미세스속 균주에 속하는 마이크로모노스포라 속 균종도 증폭시킴을 확인할 수 있었다 (도 3의 레인3).As a result of performing polymerase chain reaction using the primer prepared in Preparation Example 1, it was confirmed that 1% agarose gel electrophoresis produced 352-bp rpoB gene segments in all standard strains of 162 strains. 2) As well as Streptomyces genus, it was confirmed that the amplification of the genus Micro monospora belonging to the rare Streptomyces genus strain (lane 3 of Figure 3).

3) 중합효소 연쇄반응 산물의 정제3) Purification of polymerase chain reaction product

1% 겔 전기영동을 수행 후, 스트렙토미세스속 균주 표준 균주 352-bp의 반응산물 부위의 겔을 자른 다음 새로운 튜브에 옮겨 DNA을 추출하였다. DNA 추출 및 정제는 Qiaex (Qiagen, Germany) 시스템을 이용하였다. 겔 용해 용액 QX1 500 ㎕을 겔을 포함하는 튜브에 첨가한 후 50℃에 15분간 방치하여 겔을 완전히 녹였다.. 그 후 겔 비드를 10㎕을 첨가하여 완전히 섞은 후에 50℃에 15분간 방치하였다. 그 사이 1분 간격으로 튜브를 10초 씩 볼텍스를 수행하여 비드가 골고루 퍼지도록 한다. 이후 QX1으로1번, QF로 2번 세척한 후 45℃에서 10분간 말린 후 TE 완충액 20 ㎕로 DNA을 회수한다.After 1% gel electrophoresis, the gel of the reaction product site of Streptomyces strain standard strain 352-bp was cut and then transferred to a new tube to extract DNA. DNA extraction and purification was performed using the Qiaex (Qiagen, Germany) system. 500 μl of the gel dissolution solution QX1 was added to the tube containing the gel, followed by standing at 50 ° C. for 15 minutes to completely dissolve the gel. Thereafter, 10 μl of the gel beads were added to mix, and then left at 50 ° C. for 15 minutes. In the meantime, the tubes are vortexed for 10 seconds at intervals of 1 minute to distribute the beads evenly. Then, washed once with QX1 and twice with QF, dried at 45 ° C. for 10 minutes, and DNA was recovered with 20 μl of TE buffer.

실시예 3:Example 3: rpoBrpoB 분절의 염기서열 분석Sequencing of Segments

자동 염기서열 분석은 젤 용출 산물을 주형 DNA로 사용한다. 주형 DNA 60 ng, 프라이머 1.2 pmol, BigDye Terminator Cycle Sequencing kit (PE Appied Biosystems) 2 ㎕을 섞고, 증류수를 첨가하여 총 부피 10 ㎕로 제조한다. 반응은 Perkin Elmer Cetus 9600을 사용하여, 95℃ 10 초, 60℃ 10 초, 60℃ 4 분으로 25 주기로 실시하였다. 반응이 끝난 시료를 에탄올 침전방법으로 DNA를 정제하였다. 즉, 증류수 180 ㎕, 3 M 소디움 아세테이트 10 ㎕을 첨가하여 총 200 ㎕로 만든 후, 이 혼합물에 2배 부피의 100 % 에탄올을 첨가하여 잘 섞은 다음 15000 rpm으로 20분간 원심분리하여 DNA를 침전시켰다. 그 후 70% 에탄올 500 ㎕을 첨가한 후 15000 rpm으로 20분간 원심분리하여 DNA를 세척하였다. 그 후 이온를 제거한 포름이미드 (PE Appied Biosystems)로 DNA 를 회수하였다.Automated sequencing uses the gel elution product as template DNA. 60 ng of template DNA, 1.2 pmol of primer, 2 μl of BigDye Terminator Cycle Sequencing kit (PE Appied Biosystems) are mixed, and distilled water is added to prepare a total volume of 10 μl. The reaction was carried out using Perkin Elmer Cetus 9600 at 25 cycles of 95 ° C. 10 seconds, 60 ° C. 10 seconds, and 60 ° C. 4 minutes. DNA was purified from the sample after the reaction by ethanol precipitation. That is, 180 μl of distilled water and 10 μl of 3 M sodium acetate were added to make a total of 200 μl. Then, the mixture was mixed well by adding two volumes of 100% ethanol, followed by centrifugation at 15000 rpm for 20 minutes to precipitate DNA. . Thereafter, 500 µl of 70% ethanol was added thereto, and the DNA was washed by centrifugation at 15000 rpm for 20 minutes. Thereafter, the DNA was recovered by removing form ion (PE Appied Biosystems).

이렇게 정제된 DNA를 95℃로 5분간 반응하여 단일가닥 DNA로 만든 후, ABI 3100 시스템을 이용하여 2시간 30분 동안 전기영동하여 염기서열을분석하였다(ABI3100, PE Appied Biosystems). 염기서열 분석 방법은 정방향 프라이머 SRPOF1와 역방향 프라이머 SRPOR1을 사용하여 양쪽으로 염기서열을 분석하였고, 프라이머 부위를 제외한 306-bp의 염기서열을 결정하고 데이터베이스를 제조하였다.The purified DNA was reacted at 95 ° C. for 5 minutes to form single-stranded DNA, followed by electrophoresis for 2 hours and 30 minutes using an ABI 3100 system (ABI3100, PE Appied Biosystems). In the sequencing method, the nucleotide sequence was analyzed using both the forward primer SRPOF1 and the reverse primer SRPOR1, and the nucleotide sequence of 306-bp excluding the primer site was determined and a database was prepared.

실시예 4:Example 4: rpoBrpoB 분절(306bp) 염기서열의 배열과 염기서열 상동성 분석 및 계통수 작성Sequence and Sequence Homology Analysis and Genealogy of Segment (306bp) Sequences

상기 실시예 3에 의해서 분석된 102종의 스트렙토미세스속 표준균주의rpoB염기서열(306bp)을 Dnastar소프트웨어의 Megalign 프로그램을 이용하여 다정렬을 수행하여 스트렙토미세스속 균주rpoB데이터베이스를 구축하였다. 다정렬은 일단 306-bp염기서열을 Megalign 프로그램에서 101개의 아미노산으로 번역 (translation)시킨 후, 이 아미노산을 대상으로 Megalign 프로그램 안의 Clustal Method 방법으로 다정렬시켰다. 이렇게 정렬된 101개의 아미노산을 다시 306개의 염기서열로 변화시켜 스트렙토미세스속 균주 동정 데이터베이스를 구축한다.Streptomyces strain rpoB database was constructed by performing alignment of the rpoB sequences (306 bp) of 102 Streptomyces genus standard strains analyzed by Example 3 using the Megalign program of Dnastar software. Multi-alignment was performed by translating the 306-bp base sequence into 101 amino acids in the Megalign program and then aligning the amino acids using the Clustal Method method in the Megalign program. Thus sorted 101 amino acids are converted back to 306 sequences to build a Streptomyces strain identification database.

102 표준균주 염기서열 각각에 대한 염기서열 상동성은 다정렬된 데이터베이스를 Megalign 프로그램 안의 서열거리(sequence distance)를 이용하여 분석한다.Sequence homology for each of the 102 standard strain sequences is analyzed using a sequence distance in the Megalign program.

각 균종 사이의 계통학적 관계(phylogenetic relationship)는 계통수 (phylogenetic tree)를 완성하여 분석한다(Kumar, S., K. Tamura, and N. Masatoshi. 1993. MEGA: molecular evolutionary genetics analysis, version 1.01. The Pennsylvania State University, University Park). 계통수는 MEGA 소프트웨어를 이용하여 구축되었다. 다정렬된 102 주의 306-bp 염기서열을 Juke-Cantor distance estimation 방법과 pair wise deletion 방법에 기초를 둔 Neighbor-Joining 계통수를 구축하였다. 부트스트랩 분석은 100 복제 (replication)로 수행되었다. 상기 분석결과 rpoB 306-bp 분절의 염기서열 동질성 및 이를 이용한 유전자 계통수를 도 4 및 도 5에 각각 나타냈다.Phylogenetic relationships between each species are analyzed by completing a phylogenetic tree (Kumar, S., K. Tamura, and N. Masatoshi. 1993. MEGA: molecular evolutionary genetics analysis, version 1.01. Pennsylvania State University, University Park. The tree was built using MEGA software. Neighbor-Joining phylogeny based on the Juke-Cantor distance estimation method and the pair wise deletion method was constructed from the 306-bp sequences of 102 sorted strains. Bootstrap analysis was performed with 100 replicates. As a result of the analysis, the nucleotide sequence homogeneity of the rpoB 306-bp fragment and the gene line number using the same are shown in FIGS.

실시예 5: 표준균주의 rpoB 분절 데이터베이스를 이용하여 비교염기서열 분석방법에 의한 비표준균주 동정 실시Example 5 Identification of Non-Standard Strains by Comparative Sequence Analysis Method Using rpoB Segment Database of Standard Strains

스트렙토미세스속 균주 표준균주 데이터베이스가 실제로 균 동정에 적용될 수 있는 지를 확인하기 위하여, 비표준균주인 스트렙토미세스 올리비크로보젠스 1주 (KCTC9090), 스트렙토미세스 퓨세티우스 2주 (KCTC 9038, KCTC 9242), 스트렙토미세스 히드로코피쿠스 3주 (KCTC 9030, KCTC 9031, KCTC 9069),그리고 스트렙토미세스 알부스 2주 (KCTC 1136, KCTC 1533) 총 4 종의 8 균주를 대상으로 비교염기서열 분석 방법에 의해 균 동정을 실시하였다.In order to confirm whether the Streptomyces strain standard strain database can be applied to the identification of bacteria, the non-standard strain Streptomyces olibirobogens Week 1 (KCTC9090), Streptomyces fuseotius 2 weeks (KCTC 9038, KCTC 9242), Streptomyces hydrocopicus 3 weeks (KCTC 9030, KCTC 9031, KCTC 9069),And Streptomyces albus 2 weeks (KCTC 1136, KCTC 1533) A total of four strains were identified by comparative sequencing method.

먼저 각 균종의 DNA는 실시예 2과 동일한 방법으로, DNA 추출,rpoB유전자 증폭, 및 정제하였다. 그 후 실시예 3의 방법대로, 정제된 산물을 주형으로 하여 각각의 306-bp의 염기서열을 분석하였다.First, DNA of each strain was extracted, rpoB gene amplified, and purified in the same manner as in Example 2. Then, according to the method of Example 3, each of the 306-bp sequence was analyzed using the purified product as a template.

각각의 분석된 306-bp의 염기서열을 162 주의 염기서열이 축적되어 있는 Dnastar 소프트웨어의 Megalign 프로그램에 대입한 후 전기에서 상술한 대로 다정렬을 수행한 후, Mega 소프트웨어의 Neighbor-Joining 방법으로 계통수를 완성하여 균 동정을 실시하였다. 그 결과 비표준균주 스트렙토미세스 올리비크로모젠스 (KCTC9090) 1주는 100% 염기서열 상동성을 가지고 계통수 상에서 정확하게 표준균주인 스트렙토미세스 올리비크로모젠스 (KCTC9064)에 위치함을 확인할 수 있었다 (도 6a). 비표준균주 스트렙토미세스 퓨세티우스 2주 (KCTC 9038, KCTC 9242)는 각각 100%, 99.7% 염기서열 동질성을 보이면서 계통수 상에서 표준균주인 스트렙토미세스 퓨세티우스 (KCTC 9199)에 위치함을 확인할 수 있었다 (도 6b). 비표준균주인 스트렙토미세스 히드로스코피쿠스 3주 (KCTC 9030, KCTC 9031, KCTC 9069 )는 각각 100%, 99.7%, 99.7%의 염기서열 동질성을 보이면서 계통수상에서 표준균주인 스트렙토미세스 히드로스코피쿠스 (KCTC 9782)에 위치함을 확인하였다 (도 6c). 마지막으로, 비 표준균주인 스트렙토미세스 알부스 2주 (KCTC 1136, KCTC 1533)는 모두 100%염기서열 동질성을 보이면서 계통수 상에서 표준균주인 스트렙토미세스 알부스 (KCTC 1082)에 위치함을 확인하였다 (도 6d).Each analyzed 306-bp sequence was inserted into the Megalign program of Dnastar software, where 162 sequences were accumulated, and the polymorphism was performed as described above.The phylogenetic tree was then determined by Neighbor-Joining method of Mega software. Completion was performed to identify bacteria. As a result, non-standard strain Streptomyces olibichromogens (KCTC9090) One strain has 100% sequence homology and is a standard strain of Streptomyces olibichromogens on line tree. It could be confirmed that (KCTC9064) is located (Fig. 6a). Nonstandard Strains Streptomyces Fusethius Two weeks (KCTC 9038, KCTC 9242) was shown to be located in the standard strain Streptomyces Fusethius (KCTC 9199) on the phylogenetic tree showing 100%, 99.7% sequence homogeneity, respectively (Fig. 6b). Non-standard strain Streptomyces hydroscopicus 3 weeks (KCTC 9030, KCTC 9031, KCTC 9069) was shown to be located in the standard strain Streptomyces hydroscopicus (KCTC 9782) on the phylogeny while showing nucleotide sequence homogeneity of 100%, 99.7%, and 99.7%, respectively (Fig. 6c). Finally, non-standard strain Streptomyces albus 2 weeks (KCTC 1136, KCTC 1533) was confirmed to be located in the standard strain Streptomyces albus (KCTC 1082) on the phylogenetic tree while all showing 100% nucleotide sequence homogeneity (FIG. 6D).

본 발명은 스트렙토미세스속 균주 특이적 PCR 프라이머 및 스트렙토미세스속 균주의 동정에 이용될 수 있는 RNA 중합효소 유전자 (rpoB)의 306-bp 분절을 나타내는 폴리뉴클레오타이드, 및 이들을 이용한 스트렙토미세스속 균주를 동정하는 방법을 제공하여, 생장속도가 느리고 다양한 균종이 존재한다는 문제점, 그리고 물질위주 동정 및 16s rDNA 동정이 갖는 문제점을 해결하여, 간편하고, 경제적이고 정확성이 높은 동정방법을 제공한다는 장점이 있다.The present invention relates to a polynucleotide representing a 306-bp segment of an RNA polymerase gene ( rpoB ) that can be used for the identification of Streptomyces strain specific PCR primers and Streptomyces strains, and Streptomyces strains using the same. By providing a method, there is an advantage of providing a simple, economical and accurate identification method by solving the problem of slow growth rate and the presence of various species, and the problems of substance-based identification and 16s rDNA identification.

<110> BIOMEDLAB (represetative: KIM,JONG-WON) KIM, BUM-JUN KUK, YUN-HO <120> primer set specific to genus streptomyces, rpoB gene sequences, and identification method of genus streptomyces by using the same <130> DPP20021682 <160> 164 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 1 tcgaccactt cggcaaccgc 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 2 tcgatcgggc acatgcggcc 20 <210> 3 <211> 306 <212> DNA <213> K.azatica <400> 3 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac cggcctggcc cggatggagc 60 gcgtcgtccg cgagcggatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgtcgt ctgtccgcgc 240 tgggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 4 <211> 306 <212> DNA <213> K. cystarginea <400> 4 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgccc 240 tcggtcccgg tggtctctcc cgtgagcgcg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 5 <211> 306 <212> DNA <213> K. griseola <400> 5 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac cggcctggcc cgcatggagc 60 gcgtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgcgc 240 tgggccccgg cggtctctcc cgtgagcggg cgggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 6 <211> 306 <212> DNA <213> K. mediocidica <400> 6 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggtaccagc cagctgtccc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgtcgt ctgtccgcgc 240 tgggcccggg tggtctgtcc cgtgagcgcg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 7 <211> 306 <212> DNA <213> K. phosalacinea <400> 7 tgcgcaacgt cggcgagctg atccagaacc aggtccgcac cggcctcgcc cgcatggagc 60 gagtggtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgtcgt ctgtccgcgc 240 tcggccccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccct 300 cgcact 306 <210> 8 <211> 306 <212> DNA <213> K. setae <400> 8 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac cggcctggcc cggatggagc 60 gcgtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgcgc 240 tcggccccgg tggtctgtcc cgcgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 9 <211> 306 <212> DNA <213> M. echinospora <400> 9 tgcgtaccgt cggcgagctg atccagaacc aggtccgggt cggcctctcc cgcatggagc 60 gggtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg cccggtggtg gcggcgatca aggagttctt cggcacgtcg cagctgtccc 180 agttcatgga ccagaccaac ccgctggcgg gcctgaccca ccggcgccgg ctgagcgcgc 240 tcggcccggg tggtctgtcc cgggagcggg ccggcttcga ggtccgggac gtgcacccgt 300 cgcact 306 <210> 10 <211> 306 <212> DNA <213> S. abikoensis <400> 10 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggtccggg cggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cgcact 306 <210> 11 <211> 306 <212> DNA <213> S. achromogenes <400> 11 tgcgcaacgt cggcgagctg atccagaacc aggtccctac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggtccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 12 <211> 306 <212> DNA <213> S. acrimycini <400> 12 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 13 <211> 306 <212> DNA <213> S. actuosus <400> 13 tccgcaacgt cggcgagctg atccagaacc aggtccgcac gggtctcgcc cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg ggctgacgca caagcgtcgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccgt 300 cgcact 306 <210> 14 <211> 306 <212> DNA <213> S. aculeolatus <400> 14 tccgcaacgt cggcgagctg atccagaacc aggtgcgtac gggcctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtccg gtctgaccca caagcgccgg ctcaacgcgc 240 tcggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 15 <211> 306 <212> DNA <213> S. alanosinicus <400> 15 tccgcaacgt cggcgagctg atccagaacc aggtgcgtac gggtctcgcc cgtatggagc 60 gcgtcgtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 16 <211> 306 <212> DNA <213> S. albireticuli <400> 16 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagacgaac ccgctctcgg gtctgacgca caagcgtcgt ctgtccgcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgagac gtccacccgt 300 cgcact 306 <210> 17 <211> 306 <212> DNA <213> S. albofaciens <400> 17 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gcctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 18 <211> 306 <212> DNA <213> S. alboflavus <400> 18 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccga ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggttcgtgac gtgcacccgt 300 cgcact 306 <210> 19 <211> 306 <212> DNA <213> S. albogriseolus <400> 19 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 20 <211> 306 <212> DNA <213> S. albolongus <400> 20 tgcgcagcgt gggcgagctc atccagaacc aggtccgcac cggcctggcc cgtatggagc 60 gcgtcgtccg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg ggctgacgca caagcggcgt ttgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 21 <211> 306 <212> DNA <213> S. alboniger <400> 21 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggcgc 240 tcggaccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 22 <211> 306 <212> DNA <213> S. albosporeus <400> 22 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg cccggtcgtg gcgtcgatca aggagttctt cggcacctcg cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctctcggcgc 240 tgggtcccgg cggtctgtcc cgtgagcggg ccggctttga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 23 <211> 306 <212> DNA <213> S. alboviridis <400> 23 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgaccca caagcgccgc ctgtccgctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 24 <211> 306 <212> DNA <213> S. albulus <400> 24 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggtctgga cgtccgtgac gtgcacccgt 300 cgcact 306 <210> 25 <211> 306 <212> DNA <213> S. albus <400> 25 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gggtcgtccg cgagcggatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgatctcgg gtctgaccca caagcgccgt ctcaacgcgc 240 tgggcccggg tggtctgagc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 26 <211> 306 <212> DNA <213> S. almquistii <400> 26 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gggtcgtccg cgagcggatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgatctcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgagc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 27 <211> 306 <212> DNA <213> S. aminophilus <400> 27 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgatctcgg gtctcaccca caagcggcgt ctgaactcgc 240 tgggcccggg tggtctgagc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 28 <211> 306 <212> DNA <213> S. antimycoticus <400> 28 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 29 <211> 306 <212> DNA <213> S. argenteolus <400> 29 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg tgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgc ctgtcggcgc 240 tgggcccggg tggcctctcc cgtgagcggg ccggcctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 30 <211> 306 <212> DNA <213> S. armeniacus <400> 30 tgcggaacgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cggatggagc 60 gcgtcgtccg cgagcggatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg cccggtcgtc gcctccatca aggaattctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg ggctcaccca caagcgccgc ctcaacgcgc 240 tgggcccggg cggtctgagc cgtgagcggg cgggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 31 <211> 306 <212> DNA <213> S. avidinii <400> 31 tccgcagcgt cgccgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 32 <211> 306 <212> DNA <213> S. bacillaris <400> 32 tccgcaacgt cggcgagctc atccagaccc aggtccgtac gggtctggcc cggatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gtctcaccca caagcgccgt ctctcggcgc 240 tgggcccggg tggtctctcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 33 <211> 306 <212> DNA <213> S. bambergiensis <400> 33 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttgga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 34 <211> 306 <212> DNA <213> S. bikiniensis <400> 34 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgc ctctcggcgc 240 tcggtcccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cccact 306 <210> 35 <211> 306 <212> DNA <213> S. cacaoi asoensis <400> 35 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gcctgaccca caagcgccgc ctgtcggcgc 240 tgggccccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 36 <211> 306 <212> DNA <213> S. capillispiralis <400> 36 tccgcaccgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgacgca caagcgtcgt ctcaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 37 <211> 306 <212> DNA <213> S. carpinensis <400> 37 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtccg cgagcggatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctctccg ggctgacgca caagcggcgt ctgtccgcgc 240 tggggccggg tggtccctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 38 <211> 306 <212> DNA <213> S. catenulae <400> 38 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg tgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gtctgaccca caagcgccgt ctgtccgcgc 240 tgggccccgg cggtctctcc cgtgagcggg ccggtctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 39 <211> 306 <212> DNA <213> S. celluloflavus <400> 39 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gtctcaccca caagcgccgt ctctcggcgc 240 tcggcccggg tggtctctcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 40 <211> 306 <212> DNA <213> S. chartreusis <400> 40 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg tgagcgcatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 41 <211> 307 <212> DNA <213> S. chattanoogensis <400> 41 tgcgcacccg tcggcgagct catccagaac caggtccgta cgggtctggc ccgtatggag 60 cgcgtcgtgc gtgagcgcat gaccacccag gacgtcgagg cgatcacgcc gcagaccctg 120 atcaacatcc ggccggtcgt cgcctccatc aaggagttct tcggcaccag ccagctgtcg 180 cagttcatgg accagaccaa cccgctgtcg ggtctgaccc acaagcgccg tctgtcggcg 240 ctgggcccgg gtggtctctc ccgtgagcgg gccggcctgg acgtccgtga cgtgcacccc 300 tcgcact 307 <210> 42 <211> 306 <212> DNA <213> S. chrysomallus <400> 42 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctcgcc cgcatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgccc 240 tcggtcccgg tggtctctcc cgtgagcgcg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 43 <211> 306 <212> DNA <213> S. cinereoruber <400> 43 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctctcggcgc 240 tcggtccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 44 <211> 306 <212> DNA <213> S. cinereus <400> 44 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtccacccgt 300 cgcact 306 <210> 45 <211> 306 <212> DNA <213> S. cinnamonensis <400> 45 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gcctgaccca caagcgccgc ctgtcggcgc 240 tgggccccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 46 <211> 306 <212> DNA <213> S. cirratus <400> 46 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccgt 300 cgcact 306 <210> 47 <211> 306 <212> DNA <213> S. clavuligerus <400> 47 tgcgcaacgt cagcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gtgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccc cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 tcggcccggg tggtctctcc cgtgagcggg cgggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 48 <211> 306 <212> DNA <213> S. coelicolor <400> 48 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 49 <211> 306 <212> DNA <213> S. coeruleorubidus <400> 49 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtgcg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg gtctgacgca caagcggcgt ctgtccgcgc 240 tcggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 50 <211> 306 <212> DNA <213> S. collinus <400> 50 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 51 <211> 306 <212> DNA <213> S. corchorusii <400> 51 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagt cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 52 <211> 306 <212> DNA <213> S. crystallinus <400> 52 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gggtcgtccg cgagcggatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 53 <211> 306 <212> DNA <213> S. cuspidosporus <400> 53 tccgcaacgt cggcgagctg atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtccg cgagcgcatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gtctgaccca caagcgccgt ctgaacgcgc 240 tcggccccgg tggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cgcact 306 <210> 54 <211> 306 <212> DNA <213> S. cyaneus <400> 54 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac cggtctggct cgtatggagc 60 gcgtcgtccg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 55 <211> 306 <212> DNA <213> S. diasticus <400> 55 tgcgtaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggctc 240 ttggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 56 <211> 306 <212> DNA <213> S. djakartensis <400> 56 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcggcgt ctgtccgcgc 240 tcggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 57 <211> 306 <212> DNA <213> S. durhamensis <400> 57 tccgcagcgt cggtgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gtgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg cccggtcgtg gcgtcgatca aggagttctt cggcacctcg cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 58 <211> 306 <212> DNA <213> S. echinoruber <400> 58 tgcgcagcgt cggcgagctg atccagaacc aggtgcgcac cggtctcgcc cgtatggagc 60 gggtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctcaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 59 <211> 306 <212> DNA <213> S. ederensis <400> 59 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg tgagcggatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctcaacgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga agtccgtgac gtgcacccct 300 cgcact 306 <210> 60 <211> 306 <212> DNA <213> S. ehimensis <400> 60 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggtccggg cggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtccacccgt 300 cgcact 306 <210> 61 <211> 306 <212> DNA <213> S. flaveolus <400> 61 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gggtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctcaacgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 62 <211> 306 <212> DNA <213> S. flavofuscus <400> 62 tgcgcagcgt cggcgagctg atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gtctgaccca caagcgccgt ctgaacgcgc 240 tcggtcccgg tggtctgtcc cgcgagcggg cgggtttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 63 <211> 306 <212> DNA <213> S. fradiae <400> 63 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cggatggagc 60 gcgtcgtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtccg ggctgacgca caagcgtcgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cccact 306 <210> 64 <211> 306 <212> DNA <213> S. galilaeus <400> 64 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gggtcgtgcg tgagcgcatg accactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctcaacgccc 240 tcggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 65 <211> 306 <212> DNA <213> S. globisporus <400> 65 tgcgcaacgt gggcgagctc atccagaacc aggtccgtac gggcctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cccact 306 <210> 66 <211> 306 <212> DNA <213> S. griseochromogenes <400> 66 tgcgcagcgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gtgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 67 <211> 306 <212> DNA <213> S. griseolus <400> 67 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gggtcgtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtccg gtctcaccca caagcgccgt ctctcggcgc 240 tcggcccggg tggtctctcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 68 <211> 306 <212> DNA <213> S. griseoviridis <400> 68 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacattcg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggcgc 240 tcggtccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 69 <211> 306 <212> DNA <213> S. griseus griseus <400> 69 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgctc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cgcact 306 <210> 70 <211> 306 <212> DNA <213> S. hiroshimensis <400> 70 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgt ctctcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 71 <211> 306 <212> DNA <213> S. hygroscopicus <400> 71 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 72 <211> 306 <212> DNA <213> S. libani libani <400> 72 tccgcaacgt cggcgagctg atccagaccc aggtccgtac gggtctggct cggatggagc 60 gcgtcgtgcg tgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc aagttgtcca 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtccgcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 73 <211> 306 <212> DNA <213> S. limosus <400> 73 tgcgcaacgt cggcgagctg atccagaacc aggtccgcac gggtctcgcc cgtatggagc 60 gtgtcgtgcg tgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gtctcaccca caagcgccgt ctgtcggcgc 240 tcggcccggg tggtctctcg cgtgagcggg ccggtttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 74 <211> 306 <212> DNA <213> S. lincolnensis <400> 74 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gagtcgtccg tgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtccg gtctgacgca caagcgtcgt ctctcggcgc 240 tgggccccgg tggtctgtcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgc 300 cccact 306 <210> 75 <211> 306 <212> DNA <213> S. longwoodensis <400> 75 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cgtatggagc 60 gcgtcgtccg caagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gcccgtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 76 <211> 306 <212> DNA <213> S. melanogenes <400> 76 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 77 <211> 306 <212> DNA <213> S. minutiscleroticus <400> 77 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgc ctctcggcgc 240 tgggtcccgg cggtctgtcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 78 <211> 306 <212> DNA <213> S. nitrosporeus <400> 78 tgcgtaacgt cggcgagctc atccagaacc aggtccgcac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gtctcaccca caagcgccgt ctctcggcgc 240 tcggcccggg tggtctctcg cgtgagcggg ccggcttcga ggtccgcgac gttcacccgt 300 cccact 306 <210> 79 <211> 306 <212> DNA <213> S. noboritoensis <400> 79 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtgcg gtctcaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 80 <211> 306 <212> DNA <213> S. nodosus <400> 80 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg gcctgacgca caagcggcgt ctgtccgcgc 240 tgggcccggg cggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 81 <211> 306 <212> DNA <213> S. nojiriensis <400> 81 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgacccagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gcctgaccca caagcgccgc ctgtcggcgc 240 tgggccccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccgt 300 cgcact 306 <210> 82 <211> 306 <212> DNA <213> S. olivaceoviridis <400> 82 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gagtcgtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagactctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 83 <211> 306 <212> DNA <213> S. olivochromogenes <400> 83 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gcccgtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 84 <211> 306 <212> DNA <213> S. pactum <400> 84 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac cggtctggcc cgtatggagc 60 gcgtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgctgtcgg gtctggccca caagcgccgc ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 85 <211> 306 <212> DNA <213> S. paradoxus <400> 85 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 86 <211> 306 <212> DNA <213> S. peucetius <400> 86 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggtccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 87 <211> 306 <212> DNA <213> S. phaeochromogenes <400> 87 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg tgagcggatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgacgca caagcgtcgt ctcaacgcgc 240 tcggcccggg tggtctgtcc cgtgagcggg ccggcttcga agtccgtgac gtgcacccct 300 cgcact 306 <210> 88 <211> 306 <212> DNA <213> S. plicatus <400> 88 tccgcagcgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctcaacgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccct 300 cgcact 306 <210> 89 <211> 306 <212> DNA <213> S. pulveraceus <400> 89 tccgtaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gtgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg gcctgacgca caagcgccgt ctcaacgcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcttcga agtccgtgac gtgcacccgt 300 cgcact 306 <210> 90 <211> 306 <212> DNA <213> S. rameus <400> 90 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 91 <211> 306 <212> DNA <213> S. rimosus rimosus <400> 91 tccgcaacgt cggcgagctg atccagaacc aggtccgtac ggctctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gcctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 92 <211> 306 <212> DNA <213> S. roseosporus <400> 92 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcggcgt ctgtccgcgc 240 tcggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 93 <211> 306 <212> DNA <213> S. sclerotialus <400> 93 tccgtaacgt cggtgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcccccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgacgca caagcgtcgt ctcaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccct 300 cgcact 306 <210> 94 <211> 306 <212> DNA <213> S. setonii <400> 94 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg gtctgacgca caagcgtcgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 95 <211> 306 <212> DNA <213> S. sioyaensis <400> 95 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggtctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 96 <211> 306 <212> DNA <213> S. somaliensis <400> 96 tgcgcaccgt cggcgagctc atccagaccc aggtccgcac gggcctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtccg gtctgacgca caagcgccgt ctgtccgcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 97 <211> 306 <212> DNA <213> S. spectabilis <400> 97 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcatcaccca caagcggcgt ctgaactcgc 240 tcggcccggg tggtctctcc cgtgagcggg cgggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 98 <211> 306 <212> DNA <213> S. subrutilus <400> 98 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcatccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctctcggctc 240 tgggacccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 99 <211> 306 <212> DNA <213> S. tubercidicus <400> 99 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 100 <211> 306 <212> DNA <213> S. vinaceus <400> 100 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtccg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctttcggcgc 240 tgggtcccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 101 <211> 306 <212> DNA <213> S. violarus <400> 101 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 102 <211> 306 <212> DNA <213> S. violascens <400> 102 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 tcggcccggg tggtctctcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 103 <211> 306 <212> DNA <213> S. virginiae <400> 103 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gcctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccgt 300 cgcact 306 <210> 104 <211> 306 <212> DNA <213> S. xantophaeus <400> 104 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctcaccca caagcgccgc ctgtcggctc 240 ttggtcccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 105 <211> 306 <212> DNA <213> S.albaduncus <400> 105 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtccacccgt 300 cgcact 306 <210> 106 <211> 306 <212> DNA <213> S.althioticus <400> 106 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgcca 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 107 <211> 306 <212> DNA <213> S.ambofaciens <400> 107 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gggtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtccacccgt 300 cgcact 306 <210> 108 <211> 306 <212> DNA <213> S.anulatus <400> 108 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgaccca caagcgccgt ctgaacgccc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 109 <211> 306 <212> DNA <213> S.anthocyanicus <400> 109 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 110 <211> 306 <212> DNA <213> S.cellulose <400> 110 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 111 <211> 306 <212> DNA <213> S.armeniacus <400> 111 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 112 <211> 306 <212> DNA <213> S.coelescens <400> 112 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 113 <211> 306 <212> DNA <213> S.griseoflavus <400> 113 tgcgcaacgt cggcgagctg atccagaacc aggtccgcac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgacgca caagcgtcgt ctgaacgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 114 <211> 306 <212> DNA <213> S.humiferus <400> 114 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 115 <211> 306 <212> DNA <213> S.lividans <400> 115 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtccacccgt 300 cgcact 306 <210> 116 <211> 306 <212> DNA <213> S.murinus <400> 116 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg gccacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agtccatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 117 <211> 306 <212> DNA <213> S.pilosus <400> 117 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctgaacgccc 240 ttggcccggg tggtctctcc cgtgagcggg ccggctttga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 118 <211> 306 <212> DNA <213> S.rubiginosus <400> 118 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggcctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 119 <211> 306 <212> DNA <213> S.tendae <400> 119 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 120 <211> 306 <212> DNA <213> S.umbrinus <400> 120 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg tgagcggatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgacgca caagcgtcgt ctcaacgcgc 240 tcggcccggg gggtctgtcc cgtgagcggg ccggcttcga agtccgtgac gtgcacccct 300 cgcact 306 <210> 121 <211> 306 <212> DNA <213> S.violaceoruber <400> 121 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 122 <211> 306 <212> DNA <213> S.xanthocidicus <400> 122 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg tgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 123 <211> 306 <212> DNA <213> S.yokosukanens <400> 123 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccct 300 cgcact 306 <210> 124 <211> 306 <212> DNA <213> S.amakusaensis <400> 124 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 125 <211> 306 <212> DNA <213> S.aburaviensis <400> 125 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccaagaccac ccgctgtcgg gtctgaccca caagcgccgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcgcg ccggctttga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 126 <211> 306 <212> DNA <213> S.albospinus <400> 126 tgcgtaacgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cggatggagc 60 gcgtcgtgcg tgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cccact 306 <210> 127 <211> 306 <212> DNA <213> S.albovinaceous <400> 127 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cccact 306 <210> 128 <211> 306 <212> DNA <213> S.anabdii <400> 128 tgcgcagcgt gggcgagctc atccagaacc aggtccgcac cggcctggcc cgtatggagc 60 gcgtcgtccg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg ggctgacgca caagcggcgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 129 <211> 306 <212> DNA <213> S.antibioticus <400> 129 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtctg gtctgacgca caagcgccgt ctgtcggcgc 240 tcggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 130 <211> 306 <212> DNA <213> S.atroolvaceous <400> 130 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtccgcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 131 <211> 306 <212> DNA <213> S.aureufaciens <400> 131 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgcatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgccc 240 tcggtccggg tggtctctcc cgtgagcgcg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 132 <211> 306 <212> DNA <213> S.azureus <400> 132 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg aggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 133 <211> 306 <212> DNA <213> S.baldacii <400> 133 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 134 <211> 306 <212> DNA <213> S.candidus <400> 134 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggtcccgg tggtctgtcc cgtgagcggg ccggctttga ggtccgagac gtgcacccct 300 cgcact 306 <210> 135 <211> 306 <212> DNA <213> S.caseius <400> 135 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcta ggtccgtgac atgcacccgt 300 cccact 306 <210> 136 <211> 306 <212> DNA <213> S.californicus <400> 136 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 137 <211> 306 <212> DNA <213> S.carpinensis <400> 137 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtccg cgagcggatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctctccg ggctgacgca caagcggcgt ctgtccgcgc 240 tggggccggg tggtccctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 138 <211> 306 <212> DNA <213> S.chromogenes <400> 138 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 139 <211> 306 <212> DNA <213> S.cinnamoneus <400> 139 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctgtccgcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cgcact 306 <210> 140 <211> 306 <212> DNA <213> S.citreofluorescens <400> 140 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gcctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 141 <211> 306 <212> DNA <213> S.coerulescens <400> 141 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgccgt ctgtccgcgc 240 tcggcccggg tggtctgtcc cgtgagcggc ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 142 <211> 306 <212> DNA <213> S.coeruleofuscus <400> 142 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 143 <211> 306 <212> DNA <213> S.coralus <400> 143 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 144 <211> 306 <212> DNA <213> S.cremeus <400> 144 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 145 <211> 306 <212> DNA <213> S.cyaneofuscatus <400> 145 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 146 <211> 306 <212> DNA <213> S.disatochromogenes <400> 146 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcgcatg acgacccagg acgtcgaggc gatcacgccc cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctctcggcac 240 tgggtcccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 147 <211> 306 <212> DNA <213> S.erumpens <400> 147 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggctc 240 tcggcccggg tggcctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cccact 306 <210> 148 <211> 306 <212> DNA <213> S.erythraeus <400> 148 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac cggtctggcc cgtatggagc 60 gcgtcgtccg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgagc cgtgagcggg cgggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 149 <211> 306 <212> DNA <213> S.eurythermus <400> 149 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 150 <211> 306 <212> DNA <213> S.fimbriatus <400> 150 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg ggctgacgca caagcgtcgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 151 <211> 306 <212> DNA <213> S.flavotricini <400> 151 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 152 <211> 306 <212> DNA <213> S.flavovirens <400> 152 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 153 <211> 306 <212> DNA <213> S.fulvissimus <400> 153 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 154 <211> 306 <212> DNA <213> S.fumanus <400> 154 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 155 <211> 306 <212> DNA <213> S.gougeroti <400> 155 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 156 <211> 306 <212> DNA <213> S.griseoruber <400> 156 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 157 <211> 306 <212> DNA <213> S.griseolosporeus <400> 157 tgcgcaacgt cggcgagctg atccagaacc aggtccgcac cggcctcgcc cgcatggagc 60 gggtggtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg caaaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgcgc 240 tcggcccggg tggtctgtcc cgcgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 158 <211> 306 <212> DNA <213> S.griseostramineus <400> 158 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 159 <211> 306 <212> DNA <213> S.hachijoense <400> 159 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 160 <211> 306 <212> DNA <213> S.halstedii <400> 160 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 161 <211> 306 <212> DNA <213> S.humidus <400> 161 tgcgcaacgt cggcgagctg attcagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 162 <211> 306 <212> DNA <213> S.indigoferus <400> 162 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 163 <211> 306 <212> DNA <213> S.kifunensis <400> 163 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggctttga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 164 <211> 306 <212> DNA <213> S.kurssanovi <400> 164 tgcgtaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306<110> BIOMEDLAB (represetative: KIM, JONG-WON) KIM, BUM-JUN KUK, YUN-HO <120> primer set specific to genus streptomyces, rpoB gene sequences, and identification method of genus streptomyces by using the same <130> DPP20021682 <160> 164 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 1 tcgaccactt cggcaaccgc 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 2 tcgatcgggc acatgcggcc 20 <210> 3 <211> 306 <212> DNA <213> K.azatica <400> 3 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac cggcctggcc cggatggagc 60 gcgtcgtccg cgagcggatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgtcgt ctgtccgcgc 240 tgggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 4 <211> 306 <212> DNA <213> K. cystarginea <400> 4 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgccc 240 tcggtcccgg tggtctctcc cgtgagcgcg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 5 <211> 306 <212> DNA (213) K. griseola <400> 5 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac cggcctggcc cgcatggagc 60 gcgtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgcgc 240 tgggccccgg cggtctctcc cgtgagcggg cgggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 6 <211> 306 <212> DNA <213> K. mediocidica <400> 6 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggtaccagc cagctgtccc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgtcgt ctgtccgcgc 240 tgggcccggg tggtctgtcc cgtgagcgcg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 7 <211> 306 <212> DNA K. phosalacinea <400> 7 tgcgcaacgt cggcgagctg atccagaacc aggtccgcac cggcctcgcc cgcatggagc 60 gagtggtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgtcgt ctgtccgcgc 240 tcggccccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccct 300 cgcact 306 <210> 8 <211> 306 <212> DNA <213> K. setae <400> 8 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac cggcctggcc cggatggagc 60 gcgtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgcgc 240 tcggccccgg tggtctgtcc cgcgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 9 <211> 306 <212> DNA <213> M. echinospora <400> 9 tgcgtaccgt cggcgagctg atccagaacc aggtccgggt cggcctctcc cgcatggagc 60 gggtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg cccggtggtg gcggcgatca aggagttctt cggcacgtcg cagctgtccc 180 agttcatgga ccagaccaac ccgctggcgg gcctgaccca ccggcgccgg ctgagcgcgc 240 tcggcccggg tggtctgtcc cgggagcggg ccggcttcga ggtccgggac gtgcacccgt 300 cgcact 306 <210> 10 <211> 306 <212> DNA <213> S. abikoensis <400> 10 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggtccggg cggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cgcact 306 <210> 11 <211> 306 <212> DNA <213> S. achromogenes <400> 11 tgcgcaacgt cggcgagctg atccagaacc aggtccctac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggtccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 12 <211> 306 <212> DNA S. acrimycini <400> 12 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 13 <211> 306 <212> DNA <213> S. actuosus <400> 13 tccgcaacgt cggcgagctg atccagaacc aggtccgcac gggtctcgcc cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg ggctgacgca caagcgtcgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccgt 300 cgcact 306 <210> 14 <211> 306 <212> DNA <213> S. aculeolatus <400> 14 tccgcaacgt cggcgagctg atccagaacc aggtgcgtac gggcctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtccg gtctgaccca caagcgccgg ctcaacgcgc 240 tcggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 15 <211> 306 <212> DNA S. alanosinicus <400> 15 tccgcaacgt cggcgagctg atccagaacc aggtgcgtac gggtctcgcc cgtatggagc 60 gcgtcgtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 16 <211> 306 <212> DNA <213> S. albireticuli <400> 16 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagacgaac ccgctctcgg gtctgacgca caagcgtcgt ctgtccgcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgagac gtccacccgt 300 cgcact 306 <210> 17 <211> 306 <212> DNA <213> S. albofaciens <400> 17 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gcctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 18 <211> 306 <212> DNA <213> S. alboflavus <400> 18 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccga ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggttcgtgac gtgcacccgt 300 cgcact 306 <210> 19 <211> 306 <212> DNA <213> S. albogriseolus <400> 19 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 20 <211> 306 <212> DNA <213> S. albolongus <400> 20 tgcgcagcgt gggcgagctc atccagaacc aggtccgcac cggcctggcc cgtatggagc 60 gcgtcgtccg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg ggctgacgca caagcggcgt ttgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 21 <211> 306 <212> DNA <213> S. alboniger <400> 21 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggcgc 240 tcggaccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 22 <211> 306 <212> DNA <213> S. albosporeus <400> 22 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg cccggtcgtg gcgtcgatca aggagttctt cggcacctcg cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctctcggcgc 240 tgggtcccgg cggtctgtcc cgtgagcggg ccggctttga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 23 <211> 306 <212> DNA <213> S. alboviridis <400> 23 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgaccca caagcgccgc ctgtccgctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 24 <211> 306 <212> DNA <213> S. albulus <400> 24 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggtctgga cgtccgtgac gtgcacccgt 300 cgcact 306 <210> 25 <211> 306 <212> DNA <213> S. albus <400> 25 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gggtcgtccg cgagcggatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgatctcgg gtctgaccca caagcgccgt ctcaacgcgc 240 tgggcccggg tggtctgagc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 26 <211> 306 <212> DNA S. almquistii <400> 26 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gggtcgtccg cgagcggatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgatctcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgagc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 27 <211> 306 <212> DNA <213> S. aminophilus <400> 27 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgatctcgg gtctcaccca caagcggcgt ctgaactcgc 240 tgggcccggg tggtctgagc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 28 <211> 306 <212> DNA <213> S. antimycoticus <400> 28 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 29 <211> 306 <212> DNA <213> S. argenteolus <400> 29 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg tgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgc ctgtcggcgc 240 tgggcccggg tggcctctcc cgtgagcggg ccggcctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 30 <211> 306 <212> DNA <213> S. armeniacus <400> 30 tgcggaacgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cggatggagc 60 gcgtcgtccg cgagcggatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg cccggtcgtc gcctccatca aggaattctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg ggctcaccca caagcgccgc ctcaacgcgc 240 tgggcccggg cggtctgagc cgtgagcggg cgggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 31 <211> 306 <212> DNA S. avidinii <400> 31 tccgcagcgt cgccgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 32 <211> 306 <212> DNA <213> S. bacillaris <400> 32 tccgcaacgt cggcgagctc atccagaccc aggtccgtac gggtctggcc cggatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gtctcaccca caagcgccgt ctctcggcgc 240 tgggcccggg tggtctctcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 33 <211> 306 <212> DNA <213> S. bambergiensis <400> 33 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttgga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 34 <211> 306 <212> DNA <213> S. bikiniensis <400> 34 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgc ctctcggcgc 240 tcggtcccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cccact 306 <210> 35 <211> 306 <212> DNA S. cacaoi asoensis <400> 35 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gcctgaccca caagcgccgc ctgtcggcgc 240 tgggccccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 36 <211> 306 <212> DNA <213> S. capillispiralis <400> 36 tccgcaccgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgacgca caagcgtcgt ctcaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 37 <211> 306 <212> DNA <213> S. carpinensis <400> 37 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtccg cgagcggatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctctccg ggctgacgca caagcggcgt ctgtccgcgc 240 tggggccggg tggtccctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 38 <211> 306 <212> DNA S. catenulae <400> 38 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg tgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gtctgaccca caagcgccgt ctgtccgcgc 240 tgggccccgg cggtctctcc cgtgagcggg ccggtctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 39 <211> 306 <212> DNA <213> S. celluloflavus <400> 39 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gtctcaccca caagcgccgt ctctcggcgc 240 tcggcccggg tggtctctcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 40 <211> 306 <212> DNA <213> S. chartreusis <400> 40 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg tgagcgcatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 41 <211> 307 <212> DNA <213> S. chattanoogensis <400> 41 tgcgcacccg tcggcgagct catccagaac caggtccgta cgggtctggc ccgtatggag 60 cgcgtcgtgc gtgagcgcat gaccacccag gacgtcgagg cgatcacgcc gcagaccctg 120 atcaacatcc ggccggtcgt cgcctccatc aaggagttct tcggcaccag ccagctgtcg 180 cagttcatgg accagaccaa cccgctgtcg ggtctgaccc acaagcgccg tctgtcggcg 240 ctgggcccgg gtggtctctc ccgtgagcgg gccggcctgg acgtccgtga cgtgcacccc 300 tcgcact 307 <210> 42 <211> 306 <212> DNA <213> S. chrysomallus <400> 42 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctcgcc cgcatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgccc 240 tcggtcccgg tggtctctcc cgtgagcgcg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 43 <211> 306 <212> DNA <213> S. cinereoruber <400> 43 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctctcggcgc 240 tcggtccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 44 <211> 306 <212> DNA S. cinereus <400> 44 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtccacccgt 300 cgcact 306 <210> 45 <211> 306 <212> DNA <213> S. cinnamonensis <400> 45 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gcctgaccca caagcgccgc ctgtcggcgc 240 tgggccccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 46 <211> 306 <212> DNA <213> S. cirratus <400> 46 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccgt 300 cgcact 306 <210> 47 <211> 306 <212> DNA <213> S. clavuligerus <400> 47 tgcgcaacgt cagcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gtgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccc cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 tcggcccggg tggtctctcc cgtgagcggg cgggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 48 <211> 306 <212> DNA <213> S. coelicolor <400> 48 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 49 <211> 306 <212> DNA <213> S. coeruleorubidus <400> 49 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtgcg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg gtctgacgca caagcggcgt ctgtccgcgc 240 tcggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 50 <211> 306 <212> DNA S. collinus <400> 50 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 51 <211> 306 <212> DNA <213> S. corchorusii <400> 51 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagt cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 52 <211> 306 <212> DNA <213> S. crystallinus <400> 52 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gggtcgtccg cgagcggatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 53 <211> 306 <212> DNA <213> S. cuspidosporus <400> 53 tccgcaacgt cggcgagctg atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtccg cgagcgcatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gtctgaccca caagcgccgt ctgaacgcgc 240 tcggccccgg tggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cgcact 306 <210> 54 <211> 306 <212> DNA <213> S. cyaneus <400> 54 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac cggtctggct cgtatggagc 60 gcgtcgtccg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 55 <211> 306 <212> DNA <213> S. diasticus <400> 55 tgcgtaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggctc 240 ttggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 56 <211> 306 <212> DNA <213> S. djakartensis <400> 56 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcggcgt ctgtccgcgc 240 tcggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 57 <211> 306 <212> DNA <213> S. durhamensis <400> 57 tccgcagcgt cggtgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gtgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg cccggtcgtg gcgtcgatca aggagttctt cggcacctcg cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 58 <211> 306 <212> DNA <213> S. echinoruber <400> 58 tgcgcagcgt cggcgagctg atccagaacc aggtgcgcac cggtctcgcc cgtatggagc 60 gggtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctcaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 59 <211> 306 <212> DNA <213> S. ederensis <400> 59 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg tgagcggatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctcaacgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga agtccgtgac gtgcacccct 300 cgcact 306 <210> 60 <211> 306 <212> DNA <213> S. ehimensis <400> 60 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggtccggg cggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtccacccgt 300 cgcact 306 <210> 61 <211> 306 <212> DNA <213> S. flaveolus <400> 61 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gggtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctcaacgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 62 <211> 306 <212> DNA <213> S. flavofuscus <400> 62 tgcgcagcgt cggcgagctg atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gtctgaccca caagcgccgt ctgaacgcgc 240 tcggtcccgg tggtctgtcc cgcgagcggg cgggtttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 63 <211> 306 <212> DNA <213> S. fradiae <400> 63 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cggatggagc 60 gcgtcgtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtccg ggctgacgca caagcgtcgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cccact 306 <210> 64 <211> 306 <212> DNA <213> S. galilaeus <400> 64 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gggtcgtgcg tgagcgcatg accactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctcaacgccc 240 tcggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 65 <211> 306 <212> DNA <213> S. globisporus <400> 65 tgcgcaacgt gggcgagctc atccagaacc aggtccgtac gggcctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cccact 306 <210> 66 <211> 306 <212> DNA <213> S. griseochromogenes <400> 66 tgcgcagcgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gtgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 67 <211> 306 <212> DNA <213> S. griseolus <400> 67 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gggtcgtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtccg gtctcaccca caagcgccgt ctctcggcgc 240 tcggcccggg tggtctctcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 68 <211> 306 <212> DNA <213> S. griseoviridis <400> 68 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacattcg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggcgc 240 tcggtccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 69 <211> 306 <212> DNA <213> S. griseus griseus <400> 69 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgctc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cgcact 306 <210> 70 <211> 306 <212> DNA <213> S. hiroshimensis <400> 70 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgt ctctcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccgt 300 cgcact 306 <210> 71 <211> 306 <212> DNA <213> S. hygroscopicus <400> 71 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 72 <211> 306 <212> DNA <213> S. libani libani <400> 72 tccgcaacgt cggcgagctg atccagaccc aggtccgtac gggtctggct cggatggagc 60 gcgtcgtgcg tgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc aagttgtcca 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtccgcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 73 <211> 306 <212> DNA <213> S. limosus <400> 73 tgcgcaacgt cggcgagctg atccagaacc aggtccgcac gggtctcgcc cgtatggagc 60 gtgtcgtgcg tgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gtctcaccca caagcgccgt ctgtcggcgc 240 tcggcccggg tggtctctcg cgtgagcggg ccggtttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 74 <211> 306 <212> DNA S. lincolnensis <400> 74 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gagtcgtccg tgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtccg gtctgacgca caagcgtcgt ctctcggcgc 240 tgggccccgg tggtctgtcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgc 300 cccact 306 <210> 75 <211> 306 <212> DNA <213> S. longwoodensis <400> 75 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cgtatggagc 60 gcgtcgtccg caagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gcccgtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 76 <211> 306 <212> DNA S. melanogenes <400> 76 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 77 <211> 306 <212> DNA <213> S. minutiscleroticus <400> 77 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctctcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgc ctctcggcgc 240 tgggtcccgg cggtctgtcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 78 <211> 306 <212> DNA <213> S. nitrosporeus <400> 78 tgcgtaacgt cggcgagctc atccagaacc aggtccgcac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gtctcaccca caagcgccgt ctctcggcgc 240 tcggcccggg tggtctctcg cgtgagcggg ccggcttcga ggtccgcgac gttcacccgt 300 cccact 306 <210> 79 <211> 306 <212> DNA <213> S. noboritoensis <400> 79 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtgcg gtctcaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 80 <211> 306 <212> DNA <213> S. nodosus <400> 80 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg gcctgacgca caagcggcgt ctgtccgcgc 240 tgggcccggg cggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 81 <211> 306 <212> DNA <213> S. nojiriensis <400> 81 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgacccagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gcctgaccca caagcgccgc ctgtcggcgc 240 tgggccccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccgt 300 cgcact 306 <210> 82 <211> 306 <212> DNA <213> S. olivaceoviridis <400> 82 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gagtcgtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagactctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 83 <211> 306 <212> DNA <213> S. olivochromogenes <400> 83 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gcccgtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 84 <211> 306 <212> DNA <213> S. pactum <400> 84 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac cggtctggcc cgtatggagc 60 gcgtcgtccg cgagcggatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgctgtcgg gtctggccca caagcgccgc ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 85 <211> 306 <212> DNA <213> S. paradoxus <400> 85 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 86 <211> 306 <212> DNA <213> S. peucetius <400> 86 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggtccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 87 <211> 306 <212> DNA <213> S. phaeochromogenes <400> 87 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg tgagcggatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgacgca caagcgtcgt ctcaacgcgc 240 tcggcccggg tggtctgtcc cgtgagcggg ccggcttcga agtccgtgac gtgcacccct 300 cgcact 306 <210> 88 <211> 306 <212> DNA <213> S. plicatus <400> 88 tccgcagcgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctcaacgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccct 300 cgcact 306 <210> 89 <211> 306 <212> DNA <213> S. pulveraceus <400> 89 tccgtaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gtgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg gcctgacgca caagcgccgt ctcaacgcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcttcga agtccgtgac gtgcacccgt 300 cgcact 306 <210> 90 <211> 306 <212> DNA <213> S. rameus <400> 90 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 91 <211> 306 <212> DNA <213> S. rimosus rimosus <400> 91 tccgcaacgt cggcgagctg atccagaacc aggtccgtac ggctctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gcctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 92 <211> 306 <212> DNA <213> S. roseosporus <400> 92 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcggcgt ctgtccgcgc 240 tcggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 93 <211> 306 <212> DNA <213> S. sclerotialus <400> 93 tccgtaacgt cggtgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcccccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgacgca caagcgtcgt ctcaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gttcacccct 300 cgcact 306 <210> 94 <211> 306 <212> DNA <213> S. setonii <400> 94 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg gtctgacgca caagcgtcgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 95 <211> 306 <212> DNA <213> S. sioyaensis <400> 95 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggtctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 96 <211> 306 <212> DNA <213> S. somaliensis <400> 96 tgcgcaccgt cggcgagctc atccagaccc aggtccgcac gggcctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtccg gtctgacgca caagcgccgt ctgtccgcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 97 <211> 306 <212> DNA <213> S. spectabilis <400> 97 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcatcaccca caagcggcgt ctgaactcgc 240 tcggcccggg tggtctctcc cgtgagcggg cgggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 98 <211> 306 <212> DNA <213> S. subrutilus <400> 98 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcatccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctctcggctc 240 tgggacccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 99 <211> 306 <212> DNA <213> S. tubercidicus <400> 99 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 100 <211> 306 <212> DNA <213> S. vinaceus <400> 100 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtccg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctttcggcgc 240 tgggtcccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 101 <211> 306 <212> DNA <213> S. violarus <400> 101 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcggatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 102 <211> 306 <212> DNA <213> S. violascens <400> 102 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggcgc 240 tcggcccggg tggtctctcg cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 103 <211> 306 <212> DNA <213> S. virginiae <400> 103 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctctcgg gcctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg cggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccgt 300 cgcact 306 <210> 104 <211> 306 <212> DNA <213> S. xantophaeus <400> 104 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtccg cgagcgcatg acgactcagg acgtcgaggc catcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctcaccca caagcgccgc ctgtcggctc 240 ttggtcccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 105 <211> 306 <212> DNA <213> S.albaduncus <400> 105 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtccacccgt 300 cgcact 306 <210> 106 <211> 306 <212> DNA <213> S.althioticus <400> 106 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgcca 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 107 <211> 306 <212> DNA <213> S.ambofaciens <400> 107 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gggtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtccacccgt 300 cgcact 306 <210> 108 <211> 306 <212> DNA <213> S.anulatus <400> 108 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgaccca caagcgccgt ctgaacgccc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 109 <211> 306 <212> DNA <213> S.anthocyanicus <400> 109 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 110 <211> 306 <212> DNA <213> S. cellulose <400> 110 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 111 <211> 306 <212> DNA <213> S.armeniacus <400> 111 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 112 <211> 306 <212> DNA <213> S. coelescens <400> 112 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 113 <211> 306 <212> DNA <213> S.griseoflavus <400> 113 tgcgcaacgt cggcgagctg atccagaacc aggtccgcac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgacgca caagcgtcgt ctgaacgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 114 <211> 306 <212> DNA <213> S.humiferus <400> 114 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 115 <211> 306 <212> DNA <213> S.lividans <400> 115 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtccacccgt 300 cgcact 306 <210> 116 <211> 306 <212> DNA <213> S.murinus <400> 116 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg gccacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agtccatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 117 <211> 306 <212> DNA <213> S.pilosus <400> 117 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctgaacgccc 240 ttggcccggg tggtctctcc cgtgagcggg ccggctttga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 118 <211> 306 <212> DNA <213> S.rubiginosus <400> 118 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggcctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 119 <211> 306 <212> DNA <213> S.tendae <400> 119 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 120 <211> 306 <212> DNA <213> S.umbrinus <400> 120 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg tgagcggatg acgactcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gcctgacgca caagcgtcgt ctcaacgcgc 240 tcggcccggg gggtctgtcc cgtgagcggg ccggcttcga agtccgtgac gtgcacccct 300 cgcact 306 <210> 121 <211> 306 <212> DNA <213> S.violaceoruber <400> 121 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cgcact 306 <210> 122 <211> 306 <212> DNA <213> S.xanthocidicus <400> 122 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg tgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 123 <211> 306 <212> DNA <213> S. yokosukanens <400> 123 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg ggctgacgca caagcgtcgt ctgaacgccc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtccacccct 300 cgcact 306 <210> 124 <211> 306 <212> DNA <213> S. amakusaensis <400> 124 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 125 <211> 306 <212> DNA <213> S.aburaviensis <400> 125 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccaagaccac ccgctgtcgg gtctgaccca caagcgccgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcgcg ccggctttga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 126 <211> 306 <212> DNA <213> S. albospinus <400> 126 tgcgtaacgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cggatggagc 60 gcgtcgtgcg tgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgcgac gtgcacccgt 300 cccact 306 <210> 127 <211> 306 <212> DNA <213> S. albovinaceous <400> 127 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cccact 306 <210> 128 <211> 306 <212> DNA <213> S.anabdii <400> 128 tgcgcagcgt gggcgagctc atccagaacc aggtccgcac cggcctggcc cgtatggagc 60 gcgtcgtccg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg ggctgacgca caagcggcgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 129 <211> 306 <212> DNA <213> S.antibioticus <400> 129 tccgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtctg gtctgacgca caagcgccgt ctgtcggcgc 240 tcggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 130 <211> 306 <212> DNA <213> S.atroolvaceous <400> 130 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtccgcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 131 <211> 306 <212> DNA <213> S.aureufaciens <400> 131 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgcatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaccaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgccc 240 tcggtccggg tggtctctcc cgtgagcgcg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 132 <211> 306 <212> DNA <213> S.azureus <400> 132 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg aggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 133 <211> 306 <212> DNA <213> S.baldacii <400> 133 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 134 <211> 306 <212> DNA <213> S. candidus <400> 134 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggtcccgg tggtctgtcc cgtgagcggg ccggctttga ggtccgagac gtgcacccct 300 cgcact 306 <210> 135 <211> 306 <212> DNA <213> S.caseius <400> 135 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcta ggtccgtgac atgcacccgt 300 cccact 306 <210> 136 <211> 306 <212> DNA <213> S.californicus <400> 136 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 137 <211> 306 <212> DNA <213> S. carpinensis <400> 137 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcc cgtatggagc 60 gcgtcgtccg cgagcggatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctctccg ggctgacgca caagcggcgt ctgtccgcgc 240 tggggccggg tggtccctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 138 <211> 306 <212> DNA <213> S.chromogenes <400> 138 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <139> <211> 306 <212> DNA <213> S.cinnamoneus <400> 139 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctgtccgcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cgcact 306 <210> 140 <211> 306 <212> DNA <213> S.citreofluorescens <400> 140 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctcgcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gcctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcctgga cgtccgtgac gtgcacccct 300 cgcact 306 <210> 141 <211> 306 <212> DNA <213> S. coerulescens <400> 141 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgccgt ctgtccgcgc 240 tcggcccggg tggtctgtcc cgtgagcggc ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 142 <211> 306 <212> DNA <213> S. coeruleofuscus <400> 142 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 143 <211> 306 <212> DNA <213> S.coralus <400> 143 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgtcgt ctgtcggcgc 240 tgggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 144 <211> 306 <212> DNA <213> S.cremeus <400> 144 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 145 <211> 306 <212> DNA <213> S.cyaneofuscatus <400> 145 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 146 <211> 306 <212> DNA <213> S. disatochromogenes <400> 146 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gtgtcgtccg cgagcgcatg acgacccagg acgtcgaggc gatcacgccc cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgacgca caagcgtcgt ctctcggcac 240 tgggtcccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 147 <211> 306 <212> DNA <213> S.erumpens <400> 147 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggcctggcg cggatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggctc 240 tcggcccggg tggcctctcc cgtgagcggg ccggcttcga ggtccgagac gtgcacccgt 300 cccact 306 <210> 148 <211> 306 <212> DNA <213> S.erythraeus <400> 148 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac cggtctggcc cgtatggagc 60 gcgtcgtccg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaccaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgagc cgtgagcggg cgggcttcga ggtccgtgac gtgcacccgt 300 cccact 306 <210> 149 <211> 306 <212> DNA <213> S.eurythermus <400> 149 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 150 <211> 306 <212> DNA <213> S.fimbriatus <400> 150 tgcgcagcgt cggcgagctc atccagaacc aggtccgcac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacgcagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtccg ggctgacgca caagcgtcgt ctgtccgcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 151 <211> 306 <212> DNA <213> S.flavotricini <400> 151 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 152 <211> 306 <212> DNA <213> S.flavovirens <400> 152 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 153 <211> 306 <212> DNA <213> S.fulvissimus <400> 153 tgcgcaacgt cggcgagctc atccagaacc aggtccgcac gggtctggct cgtatggagc 60 gcgtcgtgcg tgagcgcatg acgacgcagg acgtcgaggc gatcacgccg cagacgctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctcaccca caagcgccgc ctgtcggctc 240 ttggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 ctcact 306 <210> 154 <211> 306 <212> DNA <213> S.fumanus <400> 154 tgcgcaacgt cggcgagctg atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 155 <211> 306 <212> DNA <213> S.gougeroti <400> 155 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggccccgg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 156 <211> 306 <212> DNA <213> S.griseoruber <400> 156 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 157 <211> 306 <212> DNA <213> S.griseolosporeus <400> 157 tgcgcaacgt cggcgagctg atccagaacc aggtccgcac cggcctcgcc cgcatggagc 60 gggtggtccg cgagcgcatg accacccagg acgtcgaggc gatcacgccg caaaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagacgaac ccgctgtcgg gcctgaccca caagcgccgt ctgtccgcgc 240 tcggcccggg tggtctgtcc cgcgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 158 <211> 306 <212> DNA <213> S.griseostramineus <400> 158 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 159 <211> 306 <212> DNA <213> S. hachijoense <400> 159 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 160 <211> 306 <212> DNA <213> S.halstedii <400> 160 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 161 <211> 306 <212> DNA <213> S.humidus <400> 161 tgcgcaacgt cggcgagctg attcagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtcgc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tcggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 162 <211> 306 <212> DNA <213> S.indigoferus <400> 162 tgcgcaacgt cggcgagctc atccagaacc aggtccgtac gggtctggcc cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctgtcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306 <210> 163 <211> 306 <212> DNA <213> S.kifunensis <400> 163 tgcgcagcgt cggcgagctc atccagaacc aggtccgtac gggtctggcg cgtatggagc 60 gcgtcgtgcg cgagcgcatg accacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggctttga ggtccgtgac gtgcacccct 300 cgcact 306 <210> 164 <211> 306 <212> DNA <213> S.kurssanovi <400> 164 tgcgtaacgt cggcgagctc atccagaacc aggtccgtac gggtctggct cgtatggagc 60 gcgtcgtgcg cgagcgcatg acgacccagg acgtcgaggc gatcacgccg cagaccctga 120 tcaacatccg gccggtcgtc gcctccatca aggagttctt cggcaccagc cagctgtccc 180 agttcatgga ccagaacaac ccgctgtcgg gtctgaccca caagcgccgt ctgtcggcgc 240 tgggcccggg tggtctctcc cgtgagcggg ccggcttcga ggtccgtgac gtgcacccgt 300 cgcact 306

Claims (9)

스트렙토미세스 균종의 RNA 중합효소 B 서브유니트 유전자(rpoB) 분절을 특이적으로 증폭시키며, SEQ ID NO: 1로 나타난 염기서열을 포함하는 프라이머, 및 SEQ ID NO: 2로 나타난 염기서열을 포함하는 프라이머로 이루어진 군에서 선택되는 1종 이상의 프라이머.Amplify specifically the RNA polymerase B subunit gene (rpoB) segment of Streptomyces species, a primer comprising the nucleotide sequence represented by SEQ ID NO: 1, and a primer comprising the nucleotide sequence represented by SEQ ID NO: 2 At least one primer selected from the group consisting of. SEQ ID NO: 3 내지 SEQ ID NO: 164에 나타난 염기서열로 이루어진 군에서 선택되며, 스트렙토미세스속 균종의 rpoB 유전자의 274번째 아미노산 코돈의 두번째 염기에서부터 376번째 아미노산 코돈의 첫번째 염기에 이르는 총 306-bp 염기서열을 포함하는 폴리뉴클레오타이드.Selected from the group consisting of the nucleotide sequences shown in SEQ ID NO: 3 to SEQ ID NO: 164, a total of 306- ranging from the second base of the 274th amino acid codon of the rpoB gene of the Streptomyces genus to the first base of the 376 amino acid codon Polynucleotide comprising a bp sequence. (1) 스트렙토미세스속 균주의 rpoB 유전자 분절을 특이적으로 증폭시키는 프라이머를 이용하여, 목적 균주의 rpoB 유전자 분절을 증폭하고,(1) amplifying the rpoB gene segment of the target strain using primers that specifically amplify the rpoB gene segment of the Streptomyces strain, (2) 상기 증폭된 rpoB 유전자 분절의 염기서열을 분석하고,(2) analyzing the nucleotide sequence of the amplified rpoB gene segment, (3) 단계 (2)에서 얻어진 염기서열과 표준균주의 rpoB의 유전자 분절의 염기서열을 비교하는 단계를 포함하는, rpoB 유전자 분절을 이용한 스트렙토미세스 속 균주의 탐지 또는 동정방법.(3) A method of detecting or identifying a Streptomyces sp. Strain using the rpoB gene segment, comprising comparing the nucleotide sequence obtained in step (2) with the nucleotide sequence of the rpoB gene segment of the standard strain. 제 3 항에 있어서, 상기 프라이머가 SEQ ID NO: 1 내지 SEQ ID NO: 2에 나타난 염기서열을 갖는 방법.The method of claim 3, wherein the primer has a nucleotide sequence shown in SEQ ID NO: 1 to SEQ ID NO: 2. 제 3항 또는 4항에 있어서, 상기 표준균주의 rpoB 유전자 분절은 SEQ ID NO: 3 내지 SEQ ID NO:164번에 나타난 염기서열로 이루어진 군에서 선택되는 것인 방법.The method according to claim 3 or 4, wherein the rpoB gene segment of the standard strain is selected from the group consisting of the nucleotide sequences shown in SEQ ID NO: 3 to SEQ ID NO: 164. 제 3 항에 있어서, 상기 단계 (3)에서, 목적 균주의 rpoB 유전자 분절의 염기서열과 표준균주의 rpoB 유전자 분절의 염기서열의 상동성이 99.7%이상인 것을 기준으로 결정하는 것을 특징으로 하는 방법.The method according to claim 3, wherein in step (3), the homology between the nucleotide sequence of the rpoB gene segment of the target strain and the rpoB gene segment of the standard strain is determined based on 99.7% or more. 제 3 항에 있어서, 상기 단계 (3)에서, 목적균주의 rpoB 유전자 분절의 염기서열을 표준균주의 rpoB 유전자 분절의 염기서열에 대입하여 다정렬 후 계통도를 완성하여 결정하는 것을 특징으로 하는 방법.4. The method according to claim 3, wherein in step (3), the nucleotide sequence of the rpoB gene segment of the target strain is substituted into the nucleotide sequence of the rpoB gene segment of the standard strain to complete and determine the phylogenetic tree after multialignment. 제 5 항에 있어서, 상기 단계 (3)에서, 목적 균주의 rpoB 유전자 분절의 염기서열과 표준균주의 rpoB 유전자 분절의 염기서열의 상동성이 99.7%이상인 것을 선택하는 것을 특징으로 하는 방법.The method according to claim 5, wherein in step (3), a homology between the nucleotide sequence of the rpoB gene segment of the target strain and the rpoB gene segment of the standard strain is selected to be 99.7% or more. 제 5 항에 있어서, 상기 단계 (3)에서, 상기 단계 (3)에서, 목적균주의 rpoB 유전자 분절의 염기서열을 표준균주의 rpoB 유전자 분절의 염기서열에 다정렬 후 계통도를 완성하여 결정하는 것을 특징으로 하는 방법.The method according to claim 5, wherein in step (3), in step (3), the nucleotide sequence of the rpoB gene segment of the target strain is multi-arranged to the nucleotide sequence of the rpoB gene segment of the standard strain, and then the complete flow chart is determined. How to feature.
KR10-2002-0036731A 2001-08-14 2002-06-28 PRIMER SET SPECIFIC TO GENUS STREPTOMYCES, rpoB GENE SEQUNCE, AND IDENTIFICATION METHOD OF GENUS STREPTOMYCES BY USING THE SAME KR100464260B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/486,669 US20050282159A1 (en) 2001-08-14 2002-07-11 Rpob gene of streptomyces, primer specific to streptomyces, and identification method of streptomyces having rifampin resistance or sensitivity by using the same
PCT/KR2002/001318 WO2003016534A1 (en) 2001-08-14 2002-07-11 Rpob gene of streptomyces, primer specific to streptomyces, and identification method of streptomyces having rifampin resistance or sensitivity by using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010048983 2001-08-14
KR20010048983 2001-08-14

Publications (2)

Publication Number Publication Date
KR20030015124A KR20030015124A (en) 2003-02-20
KR100464260B1 true KR100464260B1 (en) 2005-01-03

Family

ID=27719163

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0036731A KR100464260B1 (en) 2001-08-14 2002-06-28 PRIMER SET SPECIFIC TO GENUS STREPTOMYCES, rpoB GENE SEQUNCE, AND IDENTIFICATION METHOD OF GENUS STREPTOMYCES BY USING THE SAME

Country Status (1)

Country Link
KR (1) KR100464260B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200332B1 (en) * 2019-12-03 2021-01-13 서울대학교산학협력단 Streptomyces abikoensis MJM10673 having insect juvenile hormone antagonist and insecticidal activities and uses thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Appl Environ Microbiol. 2001 Apr;67(4):1885-92 *
Gene. 1997 Sep 1;196(1-2):31-42 *
J Antibiot (Tokyo). 1989 Jun;42(6):913-8 *
J. Clinical Microbiology, vol. 38, pp. 2557-2562 (2000. *
Mol Gen Genet. 1998 Jan;257(2):219-29 *
Mol. Gen. Genet., vol. 257, pp. 219-229 (1998. *

Also Published As

Publication number Publication date
KR20030015124A (en) 2003-02-20

Similar Documents

Publication Publication Date Title
Amin et al. Microbiological and molecular insights on rare Actinobacteria harboring bioactive prospective
Wawrik et al. Identification of unique type II polyketide synthase genes in soil
v. Wintzingerode et al. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis
Tamehiro et al. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus
Song et al. Phylogenetic analysis of Streptomyces spp. isolated from potato scab lesions in Korea on the basis of 16S rRNA gene and 16S–23S rDNA internally transcribed spacer sequences
El-Hadedy et al. Identification of Staphylococcus aureus and Escherichia coli isolated from Egyptian food by conventional and molecular methods
JP2976406B2 (en) Nucleic acid probe
JP5116481B2 (en) A method for simplifying microbial nucleic acids by chemical modification of cytosine
EP0581171A1 (en) Species-specific oligonucleotides for bifidobacteria and a method of detection using the same
Rossau et al. The development of specific rRNA-derived oligonucleotide probes for Haemophilus ducreyi, the causative agent of chancroid
Stackebrandt et al. Deoxyribonucleic acid homologies and ribosomal ribonucleic acid similarities among sporeforming members of the order Actinomycetales
Sharma et al. Global gene expression analysis of the Myxococcus xanthus developmental time course
Samant et al. Evaluation of the 23S rRNA gene as target for qPCR based quantification of Frankia in soils
CA2524086A1 (en) A method for detection of bacterial contamination in a blood sample
Ritacco et al. Dereplication of Streptomyces soil isolates and detection of specific biosynthetic genes using an automated ribotyping instrument
KR100464260B1 (en) PRIMER SET SPECIFIC TO GENUS STREPTOMYCES, rpoB GENE SEQUNCE, AND IDENTIFICATION METHOD OF GENUS STREPTOMYCES BY USING THE SAME
CN112899382B (en) Detection method for identifying amycolatopsis
Amann et al. Typing in situ with probes
Park et al. Rapid detection and high-resolution discrimination of the genus Streptomyces based on 16S–23S rDNA spacer region and denaturing gradient gel electrophoresis
KR100534042B1 (en) Identification method of genus Streptomyces by using groEL2 gene
KR100464259B1 (en) Identification method of Streptomyces having rifampin resistance or sensitivity by using rpoB gene, and primer specific to Streptomyces having rifampin resistance or sensitivity
US20050282159A1 (en) Rpob gene of streptomyces, primer specific to streptomyces, and identification method of streptomyces having rifampin resistance or sensitivity by using the same
Flandrois et al. Taxonomic assignment of uncultured prokaryotes with long range PCR targeting the spectinomycin operon
US7413858B2 (en) Identification method of genus Streptomyces by using groEL2 gene
Torome Isolation and characterization of antibiotic producing thermophilic bacillus in selected hot-springs along lake Bogoria, Kenya

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121221

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131213

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee