KR100464243B1 - Expanded polypropylene media impregnated with activated carbon and a manufacturing method thereof, and a biofiltration apparatus using the same - Google Patents

Expanded polypropylene media impregnated with activated carbon and a manufacturing method thereof, and a biofiltration apparatus using the same Download PDF

Info

Publication number
KR100464243B1
KR100464243B1 KR1020040002068A KR20040002068A KR100464243B1 KR 100464243 B1 KR100464243 B1 KR 100464243B1 KR 1020040002068 A KR1020040002068 A KR 1020040002068A KR 20040002068 A KR20040002068 A KR 20040002068A KR 100464243 B1 KR100464243 B1 KR 100464243B1
Authority
KR
South Korea
Prior art keywords
activated carbon
biofilm
manufacturing
media
mixing
Prior art date
Application number
KR1020040002068A
Other languages
Korean (ko)
Inventor
김장규
윤용준
이국희
배상조
현종능
이원명
Original Assignee
코스파 주식회사
주식회사 부강테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코스파 주식회사, 주식회사 부강테크 filed Critical 코스파 주식회사
Priority to KR1020040002068A priority Critical patent/KR100464243B1/en
Priority to CNB2004101031658A priority patent/CN1277762C/en
Application granted granted Critical
Publication of KR100464243B1 publication Critical patent/KR100464243B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/106Carbonaceous materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/104Granular carriers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • C02F2003/003Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms using activated carbon or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE: To provided a biofilm media having organic matter adsorption function and maintaining durability manufactured by optimally mixing polymer resin with inorganic material and foaming the mixture, a manufacturing method thereof, and a floating type biofilm filtration apparatus for treating sewage and wastewater more economically and efficiently using the same. CONSTITUTION: The manufacturing method of a media for biofilm process comprises a step of preparing an activated carbon master batch by mixing polypropylene resin with activated carbon powder in a certain ratio; and a step of manufacturing an expanded polypropylene media by injecting and foaming the activated carbon master batch, wherein the activated carbon master batch is prepared by mixing 100 weight parts of the polypropylene resin with 1 to 20 weight parts of the activated carbon powder, wherein the activated carbon powder has a particle size of 10 to 300 μm, and wherein the manufacturing method comprises a raw material throwing process(S210), a composite material(activated carbon master batch) preparation process(S220), a mixing process(S230), an ejection process(S240), a foaming process(S250), and a product obtaining process(S260).

Description

활성탄을 함침시킨 발포폴리프로필렌 여재와 그의 제조방법, 및 이를 이용한 생물막 여과장치 {Expanded polypropylene media impregnated with activated carbon and a manufacturing method thereof, and a biofiltration apparatus using the same}Expanded polypropylene media impregnated with activated carbon and a manufacturing method conjugate, and a biofiltration apparatus using the same}

본 발명은 부상식 생물막 여재와 그의 제조방법 및 이를 이용한 생물막 여과장치에 관한 것으로, 더 상세하게는 발포폴리프로필렌을 이용하여 제조된 여재(담체)를 생물막 공정에 적용하여 여재가 갖는 기능성을 강화하고, 오폐수의 정화처리 효율을 상승시킨 생물막 여과장치 및 그에 사용되는 발포폴리프로필렌 여재에 관한것이다.The present invention relates to a floating biofilm filter media, a method for manufacturing the same, and a biofilm filter apparatus using the same, and more particularly, by applying a filter media (carrier) prepared using expanded polypropylene to a biofilm process, The present invention relates to a biofilm filtration device which raises the efficiency of treatment of wastewater and expanded polypropylene media used therein.

일반적으로 여재(담체)를 사용하는 생물막 공정은 반응조 내에서 미생물의 집적도를 높여 반응 효율을 높일 뿐만 아니라, 유기물 부하에 대한 충격에도 우수한 성능을 발휘하고 있어 다양한 폐수처리 공정에 도입, 적용되고 있다. 유기물의 제거와 더불어 영양염류의 제거를 위한 공정 구성이 용이하여 많은 생물막 공정이 연구 개발되고 있다.In general, the biofilm process using the filter medium (carrier) is not only to increase the concentration of microorganisms in the reaction vessel to increase the reaction efficiency, but also has excellent performance against the impact on the load of organic matter, has been introduced and applied to various wastewater treatment processes. Many biofilm processes have been researched and developed due to the easy composition of the process for the removal of nutrients as well as the removal of organic matter.

이러한 생물막 공정 중의 한 종류인 BAF(Biological Aerated Filter)는 담체에 미생물이 부착되어 생물막을 형성하도록 부상식 여재(담체)를 반응조에 충전하여 생물학적인 처리와 물리적인 여과과정을 동시에 수행하여 질산성질소 및 BOD, COD, SS 등의 오염물을 제거하게 된다. BAF의 장점은 구조가 단순하고 부지면적이 적게 소요되며, 수질이 안정적이고, 부하변동에 강하다는 것이다. 운전 방식은 여재 충전층을 목적에 따라 적절히 분할하거나, 여재층에 공기를 공급하여 호기 조건을 형성하거나 무산소 조건을 만들어 줌으로써 유기물과 질소제거를 위한 고도처리 공정의 구성이 가능하게 해 주는 것이다. 다량의 미생물을 여재에 부착시킴으로써 짧은 체류시간에 최대의 처리 효율을 얻을 수 있으며, 동절기 및 부하 변동에도 안정적으로 처리 수질을 확보할 수 있다.One of these biofilm processes, the BAF (Biological Aerated Filter) is filled with a floating filter (carrier) to the reaction tank to form a biofilm by attaching microorganisms to a carrier to perform biological treatment and physical filtration at the same time. And contaminants such as BOD, COD, and SS. The advantages of BAF are its simple structure, low land area, stable water quality and strong load fluctuations. The driving method is to divide the filter packed layer according to the purpose, or to supply air to the filter bed to form an aerobic condition or to create an anoxic condition, thereby enabling the construction of a highly processed process for removing organic matter and nitrogen. By attaching a large amount of microorganisms to the media, the maximum treatment efficiency can be obtained in a short residence time, and the treated water quality can be secured stably even during winter and load fluctuations.

이러한 생물막 공정에 사용되는 여재로서는 스폰지형, 섬모상형, 관형, 구형 등의 형태를 가지고, 재질로는 고분자 수지로 폴리에틸렌, 폴리비닐알콜, 폴리설폰 등과 무기 재질로 입상 활성탄, 화산재, 세라믹 등이 이용되고 있다. 여재를 이용하는 방식에 따라 공정 구성과 운전 방법을 달리하고 있으나, 기본적인 기능은 여재 표면에 생물막을 형성시키는데 중점을 두고 있다. 아울러 여재에 생물막을 형성시켜야 한다는 전제 조건이 내구성, 경제성 등 보다 앞서 있어서 사용에 다소 제한성을 갖고 있다.As a medium used in the biofilm process, it has a sponge, ciliated, tubular, or spherical shape, and the material is polymer resin such as polyethylene, polyvinyl alcohol, polysulfone, etc., and granular activated carbon, volcanic ash, ceramic, etc. are used. It is becoming. Process configuration and operation method are different according to the method of using the media, but the basic function is to focus on the formation of biofilm on the surface of the media. In addition, the precondition that the biofilm should be formed in the media is more advanced in terms of durability and economical efficiency, and thus is somewhat limited in use.

부유식 생물막 공정에 여재로서 사용하기 위하여 개발된 소재로는, 단순 발포 수지를 사용하는 경우, 담체의 기능을 향상시키기 위하여 PE, PU 에 제올라이트를 코팅하거나, 화산재에 양이온 고분자를 코팅하여 기능성을 강화하는 경우, 발포 수지를 거칠게 표면처리 하여 생물막 형성이 용이하도록 하여준 경우 정도에 그치고 있다. 그런데, 위와 같은 제품은 내구성과 기능성이 지속적으로 사용함에 따라 점차 약화된다는 문제점을 가지고 있다.As a material developed for use as a filter medium in a floating biofilm process, when a simple foamed resin is used, zeolite is coated on PE and PU to improve the function of the carrier, or a cationic polymer is coated on the volcanic ash to enhance functionality. In this case, the foamed resin is roughly surface treated to make biofilm formation easy. However, the above products have a problem that gradually weakens as durability and functionality continue to use.

통상적으로, 상기한 바와 같은 부유식 생물막 공정에 사용되는 발포수지의 제조에는 폴리프로필렌과 더불어 폴리스틸렌, 폴리에틸렌 등이 사용되고 있다. 발포폴리프로필렌의 경우 그 제조 공정이 특허로 출원되어 그 기술이 보호되고 있다. 기존의 발포폴리프로필렌 제품은 도 1 에 도시된 바와 같은 공정을 통하여 만들어진다. 먼저, 원료로서 폴리프로필렌 레진이 공급되는 원료투입공정(S110)이 수행되고, 각종 첨가제가 일정 비율로 혼합되는 혼합공정(S120)을 거친 후, 가는 실 형태의 사출물이 만들어지면서 적절한 크기로 잘려지는 사출공정(S130)이 수행된다. 그리고 나서, 적절한 크기로 잘려진 펠렛은 이산화탄소를 펠렛 안으로 가압시키는 공정을 거쳐서 원하는 배율로 발포기에서 발포되고(S140), 이에 따라 발포체 제품이 완성된다(S150).In general, polystyrene, polyethylene, and the like are used to prepare the foamed resin used in the floating biofilm process as described above. In the case of expanded polypropylene, the manufacturing process has been applied for a patent and the technology is protected. Existing expanded polypropylene products are made through a process as shown in FIG. 1. First, a raw material input process (S110) is performed in which a polypropylene resin is supplied as a raw material, and after the mixing process (S120) in which various additives are mixed at a predetermined ratio, a fine thread-shaped injection molding is made and cut to an appropriate size. Injection process (S130) is performed. Then, the pellets cut to the appropriate size is foamed in a foaming machine at a desired magnification through a process of pressurizing carbon dioxide into the pellets (S140), thereby completing the foam product (S150).

그런데, 상기와 같은 종래의 발포폴리프로필렌 제조방법에 따라 고안된 제품을 제조하는 경우, 발포수지 제품이 복합재료(폴리프로필렌 레진 및 각종 첨가제)로 구성됨에 따라 원료의 혼합과정에서 재질의 불균일성을 가져오게 되며, 따라서 발포과정에서 원하지 않는 변형이 발생하여 원하지 않는 형태의 제품이 만들어지게 된다는 단점을 가지고 있다. 이와 같은 문제점을 해결하면서 고분자 수지에 무기 재료를 혼합하여 만들어지는 발포제품의 제조 방법에 대해서는 아직 개발된 바가 없으며, 그 개발이 매우 어려운 상황이었다.By the way, when manufacturing a product designed according to the conventional foamed polypropylene manufacturing method as described above, since the foamed resin product is composed of a composite material (polypropylene resin and various additives) to bring the non-uniformity of the material in the mixing process of the raw materials Therefore, there is a disadvantage that the unwanted deformation occurs in the foaming process to make a product of an undesired form. While solving such problems, a method of manufacturing a foamed product made by mixing an inorganic material with a polymer resin has not been developed yet, and its development has been very difficult.

본 발명은 이상과 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 고분자 수지에 무기재료 혼합공정과 발포공정을 최적화하여 여재를 제조하며, 생물막 여재에 유기물 흡착에 대한 기능성을 제공하고, 부여된 기능성을 지속적인 사용 시에도 내구성을 잃지 않는 여재 및 그의 제조방법을 제공하고자 하는 것이며, 또한 이를 이용하여 오폐수를 처리함으로써 보다 경제적이고 효율적인 부상식 생물막 여과장치를 제공하고자 하는 것이다.The present invention has been made to solve the above problems, the object of the present invention is to optimize the mixing process and foaming process of the inorganic material in the polymer resin to manufacture the filter medium, to provide the functionality for the adsorption of organic matter in the biofilm medium, The purpose of the present invention is to provide a filter medium and a method of manufacturing the same, which does not lose its durability even in continuous use, and to provide a more economical and efficient floating biofilm filtration device by treating wastewater using the same.

도 1 은 종래의 생물막 여과장치의 여재로 사용되는 발포폴리프로플렌 제조 방법을 도시한 흐름도,1 is a flow chart showing a method for producing expanded polypropylene used as a medium of the conventional biofilm filtration device,

도 2 는 본 발명에 따른 생물막 여과장치의 여재로 사용되는 발포폴리프로필렌 제조 방법을 도시한 흐름도, 그리고Figure 2 is a flow chart showing a method for producing expanded polypropylene used as a medium of the biofilm filtration device according to the present invention, and

도 3 은 도 2 에 의해 제조된 발포폴리프로필렌 여재를 이용하는 생물막 여과장치의 개략도이다.FIG. 3 is a schematic diagram of a biofilm filtration apparatus using the expanded polypropylene media prepared by FIG. 2.

이와 같은 목적을 달성하기 위한 본 발명에 따른 생물막 공정용 여재의 제조방법은, 폴리프로필렌 레진과 분말 활성탄을 소정 비율로 혼합하여 활성탄 마스터배치를 제조하는 단계, 및 상기 활성탄 마스터배치를 사출하고 발포하여 발포폴리프로필렌 여재를 제조하는 단계를 포함하는 것을 특징으로 한다.Method for producing a biofilm process filter medium according to the present invention for achieving the above object, the step of preparing a activated carbon masterbatch by mixing polypropylene resin and powdered activated carbon in a predetermined ratio, and by injecting and foaming the activated carbon masterbatch It characterized in that it comprises the step of preparing a foamed polypropylene media.

상기 소정 비율의 바람직한 예는 상기 폴리프로필렌 100 중량부에 대하여 상기 분말 활성탄 1 내지 20 중량부의 비율이며, 상기 분말 활성탄은 그 입도가10∼300㎛ 크기인 것이 바람직하다.A preferred example of the predetermined ratio is a ratio of 1 to 20 parts by weight of the powdered activated carbon with respect to 100 parts by weight of the polypropylene, and the powdered activated carbon preferably has a particle size of 10 to 300 µm.

이러한 제조방법에 의하면, 분말 활성탄을 여재에 함침시켜 줌으로써 오폐수에 포함된 오염 유기물에 대한 흡착능력과 미생물이 부착성장하기 적절한 다공성과 표면적을 증대시킨 우수한 효능을 갖는 생물막 공정용 여재가 제공된다.According to such a manufacturing method, a biofilm process filter medium having excellent efficacy of impregnating powdered activated carbon with a filter medium and having an excellent ability to adsorb the contaminating organic matter contained in wastewater and to increase porosity and surface area suitable for microbial adhesion growth.

한편, 본 발명에 따르면, 이와 같이 제조된 여재를 이용하여 오폐수를 정화하는 생물막 여과장치가 제공된다.On the other hand, according to the present invention, there is provided a biofilm filtration device for purifying waste water using the media produced in this way.

이하에서는 도면을 참조하여 본 발명을 보다 상세히 설명한다. 먼저, 본 발명에 따른 부상식 생물막 공정에서 여재(담체)로서 사용되는 발포제품의 제조방법을 설명한다.Hereinafter, with reference to the drawings will be described the present invention in more detail. First, the manufacturing method of the foamed product used as a medium (carrier) in a floating biofilm process which concerns on this invention is demonstrated.

도 2 는 본 발명에 따른 발포폴리프로필렌 제조 방법을 도시한 도면이다. 먼저, 폴리프로필렌 레진과 분말 활성탄을 원료로서 투입하는 원료투입공정(S210)을 수행하고 투입된 원료를 1차 혼합하여 활성탄 마스터배치를 만들어 주는 복합소재 제조공정(S220)을 수행한다. 여재의 기능성이 좌우되는 가장 핵심적인 전처리 공정이 복합소재 제조공정(활성탄 마스터배치 제조공정)(S220)이다. 이때 혼합되는 활성탄은 입도가 10∼300㎛ 크기의 분말 활성탄이며, 중량비는 폴리프로필렌 100 중량부에 대하여 활성탄 1∼20 중량비로 하여 첨가한다. 폴리프로필렌과 분말 활성탄이 혼합된 레진을 혼합기를 통해 일정 비율로 혼합시킨 후(S230), 사출공정(S240)을 거쳐서 분말 활성탄이 폴리프로필렌 대비 1∼20% 침적된 펠렛 형태의 고농도 마스터배치를 생산한다. 이렇게 얻어진 활성탄 마스터배치에 대해 발포공정(S250)을 수행함으로써 분말 활성탄이 함침된 발포폴리프로필렌 여재 제품을 얻게 된다(S260).2 is a view showing a method for producing expanded polypropylene according to the present invention. First, a raw material input process (S210) is performed in which polypropylene resin and powdered activated carbon are added as raw materials, and then a composite material manufacturing process (S220) is performed to make the activated carbon master batch by first mixing the input raw materials. The most important pretreatment process on which the functionality of the media depends is a composite material manufacturing process (active carbon masterbatch manufacturing process) (S220). At this time, the activated carbon to be mixed is powdered activated carbon having a particle size of 10 to 300 µm, and the weight ratio is added in an amount of 1 to 20 parts by weight based on 100 parts by weight of polypropylene. After mixing the resin mixed with polypropylene and powdered activated carbon at a predetermined ratio through the mixer (S230), the injection process (S240) to produce a high concentration masterbatch in the form of pellets in which the powdered activated carbon is deposited 1-20% of the polypropylene do. By performing the foaming step (S250) for the activated carbon masterbatch thus obtained, an expanded polypropylene media product impregnated with powdered activated carbon is obtained (S260).

이와 같은 위의 제조공법에 의해 얻어진 여재에 의하면, 분말 활성탄을 여재에 함침시켜 줌으로써 오폐수에 포함된 오염 유기물에 대한 흡착능력과 미생물이 부착성장하기 적절한 다공성과 표면적을 증대시킬 수 있다. 이러한 개발을 통하여 오폐수처리에 적용하기 위하여 담체가 요구되는 물성과 기능성에 있어서 차별화된 제품을 얻을 수 있다. 이와 같이 제조된 여재의 기본적인 물성은 다음의 표 1 과 같다.According to the filter medium obtained by the above manufacturing method, by impregnating the powder activated carbon into the filter medium, it is possible to increase the adsorption capacity of the contaminated organic matter contained in the waste water and the porosity and surface area suitable for microbial adhesion growth. Through this development, it is possible to obtain a differentiated product in the physical properties and functionality required for the carrier to be applied to waste water treatment. The basic physical properties of the media thus prepared are shown in Table 1 below.

항 목Item 단위unit 물성값Property value 비고Remarks 겉보기 밀도Apparent density g/㎤g / cm 3 0.0620.062 인장 강도The tensile strength kg/㎠kg / ㎠ 9.2309.230 인장 신율Tensile elongation %% 19.52819.528 압축강도Compressive strength 25%25% kg/㎠kg / ㎠ 3.8363.836 50%50% kg/㎠kg / ㎠ 4.6504.650 내산성Acid resistance 5% H2SO45% H2SO4 -- 녹아 내림 없음No melt down 시험방법(KS M ISO 175-01)Test method (KS M ISO 175-01) 내알칼리성Alkali resistance 5% NaOH5% NaOH -- 녹아 내림 없음No melt down

제작된 여재의 무기원소에 대한 분석 결과는 다음의 표 2 와 같다.The analysis results of the inorganic element of the produced media are shown in Table 2 below.

시험 항목Test Items 단위unit 결과치Result 시험방법Test Methods AlAl mg/kgmg / kg 1818 ICP 분석ICP Analysis BaBa mg/kgmg / kg 검출 안됨Not detected ICP 분석ICP Analysis CaCa mg/kgmg / kg 3232 ICP 분석ICP Analysis CrCr mg/kgmg / kg 검출 안됨Not detected ICP 분석ICP Analysis FeFe mg/kgmg / kg 1616 ICP 분석ICP Analysis NaNa mg/kgmg / kg 1919 ICP 분석ICP Analysis SiSi mg/kgmg / kg 1010 ICP 분석ICP Analysis TiTi mg/kgmg / kg 검출 안됨Not detected ICP 분석ICP Analysis ZnZn mg/kgmg / kg 1212 ICP 분석ICP Analysis

도 3 은 도 2 와 같은 공정을 통해 얻어진 생물막 여재를 충진하여 오폐수 정화를 하는 단위 생물막 여과장치를 도시한 도면이다. 도 3 에 도시된 생물막 여과장치는, 유입수조(10), 유입펌프(61), 반응조(20), 처리수 저류조(30), 역세척 배출수 저류조(40), 내부반송펌프(63), 역세척수공급펌프(65), 송풍기(50) 등으로 구성되어 있다.FIG. 3 is a view illustrating a unit biofilm filtration device for purifying wastewater by filling biofilm media obtained through the process as shown in FIG. 2. The biofilm filtration apparatus shown in FIG. 3 includes an inflow water tank 10, an inflow pump 61, a reaction tank 20, a treated water storage tank 30, a backwash discharge water storage tank 40, an internal return pump 63, and a reverse It consists of the wash water supply pump 65, the blower 50, etc.

유입수조(10)는 처리될 폐수가 일시 저장되는 수조이며, 유입펌프(61)가 동작함에 따라 유입수조(10)에는 처리될 폐수가 유입된다. 유입수조(10)에 유입된 폐수는 반응조(20)에 상향류로 유입된다.The inflow water tank 10 is a water tank in which wastewater to be treated is temporarily stored, and the wastewater to be treated is introduced into the inflow water tank 10 as the inflow pump 61 operates. Waste water introduced into the inflow tank 10 is introduced into the reaction vessel 20 in an upflow.

반응조(20)는 폐수가 정화되는 수조로서, 반응조(20)에는 전술한 바와 같은 공정에 의해 제조된 분말 활성탄이 함침된 발포폴리프로필렌 여재가 충진되어, 반응조(20)에 유입되는 폐수가 생물막 공정에 의해 정화된다. 도 3 에 도시된 바와 같이 반응조(20)는 4 개의 부분 영역(제 1 영역(21) 내지 제 4 영역(24))으로 나눌 수 있다. 제 1 영역(21)과 제 2 영역(22) 사이, 그리고 제 2 영역(22) 내지 제 4영역(24)은 실질적으로는 구획되어 있지 않고 송풍기(50)와 연결된 호기공정용 공기 유입관(80, 91, 93)에 의해 개념적으로 구획되어 있다.The reactor 20 is a water tank in which wastewater is purified, and the reactor 20 is filled with expanded polypropylene media impregnated with powdered activated carbon prepared by the above-described process, and the wastewater flowing into the reactor 20 is a biofilm process. Is purified by. As shown in FIG. 3, the reactor 20 may be divided into four partial regions (first region 21 to fourth region 24). Between the first region 21 and the second region 22, and the second region 22 to the fourth region 24 is not substantially partitioned, but the air inlet pipe for the aerobic process connected to the blower 50 ( Conceptually divided by 80, 91, and 93).

제 1 영역(21)에는 여재가 충진되어 있지 않고 나머지 세 개의 영역(22, 23, 24)에는 여재가 충진되어 있다. 또한, 제 1 영역(21)에는 송풍기(50)와 연결된 역세척 공기유입관(97)이 설치되어 있다. 송풍기(50)와 연결된 각 공기유입관(80, 91, 93, 97)에는 밸브(71, 73)가 설치되어 있다.The filter medium is not filled in the first region 21, and the filter medium is filled in the remaining three regions 22, 23, and 24. In addition, the first region 21 is provided with a backwash air inlet pipe 97 connected to the blower 50. Valves 71 and 73 are provided in each of the air inlet pipes 80, 91, 93, and 97 connected to the blower 50.

유입수조(10)를 통해 반응조(20)로 유입된 폐수는 제 1 영역(21)을 거쳐 제 2 영역(22)으로 유입되고 여재 충진영역을 거치면서 폐수 내의 SS(Suspended Solid : 고형물)가 걸러지고 이때 여재 충진층에는 고형물의 슬러지가 누적되게 된다. 고형물이 걸러진 폐수는 제 2 영역(22), 제 3 영역(23) 및 제 4 영역(24)을 거쳐 정화되고, 깨끗하게 정화된 폐수는 처리수 저류조(30)로 유입된다.Wastewater introduced into the reaction tank 20 through the inflow tank 10 is introduced into the second zone 22 through the first zone 21, and the SS (Suspended Solid: Solids) in the waste water is filtered through the filter medium filling zone. At this time, the sludge of solids accumulates in the media filling layer. The wastewater from which the solids are filtered is purified through the second region 22, the third region 23, and the fourth region 24, and the purified wastewater is introduced into the treated water storage tank 30.

이때, 제 4 영역(24)을 통해 유출되는 폐수의 일부(대략 절반 정도)는 운전조건과 처리 목적에 따라 내부반송펌프(63)에 의해 다시 제 1 영역(21)으로 반송되어 제 1 영역(21)에서 제 4 영역(24)을 거쳐 재 정화된다. 통상적으로 폐수를 정화하는 데에는 폐수 내의 NH3-N(암모니아성 질소)를 NO3-N(질산성질소)로 질산화 하는 질산화공정(호기성 공정)과, NO3-N(질산성질소)를 N2(질소가스)로 탈질시키는 탈질공정(혐기성 공정 또는 무산소 공정)이 수행된다. 송풍기(50)는 세 개의 호기공정용 공기공급관(80, 91, 93)을 통해 각 영역에 공기를 공급한다. 이때, 호기 공정용 밸브(71)는 열려 있고 역세척 공기 공급용 밸브(73)는 닫혀 있다. 이에 따라제 2 영역(22), 제 3 영역(23)과 제 4 영역(24)의 일부 또는 전체에는 공기가 공급되어 전술한 질산화 공정이 수행된다. 또한, 질산화와 탈질 반응을 하나의 장치에서 수행하도록 운전하는 경우, 제 2 영역(22)에는 공기가 공급되지 않고, 이에 따라 제 2 영역(22)에서는 내부반송 펌프(63)를 통해 반송된 폐수에 대한 탈질공정이 수행된다. 이와 같은 과정이 반복됨에 따라 폐수의 정화가 이루어진다.At this time, a part (about half) of the wastewater flowing out through the fourth region 24 is conveyed back to the first region 21 by the internal transfer pump 63 according to the operating conditions and the purpose of the treatment. 21 is repurified via the fourth region 24. In general, wastewater purification includes nitrification (aerobic process) of nitrifying NH 3 -N (ammonia nitrogen) into NO 3 -N (nitrogen nitrogen) in the waste water, and NO 3 -N (nitrogen nitrogen). A denitrification step (anaerobic step or anoxic step) is carried out to denitrate with 2 (nitrogen gas). The blower 50 supplies air to each area through three exhalation process air supply pipes 80, 91, and 93. At this time, the exhalation process valve 71 is open and the backwash air supply valve 73 is closed. Accordingly, air is supplied to some or all of the second region 22, the third region 23, and the fourth region 24 to perform the aforementioned nitrification process. In addition, when operating to perform nitrification and denitrification in one apparatus, air is not supplied to the second region 22, and thus the wastewater conveyed through the internal transfer pump 63 in the second region 22 is thus supplied. A denitrification process for is carried out. As this process is repeated, the wastewater is purified.

한편, 여재 충진층에 고형물이 누적되면 이를 제거하기 위한 역세척 공정이 수행된다. 역세척 공정에서는, 먼저 호기 공정용 밸브(71)가 닫혀 있고 역세척 공기 공급용 밸브(73)가 열려있도록 제어된 상태에서 송풍기(50)가 여재 충진층 하부에 송풍을 하여 여재 충진층에 누적된 고형물의 슬러지를 떨어뜨린다. 그런 다음, 역세척수 공급 펌프(65)가 처리수 저류조(30) 내의 물을 하향류로 반응조(20)에 공급함으로써 제 4 영역(24)으로 유입된 물이 제 3 영역(23), 제 2 영역(22)을 거쳐 제 1 영역(21) 방향으로 유입되고, 이에 따라 제 1 영역(21) 내의 슬러지를 함유한 역세척수가 역세척 배출수 저류조(40)로 유입된다.On the other hand, if the solids accumulate in the filter medium filled layer is backwashed to remove them. In the backwashing process, the blower 50 blows under the filter filling layer and accumulates in the filter filling layer while the exhalation process valve 71 is closed and the backwashing air supply valve 73 is opened. The sludge of the solid. Thereafter, the backwash water supply pump 65 supplies the water in the treated water storage tank 30 to the reaction tank 20 in a downward flow so that the water introduced into the fourth region 24 is transferred to the third region 23 and the second region. It flows in the direction of the 1st area | region 21 via the area | region 22, and the backwash water containing the sludge in the 1st area | region 21 flows into the backwash discharge water storage tank 40 by this.

역세척이 완료되면 다시 전술한 바와 같은 폐수 정화 공정이 수행된다.When backwashing is completed, the wastewater purification process as described above is performed again.

한편, 폐수에 함유된 오염물의 종류나 양에 따라 호기성 공정인 질산화 공정과 혐기성 공정인 탈질 공정의 비중을 달리할 필요가 있을 수도 있다. 이러한 경우에는 호기성 공정용 공기공급관(80, 91, 93)을 제 4 영역(24)에만 설치하거나, 혹은 각 호기성 공정용 공기공급관에 개별적으로 밸브를 설치하여 공기가 공급되는 영역과 공기가 공급되지 않는 영역의 비율을 가변시키는 방식을 채용할 수 있을 것이다.On the other hand, it may be necessary to vary the specific gravity of the nitrification process, which is an aerobic process, and the denitrification process, which is an anaerobic process, depending on the type and amount of contaminants contained in the wastewater. In this case, the aerobic process air supply pipes 80, 91, and 93 may be installed only in the fourth region 24, or valves may be separately installed in each aerobic process air supply pipe to supply the air and the air supply area. It is possible to employ a method of varying the ratio of the non-region.

도 2 에 도시한 바와 같은 공정에 의해 개발된 여재를 도 3 에 도시된 바와 같은 생물막 여과장치에 적용하여 6 ㎥/일의 생물막 여과장치를 제작하여 운전하였다. 하수처리장 2차 침전지 유출수를 대상으로 3개월간 수행되어 얻어진 운전 결과는 다음과 같다. 오염제거 대상물질로서 유기물(BOD), 고형물(Suspended solid)과 암모니아성질소(NH3-N)에 주안점을 두고 대상 폐수의 처리효율이 검토되었다. 유입되는 BOD 농도는 약 8.7∼10.7mg/L(평균 9.8mg/L), SS의 농도는 2.2∼10.8mg/L(평균 4.9mg/L), NH3-N의 농도는 0.7∼14.6mg/L(평균 7.1mg/L) 이다. 처리수의 BOD는 2.8∼6.4mg/L(평균 4.1mg/L)로 약 50% 이상의 처리효율을 보였다. 처리수의 SS 농도는 0.2∼2.4mg/L(평균 0.7mg/L) 정도로 63∼98%(평균 82.5%)의 높은 처리효율을 보여 유입수질과 관계없이 안정적인 처리수질을 보이는 것으로 확인되었다. 처리수의 NH3-N 농도는 0.3∼5.2mg/L(평균 1.2mg/L)로 약 57∼98%(83.1%)의 처리효율을 보였다.The filter medium developed by the process as shown in FIG. 2 was applied to the biofilm filtration device as shown in FIG. 3 to produce and operate a biofilm filtration device of 6 m 3 / day. The operation results obtained after 3 months of runoff from the sewage treatment plant secondary sedimentation basin are as follows. The treatment efficiency of the wastewater was examined, focusing on organic matter (BOD), suspended solids and ammonia nitrogen (NH 3 -N) as decontamination targets. Inflow BOD concentration is about 8.7 to 10.7 mg / L (average 9.8 mg / L), SS concentration is 2.2 to 10.8 mg / L (average 4.9 mg / L) and NH 3 -N concentration is 0.7 to 14.6 mg / L L (average 7.1 mg / L). The BOD of the treated water was 2.8∼6.4mg / L (mean 4.1mg / L), which showed more than 50% treatment efficiency. SS concentration of treated water was 0.2 ~ 2.4mg / L (0.7mg / L average), showing 63 ~ 98% (average 82.5%) of high treatment efficiency. The concentration of NH 3 -N in the treated water was 0.3-5.2 mg / L (1.2 mg / L on average), which showed a treatment efficiency of about 57-98% (83.1%).

이상에서 설명된 바와 같이, 본 발명은 분말 활성탄이 함침된 발포폴리프로필렌을 사용한 생물막 여과장치를 구성하여 줌으로써 오염물을 제거하는 기능성을 향상시켜주고, 여재의 내구성을 강화하여 경제성을 갖는 우수한 생물막 여재를 제공하게 된다.As described above, the present invention improves the functionality of removing contaminants by constructing a biofilm filtration device using expanded polypropylene impregnated with powdered activated carbon, and enhances the durability of the media to provide excellent biofilm media with economical efficiency. Will be provided.

이상에서는 본 발명의 바람직한 실시 예에 대해 설명하였으나 당해 기술분야에서 통상의 지식을 가진 자라면 본원 발명의 요지를 벗어남이 없이 다양한 변형실시가 가능할 것이며, 이러한 변형실시는 본원 발명의 보호범위에 속하는 것으로서 본원 발명의 보호범위는 특허청구범위에 기재된 바에 따라 해석되어야 할 것이다.In the above description of the preferred embodiment of the present invention, those skilled in the art may make various modifications without departing from the gist of the present invention, and such modifications are within the protection scope of the present invention. The protection scope of the invention should be construed as described in the claims.

Claims (8)

생물막 공정용 여재의 제조방법에 있어서,In the manufacturing method of the media for biofilm process, 폴리프로필렌 레진과 분말 활성탄을 소정 비율로 혼합하여 활성탄 마스터배치를 제조하는 단계; 및Preparing a activated carbon masterbatch by mixing polypropylene resin and powdered activated carbon in a predetermined ratio; And 상기 활성탄 마스터배치를 사출하고 발포하여 발포 폴리프로필렌 여재를 제조하는 단계;를 포함하는 것을 특징으로 하는 생물막 공정용 여재의 제조방법.And injecting and foaming the activated carbon masterbatch to produce a foamed polypropylene filter media. 제 1 항에 있어서,The method of claim 1, 상기 소정 비율은, 상기 폴리프로필렌 100 중량부에 대하여 상기 분말 활성탄 1 내지 20 중량부의 비율인 것을 특징으로 하는 생물막 공정용 여재의 제조방법.The said predetermined ratio is the ratio of 1-20 weight part of said powdered activated carbons with respect to 100 weight part of said polypropylenes, The manufacturing method of the media for biofilm processes characterized by the above-mentioned. 제 1 항에 있어서,The method of claim 1, 상기 분말 활성탄은 그 입도가 10∼300㎛ 크기인 것을 특징으로 하는 생물막 공정용 여재의 제조방법.The powder activated carbon has a particle size of 10 ~ 300㎛ size of the method for producing a biofilm media, characterized in that. 제 1 항 내지 제 3 항 중 어느 한 항의 제조방법에 의해 제조된 생물막 공정용 여재.Biofilm process media produced by the method of any one of claims 1 to 3. 삭제delete 삭제delete 삭제delete 제 4 항에 따른 여재를 생물막 공정용 여재로서 이용하는 오폐수 정화용 생물막 여과장치.A biofilm filtration device for wastewater purification using the filter medium according to claim 4 as a filter medium for a biofilm process.
KR1020040002068A 2004-01-12 2004-01-12 Expanded polypropylene media impregnated with activated carbon and a manufacturing method thereof, and a biofiltration apparatus using the same KR100464243B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020040002068A KR100464243B1 (en) 2004-01-12 2004-01-12 Expanded polypropylene media impregnated with activated carbon and a manufacturing method thereof, and a biofiltration apparatus using the same
CNB2004101031658A CN1277762C (en) 2004-01-12 2004-12-31 Polypropylene filter material, its preparation method and a biofilm filtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040002068A KR100464243B1 (en) 2004-01-12 2004-01-12 Expanded polypropylene media impregnated with activated carbon and a manufacturing method thereof, and a biofiltration apparatus using the same

Publications (1)

Publication Number Publication Date
KR100464243B1 true KR100464243B1 (en) 2005-01-03

Family

ID=35007175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040002068A KR100464243B1 (en) 2004-01-12 2004-01-12 Expanded polypropylene media impregnated with activated carbon and a manufacturing method thereof, and a biofiltration apparatus using the same

Country Status (2)

Country Link
KR (1) KR100464243B1 (en)
CN (1) CN1277762C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190131661A (en) 2018-05-17 2019-11-27 윤성구 Multitude Filter Device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448773C (en) * 2006-10-19 2009-01-07 山东大学 Palm root carbon preparing process and its biomembrane reaction apparatus
CN103881140B (en) * 2014-03-13 2016-05-11 常州中科海纳碳素科技有限公司 A kind of active carbon filler preparation method of high electro-magnetic wave absorption performance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190131661A (en) 2018-05-17 2019-11-27 윤성구 Multitude Filter Device

Also Published As

Publication number Publication date
CN1277762C (en) 2006-10-04
CN1657441A (en) 2005-08-24

Similar Documents

Publication Publication Date Title
Leyva-Díaz et al. Moving bed biofilm reactor to treat wastewater
AU2001280766B2 (en) Method and apparatus for treating wastewater using membrane filters
Kawan et al. A review on sewage treatment and polishing using moving bed bioreactor (MBBR)
CA2982076C (en) Biofilm media, treatment system and method of treatment
US8404111B2 (en) Fluidized membrane bioreactor
CN112771007A (en) Apparatus and method for biofilm management in water systems
KR20060126492A (en) Biologically active reactor system and method for treating wastewater
JPS63171697A (en) Waste water purifying method used for biological treatment in granular material bed
US4159945A (en) Method for denitrification of treated sewage
CA2199517C (en) Installation for biological water treatment for the production of drinkable water
KR100443407B1 (en) Water purification device using a microorganism media
AU2006300978B2 (en) SAF system and method involving specific treatments at respective stages
KR100614561B1 (en) Biological treatment of dye waste-water using moveing-bed bioreactor
KR100464243B1 (en) Expanded polypropylene media impregnated with activated carbon and a manufacturing method thereof, and a biofiltration apparatus using the same
Fang et al. Removal of COD and nitrogen in wastewater using sequencing batch reactor with fibrous packing
KR100566053B1 (en) Apparatus and method for treat biologic denitration of wastewater and sewage comprising nitrate nitrogen
KR101827525B1 (en) Method for small medium size sewage advanced treatment using float media filtering
KR20060077518A (en) Density-controlled biofilm carriers using polymer composites, manufacturing method thereof and methods of treating sewage/wastewater and of biofiltering odor gases using the same
CN101798158A (en) Advanced treatment method of refractory organic industrial sewage
KR20110020569A (en) Epp(expanded polypropylene) media impregnated with zeolite and biofiltration apparatus using the same
KR100438022B1 (en) Method for waste water treatment using float media
KR100991970B1 (en) Advanced treatment process moving bio-media
JP2000246272A (en) Method for removing nitrogen of sewage
KR100512686B1 (en) Wastewater treatment apparatus and methods using biological filter media
KR200279808Y1 (en) Water purification device using a microorganism media

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121221

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131031

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141024

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151221

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161221

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20181113

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20191220

Year of fee payment: 16