KR100462663B1 - Method of manufacturing polybutadiene having high 1,4-cis content - Google Patents

Method of manufacturing polybutadiene having high 1,4-cis content Download PDF

Info

Publication number
KR100462663B1
KR100462663B1 KR10-2002-0048804A KR20020048804A KR100462663B1 KR 100462663 B1 KR100462663 B1 KR 100462663B1 KR 20020048804 A KR20020048804 A KR 20020048804A KR 100462663 B1 KR100462663 B1 KR 100462663B1
Authority
KR
South Korea
Prior art keywords
compound
molecular weight
polybutadiene
cis content
audio
Prior art date
Application number
KR10-2002-0048804A
Other languages
Korean (ko)
Other versions
KR20040016572A (en
Inventor
장영찬
김필성
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR10-2002-0048804A priority Critical patent/KR100462663B1/en
Publication of KR20040016572A publication Critical patent/KR20040016572A/en
Application granted granted Critical
Publication of KR100462663B1 publication Critical patent/KR100462663B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • C08F4/545Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof rare earths being present, e.g. triethylaluminium + neodymium octanoate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 조절된 분자량 및 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔을 제조하는 방법에 관한 것으로서, 공액 디엔 화합물의 존재 또는 비존재 하에서 니오디뮴염 화합물, 트리알킬알루미늄 화합물, 디알킬알루미늄 하이드라이드 화합물 및 디알킬알루미늄 클로라이드 화합물로 이루어지는 혼합물에 분자량 조절제로 다음 화학식 1로 표시되는 디알킬징크 화합물을 가하고, 그 첨가량을 변량 함으로써 조절된 분자량 및 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔을 제조하는 방법으로, 중합수율에는 영향을 미치지 않으면서도 용이하게 1,4-시스 폴리부타디엔의 분자량을 조절하여 용도에 따라 가공성 및 물성이 조절된 고분자를 제조할 수 있도록 한다.The present invention relates to a process for producing polybutadiene having a controlled molecular weight and a high 1,4-cis content of at least 95%, wherein the niodimium salt compound, trialkylaluminum compound, dialkyl in the presence or absence of a conjugated diene compound To the mixture consisting of an aluminum hydride compound and a dialkylaluminum chloride compound, a dialkyl zinc compound represented by the following formula (1) is added as a molecular weight modifier, and the amount added is varied to control the molecular weight and high 1,4-cis content of 95% or more. A method for producing a polybutadiene having, to easily control the molecular weight of 1,4-cis polybutadiene without affecting the polymerization yield so that it is possible to produce a polymer whose workability and physical properties are adjusted according to the application.

R1-Zn-R2 R 1 -Zn-R 2

상기 식에서, R1과 R2는 서로 같거나 다른 것으로서 탄소수 1∼5의 알킬기이다.In the above formula, R 1 and R 2 are the same as or different from each other and are an alkyl group having 1 to 5 carbon atoms.

Description

높은 1,4-시스 함량을 갖는 폴리부타디엔의 제조방법{Method of manufacturing polybutadiene having high 1,4-cis content}Method of manufacturing polybutadiene having high 1,4-cis content

본 발명은 조절된 분자량 및 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔의 제조방법에 관한 것으로서, 더욱 상세하게는 중합수율에는 영향을 미치지 않으면서도 용이하게 1,4-시스 폴리부타디엔의 분자량을 조절함으로써 고분자의 가공성이나 강도 등의 물성에 영향을 미치는 분자량을 용이하게 조절하는 방법에 관한 것이다.The present invention relates to a method for producing polybutadiene having a controlled molecular weight and a high 1,4-cis content of at least 95%, more particularly, it is easy to produce 1,4-cis polybutadiene without affecting the polymerization yield. The present invention relates to a method for easily adjusting the molecular weight which affects physical properties such as processability and strength of a polymer by adjusting the molecular weight.

종래에 높은 1,4-시스 함량을 갖는 폴리부타디엔(이하, 하이시스비알(high-cis BR)이라 함)의 분자량을 조절하는 방법의 일예로, 미국특허 제5,100,982호에는 유기니켈 화합물, 유기알루미늄 화합물 및 삼불화보론 화합물을 주촉매로 사용하고 할로겐원자로 치환된 페놀 유도체를 첨가제로 사용하여 하이시스비알의 분자량 및 분자량 분포를 조절하는 방법이 개시되어 있다.As an example of a method for controlling the molecular weight of a polybutadiene having a high 1,4-cis content (hereinafter, referred to as high-cis BR), US Patent No. 5,100,982 discloses an organic nickel compound and an organoaluminum. A method of controlling the molecular weight and molecular weight distribution of hysubials using a compound and boron trifluoride compound as a main catalyst and a phenol derivative substituted with a halogen atom as an additive is disclosed.

그리고, 미국특허 제5,451,646호에는 유기니켈화합물, 유기알루미늄화합물 및 불화화합물을 주촉매로 사용하고, 첨가제로 파라-스티레네이트 디페닐아민을 사용하여 하이시스비알의 분자량을 조절함으로써 가공성을 개선시키는 방법이 개시되어 있다.In addition, US Pat. No. 5,451,646 uses an organic nickel compound, an organoaluminum compound, and a fluoride compound as main catalysts, and uses para-styrenate diphenylamine as an additive to improve the processability by controlling the molecular weight of the cisyl vial. A method is disclosed.

또 다른 예로, 일본특허 공개 소78-51,286호에는 니켈화합물, 보론화합물, 알킬리튬 및 알킬벤젠설포네이트를 사용하여 좁은 영역의 분자량분포를 갖는 하이시스비알을 제조하는 방법에 대해 개시하고 있다.As another example, Japanese Patent Laid-Open No. 78-51,286 discloses a method for producing a hysvial having a narrow molecular weight distribution using nickel compounds, boron compounds, alkyllithium and alkylbenzenesulfonates.

그밖에 미국특허 제4,533,711호에는 원자번호 57∼71 사이의 희토류금속 화합물, 유기알루미늄화합물 및 할로겐화된 알루미늄 화합물을 주촉매로 하고, 분자량 조절제로서 유기알루미늄 하이드라이드나 활성화된 하이드로겐 화합물을 포함하고 있는 탄화수소류를 이용하여 분자량분포를 넓히는 방법에 대해 개시하고 있다.In addition, U.S. Patent No. 4,533,711 discloses hydrocarbons containing a rare earth metal compound having an atomic number of 57 to 71, an organoaluminum compound, and a halogenated aluminum compound as main catalysts, and an organoaluminum hydride or an activated hydrogen compound as a molecular weight regulator. Disclosed is a method of broadening the molecular weight distribution by using the same.

그러나, 하이시스비알 제조시 분자량을 조절하는 상기와 같은 종래의 방법은, 중합수율 및 1,4-시스 함량이 낮아지거나, 상업적 생산에 있어서 공정이 복잡해지는 문제가 있다.However, such a conventional method of controlling the molecular weight during the production of the hysvial has a problem in that the polymerization yield and the 1,4-cis content are low, or the process is complicated in commercial production.

한편, 일반적으로 분자량은, 분자량분포 등과 함께 고분자의 가공성 및 물성에 밀접한 관계가 있으며, 타이어 제조과정에 있어서 가공성이 중요시되는 부분에서는 분자량이 너무 크지 않으며 분자량분포가 다소 큰 고무가 적합하겠고, 충격이나 인장강도 등 물리적 성질이 보다 요구되는 부분에서는 분자량이 크고 분자량분포가 작은 고무가 적합하다 할 수 있다.On the other hand, in general, the molecular weight is closely related to the processability and physical properties of the polymer together with the molecular weight distribution, and in the part where the processability is important in the tire manufacturing process, a rubber having a large molecular weight distribution and a rather large molecular weight distribution may be suitable. Where the physical properties such as tensile strength are required more, a rubber having a large molecular weight and a small molecular weight distribution may be suitable.

이에, 본 발명자들은 상기와 같은 종래 하이시스비알 제조시 분자량 조절의문제점을 해결하기 위해 연구 노력하던 중, 하이시스비알 제조시 디알킬징크 화합물을 분자량 조절제로 사용하고, 이의 첨가량을 변량한 결과, 중합수율에는 영향을 미치지 않고 95% 이상의 1,4-시스 함량을 갖는 하이시스비알의 분자량을 용이하게 조절할 수 있음을 알게되어 본 발명을 완성하게 되었다.Thus, the inventors of the present invention while trying to solve the problem of molecular weight control in the conventional manufacturing of the high cisvial, using a dialkyl zinc compound as the molecular weight regulator in the production of the high cisvial, as a result of varying the addition amount thereof, It has been found that the present invention can easily control the molecular weight of the hysbial having a 1,4-cis content of 95% or more without affecting the polymerization yield.

따라서, 본 발명의 목적은 디알킬징크 화합물을 분자량 조절제로 사용함으로써 중합수율의 저하 없이 하이시스비알의 분자량을 용도에 맞게 조절할 수 있게되어 고무의 가공성 및 물리적 성질의 최적화를 도모할 수 있도록 하는 조절된 분자량 및 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔의 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to adjust the molecular weight of the hysevial according to the use without deterioration of the polymerization yield by using the dialkyl zinc compound as a molecular weight control agent, so as to optimize the processability and physical properties of the rubber It is to provide a process for producing polybutadiene having a molecular weight and a high 1,4-cis content of at least 95%.

상기와 같은 목적을 달성하기 위한 본 발명의 조절된 분자량 및 95% 이상의높은 1,4-시스 함량을 갖는 폴리부타디엔의 제조방법은 공액 디엔 화합물의 존재 혹은 비존재 하에서 니오디뮴염 화합물, 트리알킬알루미늄 화합물, 디알킬알루미늄하이드라이드 화합물 및 디알킬알루미늄 클로라이드 화합물로 이루어지는 혼합물에 분자량 조절제로 다음 화학식 1로 표시되는 디알킬징크 화합물을 가하고, 상기 디알킬징크 화합물의 첨가량을 변량 함으로써 조절된 분자량 및 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔을 제조하는 방법으로, 중합수율에는 영향을 미치지 않으면서도 용이하게 1,4-시스 폴리부타디엔의 분자량을 조절하여 고분자의 가공성이나 강도 등의 물성에 영향을 미치는 분자량을 용이하게 조절하도록 한 것에 그 특징이 있다.In order to achieve the above object, the method for preparing polybutadiene having a controlled molecular weight and a high 1,4-cis content of 95% or more according to the present invention is a niodimium salt compound or trialkylaluminum in the presence or absence of a conjugated diene compound. Molecular weight and 95% adjusted by adding a dialkyl zinc compound represented by the following formula (1) as a molecular weight regulator to the mixture consisting of the compound, the dialkyl aluminum hydride compound and the dialkyl aluminum chloride compound, and varying the addition amount of the dialkyl zinc compound A method for producing a polybutadiene having a high 1,4-cis content as described above, by controlling the molecular weight of 1,4-cis polybutadiene easily without affecting the polymerization yield, affecting the physical properties such as workability and strength of the polymer Its characteristics are that it makes it easy to control the molecular weight which gives.

화학식 1Formula 1

R1-Zn-R2 R 1 -Zn-R 2

상기 식에서, R1과 R2는 서로 같거나 다른 것으로서 탄소수 1∼5의 알킬기이다.In the above formula, R 1 and R 2 are the same as or different from each other and are an alkyl group having 1 to 5 carbon atoms.

이와같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 촉매의 활성을 디알킬징크 화합물의 첨가량 변화를 통해 조절하여 고무의 가공성 및 물성 등에 영향을 미치는 분자량을 조절하는 방법에 관한 것으로서, 중합수율의 저하없이 하이시스비알의 분자량을 용이하게 조절할 수 있는 방법이다.The present invention relates to a method of controlling the molecular weight affecting the processability and physical properties of the rubber by controlling the activity of the catalyst through the change of the addition amount of the dialkyl zinc compound, it is easy to control the molecular weight of the hysis vial without a decrease in the polymerization yield That's how it can be.

그러나, 본 발명 이전의 예비 실험에서 촉매의 구성 성분으로 디이소부틸알루미늄 하이드라이드를 사용하지 않고 니오디뮴염 화합물, 트리알킬알루미늄 화합물 및 디알킬알루미늄 클로라이드 화합물의 혼합물을 촉매로 이용하고 디에틸징크를 분자량 조절제로 사용한 반응에서는 중합온도, 중합용매의 종류, 촉매 구성 성분의 변화(여러 형태의 니오디뮴염 화합물, 트리알킬알루미늄 화합물 및 디알킬알루미늄 클로라이드 화합물의 적용)를 시도하였으나 디에틸징크의 변량에 따른 분자량 조절 효과가 전혀 관찰되지 않는다.However, in a preliminary experiment before the present invention, a mixture of a niodimium salt compound, a trialkylaluminum compound and a dialkylaluminum chloride compound was used as a catalyst without using diisobutylaluminum hydride as a constituent of the catalyst, and diethylzin was used. In the reaction used as a molecular weight modifier, changes in polymerization temperature, type of polymerization solvent, and catalyst constituents (application of various forms of niodymium salt compound, trialkylaluminum compound, and dialkylaluminum chloride compound) were attempted. No molecular weight control effect is observed at all.

또한, 디알킬징크 화합물을 사용하지 않고 니오디뮴염 화합물, 트리알킬알루미늄 화합물, 디이소부틸알루미늄 하이드라이드 화합물 및 디알킬알루미늄 클로라이드 화합물로 이루어진 혼합물을 촉매로 사용하고 분자량 조절을 트리알킬알루미늄 화합물의 양을 변량하여 조절한 실험에서는 트리알킬알루미늄 화합물의 변량에 따른 분자량 변화가 명확하지 않았으며 아울러 트리알킬알루미늄의 사용량을 증가시킬수록 1,4-시스 함량이 큰 폭으로 저하됨이 관찰된다.In addition, without using a dialkyl zinc compound, a mixture consisting of a niodymium salt compound, a trialkylaluminum compound, a diisobutylaluminum hydride compound, and a dialkylaluminum chloride compound is used as a catalyst, and the molecular weight control is carried out to adjust the amount of the trialkylaluminum compound. In the experiment controlled by the variance of, the molecular weight change according to the variance of the trialkylaluminum compound was not clear, and as the amount of the trialkylaluminum increased, the 1,4-cis content significantly decreased.

따라서, 디알킬징크 화합물의 사용 없이 트리알킬알루미늄 화합물을 분자량 조절제로 사용하여 분자량을 조절할 때 폴리부타디엔의 1,4-시스 함량을 95% 이상으로 유지하는 것은 실용성이 적다고 판단된다.Therefore, it is judged that it is not practical to maintain the 1,4-cis content of polybutadiene at 95% or more when using a trialkylaluminum compound as a molecular weight modifier without using a dialkyl zinc compound.

그러나, 본 발명에 따른 분자량 조절제인 디알킬징크 화합물의 효과는 니오디뮴염 화합물, 트리알킬알루미늄 화합물 및 디알킬알루미늄 클로라이드 화합물로 이루어진 혼합물에 디이소부틸알루미늄 하이드라이드 화합물을 가한 후 비로소 관찰되며, 이에 본 발명을 완성할 수 있다.However, the effect of the dialkyl zinc compound, which is a molecular weight modifier according to the present invention, is only observed after adding a diisobutylaluminum hydride compound to a mixture consisting of a niodymium salt compound, a trialkylaluminum compound and a dialkylaluminum chloride compound. The present invention can be completed.

니오디뮴염 화합물, 트리알킬알루미늄 화합물, 디이소부틸알루미늄 하이드라이드 화합물 및 디알킬알루미늄 클로라이드 화합물로 이루어진 혼합물을 중합촉매로 사용하고 디알킬징크 화합물을 분자량 조절제로 사용한 경우 디알킬징크 화합물의 사용량을 적정선까지 변화시킴에 의해 분자량을 조절하면서 동시에 폴리부타디엔의 1,4-시스 함량을 95% 이상 확보할 수 있다.If the mixture consisting of niodymium salt compound, trialkylaluminum compound, diisobutylaluminum hydride compound and dialkylaluminum chloride compound is used as a polymerization catalyst and a dialkyl zinc compound is used as a molecular weight regulator, the amount of dialkyl zinc compound should be appropriately selected. By changing the molecular weight to 1,4-cis content of polybutadiene can be ensured at least 95% while controlling the molecular weight.

본 발명에 의하면, 디알킬징크 화합물의 사용량을 증가시킬수록 분자량이 작은 하이시스비알을 얻을 수가 있다.According to the present invention, as the usage-amount of a dialkyl zinc compound increases, the hysbial with a small molecular weight can be obtained.

한편, 촉매를 구성하는 니오디뮴염 화합물은 비극성 용매에 용해도가 좋은리간드를 갖는 화합물이 좋다. 구체적인 예로는 니오디뮴(헥사노에이트)3, 니오디뮴(헵타노에이트)3, 니오디뮴(옥타노에이트)3, 니오디뮴(2-에틸 헥사노에이트)3, 니오디뮴(나프터네이트)3, 니오디뮴(버서테이트)3, 니오디뮴(스티어레이트)3및 니오디뮴(버서틱 산)(버서테이트)3등인 바, 탄소원자수가 6개 이상인 화합물이 적합하다.On the other hand, the niodymium salt compound constituting the catalyst is preferably a compound having a good solubility in a nonpolar solvent. Specific examples include niodymium (hexanoate) 3 , niodymium (heptanoate) 3 , niodymium (octanoate) 3 , niodymium (2-ethyl hexanoate) 3 , niodymium ( naphthyl emitter carbonate) 3, you audio di (freediving lactate) 3, you audio di (steering rate) 3 and needle audio di (version seotik acid) (freediving lactate) 3 or the like bar, is the number of carbon atoms suitable for this six or more compounds .

그리고, 촉매를 구성하는 트리알킬알루미늄 화합물은 통상의 알킬알루미늄으로서 구체적인 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄 등이 대표적이다.The trialkylaluminum compound constituting the catalyst is conventional alkylaluminum, and examples of specific compounds include trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, and the like. Representative.

디알킬알루미늄 하이드라이드 화합물의 예로는 디이소부틸알루미늄 하이드라이드를 들 수 있다.Examples of the dialkylaluminum hydride compound include diisobutylaluminum hydride.

디알킬알루미늄 클로라이드 화합물의 예로는 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디프로필알루미늄 클로라이드, 디부틸알루미늄 클로라이드, 디이소부틸알루미늄 클로라이드 등이 대표적이다.Examples of the dialkylaluminum chloride compound are dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, dibutylaluminum chloride, diisobutylaluminum chloride and the like.

한편, 촉매제조시 각 촉매의 적합한 몰비는 분자량 조절제인 디알킬징크 화합물과 니오디뮴염 화합물은 3:1∼20:1 몰비, 바람직하게는 5:1∼20:1의 몰비로 사용하는 것이 좋다. 만일, 사용비가 상기 범위를 벗어나 디알킬징크 화합물을 니오디뮴염 화합물에 대해 3당량 미만으로 사용하게 되면 분자량 조절 효과가 저하되며 그 당량을 20당량 초과 사용하게 되면 1,4-시스 함량이 95% 이하로 감소될 수도 있다.On the other hand, a suitable molar ratio of each catalyst in the preparation of the catalyst is a molar ratio of 3: 1 to 20: 1 mole ratio, preferably 5: 1 to 20: 1 mole ratio of the dialkyl zinc compound and the niodymium salt compound which are the molecular weight regulators. . If the use ratio exceeds the above range and the dialkyl zinc compound is used in an amount less than 3 equivalents to the niodimium salt compound, the molecular weight control effect is lowered. When the equivalent amount is used more than 20 equivalents, the content of 1,4-cis is 95%. It may be reduced below.

트리알킬알루미늄 화합물과 니오디뮴염 화합물은 10:1∼50:1 몰비, 바람직하게는 20:1∼40:1의 몰비로 함유시키는 것이 좋다. 만일 함량비가 상기 범위를 벗어나 트리알킬알루미늄 화합물을 니오디뮴염 화합물에 대해 10당량 미만으로 사용하게 되면 중합수율이 저하되고 50당량 초과 사용하게 되면 1,4-시스 함량의 저하 및 생성물의 변색을 유발할 수 있다.The trialkylaluminum compound and the niodymium salt compound are preferably contained in a molar ratio of 10: 1 to 50: 1, preferably 20: 1 to 40: 1. If the content ratio is out of the above range and the trialkylaluminum compound is used in less than 10 equivalents to the niodymium salt compound, the polymerization yield is lowered. If the content ratio is used more than 50 equivalents, the 1,4-cis content may be reduced and the discoloration of the product may occur. Can be.

그리고, 디알킬알루미늄 하이드라이드 화합물과 니오디뮴염 화합물은 1:1∼20:1몰비, 바람직하게는 5:1∼20:1의 몰비로 함유시키는 것이 좋다. 만일 함량비가 상기 범위를 벗어나 디알킬알루미늄 하이드라이드 화합물을 니오디뮴염 화합물에 대해 1당량 미만으로 사용하게 되면 디알킬징크 화합물과의 혼용에 의한 분자량 조절 효과가 저하하게 되고 20당량 초과 사용하게 되면 1,4-시스 함량의 저하 및 생성물의 변색을 유발할 수 있다.The dialkylaluminum hydride compound and the niodymium salt compound are preferably contained in a molar ratio of 1: 1 to 20: 1, preferably 5: 1 to 20: 1. If the content ratio is out of the above range and the dialkylaluminum hydride compound is used in less than 1 equivalent to the niodimium salt compound, the molecular weight control effect by mixing with the dialkyl zinc compound is lowered and when used in excess of 20 equivalents May cause a decrease in the 4-cis content and discoloration of the product.

디알킬알루미늄 클로라이드 화합물과 니오디뮴염 화합물은 0.5:1∼3:1몰비, 바람직하게는 0.5:1∼2.5:1 몰비로 함유시키는 것이 좋다. 만일 사용비가 상기 범위를 벗어나 디알킬알루미늄 클로라이드 화합물을 니오디뮴염 화합물에 대해 0.5당량 미만으로 사용하거나 3당량을 초과하여 사용하게 되면 수율 저하나 1,4-시스함량의 저하를 초래할 수 있다.The dialkylaluminum chloride compound and the niodymium salt compound are preferably contained in a molar ratio of 0.5: 1 to 3: 1, preferably 0.5: 1 to 2.5: 1. If the use ratio is out of the above range and the dialkylaluminum chloride compound is used in less than 0.5 equivalents or more than 3 equivalents with respect to the niodymium salt compound, the yield may be reduced or the 1,4-cis content may be reduced.

또한, 공액 디엔 화합물과 니오디뮴염 화합물은 1:1∼30:1 몰비, 바람직하게는 2:1∼10:1의 몰비로 함유시키는 것이 좋다. 만일 함량비가 상기 범위를 벗어나 과량의 공액 디엔 화합물을 사용하게 되면 촉매 용액의 점도가 증가되는 문제가 있다.The conjugated diene compound and the niodymium salt compound may be contained in a molar ratio of 1: 1 to 30: 1, preferably 2: 1 to 10: 1. If the content ratio is out of the above range to use an excess of the conjugated diene compound there is a problem that the viscosity of the catalyst solution is increased.

촉매를 제조하기 위한 각 성분의 투입순서는 소량의 1,3-부타디엔을 함유 또는 비함유하고 있는 니오디뮴염 용액을 질소분위기의 반응기에 넣고, 다음으로 트리알킬알루미늄 화합물, 디알킬알루미늄 하이드라이드 화합물, 디알킬알루미늄 클로라이드 화합물, 그리고 본 발명에 따른 분자량 조절제인 디알킬징크 화합물을 투입한다. 이때, 촉매를 구성하는 화합물의 투입 순서는 상기와 같은 순서로 투입할 수있고, 경우에 따라서는 순서에 변화를 가하여 투입할 수 있다.The order of the input of each component for preparing the catalyst is to put a niodimium salt solution containing or not containing a small amount of 1,3-butadiene into a reactor in a nitrogen atmosphere, followed by a trialkylaluminum compound and a dialkylaluminum hydride compound. , Dialkylaluminum chloride compound, and dialkyl zinc compound, which is a molecular weight regulator according to the present invention, are added. At this time, the addition order of the compounds constituting the catalyst may be added in the same order as described above, and in some cases may be added by changing the order.

그 다음, 1,3-부타디엔과 상기에서 준비된 지글러-나타 촉매를 중합용매와 함께 혼합하여 중합을 실시하는 바, 이때 중합용매는 고분자 중합에 큰 영향을 미치므로 산소와 물이 제거된 상태의 것을 사용해야 한다.Then, the polymerization is carried out by mixing 1,3-butadiene and the Ziegler-Natta catalyst prepared above with a polymerization solvent, wherein the polymerization solvent has a great effect on the polymerization of the polymer, and thus, oxygen and water are removed. Should be used.

본 발명에서 사용할 수 있는 중합용매로는 사이클로헥산, 헵탄, 헥산, 벤젠 및 톨루엔 등으로 비극성 용매인 것이 바람직하다.The polymerization solvent usable in the present invention is preferably a nonpolar solvent such as cyclohexane, heptane, hexane, benzene and toluene.

고순도 질소분위기에서 중합은 시작되는 바, 반응온도는 실온에서부터 100℃ 까지인 것이 바람직하다. 그리고, 적합한 촉매조건 하에서 중합시간은 3시간이 적절하며, 90% 이상의 수율을 얻을 수 있다.The polymerization is started in a high purity nitrogen atmosphere, the reaction temperature is preferably from room temperature to 100 ℃. And, under suitable catalyst conditions, the polymerization time is appropriate for 3 hours, a yield of 90% or more can be obtained.

반응이 완료된 후 폴리옥시에틸렌글리콜 포스페이트와 같은 반응정지제와 2,6-디-t-부틸 파라크레졸을 첨가한 후 메틸알콜이나 에틸알콜에 침전시켜 생성물을 얻을 수 있다.After the reaction is completed, a reaction terminator such as polyoxyethylene glycol phosphate and 2,6-di- t -butyl paracresol may be added and precipitated in methyl alcohol or ethyl alcohol to obtain a product.

이하, 본 발명을 실시예에 의거 상세하게 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.

실시예 1Example 1

반응에 사용된 지글러-나타 촉매는 소량의 1,3-부타디엔 화합물의 존재하에서 니오디뮴(버서테이트)3(1.44% 사이클로헥산 용액), 트리이소부틸알루미늄(1M 헥산 용액), 디이소부틸알루미늄 하이드라이드(1M 사이클로헥산 용액), 디이소부틸알루미늄 클로라이드(1.50% 사이클로헥산 용액) 및 디에틸징크(1M 헥산 용액)를 혼합하여 제조하였다.The Ziegler-Natta catalysts used in the reactions are niodymium (versustate) 3 (1.44% cyclohexane solution), triisobutylaluminum (1M hexane solution), diisobutylaluminum in the presence of small amounts of 1,3-butadiene compounds. Prepared by mixing hydride (1M cyclohexane solution), diisobutylaluminum chloride (1.50% cyclohexane solution) and diethyljink (1M hexane solution).

중합과정은 360㎖ 압력반응기를 질소로 충분히 불어넣어 준 후 사이클로헥산과 헵탄을 9:1 중량비로 혼합하여 제조된 중합용매에, 니오디뮴(버서테이트)3, 트리이소부틸알루미늄, 디이소부틸알루미늄 하이드라이드, 디이소부틸알루미늄 클로라이드 및 디에틸징크를 1:35:5:2:5 몰비 되도록 순차적으로 가하고, 단량체인 1,3-부타디엔을 첨가한 후 40℃에서 3시간 동안 반응시켰다.In the polymerization process, a 360 ml pressure reactor was sufficiently blown with nitrogen, and then cyclohexane and heptane were mixed in a 9: 1 weight ratio to a polymerization solvent prepared by niobium (versatate) 3 , triisobutylaluminum, and diisobutyl. Aluminum hydride, diisobutylaluminum chloride and diethylzinc were added sequentially in a molar ratio of 1: 35: 5: 2: 5, and the reaction was carried out at 40 ° C. for 3 hours after the addition of the monomer 1,3-butadiene.

이때, 중합용매와 단량체의 무게비는 5이었으며, 반응 후 2,6-디-t-부틸파라크레졸, 폴리옥시에틸렌글리콜 포스페이트 및 에탄올을 가하여 반응을 종결하였다.At this time, the weight ratio of the polymerization solvent and the monomer was 5, and after the reaction, the reaction was terminated by adding 2,6-di- t -butylparacresol, polyoxyethylene glycol phosphate and ethanol.

실시예 2∼4Examples 2-4

상기 실시예 1과 동일한 방법으로 조절된 분자량 및 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔을 제조하되, 다음 표 1에 나타낸 바와 같이 소량의 1,3-부타디엔 화합물의 비존재 하에서 디에틸징크 화합물의 조성을 달리하여 제조하였다.In the same manner as in Example 1, a polybutadiene having a controlled molecular weight and a high 1,4-cis content of 95% or more was prepared, but in the absence of a small amount of 1,3-butadiene compound as shown in Table 1 below. It was prepared by varying the composition of the ethyl zinc compound.

촉매구성(1) Catalyst Composition (1) 촉매몰비Catalyst molar ratio 무게평균분자량(Mw)Weight average molecular weight (M w ) Nd 촉매 몰수(2) Nd Catalyst Molecular (2) 1,4-시스 함량(%)1,4-cis content (%) 수율(%, 3h)Yield (%, 3h) 1One Nd(vers)3/Al(i-Bu)3/Al(i-Bu)2H/Al(i-Bu)2Cl/Et2ZnNd (vers) 3 / Al (i-Bu) 3 / Al (i-Bu) 2 H / Al (i-Bu) 2 Cl / Et 2 Zn 1/35/5/2/51/35/5/2/5 869,000869,000 1.5×10-4 1.5 × 10 -4 98.498.4 100100 22 1/35/5/2/101/35/5/2/10 778,000778,000 1.5×10-4 1.5 × 10 -4 97.897.8 100100 33 1/35/5/2/151/35/5/2/15 618,000618,000 1.5×10-4 1.5 × 10 -4 97.597.5 100100 44 1/35/5/2/201/35/5/2/20 482,000482,000 1.5×10-4 1.5 × 10 -4 95.495.4 100100 (주)(1)Nd(vers)3= Nd(versatate)3; Al(i-Bu)3= triisobutylaluminum; Al(i-Bu)2H= diisobutylaluminum hydride; Al(i-Bu)2Cl= diisobutylaluminum chloride; 실시예 1은 소량의 1,3-부타디엔 존재하에서, 실시예 2-4는 소량의 1,3-부타디엔 화합물의 비존재 하에서 촉매를제조함.(2)1,3-부타디엔 100g 당 사용 몰수.(Note) (1) Nd (vers) 3 = Nd (versatate) 3 ; Al (i-Bu) 3 = triisobutylaluminum; Al (i-Bu) 2 H = diisobutylaluminum hydride; Al (i-Bu) 2 Cl = diisobutylaluminum chloride; Example 1 prepares the catalyst in the presence of a small amount of 1,3-butadiene, Example 2-4 in the absence of a small amount of 1,3-butadiene compound. (2) Moles of use per 100 g of 1,3-butadiene.

실시예 5∼12Examples 5-12

상기 실시예 1과 동일한 방법으로 조절된 분자량 및 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔을 제조하되, 다만 분자량 조절제로 디에틸징크 화합물 대신 디메틸징크 화합물을 사용하면서, 니오디뮴염 화합물 및 디알킬알루미늄 클로라이드 화합물의 종류를 달리하거나(실시예 5-8), 분자량 조절제로 디에틸징크 화합물을 사용하면서 촉매 구성성분의 혼입 순서를 달리하여(실시예 9-12) 실시하였으며, 그 결과를 다음 표 2에 나타내었다.In the same manner as in Example 1 to prepare a polybutadiene having a controlled molecular weight and a high 1,4-cis content of 95% or more, except using a dimethyl zinc compound instead of a diethyl zinc compound as a molecular weight regulator, And different kinds of dialkylaluminum chloride compounds (Examples 5-8), or different order of incorporation of catalyst components (Examples 9-12) using diethyl zinc compounds as molecular weight modifiers. Is shown in Table 2 below.

촉매구성(1) Catalyst Composition (1) 촉매몰비Catalyst molar ratio 무게평균분자량(Mw)Weight average molecular weight (M w ) Nd 촉매 몰수(2) Nd Catalyst Molecular (2) 1,4-시스함량(%)1,4-cis content (%) 수율(%, 3h)Yield (%, 3h) 55 Nd(vers)3/Al(i-Bu)3/Al(i-Bu)2H/AlEt2Cl/Me2ZnNd (vers) 3 / Al (i-Bu) 3 / Al (i-Bu) 2 H / AlEt 2 Cl / Me 2 Zn 1:35:5:2:51: 35: 5: 2: 5 895,000895,000 1.5×10-4 1.5 × 10 -4 98.798.7 100100 66 Nd(2-ETH)3/Al(i-Bu)3/Al(i-Bu)2H/AlEt2Cl/Me2ZnNd (2-ETH) 3 / Al (i-Bu) 3 / Al (i-Bu) 2 H / AlEt 2 Cl / Me 2 Zn 1:35:5:2:101: 35: 5: 2: 10 564,000564,000 1.5×10-4 1.5 × 10 -4 98.098.0 100100 77 Nd(naph)3/Al(i-Bu)3/Al(i-Bu)2H/Al(i-Bu)2Cl/Me2ZnNd (naph) 3 / Al (i-Bu) 3 / Al (i-Bu) 2 H / Al (i-Bu) 2 Cl / Me 2 Zn 1:35:5:2:151: 35: 5: 2: 15 529,000529,000 1.5×10-4 1.5 × 10 -4 96.796.7 100100 88 Nd(VA)(vers)3/Al(i-Bu)3/Al(i-Bu)2H/AlEt2Cl/Me2ZnNd (VA) (vers) 3 / Al (i-Bu) 3 / Al (i-Bu) 2 H / AlEt 2 Cl / Me 2 Zn 1:35:5:2:201: 35: 5: 2: 20 422,000422,000 1.5×10-4 1.5 × 10 -4 95.395.3 100100 99 Al(i-Bu)3/Al(i-Bu)2H/ZnEt2Al(i-Bu)2Cl/Nd(vers)3 Al (i-Bu) 3 / Al (i-Bu) 2 H / ZnEt 2 Al (i-Bu) 2 Cl / Nd (vers) 3 35:5:5:2:135: 5: 5: 2: 1 854,000854,000 1.5×10-4 1.5 × 10 -4 98.198.1 100100 1010 Al(i-Bu)2H/Al(i-Bu)3/ZnEt2Al(i-Bu)2Cl/Nd(vers)3 Al (i-Bu) 2 H / Al (i-Bu) 3 / ZnEt 2 Al (i-Bu) 2 Cl / Nd (vers) 3 5:35:10:2:15: 35: 10: 2: 1 792,000792,000 1.5×10-4 1.5 × 10 -4 97.997.9 100100 1111 ZnEt2/Al(i-Bu)3/Al(i-Bu)2H/Al(i-Bu)2Cl/Nd(vers)3 ZnEt 2 / Al (i-Bu) 3 / Al (i-Bu) 2 H / Al (i-Bu) 2 Cl / Nd (vers) 3 15:35:5:2:115: 35: 5: 2: 1 632,000632,000 1.5×10-4 1.5 × 10 -4 97.897.8 100100 1212 Al(i-Bu)2Cl/Al(i-Bu)3/Al(i-Bu)2H/ZnEt2/Nd(vers)3 Al (i-Bu) 2 Cl / Al (i-Bu) 3 / Al (i-Bu) 2 H / ZnEt 2 / Nd (vers) 3 2:35:5:20:12: 35: 5: 20: 1 475,000475,000 1.5×10-4 1.5 × 10 -4 95.395.3 100100 (주)(1)Nd(vers)3=Nd(versatate)3; Nd(2-ETH)3=Nd(2-ethyl hexanoate)3; Nd(naph)3= Nd(naphthenate)3; Nd(VA)(vers)3=Nd(versatic acid)(versatate)3; Al(i-Bu)3= triisobutylaluminum; Al(i-Bu)2H=diisobutylaluminum hydride; AlEt2Cl= diethylaluminum chloride; Al(i-Bu)2Cl=diisobutylaluminum chloride; 실시예 5-8은 소량의 1,3-부타디엔존재하에서, 실시예 9-12는 소량의 1,3-부타디엔 화합물의 비존재 하에서 촉매를 제조함.(2)1,3-부타디엔 100 g 당 사용 몰수.(Note) (1) Nd (vers) 3 = Nd (versatate) 3 ; Nd (2-ETH) 3 = Nd (2-ethyl hexanoate) 3 ; Nd (naph) 3 = Nd (naphthenate) 3 ; Nd (VA) (vers) 3 = Nd (versatic acid) (versatate) 3 ; Al (i-Bu) 3 = triisobutylaluminum; Al (i-Bu) 2 H = diisobutylaluminum hydride; AlEt 2 Cl = diethylaluminum chloride; Al (i-Bu) 2 Cl = diisobutylaluminum chloride; Examples 5-8 produce a catalyst in the presence of a small amount of 1,3-butadiene, and Examples 9-12 prepare a catalyst in the absence of a small amount of 1,3-butadiene compound. (2) per 100 g of 1,3-butadiene. Confiscation used.

비교예 1∼8Comparative Examples 1 to 8

상기 실시예 1에서와 동일한 방법으로 높은 1,4-시스 폴리부타디엔을 제조하되, 다만 본 발명의 분자량 조절제인 디알킬징크 화합물을 사용하지 않거나(비교예 1-4), 혹은 사용하더라도 디이소부틸알루미늄 하이드라이드를 제외한 니오디뮴염화합물, 트리알킬알루미늄 화합물 및 디알킬알루미늄 클로라이드 화합물만을 촉매 구성 성분으로 사용하여(비교예 5-8) 중합을 실시한 결과를 다음 표 3에 나타내었다.A high 1,4-cis polybutadiene is prepared in the same manner as in Example 1, except that diisobutyl is not used (Comparative Example 1-4) or a dialkyl zinc compound which is a molecular weight modifier of the present invention is used. The results of the polymerization using only the niodimium salt compound, the trialkylaluminum compound, and the dialkylaluminum chloride compound except the aluminum hydride as the catalyst components (Comparative Example 5-8) are shown in Table 3 below.

촉매구성(1) Catalyst Composition (1) 촉매몰비Catalyst molar ratio 무게평균분자량(Mw)Weight average molecular weight (M w ) Nd 촉매 몰수(2) Nd Catalyst Molecular (2) 1,4-시스함량(%)1,4-cis content (%) 수율(%, 3h)Yield (%, 3h) 비교예 1Comparative Example 1 Al(i-Bu)3/Al(i-Bu)2H/Al(i-Bu)2Cl/Nd(vers)3 Al (i-Bu) 3 / Al (i-Bu) 2 H / Al (i-Bu) 2 Cl / Nd (vers) 3 80:5:2:180: 5: 2: 1 250 000250 000 1.5x10-4 1.5x10 -4 93.693.6 100100 비교예 2Comparative Example 2 Al(i-Bu)3/Al(i-Bu)2H/Al(i-Bu)2Cl/Nd(vers)3 Al (i-Bu) 3 / Al (i-Bu) 2 H / Al (i-Bu) 2 Cl / Nd (vers) 3 70:5:2:170: 5: 2: 1 432 000432 000 1.5x10-4 1.5x10 -4 94.494.4 100100 비교예 3Comparative Example 3 Al(i-Bu)3/Al(i-Bu)2H/Al(i-Bu)2Cl/Nd(vers)3 Al (i-Bu) 3 / Al (i-Bu) 2 H / Al (i-Bu) 2 Cl / Nd (vers) 3 60:5:2:160: 5: 2: 1 359 000359 000 1.5x10-4 1.5x10 -4 94.594.5 100100 비교예 4Comparative Example 4 Al(i-Bu)3/Al(i-Bu)2H/Al(i-Bu)2Cl/Nd(vers)3 Al (i-Bu) 3 / Al (i-Bu) 2 H / Al (i-Bu) 2 Cl / Nd (vers) 3 50:5:2:150: 5: 2: 1 479 000479 000 1.5x10-4 1.5x10 -4 97.097.0 100100 비교예 5Comparative Example 5 Al(i-Bu)3/Et2Zn/Al(i-Bu)2Cl/Nd(vers)3 Al (i-Bu) 3 / Et 2 Zn / Al (i-Bu) 2 Cl / Nd (vers) 3 40:5:2:140: 5: 2: 1 1 107 0001 107 000 1.5x10-4 1.5x10 -4 98.198.1 100100 비교예 6Comparative Example 6 Al(i-Bu)3/Et2Zn/Al(i-Bu)2Cl/Nd(vers)3 Al (i-Bu) 3 / Et 2 Zn / Al (i-Bu) 2 Cl / Nd (vers) 3 40:10:2:140: 10: 2: 1 1 285 0001 285 000 1.5x10-4 1.5x10 -4 98.498.4 100100 비교예 7Comparative Example 7 Al(i-Bu)3/Et2Zn/Al(i-Bu)2Cl/Nd(vers)3 Al (i-Bu) 3 / Et 2 Zn / Al (i-Bu) 2 Cl / Nd (vers) 3 40:20:2:140: 20: 2: 1 752 000752 000 1.5x10-4 1.5x10 -4 94.294.2 100100 비교예 8Comparative Example 8 Al(i-Bu)3/Et2Zn/Al(i-Bu)2Cl/Nd(vers)3 Al (i-Bu) 3 / Et 2 Zn / Al (i-Bu) 2 Cl / Nd (vers) 3 40:40:2:140: 40: 2: 1 760 000760 000 1.5x10-4 1.5x10 -4 94.794.7 100100 (주)(1)Nd(vers)3=Nd(versatate)3; Al(i-Bu)3=triisobutylaluminum; Al(i-Bu)2H= diisobutylaluminum hydride; Al(i-Bu)2Cl=diisobutylaluminum chloride; 비교예 1-4는 소량의 1,3-부타디엔 존재하에서, 비교예 5-8은 소량의 1,3-부타디엔 화합물의 비존재 하에서 촉매를제조함.(2)1,3-부타디엔 100 g 당 사용 몰수.(Note) (1) Nd (vers) 3 = Nd (versatate) 3 ; Al (i-Bu) 3 = triisobutylaluminum; Al (i-Bu) 2 H = diisobutylaluminum hydride; Al (i-Bu) 2 Cl = diisobutylaluminum chloride; Comparative Example 1-4 prepared a catalyst in the presence of a small amount of 1,3-butadiene, and Comparative Example 5-8 prepared a catalyst in the absence of a small amount of 1,3-butadiene compound. (2) per 100 g of 1,3-butadiene. Confiscation used.

상기 표 1 및 2의 결과로부터 본 발명에 따라 분자량 조절제로 작용하는 디알킬징크 화합물을 첨가한 경우와교예 1∼8의 결과를 비교하여 보면, 디알킬징크 화합물 대신 트리이소부틸알루미늄을 사용하여 촉매의 조성 변화에 따라 폴리부타디엔의 분자량을 조절할 경우(비교예 1-4), 트리이소부틸알루미늄 화합물의 변량에 따른 분자량 변화가 명확하지 않고 아울러 트리이소부틸알루미늄의 사용량을 증가시킬수록 1,4-시스 함량이 큰 폭으로 저하되어 그 실용성이 적으며, 촉매의 구성 성분으로 디이소부틸알루미늄 하이드라이드를 사용하지 않을 경우에 디알킬징크 화합물을 분자량 조절제로 사용하여 그 양을 변량하더라도(비교예 5-8) 분자량 조절의 경향성이 전혀 없는 것을 알 수 있다. 반면에 본 발명의 경우 디알킬징크 화합물의 첨가량을 조절함에 따라 중합수율에는 영향을 미치지 않으면서 조절된 분자량 및 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔을 용이하게 제조할 수 있음을 알 수 있다.Table 1, and the results from the second addition of dialkyl zinc compounds that act molecular weight control agent according to the present invention and looking at the ratio comparing the results of Comparative Example 1 to 8, dialkylamino using triisobutyl aluminum instead of zinc compounds When the molecular weight of polybutadiene is adjusted according to the composition of the catalyst (Comparative Example 1-4), the molecular weight change due to the variation of the triisobutylaluminum compound is not clear, and as the amount of the triisobutylaluminum is increased, 1,4 -The cis content is greatly reduced and its practicality is low. Even when diisobutylaluminum hydride is not used as a constituent of the catalyst, even if the amount is changed by using a dialkyl zinc compound as a molecular weight regulator (Comparative Example) 5-8) It can be seen that there is no tendency of molecular weight control at all. On the other hand, in the case of the present invention, it is possible to easily prepare a polybutadiene having a controlled molecular weight and a high 1,4-cis content of 95% or more without affecting the polymerization yield by controlling the addition amount of the dialkyl zinc compound. Able to know.

이상에서 상세히 설명한 바와 같이, 본 발명에 따라 니오디뮴염 화합물, 트리알킬알루미늄 화합물, 디알킬알루미늄 하이드라이드 화합물 및 디알킬알루미늄 클로라이드 화합물을 혼합한 혼합물을 촉매로 이용하고 디알킬징크 화합물을 분자량 조절제로 이용하여 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔을 제조하는 경우, 디알킬징크 화합물의 사용량을 변량함에 의해 중합수율의 저하없이 폴리부타디엔의 분자량을 용이하게 조절할 수 있어 고무의 가공성 및 물리적 성질의최적화를 도모할 수 있는 효과가 있다.As described in detail above, according to the present invention, a mixture of a niodymium salt compound, a trialkylaluminum compound, a dialkylaluminum hydride compound, and a dialkylaluminum chloride compound is used as a catalyst, and the dialkyl zinc compound is used as a molecular weight regulator. In the case of preparing a polybutadiene having a high 1,4-cis content of 95% or more by using, the molecular weight of the polybutadiene can be easily controlled without lowering the polymerization yield by varying the amount of the dialkyl zinc compound used, thereby improving the processability of the rubber and There is an effect that can optimize the physical properties.

Claims (6)

비극성 용매의 존재 하에 지글러-나타 촉매를 사용하여 1,3-부타디엔을 중합함으로써 높은 1,4-시스 함량을 갖는 폴리부타디엔을 제조하는 방법에 있어서,A process for producing polybutadiene having a high 1,4-cis content by polymerizing 1,3-butadiene using a Ziegler-Natta catalyst in the presence of a nonpolar solvent, 상기 지글러-나타 촉매는 공액 디엔 화합물의 존재 또는 비존재하에 니오디뮴염 화합물, 트리알킬알루미늄 화합물, 디이소부틸알루미늄 하이드라이드 화합물 및 디알킬알루미늄 클로라이드 화합물의 혼합물에 분자량 조절제로 다음 화학식 1로 표시되는 디알킬징크 화합물을 첨가해 제조된 것임을 특징으로 하는 조절된 분자량 및 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔의 제조방법.The Ziegler-Natta catalyst is represented by the following formula (1) as a molecular weight regulator in a mixture of a niodimium salt compound, a trialkylaluminum compound, a diisobutylaluminum hydride compound, and a dialkylaluminum chloride compound in the presence or absence of a conjugated diene compound A process for preparing polybutadiene having a controlled molecular weight and a high 1,4-cis content of at least 95%, characterized in that it is prepared by the addition of a dialkyl zinc compound. 화학식 1Formula 1 R1-Zn-R2 R 1 -Zn-R 2 상기 식에서, R1과 R2는 서로 같거나 다른 것으로서 탄소수 1∼5의 알킬기이다.In the above formula, R 1 and R 2 are the same as or different from each other and are an alkyl group having 1 to 5 carbon atoms. 제 1 항에 있어서, 디알킬징크 화합물과 니오디뮴염 화합물은 3:1∼20:1몰비 되도록 사용하는 것을 특징으로 하는 조절된 분자량 및 95% 이상의 높은 1,4-시스 함량을 갖는 폴리부타디엔의 제조방법.The polybutadiene having a controlled molecular weight and a high 1,4-cis content of at least 95%, according to claim 1, wherein the dialkyl zinc compound and the niodymium salt compound are used in a 3: 1 to 20: 1 molar ratio. Manufacturing method. 제 1 항 또는 제 2 항에 있어서, 니오디뮴염 화합물은 니오디뮴(헥사노에이트)3, 니오디뮴(헵타노에이트)3, 니오디뮴(옥타노에이트)3, 니오디뮴(2-에틸 헥사노에이트)3, 니오디뮴(나프터네이트)3, 니오디뮴(버서테이트)3, 니오디뮴(스티어레이트)3및 니오디뮴(버서틱 산)(버서테이트)3으로 이루어진 군으로부터 선택된 단독 또는 2종 이상의 혼합물을 사용하는 것을 특징으로 하는 높은 1,4-시스 함량을 갖는 폴리부타디엔의 제조방법.According to claim 1 or 2, you audio myumyeom compounds you audio di (hexanoate) 3, you audio di (heptanoate) 3, you audio di (octanoate) 3, you audio di (2 - in-ethylhexanoate) 3, you audio di (naphthyl emitter carbonate) 3, you audio di (freediving lactate) 3, you audio di (steering rate) 3 and needle audio di (version seotik acid) (freediving lactate) 3 A process for producing polybutadiene having a high 1,4-cis content, characterized by using only one or a mixture of two or more selected from the group consisting of: 제 1 항에 있어서, 트리알킬알루미늄 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄, 트리헥실알루미늄 및 트리옥틸알루미늄으로 이루어진 군으로부터 선택된 단독 또는 2종 이상의 혼합물을 사용하는 것을 특징으로 하는 높은 1,4-시스 함량을 갖는 폴리부타디엔의 제조방법.The compound of claim 1, wherein the trialkylaluminum compound is selected from the group consisting of trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, triisobutylaluminum, trihexylaluminum, and trioctylaluminum. Method for producing a polybutadiene having a high 1,4-cis content, characterized in that used. 제 1 항에 있어서, 디알킬알루미늄 클로라이드 화합물은 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디프로필알루미늄 클로라이드, 디부틸알루미늄 클로라이드 및 디이소부틸알루미늄 클로라이드로 이루어진 군으로부터 선택된단독 또는 2종 이상의 혼합물을 사용하는 것을 특징으로 하는 높은 1,4-시스 함량을 갖는 폴리부타디엔의 제조방법.The dialkylaluminum chloride compound according to claim 1, wherein the dialkylaluminum chloride compound uses a single or a mixture of two or more selected from the group consisting of dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, dibutylaluminum chloride and diisobutylaluminum chloride. Method for producing a polybutadiene having a high 1,4-cis content, characterized in that. 제 1 항에 있어서, 디알킬징크 화합물의 첨가량 변화에 따라 분자량을 조절하는 것을 특징으로 하는 높은 1,4-시스 함량을 갖는 폴리부타디엔의 제조방법.The method for producing polybutadiene having a high 1,4-cis content according to claim 1, wherein the molecular weight is adjusted according to the change in the amount of the dialkyl zinc compound added.
KR10-2002-0048804A 2002-08-19 2002-08-19 Method of manufacturing polybutadiene having high 1,4-cis content KR100462663B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0048804A KR100462663B1 (en) 2002-08-19 2002-08-19 Method of manufacturing polybutadiene having high 1,4-cis content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0048804A KR100462663B1 (en) 2002-08-19 2002-08-19 Method of manufacturing polybutadiene having high 1,4-cis content

Publications (2)

Publication Number Publication Date
KR20040016572A KR20040016572A (en) 2004-02-25
KR100462663B1 true KR100462663B1 (en) 2004-12-20

Family

ID=37322508

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0048804A KR100462663B1 (en) 2002-08-19 2002-08-19 Method of manufacturing polybutadiene having high 1,4-cis content

Country Status (1)

Country Link
KR (1) KR100462663B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154473B1 (en) * 2008-12-08 2012-06-13 주식회사 엘지화학 Method of preparing cis-1,4-polybutadiene having low molecular weight

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483177A (en) * 1967-12-15 1969-12-09 Goodyear Tire & Rubber Method for the polymerization of butadiene and butadiene in mixture with other diolefins using (1) organometallics,(2) organic ni or co,and (3) bf3 complexed with aldehydes,ketones,esters and nitriles
US4080492A (en) * 1974-06-05 1978-03-21 Compagnie Generale Des Etablissements Michelin Butadiene polymerization process
US4480075A (en) * 1983-06-24 1984-10-30 Shell Oil Company Block copolymers of Ziegler-Natta polymerized and anionically polymerized monomers
US4562172A (en) * 1984-06-04 1985-12-31 The Firestone Tire & Rubber Company Method of preparing high cis-1,4 diene polymers having good green strength and tack
US6255420B1 (en) * 1999-11-22 2001-07-03 Union Carbide Chemicals & Plastics Technology Corporation Start-up process for gas phase production of polybutadiene
KR20020003481A (en) * 2000-07-06 2002-01-12 박찬구 A process for the regulation of the degree of branch of 1,4-high Cis polybutadiene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483177A (en) * 1967-12-15 1969-12-09 Goodyear Tire & Rubber Method for the polymerization of butadiene and butadiene in mixture with other diolefins using (1) organometallics,(2) organic ni or co,and (3) bf3 complexed with aldehydes,ketones,esters and nitriles
US4080492A (en) * 1974-06-05 1978-03-21 Compagnie Generale Des Etablissements Michelin Butadiene polymerization process
US4480075A (en) * 1983-06-24 1984-10-30 Shell Oil Company Block copolymers of Ziegler-Natta polymerized and anionically polymerized monomers
US4562172A (en) * 1984-06-04 1985-12-31 The Firestone Tire & Rubber Company Method of preparing high cis-1,4 diene polymers having good green strength and tack
US6255420B1 (en) * 1999-11-22 2001-07-03 Union Carbide Chemicals & Plastics Technology Corporation Start-up process for gas phase production of polybutadiene
KR20020003481A (en) * 2000-07-06 2002-01-12 박찬구 A process for the regulation of the degree of branch of 1,4-high Cis polybutadiene

Also Published As

Publication number Publication date
KR20040016572A (en) 2004-02-25

Similar Documents

Publication Publication Date Title
US6506865B2 (en) Monomeric neodymium carboxylate and its use in polymerization of conjugated diene
KR100365581B1 (en) A preparing process for high 1,4-cis polybutadiene
JPH04266908A (en) Catalyst for synthesis of crystalline 3,4- polyisoprene
KR100472649B1 (en) Manufacturing method of high 1,4-cis polybutadiene
KR100348763B1 (en) A process for the regulation of the degree of branch of 1,4-high Cis polybutadiene
KR100298571B1 (en) A process for preparation of high 1,4-cis polybutadiene
US6482906B1 (en) Process for preparing and using neodymium neodecanoate
KR20030019195A (en) Synthesis of elastomeric high trans-1,4-polybutadiene
KR100344230B1 (en) Preparation of hydroxy high 1,4-cis polybutadiene using molecular oxygen
KR100462663B1 (en) Method of manufacturing polybutadiene having high 1,4-cis content
JPH0710899B2 (en) Process for producing catalyst component for continuous polymerization of high cis-1,4-polybutadiene
KR100462662B1 (en) Highly Branched High cis Polybutadiene
KR20040098437A (en) High 1,4-cis polybutadiene-co-polyurethane and manufacturing method thereof
KR100452810B1 (en) A method for the preparation of polybutadiene having controlled molecular weight and high 1,4-cis content
KR100250231B1 (en) Method for controlling molecular weight distribution for polybutadiene having a high content of 1,4-cis
KR100264513B1 (en) Method for controlling degree of branching of polybutadiene having a high content of 1,4-cis
KR100336519B1 (en) Polymerization of 1,3-butadiene
CA2177937A1 (en) Process for preparing crystalline high 1,4 trans polybutadiene
KR100472621B1 (en) A method for preparing 1,2-vinyl polybutadiene
KR100308781B1 (en) Method for regulating the molecular weight of polybutadiene
KR100462664B1 (en) Method for preparing 1,4-cis polybutadiene
KR100490337B1 (en) Manufacturing method of 1,4-cis polybutadiene using tris(pentafluorophenyl)borane
KR100403090B1 (en) A process for preparation of high 1,4-cis polybutadiene
KR20020057922A (en) Polymerization method of high 1,4-cis polybutadine and its derivatives

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121203

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131209

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141211

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151211

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161207

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20191118

Year of fee payment: 16