KR100449171B1 - Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same - Google Patents

Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same Download PDF

Info

Publication number
KR100449171B1
KR100449171B1 KR10-2002-0003196A KR20020003196A KR100449171B1 KR 100449171 B1 KR100449171 B1 KR 100449171B1 KR 20020003196 A KR20020003196 A KR 20020003196A KR 100449171 B1 KR100449171 B1 KR 100449171B1
Authority
KR
South Korea
Prior art keywords
lys
ile
leu
integrase
glu
Prior art date
Application number
KR10-2002-0003196A
Other languages
Korean (ko)
Other versions
KR20030062800A (en
Inventor
장효일
Original Assignee
학교법인고려중앙학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인고려중앙학원 filed Critical 학교법인고려중앙학원
Priority to KR10-2002-0003196A priority Critical patent/KR100449171B1/en
Publication of KR20030062800A publication Critical patent/KR20030062800A/en
Application granted granted Critical
Publication of KR100449171B1 publication Critical patent/KR100449171B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 MJ1 유전자를 포함하는 재조합 벡터 및 이를 이용한 인테그라아제(integrase) MJ1의 제조방법에 관한 것으로, 장내구균 용원성 파지 φFC1(Enterococcustemperate bacteriophage φFC1) 유래의 MJ1 유전자를 이용하여 생산한 인테그라아제 MJ1은 다른 factor없이 상기 효소 단독으로도 활성을 지니며,E.coli내에서도 활성을 나타내므로,E.coli의 염색체, 더 나아가 고등생명체의 염색체에 특정유전자를 삽입하는 벡터시스템에 유용하게 사용될 수 있다.The present invention relates to a recombinant vector comprising the MJ1 gene and a method for producing integrase MJ1 using the same, integrase MJ1 produced using MJ1 gene derived from enterococcus temperate bacteriophage φFC1. Since the enzyme alone is active without any other factor and is also active in E. coli , it can be usefully used in a vector system for inserting a specific gene into the chromosome of E. coli , or even higher chromosomes.

Description

MJ1 유전자를 포함하는 재조합 벡터 및 이를 이용한 인테그라아제 MJ1의 제조방법{Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same}Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same}

본 발명은 MJ1 유전자를 포함하는 재조합 벡터 및 이를 이용한 인테그라아제(integrase) MJ1의 제조방법, 더욱 상세하게는 장내구균 용원성 파지 φFC1(Enterococcustemperate bacteriophage φFC1) 유래의 MJ1 유전자를 이용하여 인테그라아제 MJ1 을 생산하는 방법에 관한 것이다.The present invention provides an integrase MJ1 using a recombinant vector comprising the MJ1 gene and a method for preparing integrase MJ1 using the same, more specifically, MJ1 gene derived from Enterococcus temperate bacteriophage φFC1. It is about how to produce.

장내구균 용원성 파지 φFC1(Enterococcus temperate bacteriophage φFC1)은 UV(ultraviolet)로 인덕션된 용원성 계통 균주의 배양을 통해 발견되었다. φFC1은 박테리아의 염색체에 부위-특이적 재조합을 통해 안정된 용원균(lysogen)을 형성한다. 부위 특이적인 재조합(site-specific recomnbination)은 파지의 접합부위(attachment site)인 attP와 박테리아의 접합부위인 attB사이에서 일어나는데, 흔히 attP와 attB사이에서는 짧은 DNA 염기서열의 상동성이 나타나며, 이를 common core라 부르며, 실제 strand의 교환이 일어나는 부위이기도 하다(도1).Enterococcus temperate bacteriophage φFC1 (enterococcus temperate bacteriophage φFC1) was found through the culture of lysogenic strains induced by UV (ultraviolet). φFC1 forms stable lysogen through site-specific recombination on the chromosome of bacteria. Site-specific recomnbination occurs between attP, a phage attachment site, and attB, a bacterium junction, where homology of short DNA sequences occurs between attP and attB. Also called, it is also the site where the actual exchange of strands occurs (Fig. 1).

본 발명자는 파지의 재조합 부위인 attP 근처에서 부위-특이적인 재조합효소를 인코딩(encoding)하는 것으로 추정되는 ORF(open reading frame)를 발견하여 이를 MJ1이라 명명하였으며, 상기 유전자를E. coli에서 발현시켰다(Kim et al., J. Biochem. Mol. Biol.29:448∼454), 그러나 MJ1이 높은 수준으로 발현됨에도 불구하고 봉입체(inclusion bodies;IBs) 형태를 띠는 불용성 단백질(insoluble protein)의 형성을 초래하여 site-specific recombinase으로 추정되는 효소의 활성 측정이 불가능하였다. 상기와 같은 이유로 인해서 MJ1의 catalytic 특성, 재조합 활성에 대하여 보고된 바 없으며, 더우기 MJ1 효소를 이용하여 유전자를 재조합시키는 연구는 연구된 바 없다.We found an open reading frame (ORF) that is supposed to encode a site-specific recombinase near attP, the recombination site of phage, and named it MJ1, and expressed the gene in E. coli . (Kim et al., J. Biochem. Mol. Biol. 29: 448-454), but formation of insoluble proteins in the form of inclusion bodies (IBs) despite the high levels of MJ1 expression. As a result, it was impossible to measure the activity of the enzyme that is assumed to be site-specific recombinase. For this reason, the catalytic properties and recombination activity of MJ1 have not been reported, and further studies of recombination of genes using MJ1 enzyme have not been studied.

본 발명에서는 상기와 같은 문제점을 해결하기 위하여, MJ1 유전자가 삽입된 발현벡터에서 integrase MJ1이 발현시 티오레독신(thioredoxin)이 tagging 되도록 재조합 벡터를 구축하므로써, 상기 MJ1을 가용성 단백질의 형태로E.coli에서 과발현시키고 정제하는 한편,in vitrorecomnination assay를 통해 intermolecularintegrative recombination 촉매여부와 다른 숙주(host)내에서의 활성 유지여부를 확인하였을 뿐만 아니라, MJ1 이 다른 co-factor의 도움없이 단독으로 재조합을 촉매하고, 이때 관여하는 substrate는 원형형태(circular form) 뿐만 아니라 선형형태(linear form)도 가능하며,E.coli에서도 활성을 유지한다는 사실을 최초로 밝혀냄으로써 본 발명을 완성하였다.In the present invention, in order to solve the above problems, by constructing a recombinant vector to tagging thioredoxin (integrase MJ1) when integrase MJ1 is expressed in the expression vector inserted MJ1 gene, the MJ1 in the form of a soluble protein E. In addition to overexpressing and purifying in coli , in vitro recomnination assays confirmed the intermolecular integrative recombination and its activity in other hosts, as well as MJ1 catalyzed recombination alone without the help of other co-factors. At this time, the substrate involved is not only a circular form (linear), but also a linear form (linear form), and completed the present invention by first revealing that the activity is maintained in E. coli .

본 발명의 목적은 MJ1 유전자를 포함하는 재조합 벡터 및 형질전환체를 제공함에 있다. 본 발명의 또 다른 목적은 상기 형질전환체를 이용한 인테그라아제(integrase) MJ1 의 생산방법을 제공하는 것이다.An object of the present invention is to provide a recombinant vector and transformant comprising the MJ1 gene. Still another object of the present invention is to provide a method for producing integrase MJ1 using the transformant.

도 1은 FC1 박테리오 파지의 접합부위(attP)와 박테리아 염색체의 접합부위(attB)에서 부위-특이적 재조합(site-specific recombination)이 일어나는 부위 및 본 발명에서 사용한 프라이머들의 위치를 나타낸 개략도이다.Figure 1 is a schematic diagram showing the site of site-specific recombination occurs at the junction of the FC1 bacteriophage (attP) and the junction of the bacterial chromosome (attB) and the primers used in the present invention.

도 2는 본 발명 MJ1 유전자를 포함하는 재조합 벡터 PTMJ1의 모식도이다.2 is a schematic diagram of a recombinant vector PTMJ1 comprising the MJ1 gene of the present invention.

도 3은 본 발명 제조방법에 의해 생산된 인테그라아제 MJ1을 정제하여 SDS-PAGE한 결과(A) 및 웨스턴 블럿팅(B)한 결과이다.Figure 3 is a result of SDS-PAGE purification of integrase MJ1 produced by the production method of the present invention (A) and Western blotting (B).

도 4는 인테그라아제 MJ1이in vitro상에서 attP와 attB간에 재조합 시키는 것을 확인한 결과이다.4 is Integrase MJ1in vitroThe results show that recombination between attP and attB in the phase.

도 5는 인테그라아제 MJ1이 원형형태(circular form)뿐만 아니라 선형형태(linear form)의 DNA도 재조합이 시키는 것을 확인한 결과이다.FIG. 5 shows that the integrase MJ1 recombines DNA in a linear form as well as in a linear form.

도 6은 인테그라아제 MJ1이 반응시 에너지원이나 2가 양이온을 필요로 하는지 여부를 조사한 결과이다.6 is a result of investigating whether integrase MJ1 requires an energy source or a divalent cation during the reaction.

도 7은 겔 이동양상 분석(Gel shift assay)을 통해 인테그라아제 MJ1이 attP(A), attB (B), attL (C), attR (D)에 결합하는 것을 확인한 결과이다(C: MJ1효소와 프로브의 복합체, F: 프로브).7 is a result of confirming that integrase MJ1 binds to attP (A), attB (B), attL (C), and attR (D) through gel shift assay (C: MJ1 enzyme). Complex of probes, F: probe).

도 8은 DNA foot printing하여 인테그라아제 MJ1이 attP (A), attB (B), attL (C), attR (D)에 결합하는 부위를 조사한 결과이다.8 is a result of examining the site where integrase MJ1 binds to attP (A), attB (B), attL (C) and attR (D) by DNA foot printing.

도 9는 인테그라아제 MJ1이 attP, attB, attL, attR DNA에 결합하는 부위의 염기서열을 나타낸 것이다(밑줄친 AGT는 접합부위(attach site)간에 crossover되는 부위를 나타냄).Figure 9 shows the nucleotide sequence of the site where the integrase MJ1 binds to attP, attB, attL, attR DNA (underlined AGT represents a site that crossover between attachment sites).

도 10은 MJ1 유전자 및 attP site를 포함하는 플라스미드(pTMJ1)와 attB site를 포함하는 플라스미드(pATTB1)를E.coliJM109에 함께 형질전환(co-transformation)시켰을 때E.coli내에서 부위 특이적 재조합(site-specific recombination)이 일어나 키메릭 플라스미드(pREC1)이 형성된 것을 모식도한 것이다.10 shows site-specific recombination in E. coli when co-transformed the plasmid containing the MJ1 gene and the attP site (pTMJ1) and the plasmid containing the attB site (pATTB1) together with E. coli JM109. The site-specific recombination occurred and the chimeric plasmid (pREC1) was formed.

본 발명은 MJ1 유전자를 포함하는 발현벡터, 형질전환체 및 상기 형질전환체를 이용한 인테그라아제(integrase) MJ1의 제조방법을 제공한다.The present invention provides an expression vector, a transformant comprising the MJ1 gene, and a method for preparing integrase MJ1 using the transformant.

본 발명에서 바람직한 일실시예로 사용된 pET32a(+) 벡터(Novagen사. USA)는 109개의 아미노산으로 이루어진 티오레독신(thioredoxin) 단백질을 코딩하고 있는 trx-taggingd용 발현벡터이다.PET32a (+) vector (Novagen, USA) used as a preferred embodiment in the present invention is an expression vector for trx-taggingd encoding a thioredoxin protein consisting of 109 amino acids.

따라서, 상기 벡터를 이용하여 생산된 본 발명 인테그라아제 MJ1 효소는 티오레독신과 융합되어 있음을 그 특징으로 하며, 분자량이 약 70kDa로써, 원형형태(closed circular form)의 DNA 뿐만 아니라 선형형태(linear form) DNA의재조합(recombination)도 촉매하고, 에너지원과 2가 양이온을 필요로 하지 않아 효소 단독으로도 활성을 나타내며, 최적 반응 pH 7.6, 최적 반응온도 37℃이고,Enterocuccus.faecalis뿐만 아니라E.coli시스템에서도 활성을 유지한다.Therefore, the integrase MJ1 enzyme of the present invention produced using the vector is characterized in that it is fused with thioredoxin, and has a molecular weight of about 70 kDa, which is linear as well as linear in a closed circular form. form) It also catalyzes the recombination of DNA, does not require an energy source and divalent cations, and exhibits activity as an enzyme alone. It has an optimum reaction pH of 7.6, an optimum reaction temperature of 37 ° C, as well as Enterocuccus.faecalis . It is also active in the coli system.

본 발명에서 attP는 파지의 접합부위(attachment site; 738bp)를, attB는 박테리아의 접합부위(290bp)를 의미하며, attL과 attR은 상기 attP와 attB의 각 strand 교환에 의해 부위-특이적으로 재조합(site-specific recombination)된 attL(404bp), attR(624bp)의 DNA를 의미한다(이하 ‘attP’, ‘attB’, ‘attL’, ‘attR’ 라 약칭한다).In the present invention, attP refers to the attachment site of phage (738bp), attB refers to the attachment site of bacteria (290bp), attL and attR are site-specific recombination by each strand exchange of the attP and attB (at site-specific recombination) means attL (404bp), attR (624bp) DNA (hereinafter abbreviated as 'attP', 'attB', 'attL', 'attR').

상기 attB를 클로닝하기 위하여 파지φFC의 indicator strain인Enterococcus faccalisKBL 707균주(기탁번호 KFCC 12177)를 KCCM에서 분양받아 PCR의 주형(template)로 사용하였으며, attL, attR는 파지φFC가 염색체에 삽입(integration)된Enterococcus faccalisKBL 703 균주(Kim et al., Mol.Cells 4;155-158)를 사용하여 클로닝하였고, attP는 7.7kb의 φFC1 DNA가 삽입된 벡터인 pFE1(Kim, Y. W. 1999. Genetic studies of bacteriophage FC1 from Enterococcus faecalis. Ph.D. thesis. Korea University. Korea)를 주형으로 사용하였다.In order to clone the attB, Enterococcus faccalis KBL 707 strain (Accession No. KFCC 12177), an indicator strain of phage φFC, was distributed from KCCM and used as a template for PCR, and attL and attR were inserted into the chromosome. ) Was cloned using Enterococcus faccalis KBL 703 strain (Kim et al., Mol. Cells 4; 155-158), and attP was a vector containing 7.7 kb of φFC1 DNA, pFE1 (Kim, YW 1999. Genetic studies of bacteriophage FC1 from Enterococcus faecalis. Ph.D. thesis.Korea University.Korea) was used as a template.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

실험예 1: 박테리아 균주 및 플라스미드 구축Experimental Example 1: Bacteria Strain and Plasmid Construction

파지의 재조합 부위인 attP 근처에서 부위-특이적인 재조합 효소를 인코딩(encoding)하는 것으로 추정되는 MJ1 유전자를 lacUV5 프로모터를 가지는 pET14b(Novagene)에 삽입한 후E. coli에 형질전환시켜 분자량이 약 53kDa인 단백질을 발현시켰다. 그러나 MJ1이 봉입체(inclusion bodies;IBs) 형태를 띠는 불용성 단백질(insoluble protein)의 형성을 초래하여, 활성을 나타내지 않았으며, 이로 인해 MJ1 효소가 부위-특이적 재조합 효소(site-specific recombinase)의 활성을 가지는지 확인할 수 없었을 뿐만 아니라, 단백질 정제의 곤란성도 있었다(Kim et al., J. Biochem. Mol. Biol.29:448∼454).The MJ1 gene, which is supposed to encode site-specific recombinase, was inserted near pt14b (Novagene) with lacUV5 promoter and transformed into E. coli by molecular weight of about 53 kDa. Protein was expressed. MJ1, however, caused the formation of insoluble proteins in the form of inclusion bodies (IBs), which showed no activity, which caused the MJ1 enzyme to undergo site-specific recombinase activity. Not only could it be confirmed that it had activity, but there was also difficulty in protein purification (Kim et al., J. Biochem. Mol. Biol. 29: 448-454).

따라서, 본 발명자는 MJ1 유전자에 티오레독신(thioredoxin)이 tagging된 융합단백질을 발현시키고자 하였다.Therefore, the present inventors attempted to express a fusion protein tagged with thioredoxin in the MJ1 gene.

먼저, 7.7kb의 φFC1 DNA가 삽입된 벡터인 pFE1(Kim, Y. W. 1999. Genetic studies of bacteriophage FC1 from Enterococcus faecalis. Ph.D. thesis. Korea University. Korea)을 주형으로 하고, 하기 표1에 나타낸 프라이머(MJ1 forward, reverse)를 사용하여 PCR로 MJ1 유전자를 증폭하였다. 상기 증폭된 MJ1 유전자(서열3)를BamHI과EcoRI 제한효소 처리 후 trx-taggingd용 발현벡터인 pET32a(+)플라스미드에 삽입하여 벡터 PTMJ1을 구축하였으며(도2), 상기 재조합 벡터를E.coli계통인 BL21(DE3)pLysS에 형질전환시켜 형질전환체를 제조하고, 이를 BL21(DE3)pLysS/PTMJ1라 명명하였다.First, pFE1 (Kim, YW 1999. Genetic studies of bacteriophage FC1 from Enterococcus faecalis. Ph. D. thesis. Korea University. (MJ1 forward, reverse) was used to amplify the MJ1 gene by PCR. The amplified MJ1 gene (SEQ ID NO: 3)BamHI andEcoAfter treatment with RI restriction enzyme, the vector was inserted into pET32a (+) plasmid, which is an expression vector for trx-taggingd, to construct a vector PTMJ1 (FIG. 2).E.coliLineage A transformant was prepared by transforming BL21 (DE3) pLysS, which was named BL21 (DE3) pLysS / PTMJ1.

본 발명에서 사용한 프라이머Primer used in the present invention 올리고뉴클레오티드Oligonucleotide 염기서열Sequence MJ 1 forwardMJ 1 forward 5'-cgGGATCCatgaaacgtgcagcattg-3' 대문자는BamHI을 나타냄. (서열 1)5'-cgGGATCCatgaaacgtgcagcattg-3 'Uppercase indicates Bam HI. (SEQ ID NO: 1) MJ 1 reverseMJ 1 reverse 5'-cgGAATTCaccgaatgcatgttcgta-3' 대문자는EcoRI을 나타냄. (서열 2)5'-cgGAATTCaccgaatgcatgttcgta-3 'Capital letters indicate Eco RI. (SEQ ID NO: 2) ON-1ON-1 cggccattgaattagggtgtcgaat(서열 5)cggccattgaattagggtgtcgaat (SEQ ID NO: 5) ON-2ON-2 cggattgccagatggatgat(서열 6)cggattgccagatggatgat (SEQ ID NO: 6) Phy2Phy2 gaagatcttgttctcgagcatagtctcc(서열 7)gaagatcttgttctcgagcatagtctcc (SEQ ID NO: 7) Phy3Phy3 gcgttaactgccaatatagc(서열 8)gcgttaactgccaatatagc (SEQ ID NO: 8)

한편, attP(739bp)와 attB(290bp)를 PCR로 증폭하여 각각 pT7 blue 벡터Meanwhile, attP (739bp) and attB (290bp) were amplified by PCR and pT7 blue vector

(Novagen Co.)에 삽입하여 pATTP와 pATTB 재조합 벡터를 구축하였으며, attL(404bp)과 attR(624bp)는 pGEM T-Easy(Promega Co.)에 삽입하여 pATTL과 pATTR를 제조하였다(표 2).PATTP and pATTB recombinant vectors were constructed by inserting them into Novagen Co., and attL (404 bp) and attR (624 bp) were inserted into pGEM T-Easy (Promega Co.) to prepare pATTL and pATTR (Table 2).

attP, attB, attL, attR를 증폭하기 위한 PCR 조건PCR conditions for amplifying attP, attB, attL, attR 프라이머primer 주형(template)Template attP(738bp)attP (738 bp) phy2phy3phy2phy3 7.7kb의 φFC1 DNA가 삽입된 벡터 PEF1Vector PEF1 with 7.7 kb of φFC1 DNA attB(290bp)attB (290 bp) on-1on-2on-1on-2 Enterococcus faecallisKBL 707의 genomic DNAGenomic DNA of Enterococcus faecallis KBL 707 attL(404bp)attL (404bp) on-1phy3on-1phy3 Enterococcus faecallisKBL 703의 genomic DNAGenomic DNA of Enterococcus faecallis KBL 703 attR(624bp)attR (624 bp) phy2on-2phy2on-2 Enterococcus faecallisKBL 703의 genomic DNAGenomic DNA of Enterococcus faecallis KBL 703

실험예 2: 재조합 효소 MJ1의 정제Experimental Example 2: Purification of Recombinant Enzyme MJ1

상기 형질전환체 BL21(DE3)pLysS/PTMJ1을 0.5mM isopropyl-1-thio-β-D-falactoside(IPTG)가 첨가한 후 15℃에서 인덕션(induction)하여 배양하였다. 상기 500ml의 배양액을 -70℃에서 얼린 후, 녹여 15ml의 lysis buffer(50mM NaH2PO4(pH8.0), 300mM NaCl, 10mM imidasole)에 정치한 후 초음파처리(sonicaton)하여 세포를 파쇄하였다. 상기 추출물을 원심분리하여 상등액을 취한 후, Ni-NTA 레진을 첨가하여 단백질을 바이딩(binding) 시킨 후 여러번 세척하고 elution buffer(20mM Tris-Cl, 0.5M NaCl, 1M inidazole)로 단백질을 추출하였다.The transformant BL21 (DE3) pLysS / PTMJ1 was incubated at 15 ° C. after addition of 0.5 mM isopropyl-1-thio-β-D-falactoside (IPTG). After 500 ml of the culture solution was frozen at -70 ° C, it was dissolved, left in 15 ml of lysis buffer (50 mM NaH 2 PO 4 (pH 8.0), 300 mM NaCl, 10 mM imidasole), and then sonicated (sonicaton) to crush the cells. The supernatant was taken by centrifugation of the extract, followed by binding the protein by adding Ni-NTA resin, followed by washing several times, and extracting the protein with elution buffer (20mM Tris-Cl, 0.5M NaCl, 1M inidazole). .

상기 정제된 티오레독신-융합단백질을 SDS-PAGE(A)한 결과, 분자량이 약 70kDa임을 확인하였다(도 3A).SDS-PAGE (A) of the purified thioredoxin-fusion protein confirmed that the molecular weight was about 70 kDa (FIG. 3A).

한편, 상기 발현된 재조합 효소가 불용성 단백질(insoluble protein)이 아닌 가용성 단백질(soluble protein)의 형태로 발현되었는지 확인하기 위하여 초음파처리하여 세포를 파쇄한 후 원심분리하여 침전된 분획(insoluble fraction)과 그 상등액(soluble fraction)을 웨스턴 블럿팅한 결과, 침전된 분획과 반응하지 않고, 상등액(soluble fraction)과 반응하므로써, 발현된 재조합 효소 MJ1이 가용성 단백질(soluble protein)임을 알 수 있었다(도 3B).On the other hand, in order to determine whether the expressed recombinant enzyme is expressed in the form of a soluble protein (insoluble protein) rather than an insoluble protein (insoluble protein) sonicated to crush the cells and then centrifuged to precipitate (insoluble fraction) and its As a result of Western blotting of the soluble fraction, it was found that the expressed recombinant enzyme MJ1 was a soluble protein without reacting with the precipitated fraction but with the soluble fraction (FIG. 3B).

실험예 3: 부위특이적 재조합(site-specific recombination)분석Experimental Example 3: Site-specific Recombination Analysis

친화성 크로마토그래피로 정제한 상기 재조합 효소 MJ1 100㎕를 1㎍의 선형(Linear)의 attP DNA 및 attB DNA와 혼합하였다. 최적 반응조건 30mM Tris, pH7.6, 15mM NaCl, 80mM KCl, 0.7mM EDTA, 7% 글리세롤이며, 37℃에서 반응시켰다.페놀추출(phenol extracton)하여 반응을 종결시킨 후 에탄올 침전하였다. 제한효소를 처리한 후 1.2%의 아가로즈 겔에서 전기영동한 후 Et-Br로 염색하여 UV상에서 밴드패턴을 관찰하였다.100 μl of the recombinant enzyme MJ1 purified by affinity chromatography was mixed with 1 μg of linear attP DNA and attB DNA. Optimal reaction conditions 30mM Tris, pH7.6, 15mM NaCl, 80mM KCl, 0.7mM EDTA, 7% glycerol, and reaction at 37 ℃. The reaction was terminated by phenol extracton and ethanol precipitated. After the restriction enzyme treatment, electrophoresis on 1.2% agarose gel was followed by staining with Et-Br to observe band patterns on UV.

실험결과, 6.8Kbp의 재조합된 DNA가 나타나 MJ1이 단독으로 파지(phage)의 박테리아의 접합부위(bacterial attachment site)인attB로의 삽입(integration)을 촉매함을 알 수 있었다(도4). 또한 원형(closed circular form)의 접합부위 뿐만 아니라 선형의 접합부위간의 재조합(recombination)도 촉매하는 것으로 보아 substrate의 특정한 형태를 요구하지 않는 것으로 보인다(도5).As a result, 6.8 Kbp of recombinant DNA appeared, indicating that MJ1 alone catalyzed the integration of phage into att B, the bacterial attachment site (FIG. 4). It also appears to catalyze the recombination between linear junctions as well as closed circular forms, which does not seem to require a particular form of substrate (FIG. 5).

한편, 인테그라아제 MJ1이 반응하는데 있어서 에너지원이나 2가 양이온을 필요로 하는지 확인하기 위하여 상기 반응혼합물에 10mM MgCl2와 2mM ATP를 첨가하였다. 반응결과, 도 6에 나타난 바와 같이 인테그라아제 MJ1은 에너지원과 2가 양이온을 필요로 하지 않았다.On the other hand, 10mM MgCl 2 and 2mM ATP were added to the reaction mixture to determine whether integrase MJ1 requires an energy source or a divalent cation. As a result, integrase MJ1 did not require an energy source and a divalent cation, as shown in FIG. 6.

실험예 4 : 겔 이동양상 분석(Gel shift assay)을 통한 효소 MJ1의 재조합 활성측정Experimental Example 4 Determination of Recombinant Activity of Enzyme MJ1 by Gel Shift Assay

T4 폴리뉴클레오티드 키나제를 사용하여 ON1, ON-2, Phy2, Phy3, MJ1 reverse의 올리고뉴클레오타이드에 [λ-32P] ATP를 라벨링한 후(Sambrook 등) BioGel P6(Bio-rad)를 이용한 스핀-컬럼 크로마토그래피에 의해 라벨링된 올리고뉴클레오타이드를 정제하였으며, 상기 라벨링된 프라이머를 사용하여 하기의 PCR 조건으로 attP(287bp; 프라이머로 mj1 reverse, phy3 사용), attB(290bp), attL(404bp), attR(172bp; 프라이머로 mj1 reverse, ON2 사용)을 증폭하였다(도1).Spin-column using BioGel P6 (Bio-rad) after labeling [λ- 32 P] ATP to oligonucleotides of ON1, ON-2, Phy2, Phy3, MJ1 reverse using T4 polynucleotide kinase The oligonucleotides labeled by chromatography were purified and attP (287bp; mj1 reverse, using phy3 as primers), attB (290bp), attL (404bp), attR (172bp) were prepared using the labeled primers under the following PCR conditions. ; Mj1 reverse, using ON2 as a primer) (Fig. 1).

1×바인딩 버퍼(30mM Tris, pH 7.6, 15mM NaCl, 80mM KCl, 0.1mM EDTA, 0.3㎎/ml 송아지 흉선 DNA, 0.3㎎/ml 소 혈청 알부민)에 방사선동위원소로 라벨링된 attP(287bp), attB(290bp), attL(404bp), attR(172bp)와 정제된 MJ1 효소를 혼합한 후 상온에서 20분간 반응시킨 다음 5% 폴리아크릴아마이드 겔에서 전기영동한 후 필림에 감광시켜 밴드를 분석하였다.AttP (287 bp), attB labeled with radioisotopes in 1 × binding buffer (30 mM Tris, pH 7.6, 15 mM NaCl, 80 mM KCl, 0.1 mM EDTA, 0.3 mg / ml calf thymus DNA, 0.3 mg / ml bovine serum albumin) (290 bp), attL (404 bp), attR (172 bp) and purified MJ1 enzyme was mixed and reacted at room temperature for 20 minutes, followed by electrophoresis on a 5% polyacrylamide gel, and then subjected to film film analysis.

실험결과, 도 7에 나타난 바와 같이 정제된 MJ1 효소가 상기 4개의 재조합 부위 attP(287bp; A), attB(290bp; B), attL(404bp; C), attR(172bp; D)에 결합하는 것을 확인할 수 있었다(C:MJ1효소와 프로브의 복합체, F: 프로브를 의미한다).As a result, the purified MJ1 enzyme binds to the four recombinant sites attP (287bp; A), attB (290bp; B), attL (404bp; C), and attR (172bp; D). It could be confirmed (complex of C: MJ1 enzyme and probe, F: means probe).

실험예 5 : DNase I footprinting에 의한 MJ1 효소의 결합부위 조사Experimental Example 5: Investigation of binding site of MJ1 enzyme by DNase I footprinting

MJ1이 결합하는 부위는 알아보기 위하여 DNase I footprinting을 실시하였다.DNase I footprinting was performed to determine the binding site of MJ1.

상기32P로 라벨링된 DNA에 인테그라아제 MJ1과 5mM MgCl2,1mM CaCl2이 첨가된 바이딩 버퍼(binding buffer)와 반응시킨 후 DNAse Ⅰ처리하였고, 페놀처리와 에탄올 침전한 다음 7M 우레아 8% 시퀀싱 폴리아크릴아마이드 겔에서 전기영동하였다. 실험결과, 정제된 MJ1은 attP, attB, attL, attR DNA의 44~52bp 가량에 결합하며, attP와 attB가 교차하여 재조합 되는 부위에 결합하는 것으로 나타났다(도8,도 9).A DNA labeled with the 32 P integrase azepin MJ1 and 5mM MgCl 2, 1mM CaCl 2 is added to the by-ding buffer (binding buffer) and one was reacted DNAse Ⅰ was treated, phenol treatment and ethanol precipitation and then 7M urea, 8% sequencing Electrophoresis was performed on polyacrylamide gels. As a result, purified MJ1 binds to about 44-52 bp of attP, attB, attL, and attR DNA, and binds to the site where attP and attB cross and recombine (FIG. 8, FIG. 9).

상기와 같이 본 발명 φFC1 인테그라아제(integrase) MJ1은 attP와 attB가 교차하여 재조합 되는 부위에 바인딩하며, 효소 단독으로도 활성을 나타내, 종래 보조단백질(accessory proteins)을 필요로 하고 multiple binding site에 결합하는 λintegrase(landy, 1989;Annu. Rev, Biochem.58:913-949)와는 상당히 다르게 나타났다.As described above, the φFC1 integrase MJ1 of the present invention binds to a site where attP and attB cross and recombine, and also exhibits activity as an enzyme alone, requiring conventional accessory proteins and binding to multiple binding sites. Λintegrase (landy, 1989; Annu. Rev, Biochem . 58 : 913-949) was significantly different.

실험예 6:Experimental Example 6: E.coliE.coli 시스템에서 MJ1 효소의 염색체간 재조합활성 분석(intermolecular integration assay )Intermolecular integration assay of MJ1 enzyme in the system

박테리아의 접합부위인(attachment site) attB를 포함하는 290bp의 DNA 단편을E. faecalisKBL 707 genomic DNA로부터 PCR 증폭하여 pACYC184의AvaI site에 라이게이션하여 pATTB11을 제조하였다. MJ1 발현 플라스미드 PTMJ1 즉, integrase MJ1 과 attP 사이트가 있는 플라스미드와 pATTB11을E.coliJM109에 co-transformation 하였다.PATTB11 was prepared by PCR amplification of a 290 bp DNA fragment containing attB, the attachment site of bacteria, from E. faecalis KBL 707 genomic DNA and ligating to the Ava I site of pACYC184. MJ1 expression plasmid PTMJ1, ie, plasmid with integrase MJ1 and attP sites, and pATTB11 were co-transformed into E. coli JM109.

형질전환된 세포로부터 분리한 플라스미드 DNA의 제한효소 처리한 패턴(restriction-enzyme digestion pattern)은 본래의 플라스미드 뿐만 아니라, pATTB11의 attB site 와 PTMJ1의 attP site 사이에서 intermolecular integration reaction이 있어 키메릭 플라스미드(pREC1)이 형성되었음을 알 수 있었다(도10). 좀더 정확하게 pATTB11과 PTMJ1사이에서 부위 특이적인 재조합(site-specific recomnination)이 일어났음을 확인하기 위하여, pATTB1과 PTMJ1을cotransformation 시켜준E.coliJM 109로부터 플라스미드 DNA를 추출하여 junction amplification과 시퀀싱(sequencing)을 실시하였다.The restriction-enzyme digestion pattern of the plasmid DNA isolated from the transformed cells is an intermolecular integration reaction between the attB site of pATTB11 and the attP site of PTMJ1, as well as the original plasmid, resulting in a chimeric plasmid (pREC1). ) Was formed (Fig. 10). To more precisely identify site-specific recomnination between pATTB11 and PTMJ1, plasmid DNA was extracted from E.coli JM 109, which cotransformed pATTB1 and PTMJ1, resulting in junction amplification and sequencing. Was carried out.

실험결과, chimeric plasmid를 형성하는 부위-특이적인 재조합(site-specific recombination)이 일어났음을 확인할 수 있었다(도10). 상기 결과는 플라스미드 pATTB1과 PTMJ1이 각각 functional attB와 attP 부위를 지니고 있으며, 파지 φFC1 인테그레아제 MJ1이Enterocuccus.faecalis뿐만 아니라E.coli시스템에서도 기능한다는 사실을 확인할 수 있었다.As a result, it was confirmed that site-specific recombination occurred to form chimeric plasmid (FIG. 10). The results show that plasmids pATTB1 and PTMJ1 have functional attB and attP sites, respectively, and that phage φFC1 intease MJ1 functions in the E. coli system as well as Enterocuccus.faecalis .

이상, 상기 실시예를 통하여 명백한 바와 같은, 본 발명 장내구균 용원성 파지 φFC1(Enterococcustemperate bacteriophage φFC1) 유래의 MJ1 유전자를 이용하여 생산된 재조합 인테그라아제(integrase) MJ1은 조효소없이 상기 효소 단독으로도 활성을 지니며,E.coli내에서도 활성을 나타내므로,E.coli의 염색체, 더 나아가 고등생명체의 염색체에 특정유전자를 삽입하는데 유용하게 사용될 수 있으므로 유전자치료(gene therapy) 및 의약품 산업상 매우 유용한 발명인 것이다.As described above, the recombinant integrase MJ1 produced using the MJ1 gene derived from Enterococcus temperate bacteriophage φFC1 ( Enterococcus temperate bacteriophage φFC1) of the present invention, as evident from the above examples, is active even without the enzyme alone. Since it is active in E. coli , it can be used to insert a specific gene into the chromosome of E. coli , or even higher chromosome, so it is a very useful invention in gene therapy and pharmaceutical industry. .

<110> KOREA CHUNGANG EDUCATIONAL FOUNDATION <120> Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same <160> 8 <170> KopatentIn 1.71 <210> 1 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of mj1 gene (forward) <400> 1 cgggatccat gaaacgtgca gcattg 26 <210> 2 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of mj1 gene (reverse) <400> 2 cggaattcac cgaatgcatg ttcgta 26 <210> 3 <211> 1493 <212> DNA <213> Bacteriophage FC1 <220> <221> CDS <222> (6)..(1397) <223> mj1 open reading frame <400> 3 gatcc atg aaa cgt gca gca ttg tat ata cgt gta tcc aca atg gaa 47 Met Lys Arg Ala Ala Leu Tyr Ile Arg Val Ser Thr Met Glu 1 5 10 caa gcc aag gaa gga tac agc att ccc gca caa aca gat aaa cta aaa 95 Gln Ala Lys Glu Gly Tyr Ser Ile Pro Ala Gln Thr Asp Lys Leu Lys 15 20 25 30 gct ttt gca aaa gca aaa gat atg gca gtt gca aaa gta tat act gat 143 Ala Phe Ala Lys Ala Lys Asp Met Ala Val Ala Lys Val Tyr Thr Asp 35 40 45 cca ggg ttt tca gga gca aaa atg gag cgc cct gca tta caa gaa atg 191 Pro Gly Phe Ser Gly Ala Lys Met Glu Arg Pro Ala Leu Gln Glu Met 50 55 60 ata tct gat att caa aat aaa aaa att gat gtg gtt cta gtc tac aaa 239 Ile Ser Asp Ile Gln Asn Lys Lys Ile Asp Val Val Leu Val Tyr Lys 65 70 75 tta gac agg ctt tca cgt tca caa aag aat aca ttg tat tta att gaa 287 Leu Asp Arg Leu Ser Arg Ser Gln Lys Asn Thr Leu Tyr Leu Ile Glu 80 85 90 gat gta ttt cta aaa aat aat gta gac ttt atc agc atg caa gaa agc 335 Asp Val Phe Leu Lys Asn Asn Val Asp Phe Ile Ser Met Gln Glu Ser 95 100 105 110 ttt gac aca tca aca cct ttt ggc cgt gcg acg ata gga atg tta tcc 383 Phe Asp Thr Ser Thr Pro Phe Gly Arg Ala Thr Ile Gly Met Leu Ser 115 120 125 gtt ttt gca caa tta gag cga gac aca att aca gaa aga atg cac atg 431 Val Phe Ala Gln Leu Glu Arg Asp Thr Ile Thr Glu Arg Met His Met 130 135 140 gga aga aca gaa cgt gca aaa caa gga tac tat cac gga agt ggc att 479 Gly Arg Thr Glu Arg Ala Lys Gln Gly Tyr Tyr His Gly Ser Gly Ile 145 150 155 gtt ccc tta ggt tac gat tat gtg cat gga gaa tta att atc aat gat 527 Val Pro Leu Gly Tyr Asp Tyr Val His Gly Glu Leu Ile Ile Asn Asp 160 165 170 tac gag gcg caa att att caa gaa atc tat gat tta tat gtg aac caa 575 Tyr Glu Ala Gln Ile Ile Gln Glu Ile Tyr Asp Leu Tyr Val Asn Gln 175 180 185 190 ggt aaa gga cag caa tat ata aca aaa cgt atg gtt gca aaa tac cca 623 Gly Lys Gly Gln Gln Tyr Ile Thr Lys Arg Met Val Ala Lys Tyr Pro 195 200 205 gat aag gta aaa aca tta acc ata gta aag tat gcc tta acc aat cca 671 Asp Lys Val Lys Thr Leu Thr Ile Val Lys Tyr Ala Leu Thr Asn Pro 210 215 220 tta tat att ggc aaa ata agt tgg gac ggc aaa gtg tat gat ggc cat 719 Leu Tyr Ile Gly Lys Ile Ser Trp Asp Gly Lys Val Tyr Asp Gly His 225 230 235 cac tca cct ata att gat aaa tct atg tac gat aaa gct caa gaa att 767 His Ser Pro Ile Ile Asp Lys Ser Met Tyr Asp Lys Ala Gln Glu Ile 240 245 250 att gcc aga atg gct caa aaa ggt ggc gaa cag cat gga aat caa tta 815 Ile Ala Arg Met Ala Gln Lys Gly Gly Glu Gln His Gly Asn Gln Leu 255 260 265 270 ggg ctt tta tta ggg att act tat tgt ggt aaa tgc gga gct gaa gta 863 Gly Leu Leu Leu Gly Ile Thr Tyr Cys Gly Lys Cys Gly Ala Glu Val 275 280 285 ttt cgt tat gta tca gga ggc aaa aaa tat cga tat aat tat tat atg 911 Phe Arg Tyr Val Ser Gly Gly Lys Lys Tyr Arg Tyr Asn Tyr Tyr Met 290 295 300 tgt aga tca gta aag aaa atg cta cct tcg cta gta aaa gat tgg aac 959 Cys Arg Ser Val Lys Lys Met Leu Pro Ser Leu Val Lys Asp Trp Asn 305 310 315 tgc aaa caa cct agt ctc aga caa gaa gta gtt gaa aag aaa gta ata 1007 Cys Lys Gln Pro Ser Leu Arg Gln Glu Val Val Glu Lys Lys Val Ile 320 325 330 gat tca ctt aaa tca ttg gac ttc aaa aaa atc gaa cgt gaa tta aaa 1055 Asp Ser Leu Lys Ser Leu Asp Phe Lys Lys Ile Glu Arg Glu Leu Lys 335 340 345 350 caa gtt gaa aat aaa aca aaa tca aaa atc acc act att aat aac caa 1103 Gln Val Glu Asn Lys Thr Lys Ser Lys Ile Thr Thr Ile Asn Asn Gln 355 360 365 att tcc aag aag cat aac gaa aaa caa aaa att cta gat ttg tat caa 1151 Ile Ser Lys Lys His Asn Glu Lys Gln Lys Ile Leu Asp Leu Tyr Gln 370 375 380 tat ggt aca ttt gat gtc aca atg ctt aat gaa cgt atg aaa aaa att 1199 Tyr Gly Thr Phe Asp Val Thr Met Leu Asn Glu Arg Met Lys Lys Ile 385 390 395 gat aat gaa ata aat gcg tta act gcc aat ata gca aac tta gaa ggt 1247 Asp Asn Glu Ile Asn Ala Leu Thr Ala Asn Ile Ala Asn Leu Glu Gly 400 405 410 acc aaa agt gag tca tta att aat aag ctt gaa acg tta aaa act ttt 1295 Thr Lys Ser Glu Ser Leu Ile Asn Lys Leu Glu Thr Leu Lys Thr Phe 415 420 425 430 aat tgg gaa act gaa act aca gaa aat aaa atc ctt atc atc aaa gag 1343 Asn Trp Glu Thr Glu Thr Thr Glu Asn Lys Ile Leu Ile Ile Lys Glu 435 440 445 ttt gtt gaa cgt ata gaa cta ttt gat gat gag gta att att aaa tat 1391 Phe Val Glu Arg Ile Glu Leu Phe Asp Asp Glu Val Ile Ile Lys Tyr 450 455 460 aaa ttt tag gtacatagtg ttatttacac taataaacaa aatcatatac 1440 Lys Phe ctaaaatatt acatttatac aaacctatag acaatacgaa catgcattcg gtg 1493 <210> 4 <211> 464 <212> PRT <213> Bacteriophage FC1 <400> 4 Met Lys Arg Ala Ala Leu Tyr Ile Arg Val Ser Thr Met Glu Gln Ala 1 5 10 15 Lys Glu Gly Tyr Ser Ile Pro Ala Gln Thr Asp Lys Leu Lys Ala Phe 20 25 30 Ala Lys Ala Lys Asp Met Ala Val Ala Lys Val Tyr Thr Asp Pro Gly 35 40 45 Phe Ser Gly Ala Lys Met Glu Arg Pro Ala Leu Gln Glu Met Ile Ser 50 55 60 Asp Ile Gln Asn Lys Lys Ile Asp Val Val Leu Val Tyr Lys Leu Asp 65 70 75 80 Arg Leu Ser Arg Ser Gln Lys Asn Thr Leu Tyr Leu Ile Glu Asp Val 85 90 95 Phe Leu Lys Asn Asn Val Asp Phe Ile Ser Met Gln Glu Ser Phe Asp 100 105 110 Thr Ser Thr Pro Phe Gly Arg Ala Thr Ile Gly Met Leu Ser Val Phe 115 120 125 Ala Gln Leu Glu Arg Asp Thr Ile Thr Glu Arg Met His Met Gly Arg 130 135 140 Thr Glu Arg Ala Lys Gln Gly Tyr Tyr His Gly Ser Gly Ile Val Pro 145 150 155 160 Leu Gly Tyr Asp Tyr Val His Gly Glu Leu Ile Ile Asn Asp Tyr Glu 165 170 175 Ala Gln Ile Ile Gln Glu Ile Tyr Asp Leu Tyr Val Asn Gln Gly Lys 180 185 190 Gly Gln Gln Tyr Ile Thr Lys Arg Met Val Ala Lys Tyr Pro Asp Lys 195 200 205 Val Lys Thr Leu Thr Ile Val Lys Tyr Ala Leu Thr Asn Pro Leu Tyr 210 215 220 Ile Gly Lys Ile Ser Trp Asp Gly Lys Val Tyr Asp Gly His His Ser 225 230 235 240 Pro Ile Ile Asp Lys Ser Met Tyr Asp Lys Ala Gln Glu Ile Ile Ala 245 250 255 Arg Met Ala Gln Lys Gly Gly Glu Gln His Gly Asn Gln Leu Gly Leu 260 265 270 Leu Leu Gly Ile Thr Tyr Cys Gly Lys Cys Gly Ala Glu Val Phe Arg 275 280 285 Tyr Val Ser Gly Gly Lys Lys Tyr Arg Tyr Asn Tyr Tyr Met Cys Arg 290 295 300 Ser Val Lys Lys Met Leu Pro Ser Leu Val Lys Asp Trp Asn Cys Lys 305 310 315 320 Gln Pro Ser Leu Arg Gln Glu Val Val Glu Lys Lys Val Ile Asp Ser 325 330 335 Leu Lys Ser Leu Asp Phe Lys Lys Ile Glu Arg Glu Leu Lys Gln Val 340 345 350 Glu Asn Lys Thr Lys Ser Lys Ile Thr Thr Ile Asn Asn Gln Ile Ser 355 360 365 Lys Lys His Asn Glu Lys Gln Lys Ile Leu Asp Leu Tyr Gln Tyr Gly 370 375 380 Thr Phe Asp Val Thr Met Leu Asn Glu Arg Met Lys Lys Ile Asp Asn 385 390 395 400 Glu Ile Asn Ala Leu Thr Ala Asn Ile Ala Asn Leu Glu Gly Thr Lys 405 410 415 Ser Glu Ser Leu Ile Asn Lys Leu Glu Thr Leu Lys Thr Phe Asn Trp 420 425 430 Glu Thr Glu Thr Thr Glu Asn Lys Ile Leu Ile Ile Lys Glu Phe Val 435 440 445 Glu Arg Ile Glu Leu Phe Asp Asp Glu Val Ile Ile Lys Tyr Lys Phe 450 455 460 <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> on-1 primer for cloning of attB, attL <400> 5 cggccattga attagggtgt cgaat 25 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> on-2 primer for cloning of attB, attR <400> 6 cggattgcca gatggatgat 20 <210> 7 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> phy2 primer for cloning of attP, attR <400> 7 gaagatcttg ttctcgagca tagtctcc 28 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> phy3 primer for cloning of attL, attP <400> 8 gcgttaactg ccaatatagc 20<110> KOREA CHUNGANG EDUCATIONAL FOUNDATION <120> Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same <160> 8 <170> KopatentIn 1.71 <210> 1 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of mj1 gene (forward) <400> 1 cgggatccat gaaacgtgca gcattg 26 <210> 2 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of mj1 gene (reverse) <400> 2 cggaattcac cgaatgcatg ttcgta 26 <210> 3 <211> 1493 <212> DNA <213> Bacteriophage FC1 <220> <221> CDS <222> (6) .. (1397) <223 > mj1 open reading frame <400> 3 gatcc atg aaa cgt gca gca ttg tat ata cgt gta tcc aca atg gaa 47 Met Lys Arg Ala Ala Leu Tyr Ile Arg Val Ser Thr Met Glu 1 5 10 caa gcc aag gaa gga t ac agc att ccc gca caa aca gat aaa cta aaa 95 Gln Ala Lys Glu Gly Tyr Ser Ile Pro Ala Gln Thr Asp Lys Leu Lys 15 20 25 30 gct ttt gca aaa gca aaa gat atg gca gtt gca aaa gta tat act gat 143 Ala Phe Ala Lys Ala Lys Asp Met Ala Val Ala Lys Val Tyr Thr Asp 35 40 45 cca ggg ttt tca gga gca aaa atg gag cgc cct gca tta caa gaa atg 191 Pro Gly Phe Ser Gly Ala Lys Met Glu Arg Pro Ala Leu Gln Glu Met 50 55 60 ata tct gat att caa aat aaa aaa att gat gtg gtt cta gtc tac aaa 239 Ile Ser Asp Ile Gln Asn Lys Lys Ile Asp Val Val Leu Val Tyr Lys 65 70 75 tta gac agg ctt tca cgt tca caa aag aat aca ttg tat tta att gaa 287 Leu Asp Arg Leu Ser Arg Ser Gln Lys Asn Thr Leu Tyr Leu Ile Glu 80 85 90 gat gta ttt cta aaa aat aat gta gac ttt atc agc atg caa gaa agc 335 Asp Val Phe Leu Lys Asn Asn Val Asp Phe Ile Ser Met Gln Glu Ser 95 100 105 110 ttt gac aca tca aca cct ttt ggc cgt gcg acg ata gga atg tta tcc 383 Phe Asp Thr Ser Thr Pro Phe Gly Arg Ala Thr Ile Gly Met Leu Ser 115 120 125 gtt ttt gca caa tta gag cga gac aca att aca gaa aga atg cac atg 431 Val Phe Ala Gln Leu Glu Arg Asp Thr Ile Thr Glu Arg Met His Met 130 135 140 gga aga aca gaa cgt gca aaa caa gga tac tat cac gga agt ggc att 479 Gly Arg Thr Glu Arg Ala Lys Gln Gly Tyr Tyr His Gly Ser Gly Ile 145 150 155 gtt ccc tta ggt tac gat tat gtg cat gga gaa tta att atc aat gat 527 Val Pro Leu Gly Tyr Asp Tyr Val His Gly Glu L eu Ile Ile Asn Asp 160 165 170 tac gag gcg caa att att caa gaa atc tat gat tta tat gtg aac caa 575 Tyr Glu Ala Gln Ile Ile Gln Glu Ile Tyr Asp Leu Tyr Val Asn Gln 175 180 185 190 ggt aaa gga cag caa tat ata aca aaa cgt atg gtt gca aaa tac cca 623 Gly Lys Gly Gln Gln Tyr Ile Thr Lys Arg Met Val Ala Lys Tyr Pro 195 200 205 gat aag gta aaa aca tta acc ata gta aag tat gcc tta acc aat cca 671 Asp Lys Val Lys Thr Leu Thr Ile Val Lys Tyr Ala Leu Thr Asn Pro 210 215 220 tta tat att ggc aaa ata agt tgg gac ggc aaa gtg tat gat ggc cat 719 Leu Tyr Ile Gly Lys Ile Ser Trp Asp Gly Lys Val Tyr Asp Gly His 225 230 235 cac tca cct ata att gat aaa tct atg tac gat aaa gct caa gaa att 767 His Ser Pro Ile Ile Asp Lys Ser Met Tyr Asp Lys Ala Gln Glu Ile 240 245 250 att gcc aga atg gct caa aaa ggt ggc gaa cag cat gga aat caa tta 815 Ile Ala Arg Met Ala Gln Lys Gly Gly Glu Gln His Gly Asn Gln Leu 255 260 265 270 ggg ctt tta tta ggg att act tat tgt ggt aaa tgc gga gct gaa gta 863 Gly Leu Leu Leu Gly Ile Thr Tyr Cys Gly Lys Cys Gly Ala Glu Val 275 280 285 ttt cgt tat gta tca gga aaa aaa tat cga tat aat tat tat atg 911 Phe Arg Tyr Val Ser Gly Gly Lys Lys Tyr Arg Tyr Asn Tyr Tyr Met 290 295 300 tgt aga tca gta aag aaa atg cta cct tcg cta gta aaa gat tgg aac 959 Cys Arg Ser Val Lys Lys Met Leu Pro Ser Leu Val Lys Asp Trp Asn 305 310 315 tgc aaa caa cct agt ctc aga caa gaa gta gtt gaa aag aaa gta ata 1007 Cys Lys Gln Pro Ser Leu Arg Gln Glu Val Val Glu Lys Lys Val Ile 320 325 330 gat tca ctt aaa tca ttg gac ttc aaa aaa atc gaa cgt gaa tta aaa 1055 Asp Ser Leu Lys Ser Leu Asp Phe Lys Lys Ile Glu Arg Glu Leu Lys 335 340 345 350 caa gtt gaa aat aaa aca aaa tca aaa atc acc act att aat aac caa 1103 Gln Val Glu Asn Lys Thr Lys Ser Lys Ile Thr Thr Ile Asn Asn Gln 355 360 365 att tcc aag aag cat aac gaa aaa caa aaa att cta gat ttg tat caa 1151 Ile Ser Lys Lys His Asn Glu Lys Gln Lys Ile Leu Asp Leu Tyr Gln 370 375 380 tat ggt aca ttt gat gtc aca atg ctt aat gaa cgt atg aaa aaa att 1199 Tyr Gly Thr Phe Asp Val Thr Met Leu Asn Glu Arg Met Lys Lys Ile 385 390 395 gat aat gaa ata aat gcg tta act gcc aat ata gca aac tta gaa ggt 1247 Asp Asn Glu Ile Asn Ala Leu Thr Ala Asn Ile Ala Asn Leu Glu Gly 400 405 410 acc aaa agt gag tca tta att aat aag ctt gaa acg tta aaa act ttt 1295 Thr Lys Ser Glu Ser Leu Ile Asn Lys Leu Glu Thr Leu Lys Thr Phe 415 420 425 430 aat tgg gaa act gaa act aca gaa aat aaa atc ctt atc atc aaa gag 1343 Asn Trp Glu Thr Glu Thr Thr Glu Asn Lys Ile Leu Ile Ile Lys Glu 435 440 445 ttt gtt gaa cgt ata gaa cta ttt gat gat gag gta att att aaa tat 1391 Phe Val Glu Arg Ile Glu Leu Phe Asp Asp Glu Val Ile Ile Lys Tyr 450 455 460 aaa ttt tag gtacatagtg ttatttacac taataaacaa aatcatatac 1440 Lys Phe ctaaaatatt acatttatac aaacctatag acaatacgaa catgcattcg gtg 1493 <210> 4 <211> 464 <212> PRT <213> Bacteriophage FC1 <400> 4 Met Lys Arg Ala Ala Leu Tyr Ile Arg Val Ser Thr Met Glu Gln Ala 1 5 10 15 Lys Glu Gly Tyr Ser Ile Pro Ala Gln Thr Asp Lys Leu Lys Ala Phe 20 25 30 Ala Lys Ala Lys Asp Met Ala Val Ala Lys Val Tyr Thr Asp Pro Gly 35 40 45 Phe Ser Gly Ala Lys Met Glu Arg Pro Ala Leu Gln Glu Met Ile Ser 50 55 60 Asp Ile Gln Asn Lys Lys Ile Asp Val Val Leu Val Tyr Lys Leu Asp 65 70 75 80 Arg Leu Ser Arg Ser Gln Lys Asn Thr Leu Tyr Leu Ile Glu Asp Val 85 90 95 Phe Leu Lys Asn Asn Val Asp Phe Ile Ser Met Gln Glu Ser Phe Asp 100 1 05 110 Thr Ser Thr Pro Phe Gly Arg Ala Thr Ile Gly Met Leu Ser Val Phe 115 120 125 Ala Gln Leu Glu Arg Asp Thr Ile Thr Glu Arg Met His Met Gly Arg 130 135 140 Thr Glu Arg Ala Lys Gln Gly Tyr Tyr His Gly Ser Gly Ile Val Pro 145 150 155 160 Leu Gly Tyr Asp Tyr Val His Gly Glu Leu Ile Ile Asn Asp Tyr Glu 165 170 175 Ala Gln Ile Ile Gln Glu Ile Tyr Asp Leu Tyr Val Asn Gln Gly Lys 180 185 190 Gly Gln Gln Tyr Ile Thr Lys Arg Met Val Ala Lys Tyr Pro Asp Lys 195 200 205 Val Lys Thr Leu Thr Ile Val Lys Tyr Ala Leu Thr Asn Pro Leu Tyr 210 215 220 Ile Gly Lys Ile Ser Trp Asp Gly Lys Val Tyr Asp Gly His His Ser 225 230 235 240 Pro Ile Ile Asp Lys Ser Met Tyr Asp Lys Ala Gln Glu Ile Ile Ala 245 250 255 Arg Met Ala Gln Lys Gly Gly Glu Gln His Gly Asn Gln Leu Gly Leu 260 265 270 Leu Leu Gly Ile Thr Tyr Cys Gly Lys Cys Gly Ala Glu Val Phe Arg 275 280 285 Tyr Val Ser Gly Gly Lys Lys Tyr Arg Tyr Asn Tyr Tyr Met Cys Arg 290 295 300 Ser Val Lys Lys Met Leu Pro Ser Leu Val Lys Asp Trp Asn Cys Lys 305 310 315 320 Gln Pro Ser Leu Arg Gln Glu Val Val Glu Lys Lys Val Ile Asp Ser 325 330 335 Leu Lys Ser Leu Asp Phe Lys Lys Ile Glu Arg Glu Leu Lys Gln Val 340 345 350 Glu Asn Lys Thr Lys Ser Lys Ile Thr Thr Ile Asn Asn Gln Ile Ser 355 360 365 Lys Lys His Asn Glu Lys Gln Lys Ile Leu Asp Leu Tyr Gln Tyr Gly 370 375 380 Thr Phe Asp Val Thr Met Leu Asn Glu Arg Met Lys Lys Ile Asp Asn 385 390 395 400 Glu Ile Asn Ala Leu Thr Ala Asn Ile Ala Asn Leu Glu Gly Thr Lys 405 410 415 Ser Glu Ser Leu Ile Asn Lys Leu Glu Thr Leu Lys Thr Phe Asn Trp 420 425 430 Glu Thr Glu Thr Thr Glu Asn Lys Ile Leu Ile Ile Lys Glu Phe Val 435 440 445 Glu Arg Ile Glu Leu Phe Asp Asp Glu Val Ile Ile Lys Tyr Lys Phe 450 455 460 <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> on-1 primer for cloning of attB, attL <400> 5 cggccattga attagggtgt cgaat 25 <210> 6 < 211> 20 <212> DNA <213> Artificial Sequence <220> <223> on-2 primer for cloning of attB, attR <4 00> 6 cggattgcca gatggatgat 20 <210> 7 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> phy2 primer for cloning of attP, attR <400> 7 gaagatcttg ttctcgagca tagtctcc 28 <210> 8 < 211> 20 <212> DNA <213> Artificial Sequence <220> <223> phy3 primer for cloning of attL, attP <400> 8 gcgttaactg ccaatatagc 20

Claims (5)

서열번호 3의 MJ 1 유전자를 포함하며, 도 2의 개열지도로 나타내어지는 재조합 벡터 PTMJ1.A recombinant vector PTMJ1 comprising the MJ 1 gene of SEQ ID NO: 3 and represented by the cleavage map of FIG. 2. 제1항의 벡터가 도입된 형질전환체E.coliBL21(DE3)pLysS/PTMJ1.The transformant E. coli BL21 (DE3) pLysS / PTMJ1 into which the vector of claim 1 was introduced. 제2항의 형질전환체를 0.5mM IPTG(isopropyl-1-thio-β-D-falactoside)를 첨가한 후 15℃에서 인덕션(induction)하여 배양하는 단계;Culturing the transformant of claim 2 by induction at 15 ° C. after addition of 0.5 mM IPTG (isopropyl-1-thio-β-D-falactoside); 상기 배양액 500mL를 -70℃에서 얼린 후, 녹여 15mL의 라이시스 버퍼(lysis buffer; 50mM NaH2PO4(pH 8.0), 300mM NaCl, 10mM imidazole)에 정치한 후 초음파처리(sonication)하여 세포를 파쇄하는 단계; 및After 500 mL of the culture solution was frozen at -70 ° C, it was dissolved and left in 15 mL of lysis buffer (50mM NaH 2 PO 4 (pH 8.0), 300mM NaCl, 10mM imidazole), and then sonicated. Doing; And 상기 추출물을 원심분리하여 상등액을 취한 후, Ni-NTA 레진을 첨가하여 바인딩(binding)시킨 후 세척하고 일루션 버퍼(elution butter; 20mM Tris-Cl, 0.5M NaCl, 1M imidazole)로 단백질을 추출하는 단계로 이루어지는 것을 특징으로 하는 인테그라아제(integrase) MJ1 효소의 제조방법.After centrifugation of the extract to take the supernatant, binding with Ni-NTA resin, binding and washing, washing and extracting the protein with elution butter (20mM Tris-Cl, 0.5M NaCl, 1M imidazole) Method for producing an integrase (integrase) MJ1 enzyme, characterized in that consisting of. 제3항의 방법으로 제조되고, 하기의 특성을 가지며 티오레독신(thioredoxin)이 융합되어 있음을 특징으로 하는 인테그라아제(integrase) MJ1 효소.An integrase MJ1 enzyme, prepared by the method of claim 3, having the following characteristics and fused with thiorredoxin. (a) 장내구균 용원성 파지 φFC1(Enterococcustemperate bacteriophage φFC1) 유래됨.(a) Enterococcus temperate bacteriophage φFC1 derived from enterococci lysogenic phage. (b) 분자량 : 70kDa(b) Molecular weight: 70kDa (c) 기질특이성 : 원형형태(circular form) 뿐만 아니라 선형형태(linear form)의 DNA에 대하여도 재조합 활성을 가짐.(c) Substrate specificity: Recombinant activity on DNA in linear form as well as in circular form. (d) 최적 반응 pH : pH 7.6(d) Optimum reaction pH: pH 7.6 (e) 최적 반응 온도 : 37℃(e) Optimum reaction temperature: 37 ℃ 삭제delete
KR10-2002-0003196A 2002-01-19 2002-01-19 Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same KR100449171B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0003196A KR100449171B1 (en) 2002-01-19 2002-01-19 Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0003196A KR100449171B1 (en) 2002-01-19 2002-01-19 Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same

Publications (2)

Publication Number Publication Date
KR20030062800A KR20030062800A (en) 2003-07-28
KR100449171B1 true KR100449171B1 (en) 2004-09-16

Family

ID=32218630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0003196A KR100449171B1 (en) 2002-01-19 2002-01-19 Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same

Country Status (1)

Country Link
KR (1) KR100449171B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818966B1 (en) 2005-10-24 2008-04-03 고려대학교 산학협력단 Site-Specific DNA Recombination Method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J Bacteriol. 1992 Sep;174(17):5584-92 *
J. Biochem. Mol. Biol. Vol.29, No.5, pp.448~454, September 30. 1996, 동일발명자 *
고려대학교 박미옥 석사학위 논문 (2001. 12) *
석사학위논문, 고려대학교, 1995.12, 요약(p.i), 국문개요(p.37) *
석사학위논문, 고려대학교, 2001.12, 요약(p.i), p.19, 결과(p.23-38), Fig.2.(p.24, 본원 도면2와 일치함), 국문요약(p.48) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818966B1 (en) 2005-10-24 2008-04-03 고려대학교 산학협력단 Site-Specific DNA Recombination Method

Also Published As

Publication number Publication date
KR20030062800A (en) 2003-07-28

Similar Documents

Publication Publication Date Title
Cormack et al. RNase E activity is conferred by a single polypeptide: overexpression, purification, and properties of the ams/rne/hmp1 gene product.
US20200140835A1 (en) Engineered CRISPR-Cas9 Nucleases
Zavitz et al. ATPase-deficient mutants of the Escherichia coli DNA replication protein PriA are capable of catalyzing the assembly of active primosomes.
US8003346B2 (en) Mutant PCNA
Guzmán et al. The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT
Dąbrowski et al. Cloning and Expression inEscherichia Coliof the Recombinant His-Tagged DNA Polymerases fromPyrococcus furiosusandPyrococcus Woesei
Thielking et al. Site-directed mutagenesis studies with EcoRV restriction endonuclease to identify regions involved in recognition and catalysis
JPH09505728A (en) Functional domains in Flavobacterium oceanocoytes (FOKI) restriction endonuclease
US5089406A (en) Method of producing a gene cassette coding for polypeptides with repeating amino acid sequences
US20210261932A1 (en) Crispr-cas enzymes with enhanced on-target activity
EP0688364A4 (en) Genetically engineered enzymes and their conjugates for diagnostic assays
Persson et al. SelD homolog from Drosophila lacking selenide-dependent monoselenophosphate synthetase activity
US5804418A (en) Methods for preparing nucleotide integrases
Pan et al. Ligation of synthetic activated DNA substrates by site-specific recombinases and topoisomerase I.
Eriani et al. Isolation and characterization of the gene coding for Escherichia coli arginyl-tRNA synthetase
KR100449171B1 (en) Recombinant vector having MJ1 gene and production method of integrase MJ1 using the same
JPS62115281A (en) Methionine peptidase of bacterial n-terminal
Sakumi et al. The Ada protein is a class I transcription factor of Escherichia coli
WO1988005082A1 (en) Microbial production of peptide oligomers
JP3549210B2 (en) Plasmid
Roy et al. Use of a coupled transcriptional system for consistent overexpression and purification of UDG–ugi complex and Ugi fromEscherichia coli
El-Sherbeini et al. Cloning and expression of Staphylococcus aureus and Streptococcus pyogenes murD genes encoding uridine diphosphate N-acetylmuramoyl-L-alanine: D-glutamate ligases
JP2002360259A (en) New alkali phosphatase derived from shewanella sp. sib1 strain
US20210139917A1 (en) Peptide macrocyclization enzyme
Adams et al. Role of arginine‐43 and arginine‐69 of the Hin recombinase catalytic domain in the binding of Hin to the hix DNA recombination sites

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110615

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20120615

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee