KR100448520B1 - Performance improver and it's manufacturing process treating surface for reinforcement concrete structures attacked by chloride penetration and carbonation - Google Patents

Performance improver and it's manufacturing process treating surface for reinforcement concrete structures attacked by chloride penetration and carbonation Download PDF

Info

Publication number
KR100448520B1
KR100448520B1 KR10-2002-0005551A KR20020005551A KR100448520B1 KR 100448520 B1 KR100448520 B1 KR 100448520B1 KR 20020005551 A KR20020005551 A KR 20020005551A KR 100448520 B1 KR100448520 B1 KR 100448520B1
Authority
KR
South Korea
Prior art keywords
weight
concrete
surface treatment
composition
reinforced concrete
Prior art date
Application number
KR10-2002-0005551A
Other languages
Korean (ko)
Other versions
KR20030065099A (en
Inventor
김도겸
고경택
김성욱
이종석
이장화
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to KR10-2002-0005551A priority Critical patent/KR100448520B1/en
Publication of KR20030065099A publication Critical patent/KR20030065099A/en
Application granted granted Critical
Publication of KR100448520B1 publication Critical patent/KR100448520B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

본 발명은 염해나 중성화로 인해 성능이 저하된 콘크리트 구체의 제거작업없이 반응성이 큰 규산나트륨과 생화학물질인 알긴산나트륨 또는 카제인을 혼합하여 제조한 표면처리형 성능개선제를 1회 또는 수회 콘크리트 구조물에 도포함으로써 콘크리트 내부의 염화물 이온을 고정화시키고, 활성상태에 있는 철근의 부식활동을 억제함은 물론, 저하된 콘크리트의 pH를 향상시키고 콘크리트 구체를 강화하여 구조물의 성능을 개선시킬 수 있는 철근 콘크리트 구조물의 표면처리형 성능 개선제 및 그의 제조방법에 관한 것이다.The present invention is applied to the concrete structure once or several times the surface treatment performance improver prepared by mixing the highly reactive sodium silicate and the biochemical sodium alginate or casein without removing concrete spheres degraded due to salting or neutralization By fixing chloride ions in concrete and suppressing corrosion activity of reinforcing bars in the active state, the surface of reinforced concrete structures can improve the performance of structures by improving the pH of degraded concrete and strengthening concrete spheres. The present invention relates to a process type performance improving agent and a method for producing the same.

본 발명은, 주원료인 규산나트륨 15중량%∼70중량%와, 촉매제인 생화학물질 0.05중량%∼5.0중량%와, 증류수 25중량%∼84.05중량%를 혼합하여 제조된 철근 콘크리트 구조물의 표면처리형 성능 개선제를 제공한다.The present invention is a surface treatment type of reinforced concrete structure manufactured by mixing 15% to 70% by weight of sodium silicate as a main raw material, 0.05% to 5.0% by weight of biochemicals as a catalyst, and 25% to 84.05% by weight of distilled water. Provide performance improvers.

또한, 본 발명은 Na2O·3SiO2또는 Na2O·4SiO2중 선택된 규산나트륨 15중량%∼70중량%에 알긴산나트륨과 카제인중 선택된 하나의 0.05중량%∼5.0중량%와, 증류수 25중량%∼84.05중량%를 교반하여 혼합한 혼합물을 소정온도로 가열하여 유지시키는 제1단계; 및 상기 혼합물이 균등하게 혼합되도록 아세트산을 1∼5시간 간격으로 한방울씩 적가반응시키는 제2 단계를 포함하는 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물의 제조방법을 제공한다.The present invention is Na 2 O · 3SiO 2 or Na 2 O · 4SiO with a 0.05% ~5.0% by weight of alginic acid is selected to 215-70% by weight of sodium silicate selected from sodium caseinate, 25 parts by weight of distilled water A first step of maintaining the mixture at a predetermined temperature by stirring the% to 84.05% by weight; And a second step of dropwisely reacting acetic acid one drop at an interval of 1 to 5 hours so that the mixture is evenly mixed.

Description

염해 및 중성화를 받아 성능이 저하된 철근콘크리트 구조물의 표면처리형 성능 개선제용 조성물 및 그의 제조방법{Performance improver and it's manufacturing process treating surface for reinforcement concrete structures attacked by chloride penetration and carbonation}Composition improver and it's manufacturing process treating surface for reinforcement concrete structures attacked by chloride penetration and carbonation

본 발명은 염해 및 중성화에 의해 철근이 부식된 콘크리트 구조물을 강화시키기 위한 표면처리형 성능개선제 및 그의 제조방법에 관한 것으로, 특히 염해 및중성화에 의해 철근의 부식이 발생하고, 콘크리트의 성능이 저하된 구조물의 표면에 규산나트륨과 생화학물질을 혼합하여 제조된 성능개선제를 1회 또는 수회 도포하여 침투시킴으로써 철근의 활성부식물질을 안정화하고, 철근 부식을 촉진하는 콘크리트 내부의 염화물 이온을 고정화시켜 활성상태에 있는 부식촉진활동을 억제함은 물론, 저하된 콘크리트의 pH를 향상시켜 콘크리트의 내구성능을 향상시킬 수 있는 콘크리트 구조물의 표면처리형 성능개선제 및 그의 제조방법에 관한 것이다.The present invention relates to a surface treatment type performance improving agent for reinforcing concrete structures corroded by salting and neutralization, and a method for manufacturing the same. In particular, the corrosion of reinforcing steel is generated by salting and neutralizing, and the performance of concrete is degraded. A performance improvement agent made by mixing sodium silicate and biochemicals on the surface of the structure is applied once or several times to infiltrate the active corrosive material of the reinforcement, and to stabilize the chloride ions in the concrete to promote corrosion of the steel. The present invention relates to a surface treatment type performance improving agent and a method of manufacturing the concrete structure that can suppress the corrosion promoting activity, as well as improve the pH of the degraded concrete to improve the durability of the concrete.

일반적으로, 염해란 철근콘크리트 구조물중에 염화물이 침투하거나 존재함으로 인하여 철근이 부식되어 콘크리트 구조물이 손상을 입는 현상을 말한다. 시멘트는 규산 3석회(3CaO·SiO2), 규산 2석회(2CaO·SiO2), 알루민산 3석회(3CaO·Al2O3) 및 알루민산철 4석회(4CaO·Fe2O3·Al2O3)를 주성분으로 하고 있으며, 이중 규산 3석회와 규산 2석회는 시멘트의 약75%를 차지하는 주요 화합물로써 수화반응에 의해 규산칼슘수화물(calcuim silicate hydrate) 및 수산화칼슘[Ca(OH2)]을 생성하며, 이때 생성된 수산화칼슘은 시멘트 대비 약 24%를 차지하면서 콘크리트의 pH를 12∼13의 강알칼리가 되도록 하고 있다. 이러한 강알칼리하에서 철근은 표면에 얇은 부동태피막(20∼60Å두께의 수산화 제2철, γ-Fe2O3·nH2O)을 생성시킴으로써 부식되지 않는다. 그러나, 콘크리트 내부에 염화물이 침입하여 염화물 이온량(Cl-)이 일정값 이상으로 증가할 경우, 콘크리트 내부의 철근이 부분적으로 부식하게 되는데, 이러한 부식에 의해 발생된 붉은 녹은 팽창하여 약 330kgf/㎠의 팽창압으로 콘크리트균열을 발생시킨다. 철근의 부식은 산소(O2)와 물(H2O)의 전기화학적 결합에 의해 낮은 수용성을 지닌 수산화 제2철[Fe(OH)2]의 형태로 진전되며, 충분한 산소가 공급될 경우에는 Fe(OH)2가 Fe(OH)3로 발전하고 지속적인 부식작용에 의해 비교적 안정한 Fe2O3의 형태를 띄게 된다.In general, salt salt refers to a phenomenon in which concrete structures are damaged by corrosion of reinforcing bars due to chloride penetration or presence in reinforced concrete structures. Cement is composed of tricalcium silicate (3CaO · SiO 2 ), silicic acid lime (2CaO · SiO 2 ), alumina trioxide (3CaO · Al 2 O 3 ) and iron aluminate (4CaO · Fe 2 O 3 · Al 2 O 3 ) is the main component, of which tricalcium silicate and disilicate silicate are the main compounds, accounting for about 75% of the cement, and calcium silicate hydrate and calcium hydroxide [Ca (OH 2 )] by hydration. At this time, the produced calcium hydroxide occupies about 24% of the cement, so that the pH of the concrete is 12 to 13 strong alkali. Under such strong alkali, the reinforcing bar is not corroded by forming a thin passivation film (ferrous hydroxide, γ-Fe 2 O 3 · nH 2 O) having a thickness of 20 to 60 kPa on the surface. However, when chloride enters concrete and chloride ion (Cl ) increases above a certain value, the reinforcing steel in the concrete partially corrodes. The red rust generated by the corrosion expands to about 330kgf / ㎠ The expansion pressure causes the concrete to crack. Corrosion of reinforcing steel is developed in the form of ferric hydroxide [Fe (OH) 2 ] with low water solubility by the electrochemical combination of oxygen (O 2 ) and water (H 2 O). Fe (OH) 2 develops into Fe (OH) 3 and forms a relatively stable form of Fe 2 O 3 by continuous corrosion.

한편, 콘크리트에 침입한 염화물은 철근의 전 부분에 걸쳐 일정하게 존재하지 않기 때문에, 전위차가 발생하게 되며, 전형적으로 철근의 맨 상층부가 가장 빨리 활성화되어 부식에 이르게 된다. 전위차는 철근에 전자의 흐름을 유발하는 동시에 철근의 표면에서 전기화학적 반응을 일으키게 되며, 이러한 전기화학적 작용은 염화물 이온에 의해 촉진되어 철근의 부식을 활성상태에 이르게 한다.On the other hand, since chloride invades concrete, the potential difference occurs because it is not constantly present over the entire part of the rebar, and typically the top layer of the reinforcing bar is activated fastest and leads to corrosion. The potential difference induces the flow of electrons to the reinforcing bars, as well as the electrochemical reactions on the surface of the reinforcing bars, which are promoted by chloride ions, leading to corrosion of the reinforcing bars.

한편, 중성화란 대기중에 존재하는 이산화탄소(CO2)등의 침식성 가스가 콘크리트 표면으로 확산되어, 콘크리트 내부층에서 역확산하는 Ca(OH)2와 탄산화반응을 일으켜(콘크리트 중에 고정화하고 있는 규산칼슘 수화물 겔도 일부 반응하며, Ca(OH)2의 반응이 주반응이다) 콘크리트의 공극수에 용해되어 있는 수산화칼슘으로 인한 강한 알칼리성(pH12.6)이 중성화(pH8.3∼10.0)되는 현상을 말한다. 콘크리트의 중성화가 철근부분에 이르지 않을 경우에는 콘크리트의 내구성에 문제가 없으나, 중성화가 철근부분까지 도달하면 콘크리트의 강알칼리성을 토대로 한 내부철근의 방식기능이 저하하여 부동태피막이 파괴되는 문제점을 야기시키며, 물과 산소가 동시에 공급되는 조건이 형성되면 철근의 부식이 진행되기 시작한다.On the other hand, neutralization means that erosive gases such as carbon dioxide (CO 2 ) in the atmosphere diffuse to the surface of the concrete and cause carbonation reactions with Ca (OH) 2 , which diffuses back in the concrete inner layer (calcium silicate hydrate immobilized in concrete). The gel also reacts in part, and the reaction of Ca (OH) 2 is the main reaction) It is a phenomenon in which strong alkali (pH12.6) due to calcium hydroxide dissolved in the pore water of concrete is neutralized (pH8.3-10.0). If the neutralization of the concrete does not reach the reinforcing part, there is no problem in the durability of the concrete.However, if the neutralization reaches the reinforcing part, the corrosion resistance function of the internal reinforcing steel based on the strong alkalinity of the concrete is deteriorated, causing the problem of the breakdown of the passive film Corrosion of the rebar begins to develop when conditions for the simultaneous supply of water and oxygen are established.

콘크리트 중성화의 정의는 화학반응론적인 관점에서 고려하면, "시멘트의 수화에 의해 생성하는 시멘트 규산칼슘수화물 겔 및 부생성물인 수산화칼슘이 대기중의 이산화탄소 등의 침식성가스 혹은 수용액중의 유산염등의 침식성 물질과 화학반응을 일으켜 모르터 및 콘크리트가 표층부에서부터 서서히 그 강알칼리성을 잃어가는 현상, 즉 수산화칼슘과의 탄산화 반응을 동반한 이산화탄소의 모르터 및 콘크리트 내부로의 확산과정" 이라고 볼수 있으며, 내구성의 관점에서 보면 "콘크리트의 강알칼리성을 기초로 한 내부철근에 대한 방식기능의 저하현상"이라고 할 수 있다. 보통 포클랜드 시멘트가 완전하게 수화하는 경우에는 시멘트 중량으로 환산하여 약 25∼28%의 수산화 칼슘이 생성된다. 콘크리트중의 수산화 칼슘은 공극수에 용해되어 있기도 하지만, 대부분은 고체로서 존재하고, 공극수용액은 칼슘의 포화수용액으로 존재하게 되며, 콘크리트는 수산화칼슘의 포화수용액에 의해 약 pH 12.6의 강알칼리성을 나타내게 된다. 이러한 강알칼리 상황에서는 콘크리트중의 내부철근 표면에 부동태피막이 형성되기 때문에 염소이온의 혼입과 외부로부터 부식촉진 요인이 침투하지 않는 한, 부식에 대해서 안정상태로 존재하게 된다. 상기 콘크리트중의 수산화 칼슘 및 규산 칼슘수산화 겔은 주로 대기중의 이산화탄소 가스와 탄산화(Carbonation)반응을 일으켜, 탄산칼슘으로 전환하고, 콘크리트는 표면에서부터 점차적으로 강알칼리성을 잃어가게 되는데, 국내에서는 이것을 포괄적인 의미인 중성화(neutralization) 현상이라고 표현하고 있다. 대기중의 이산화탄소 농도는 환경조건에 따라 다르지만, 일반적으로 실외에서는 0.035% 전후이며, 실내에서는 0.07% 전후이다. 그러나, 최근 석유, 석탄등과 같은 화석연료의 사용량이 증대되면서 이산화탄소 농도는 계속 증가되는 경향에 있다. 즉, 이런 추세로 이산화탄소 농도가 계속 증가된다면 현재에 있어서는 중성화에 대해 별로 문제가 되지 않은 구조물일지라도 향후에 문제가 발생될 수 있다.The definition of concrete neutralization is considered from a chemical reaction point of view: "The cement calcium silicate hydrate gel produced by the hydration of cement and the by-product calcium hydroxide are erosive substances, such as erosive gases, such as carbon dioxide in the atmosphere, or sulphates in aqueous solution. It is a phenomenon in which mortar and concrete gradually lose their strong alkalinity from the surface layer, that is, the diffusion process of carbon dioxide into mortar and concrete with carbonation reaction with calcium hydroxide. Degradation of anticorrosive function for internal rebar based on the strong alkalinity of concrete. Usually, when the Falkland cement is fully hydrated, about 25 to 28% of calcium hydroxide is produced in terms of cement weight. Calcium hydroxide in concrete is dissolved in the pore water, but most of it is present as a solid, the pore solution is present as a saturated aqueous solution of calcium, and concrete exhibits a strong alkalinity of about pH 12.6 by the saturated aqueous solution of calcium hydroxide. In this strong alkali situation, since the passive film is formed on the surface of the internal reinforcing concrete, it remains stable against corrosion as long as chlorine ions are mixed and corrosion promoting factors do not penetrate from the outside. Calcium hydroxide and calcium silicate hydroxide gels in the concrete mainly produce carbonation reaction with carbon dioxide gas in the atmosphere, convert to calcium carbonate, and concrete gradually loses strong alkalinity from the surface. It is expressed as a neutralization phenomenon. The concentration of carbon dioxide in the atmosphere depends on environmental conditions, but it is generally around 0.035% outdoors and around 0.07% indoors. However, as fossil fuels such as petroleum and coal have increased in recent years, carbon dioxide concentrations tend to continue to increase. In other words, if the carbon dioxide concentration continues to increase due to this trend, problems may occur in the future even in structures that are not a problem for neutralization at present.

그러므로, 콘크리트중의 내부철근의 경우, 철근의 1차 또는 2차 부식물질인 Fe(OH)2와 Fe(OH)3를 안정화합물인 Fe2O3의 형태로 고정화시키고, 염화물 이온의 활동을 억제한다면 철근의 부식은 억제될 수 있으며, CO2의 침입을 차단하거나 저하된 콘크리트의 pH를 향상시키고 철근의 부식활동을 억제한다면 콘크리트 구조물의 성능저하를 방지할 수 있다.Therefore, in the case of internal reinforcing steel in concrete, Fe (OH) 2 and Fe (OH) 3, which are primary or secondary corrosive materials of the rebar, are immobilized in the form of Fe 2 O 3 as a stable compound, and the activity of chloride ions is prevented. If suppressed, the corrosion of reinforcing bar can be suppressed, and the performance of concrete structure can be prevented if blocking the ingress of CO 2 or improving the pH of degraded concrete and suppressing the corrosion activity of the reinforcing bar.

지금까지의 보수공법은 염해 및 중성화에 의해 성능이 저하된 콘크리트 부분을 제거하고 단면회복작업을 거치고 있는데, 이러한 성능이 저하된 콘크리트 손상부위의 제거 및 단면회복작업은 많은 시간이 소요되어 비용이 많이 들 뿐만 아니라, 콘크리트의 제거 대상 부분이 불명확하여 보수설계시 어려움이 따르는 문제점이 있다. 상기의 문제점을 극복하기 위한 일환으로써 방수성이 높은 표면피복제를 사용하여 철근의 부식인자인 산소 및 물의 공급을 차단하는 방법이 있으나, 이 방법은 산소의 투과를 억제하고 물과 염화물 이온의 공급을 차단하는 기능면에서는 우수한 성능을 발휘하지만, 콘크리트 내부에 수분 및 염화물이온을 가두는 역기능을 가지고 있어 오히려 철근의 부식을 가중시키는 문제점을 내포하고 있다.Until now, the repair method removes concrete parts that have degraded due to salt and neutralization, and undergoes cross-sectional recovery.However, the removal and damage of cross-sectional damaged concrete areas are time-consuming and expensive. In addition, there is a problem in that it is difficult to design the repair due to the unclear portion of the concrete removal target. As a part of overcoming the above problems, there is a method of blocking the supply of oxygen and water, which are corrosion factors of reinforcing bars, by using a highly waterproof surface coating agent, but this method inhibits the penetration of oxygen and prevents the supply of water and chloride ions. It has excellent performance in terms of blocking function, but has a reverse function of confining water and chloride ions in concrete, and thus impairs the corrosion of reinforcing bars.

따라서, 본 발명은 상기의 제반 문제점을 해결하기 위하여 안출된 것으로서, 염해나 중성화로 인해 성능이 저하된 콘크리트 구체의 제거작업없이 반응성이 큰 규산나트륨과 생화학물질인 알긴산나트륨 또는 카제인을 혼합하여 제조한 표면처리형 성능개선제를 1회 또는 수회 콘크리트 구조물에 도포함으로써 콘크리트 내부의 염화물 이온을 고정화시키고, 활성상태에 있는 철근의 부식활동을 억제함은 물론, 저하된 콘크리트의 pH를 향상시키고 콘크리트 구체를 강화하여 구조물의 성능을 개선시킬 수 있는 철근 콘크리트 구조물의 표면처리형 성능 개선제 및 그의 제조방법을 제공함에 그 목적이 있다.Therefore, the present invention has been made in order to solve the above problems, prepared by mixing a highly reactive sodium silicate and sodium alginate or casein of biochemicals without removing concrete spheres degraded due to salt or neutralization Applying a surface treatment type performance improver to concrete structures once or several times to immobilize chloride ions in concrete, inhibit corrosion activity of reinforcing steel bars, improve pH of degraded concrete and reinforce concrete spheres It is an object of the present invention to provide a surface treatment type performance improving agent and a method of manufacturing the reinforced concrete structure that can improve the performance of the structure.

도1은 염화물 고정화 효과 실험결과를 나타낸 그래프도.1 is a graph showing the results of the chloride immobilization effect experiment.

도2는 중성화 회복 실험결과를 나타낸 그래프도.Figure 2 is a graph showing the results of the neutralization recovery experiment.

도3은 인발강도 실혐결과를 나타낸 그래프도.Figure 3 is a graph showing the pull strength demonstration results.

도4는 투기성 실험결과를 나타낸 그래프도.Figure 4 is a graph showing the experimental results of air permeability.

도5는 투수성 실험결과를 나타낸 그래프도.5 is a graph showing the results of permeability experiment.

도6은 철근부식 전위 실험결과를 나타낸 그래프도.Figure 6 is a graph showing the rebar corrosion potential test results.

상기 목적을 달성하기 위하여 본 발명은, 주원료인 규산나트륨 15중량%∼70중량%와, 촉매제인 생화학물질 0.05중량%∼5.0중량%와, 증류수 25중량%∼84.05중량%를 혼합하여 제조된 철근 콘크리트 구조물의 표면처리형 성능 개선제를 제공한다.In order to achieve the above object, the present invention, 15% by weight to 70% by weight of sodium silicate as a main raw material, 0.05% to 5.0% by weight of biochemicals as a catalyst, 25% to 84.05% by weight of distilled water prepared by mixing Provides a surface treatment type performance improving agent for concrete structures.

또한, 본 발명은 Na2O·3SiO2또는 Na2O·4SiO2중 선택된 규산나트륨 15중량%∼70중량%에 알긴산나트륨과 카제인중 선택된 하나의 0.05중량%∼5.0중량%와, 증류수 25중량%∼84.05중량%를 교반하여 혼합한 혼합물을 70 ∼ 100℃로 가열하여 유지시키는 제1단계; 및 상기 혼합물이 균등하게 혼합되도록 아세트산을 1∼5시간 간격으로 한방울씩 적가반응시키는 제2 단계를 포함하는 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물의 제조방법을 제공한다.The present invention is Na 2 O · 3SiO 2 or Na 2 O · 4SiO with a 0.05% ~5.0% by weight of alginic acid is selected to 215-70% by weight of sodium silicate selected from sodium caseinate, 25 parts by weight of distilled water A first step of heating and maintaining the mixed mixture by stirring% to 84.05% by weight at 70 to 100 ° C; And a second step of dropwisely reacting acetic acid one drop at an interval of 1 to 5 hours so that the mixture is evenly mixed.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention;

본 발명에 의한 철근 콘크리트 구조물의 표면처리형 성능 개선제 및 그의 제조방법은 염해 및 중성화에 의해 손상된 콘크리트 구조물의 부위를 박리시키고, 그 박리부위에 성능개선제를 침투시켜 철근의 2차 부식을 억제하고, 콘크리트 구체의 내구성능을 강화시킬 수 있도록 구현한 것으로, 본 발명의 철근 콘크리트 구조물의 표면처리형 성능 개선제는 주원료인 물유리 계통의 규산나트륨 15중량%∼70중량%와, 촉매제로서 작용하는 생화학물질인 알긴산나트륨 또는 카제인중 선택된 물질 0.05중량%∼5.0중량% 및 증류수 25중량%∼84.05중량%를 혼합한 혼합물에 점도 강하제인 불소계 계면활성제 3.0중량% 이하 및 철근부식 억제제인 트리에탄올아민 7.0중량% 이하와 함께 필요에 따라 상기 혼합물이 pH13∼14를 유지할 수 있도록 하기 위하여 NaOH 또는 Ca(OH)2중 하나의 주성분으로 이루어진 알칼리부여제 7.0중량% 이하를 첨가하여 조성한 예를 제시하고 있다.The surface treatment type performance improving agent and the manufacturing method thereof of the reinforced concrete structure according to the present invention is to peel off the part of the concrete structure damaged by salt and neutralization, and to penetrate the performance improving agent to the peeling site to suppress secondary corrosion of the reinforcement, Implemented to enhance the durability of the concrete sphere, the surface treatment type performance improving agent of the reinforced concrete structure of the present invention 15% to 70% by weight of sodium silicate of the water glass system as the main raw material, and a biochemical that acts as a catalyst In a mixture of 0.05% to 5.0% by weight of a selected material of sodium alginate or casein, and 25% to 84.05% by weight of distilled water, up to 3.0% by weight of a fluorine-based surfactant as a viscosity-lowering agent and up to 7.0% by weight of triethanolamine as a reinforcing corrosion inhibitor of NaOH or Ca (OH) 2 together in order to allow the mixture to maintain the necessary pH13~14 My main component consisting of the alkali give 7.0 suggests an example joseonghan by the addition of% by weight.

상기 조성물에서 촉매제를 0.05중량%∼5.0중량%로한 것은 0.05중량%이하일 경우, 콘크리트 표면처리용 성능개선제로서의 효과가 없고, 5.0중량%이상일 경우에는 점도가 높아서 침투력이 저하되는 문제점이 있기 때문이다.In the composition, the catalyst is 0.05% by weight to 5.0% by weight because when it is 0.05% by weight or less, there is no effect as a performance improving agent for concrete surface treatment, and when it is 5.0% by weight or more, there is a problem that the penetration force is lowered due to high viscosity.

상기 규산나트륨은 순수한 모래와 Na2CO3등의 알칼리 물질을 1300℃ 고온에서 용융시켜 제조한 카렛(cullet)을 물에 넣고 1 ∼ 2기압하에서 가열하여 제조한 것으로, 규소(SiO2)분자를 10∼20개 정도 가지는 작은 단위의 고분자(polymer)로서 콘크리트 및 시멘트의 혼화재로서 사용되기도 한다.The sodium silicate is prepared by melting a pure sand and an alkali substance such as Na 2 CO 3 at a high temperature of 1300 ° C. and inserting a cullet into water and heating it at 1 to 2 atmospheres to obtain silicon (SiO 2 ) molecules. It is a small unit polymer having about 10 to 20, and is also used as a mixed material of concrete and cement.

상기 Na2O·3SiO2및 Na2O·4SiO2의 분자식으로 이루어진 규산나트륨에 0.1∼5중량%의 알긴산나트륨(sodium alginate) 또는 카제인(casein)과 같은 생화학물질이 혼합될 경우, 콘크리트중의 수화생성물과 반응하여 저칼슘 또는 고칼슘의 황산알미늄염(calcium sulferaluminate)을 형성하고, 콘크리트중의 수산화칼슘과 결합하여 규산염겔(calcium silicate hydrate gel)을 형성함으로써 콘크리트의 내구성능을 향상시킬 뿐만 아니라, 반투과막을 형성하여 동기성을 좋게 하고 침투하는 물을 흡수하여 콘크리트의 방수성능을 향상시킨다는 것을 장기간의 실험연구를 통하여 확인하였다. 즉, 알긴산나트륨과 카제인의 촉매작용에 의해 Na2O·nSiO2형태의 규산나트륨은 콘크리트중의 수산화칼슘과 반응하여 mCaO·nSiO2·mH2O를 형성하게 되는데, 여기서 m과 n의 값은 3∼10의 범위에 존재하게 된다.The Na 2 O · 3SiO 2 and Na 2 O · 4SiO when the biochemical substance, such as sodium alginate molecular formula of 0.1 to 5% by weight of sodium silicate (sodium alginate) consisting of two or casein (casein) to be mixed, the concrete of the It reacts with hydration products to form calcium sulferaluminates of low or high calcium, and combines with calcium hydroxide in concrete to form calcium silicate hydrate gel, which not only improves the durability of concrete, but also It was confirmed through long-term experimental studies that the permeation membrane was formed to improve the synchronicity and absorbed water to improve the waterproof performance of concrete. In other words, by the catalysis of sodium alginate and casein, sodium silicate in the form of Na 2 O · nSiO 2 reacts with calcium hydroxide in concrete to form mCaO · nSiO 2 · mH 2 O, where m and n are 3 It exists in the range of -10.

또한, 본 실시예에서 상기의 규산나트륨과 생화학물질이 혼합된 혼합물에 수산화나트륨(NaOH) 또는 수산화칼슘(Ca(OH)2등의 알칼리부여제를 0.5∼5중량% 혼합하여 제조물의 pH를 12∼14의 강알칼리성으로 제조한 후, 콘크리트에 도포하여 침투시킬 경우에는 콘크리트의 중성화 현상을 억제하고, 콘크리트의 pH를 향상시킴으로써 철근의 부식을 억제한다는 것을 실험연구를 통하여 확인하였다.In addition, in the present embodiment, 0.5 to 5% by weight of an alkali donor such as sodium hydroxide (NaOH) or calcium hydroxide (Ca (OH) 2 ) is mixed with a mixture of sodium silicate and a biochemical, thereby adjusting the pH of the preparation to 12 to 5. It was confirmed through experimental studies that after manufacturing with strong alkalinity of 14, when applied to the concrete, the concrete neutralization phenomenon was suppressed and the corrosion of the steel was suppressed by improving the pH of the concrete.

또한, 알긴산 나트륨 및 카제인과 같은 생화학물질은 규산나트륨이 포함된 혼합물의 표면장력을 작게 하여 콘크리트중의 침투를 원활하게 함을 발견하였으며, 생화학물질의 촉매작용에 의해 규산나트륨이 포함된 혼합물이 콘크리트중에 침투한염화물이온(Cl-)과 반응하여 염화나트륨(NaCl)을 포함한 규산염겔을 형성함으로써 철근의 부식 촉진에 커다란 영향을 미치는 염화물이온을 고정화하는 염화물이온 제거작용을 하는 것을 확인하였다.In addition, biochemicals such as sodium alginate and casein have been found to reduce the surface tension of the mixture containing sodium silicate to facilitate infiltration into concrete, and the mixture containing sodium silicate is catalyzed by the biochemical catalysis. a chloride ion penetration in the (Cl -) in the reaction by forming a silicate gel containing a sodium chloride (NaCl) was confirmed that a chloride ion acts to remove the chloride ions immobilized on the negative effects on corrosion promotion of reinforcement.

또한, 철근의 부식반응억제를 위하여 트리에탄올아민(Triehanol amine)을 0.5∼5중량%을 상기 혼합물에 혼입할 경우에도 규산나트륨계 혼합물이 침투력 저하없이 콘크리트중으로 잘 침투되고, 1차부식된 철근의 2차부식반응을 억제하는 것을 연구를 통하여 확인하였다.In addition, even when 0.5 to 5% by weight of triethanolamine (Triehanol amine) is added to the mixture to inhibit the corrosion of the reinforcing bars, sodium silicate-based mixture penetrates well into the concrete without lowering the penetration force, 2 of the primary corrosion Inhibition of secondary corrosion response was confirmed through research.

상기와 같은 조성물로 이루어진 본 발명은 콘크리트의 모세관 삼투압에 의해 콘크리트중으로 확산되어 콘크리트 내부의 염화물이온을 고정화시키고, 활성상태에 있는 철근의 부식활동을 억제함은 물론 저하된 콘크리트의 pH를 향상시키고 콘크리트 구체를 강화하여 구조물의 성능을 향상시킨다.The present invention made of the composition as described above is diffused into the concrete by the capillary osmotic pressure of the concrete to fix the chloride ion in the concrete, inhibit the corrosion activity of the reinforcing steel in the active state, as well as improve the pH of the reduced concrete and concrete Strengthen the sphere to improve the performance of the structure.

다음은 본 발명의 제조방법을 설명하면 다음과 같다.The following describes the manufacturing method of the present invention.

먼저, 분자식이 C6H7NaO6로 이루어진 알긴산나트륨(sodium alginate) 및 우유에서 추출한 유지방성분이 15중량% 이하인 카제인(casein)은 점도가 매우 높아서 일반적인 환경에서 규산나트륨(sodium silicate)과 혼합되지 않는다. 따라서, 분자식이 Na2O·3SiO2또는 Na2O·4SiO2인 규산나트륨 100 ∼ 500g에 알긴산나트륨 또는 카제인 1 ∼ 20g을 넣고, 증류수를 채워 총량이 900g이 되도록 한다. 이때, 상기 알긴산나트륨 또는 카제인이 총량 900g당 20g을 넘을 경우에는 점도 및 표면장력이 높아져서 콘크리트에 침투되기 어려우며, 1g 이하가 될 경우에는 촉매로서 작용하기가 어렵다. 다음에는 상기 규산나트륨과 알긴산나트륨 또는 카제인의 혼합물을 가열판에 놓고 용액이 70∼100℃를 유지하도록 한 후 천천히 교반한다. 이때, 용액의 온도가 높기 때문에, 장시간 교반시 증류수가 증발되므로 교반용 비이커의 위에 시계접시(watch glass)를 덮어 주어야 하며, 용액의 양이 줄어들면 총량이 900g이 되도록 증류수를 보충시켜 준다. 또한, 상기 교반용 비이커의 바닥면에 규산나트륨과 함께 알긴산나트륨 또는 카제인의 생화학물질이 응고하여 달라붙을 수 있으므로 교반에 주의하여야 한다. 상기 규산나트륨과 알긴산나트륨 또는 카제인의 혼합물을 70∼100℃의 가열판 위에서 1 ∼ 2시간 지속적으로 교반한 다음에는 분자식이 CH3COOH인 아세트산(acetic acid)을 스포이드에 넣고 교반용액에 1∼5시간 간격으로 한방울씩 5∼50방울 적가시키면서 1∼2일간 반응시킨다. 여기서, 아세트산을 스포이드 용액으로 5∼50방울정도 적가하는 이유는 규산나트륨과 알긴산나트륨 또는 카제인의 균등혼합을 원활히 하기 위한 것으로, 상기 아세트산이 50방울 또는 10g 이상 투입될 경우에는 전체 혼합물의 pH가 상승하여 표면처리형 성능개선제가 콘크리트의 중성화 회복에 기여하는 능력을 약화시킬 수 있다.First, sodium alginate with a molecular formula of C 6 H 7 NaO 6 and casein with less than 15% by weight of milk fat extracted from milk have a very high viscosity and are not mixed with sodium silicate in a general environment. Do not. Therefore, 1 to 20 g of sodium alginate or casein are added to 100 to 500 g of sodium silicate having a molecular formula of Na 2 O 3 SiO 2 or Na 2 O 4 SiO 2 , and distilled water is charged so that the total amount is 900 g. At this time, when the sodium alginate or casein exceeds 20g per 900g of total amount, the viscosity and surface tension are high, making it difficult to penetrate concrete, and when it is 1g or less, it is difficult to act as a catalyst. Next, the mixture of sodium silicate and sodium alginate or casein is placed on a heating plate and the solution is kept at 70 to 100 ° C. and then stirred slowly. At this time, since the temperature of the solution is high, distilled water is evaporated when stirring for a long time, the watch glass should be covered on the stirring beaker, and when the amount of the solution is reduced, the total amount is replenished so that the total amount is 900g. In addition, since the biochemicals of sodium alginate or casein coagulate together with sodium silicate on the bottom of the stirring beaker, care should be taken in the stirring. The mixture of sodium silicate and sodium alginate or casein was continuously stirred for 1 to 2 hours on a heating plate at 70 to 100 ° C., and then acetic acid having a molecular formula of CH 3 COOH was added to the dropper and then stirred for 1 to 5 hours. The reaction is carried out for 1 to 2 days while dropping 5 to 50 drops one by one at intervals. Here, 5-50 drops of acetic acid is added dropwise to the dropper solution to smoothly mix sodium silicate and sodium alginate or casein. When 50 drops or 10 g of the acetic acid is added, the pH of the entire mixture is increased. This can weaken the ability of surface treatment type performance improvers to contribute to the recovery of neutralization of concrete.

이렇게 제조된 혼합물의 점도는 약 100∼500cps정도가 되며, 여기에 분자식이 C5H8SO2Lif(C2F4)3∼8또는 (C2H4O)nHF(C2F4)3∼8인 불소계 계면활성제를 0.01∼0.5중량% 혼입하여 균등하게 분산시키면, 혼합물의 점도가 100cps 이하로 저하되어 콘크리트에 대한 침투성능이 향상된다. 여기에, 철근 부식억제제인 분자식 (C2H5)3NH의 트리에탄올아민(Thiethanol amine) 1∼5중량%를 첨가하고, 필요시 NaOH 또는Ca(OH)2를 주성분으로 하는 알칼리부여제를 0∼5중량% 첨가하면 표면처리형 성능개선제가 제조된다. 상기 알칼리부여제의 투입정도는 성능을 개선하고자 하는 콘크리트 구조물의 중성화 정도에 따라 다르지만, 통상 표면처리형 성능개선제의 pH가 13∼14를 유지할 수 있는 범위에서 투입하는 것이 바람직하다.The viscosity of the mixture thus prepared is about 100 to 500 cps, where the molecular formula is C 5 H 8 SO 2 Lif (C 2 F 4 ) 3 to 8 or (C 2 H 4 O) n HF (C 2 F 4 When 0.01 to 0.5% by weight of 3-8 fluorine-based surfactant is mixed and dispersed evenly, the viscosity of the mixture is lowered to 100 cps or less, thereby improving the penetration performance into concrete. To this, 1-5% by weight of triethanolamine of the molecular formula (C 2 H 5 ) 3 NH, which is a reinforcing corrosion inhibitor, is added, and an alkali-impartant having NaOH or Ca (OH) 2 as a main component as necessary is 0. If it adds-5 weight%, the surface treatment type performance improving agent is manufactured. The degree of addition of the alkali scavenger depends on the degree of neutralization of the concrete structure to improve the performance, but it is usually preferable to add in the range that the pH of the surface treatment type performance improving agent can maintain 13 to 14.

상기와 같이 제조된 본 발명은 염해 및 중성화에 의해 성능이 저하된 콘크리트 구체의 박리 및 탈락부분을 에어 프레셔(air pressor)로 제거한 후, 표면처리형 성능개선제를 콘크리트 구체의 표면에 1회 또는 수회 도포한 후, 수분 공급을 위해 도포후 6시간이 경과한 시점에서 분무기에 의해 수분을 살수함으로써 마무리되며, 이때의 도포방법은 로울러나 붓을 이용한다.According to the present invention prepared as described above, after removing the peeling and dropping parts of the concrete spheres degraded by salting and neutralization with an air pressor, the surface treatment type performance improving agent is once or several times on the surface of the concrete spheres. After coating, water is sprayed by a sprayer at the time point 6 hours after the coating is applied for water supply, and the coating method at this time uses a roller or a brush.

이하, 본 발명의 바람직한 실시예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described.

실시예1Example 1

Na2O·3SiO2인 규산나트륨을 각각 0중량%, 15중량%, 25중량%, 30중량%, 40중량%, 50중량%, 60중량%, 70중량%로 하고, 여기에 생화학물질인 알긴산나트륨 0.1중량%, C5H8SO2LiF(C2F4)3∼8인 계면활성제 0.1중량%, 철근 부식억제제인 트리에탄올아민 1중량%를 균등하게 혼합하여 본 발명품을 제조하였다. 본 실시예에서 규산나트륨을 0중량%로 한 것은 상기 규산나트륨을 첨가하지 않았을 때와 첨가했을 때의 차이를 비교하기 위함이다. 본 실시예는 후술할 방법에 따라 염화물 고정화, 인발강도, 투기성및 투수성을 측정하여 비교평가하였다.Sodium silicate, Na 2 O 3 SiO 2 , is 0%, 15%, 25%, 30%, 40%, 50%, 60%, 70% by weight, respectively. 0.1 wt% of sodium alginate, 0.1 wt% of C 5 H 8 SO 2 LiF (C 2 F 4 ) 3-8 surfactant, and 1 wt% of triethanolamine as a reinforcing corrosion inhibitor were uniformly mixed to prepare the present invention. In the present embodiment, the sodium silicate is 0% by weight in order to compare the difference between when the sodium silicate is not added and when it is added. This example was evaluated by measuring the chloride immobilization, pullout strength, air permeability and water permeability according to the method described below.

실시예2Example 2

Na2O·4SiO2인 규산나트륨을 각각 0중량%, 15중량%, 25중량%, 30중량%, 40중량%, 50중량%, 60중량%, 70중량%로 하고, 여기에 생화학물질인 알긴산나트륨 0.1중량%, C5H8SO2LiF(C2F4)3∼8인 계면활성제 0.1중량%, 철근 부식억제제인 트리에탄올아민 1중량%를 균등하게 혼합하여 본 발명품을 제조하였다. 본 실시예는 후술할 방법에 따라 염화물 고정화, 인발강도, 투기성 및 투수성을 측정하여 비교평가하였다.Sodium silicate, Na 2 O. 4SiO 2 , is 0% by weight, 15% by weight, 25% by weight, 30% by weight, 40% by weight, 50% by weight, 60% by weight, and 70% by weight, respectively. 0.1 wt% of sodium alginate, 0.1 wt% of C 5 H 8 SO 2 LiF (C 2 F 4 ) 3-8 surfactant, and 1 wt% of triethanolamine as a reinforcing corrosion inhibitor were uniformly mixed to prepare the present invention. This example was evaluated by measuring the chloride immobilization, pullout strength, air permeability and water permeability according to the method described below.

실시예3Example 3

Na2O·4SiO2인 규산나트륨 30중량%, C5H8SO2LiF(C2F4)3∼8인 계면활성제 0.1중량%, 철근 부식억제제인 트리에탄올아민 1중량%에, 생화학물질인 알긴산나트륨을 각각 0중량%, 0.05중량%, 0.1중량%, 0.5중량%, 1.0중량%, 3.0중량%, 5.0중량%, 7.0중량%로 혼합하여 본 발명품을 제조하였다. 본 실시예는 후술할 방법에 따라 염화물 고정화, 인발강도, 투기성 및 투수성을 측정하여 비교평가하였다.30% by weight of sodium silicate Na 2 O 4 SiO 2 , 0.1% by weight of C 5 H 8 SO 2 LiF (C 2 F 4 ) 3-8 surfactant, and 1% by weight of triethanolamine as a reinforcing corrosion inhibitor. The present invention was prepared by mixing sodium alginate at 0 wt%, 0.05 wt%, 0.1 wt%, 0.5 wt%, 1.0 wt%, 3.0 wt%, 5.0 wt% and 7.0 wt%, respectively. This example was evaluated by measuring the chloride immobilization, pullout strength, air permeability and water permeability according to the method described below.

실시예4Example 4

Na2O·4SiO2인 규산나트륨 30중량%, C5H8SO2LiF(C2F4)3∼8인 계면활성제 0.1중량%, 철근 부식억제제인 트리에탄올아민 1중량%에 생화학물질인 카제인을 각각 0중량%, 0.05중량%, 0.1중량%, 0.5중량%, 1.0중량%, 3.0중량%, 5.0중량%, 7.0중량%로 혼합하여 본 발명품을 제조하였다. 본 실시예는 후술할 방법에 따라 염화물 고정화, 인발강도, 투기성 및 투수성을 측정하여 비교평가하였다.30% by weight of sodium silicate Na 2 O 4 SiO 2 , 0.1% by weight of C 5 H 8 SO 2 LiF (C 2 F 4 ) 3-8 surfactant, 1% by weight of triethanolamine as a reinforcing corrosion inhibitor The present invention was prepared by mixing 0%, 0.05%, 0.1%, 0.5%, 1.0%, 3.0%, 5.0%, and 7.0% by weight, respectively. This example was evaluated by measuring the chloride immobilization, pullout strength, air permeability and water permeability according to the method described below.

실시예5Example 5

Na2O·4SiO2인 규산나트륨 30중량%, 생화학물질인 알기산나트륨 0.1중량%,철근 부식억제제인 트리에탄올아민 1중량%에 C5H8SO2LiF(C2F4)3∼8인 계면활성제를 각각 0중량%, 0.01중량%, 0.05중량%, 0.1중량%, 0.3중량%, 0.5중량%, 1.0중량%로 혼합하여 본 발명품을 제조하였다. 본 실시예는 후술할 방법에 따라 염화물 고정화, 인발강도, 투기성 및 투수성을 측정하여 비교평가하였다.C 5 H 8 SO 2 LiF (C 2 F 4 ) 3-8 phosphorus in 30% by weight of sodium silicate Na 2 O 4SiO 2 , 0.1% by weight sodium alginate as biochemical, 1% by weight of triethanolamine as reinforcing corrosion inhibitor The present invention was prepared by mixing the surfactant at 0 wt%, 0.01 wt%, 0.05 wt%, 0.1 wt%, 0.3 wt%, 0.5 wt%, and 1.0 wt%, respectively. This example was evaluated by measuring the chloride immobilization, pullout strength, air permeability and water permeability according to the method described below.

실시예6Example 6

Na2O·4SiO2인 규산나트륨 30중량%, 생화학물질인 알기산나트륨 0.1중량%, 철근 부식억제제인 트리에탄올아민 1중량%에 (C2H4O)nHF(C2F4)3∼8인 계면활성제를 각각 0중량%, 0.01중량%, 0.05중량%, 0.1중량%, 0.3중량%, 0.5중량%, 1.0중량%로 혼합하여 본 발명품을 제조하였다. 본 실시예는 후술할 방법에 따라 염화물 고정화, 인발강도, 투기성 및 투수성을 측정하여 비교평가하였다.(C 2 H 4 O) n HF (C 2 F 4 ) 3 to 30% by weight of sodium silicate of Na 2 O 4 SiO 2 , 0.1% by weight of sodium alginate as a biochemical, and 1% by weight of triethanolamine as a steel corrosion inhibitor. The present invention was prepared by mixing the 8 phosphorus surfactant at 0%, 0.01%, 0.05%, 0.1%, 0.3%, 0.5%, and 1.0% by weight, respectively. This example was evaluated by measuring the chloride immobilization, pullout strength, air permeability and water permeability according to the method described below.

실시예7Example 7

Na2O·4SiO2인 규산나트륨 30중량%, 생화학물질인 알기산나트륨 0.1중량%, C5H8SO2LiF(C2F4)3∼8인 계면활성제 0.1중량%, 철근 부식억제제인 트리에탄올아민 1중량%에 알칼리 부여제인 NaOH를 각각 0중량%, 0.5중량%, 1.0중량%, 2.0중량%, 3.0중량%, 5.0중량%, 7.0중량%로 혼합하여 본 발명품을 제조하였다. 본 실시예는 후술할 방법에 따라 중성화 깊이와 pH를 측정하여 중성화 회복정도를 비교, 평가하였다.30% by weight of sodium silicate, Na 2 O 4 SiO 2 , 0.1% by weight of sodium alginate as biochemical, 0.1% by weight of C 5 H 8 SO 2 LiF (C 2 F 4 ) 3-8 surfactant, steel corrosion inhibitor The present invention was prepared by mixing NaOH as an alkali imparting agent in 1% by weight of triethanolamine at 0%, 0.5%, 1.0%, 2.0%, 3.0%, 5.0%, and 7.0% by weight, respectively. In this embodiment, the neutralization depth and pH were measured according to the method described below to compare and evaluate the degree of neutralization recovery.

실시예8Example 8

Na2O·4SiO2인 규산나트륨 30중량%, 생화학물질인 알긴산나트륨 0.1중량%, C5H8SO2LiF(C2F4)3∼8인 계면활성제 0.1중량%, 철근 부식억제제인 트리에탄올아민 1중량%에 알칼리 부여제인 Ca(OH)2를 각각 0중량%, 0.5중량%, 1.0중량%, 2.0중량%, 3.0중량%, 5.0중량%, 7.0중량%로 혼합하여 본 발명품을 제조하였다. 본 실시예는 후술할 방법에 따라 중성화 깊이와 pH를 측정하여 중성화 회복정도를 비교, 평가하였다.30% by weight of sodium silicate Na 2 O 4 SiO 2 , 0.1% by weight sodium alginate as biochemical, 0.1% by weight of C 5 H 8 SO 2 LiF (C 2 F 4 ) 3-8 surfactant, triethanol as a reinforcing corrosion inhibitor The present invention was prepared by mixing Ca (OH) 2 as an alkali imparting agent in 0% by weight, 0.5% by weight, 1.0% by weight, 2.0% by weight, 3.0% by weight, 5.0% by weight and 7.0% by weight of amine, respectively. . In this embodiment, the neutralization depth and pH were measured according to the method described below to compare and evaluate the degree of neutralization recovery.

실시예9Example 9

Na2O·4SiO2인 규산나트륨 30중량%, 생화학물질인 알기산나트륨 0.1중량%, C5H8SO2LiF(C2F4)3∼8인 계면활성제 0.1중량%, 알칼리 부여제인 NaOH를 0.5중량%에 철근 부식억제제인 트리에탄올아민을 각각 0중량%, 0.5중량%, 1.0중량%, 2.0중량%,5.0중량%, 7.0중량%로 혼합하여 본 발명품을 제조하였다. 본 실시예는 후술할 방법에 따라 철근 전위차를 측정하여 철근부식억제정도를 비교, 평가하였다.30% by weight of sodium silicate, Na 2 O 4 SiO 2 , 0.1% by weight of sodium alginate as biochemical, 0.1% by weight of C 5 H 8 SO 2 LiF (C 2 F 4 ) 3-8 surfactant, NaOH as alkali granting agent The present invention was prepared by mixing triethanolamine as a reinforcing corrosion inhibitor in 0.5% by weight, respectively, in 0% by weight, 0.5% by weight, 1.0% by weight, 2.0% by weight, 5.0% by weight, and 7.0% by weight. In this embodiment, the rebar potential difference was measured and compared with and evaluated according to the method described below.

상기한 제1 내지 제9 실시예에서 첨가물질을 0중량%로 규정한 것은 상기 첨가물질을 첨가하지 않았을 때와 첨가했을 때의 차이를 비교하기 위함이다.In the above first to ninth embodiments, the additive material is defined as 0 wt% to compare the difference between when the additive material is not added and when it is added.

다음은 도1 내지 도6을 참조하여 본 발명의 특성 실험결과를 살펴본다.Next, a characteristic test result of the present invention will be described with reference to FIGS. 1 to 6.

도1은 염화물 고정화 효과실험 결과를 나타낸 것이다.Figure 1 shows the results of the chloride immobilization effect test.

도면에 도시된 바와 같이, 상기 염화물 고정화 효과실험은 305×305×76mm 각주 콘크리트 시편에 대해 28일간 표준양생을 실시한 다음, AASHTO T259에 준하여 NaCl 3.6% 수용액에 90일동안 침지시켜 콘크리트 내부에 염화물 이온이 침투하도록 하였다. 그 다음 7일동안 콘크리트 시편을 건조시키고, 콘크리트 표면에 본 발명의 성능개선제를 도포하여 7일동안 살수양생을 실시하였다. 그리고, 콘크리트 표면으로부터 45mm까지 시료 40g을 채취한 후, 이온 전극법을 사용하여 수용성 염화물량을 측정하였다.As shown in the figure, the chloride immobilization effect test was carried out for 28 days on the 305 × 305 × 76mm footnote concrete specimens, and then immersed in a 3.6% aqueous solution of 3.6% NaCl in accordance with AASHTO T259 for 90 days to chloride ions in the concrete It was allowed to penetrate. Then, the concrete specimens were dried for 7 days, and the sprinkling curing was performed for 7 days by applying the performance improving agent of the present invention to the concrete surface. And 40 g of samples were taken from the concrete surface to 45 mm, and the amount of water-soluble chlorides was measured using the ion electrode method.

상기 규산나트륨의 영향을 검토하기 위하여 90일 동안 NaCl 3.6% 수용액에 침지시킨 콘크리트 표면에 본 발명의 성능개선제를 도포한 결과, 상기 규산나트륨의 종류와 양에 관게없이 염화물 농도가 감소하였으며, 특히 규산나트륨 40중량%에서 염화물 고정화 효과가 가장 크게 나타났으며, 규산나트륨 Na2O·3SiO2보다 Na2O·4SiO2가 염화물 고정화 효과가 큰 것으로 나타났다. 그리고, 염화물 고정화에 생화학물질의 종류와 양이 미치는 영향은 생화학물질을 첨가함으로써 염화물 농도가 감소하였으며, 특히 생화학물질 1중량% 정도에서 염화물 고정화 효과가 가장 큰 것으로 나타났으며, 알긴산나트륨이 카제인보다 염화물 고정화 효과가 큰 것으로 나타났다. 이상과 같이 염화물 고정화에는 규산나트륨 40중량%, 생화학물질1중량%, 계면활성제0.3중량%가 가장 효과가 있는 것으로 나타났으며, 염해를 받아 내부에 염화물 이온이 내재한 콘크리트 표면에 본 발명의 성능개선제를 도포하면 염화물 이온농도를 감소시켜 염해 방지에 효과가 있음을 알 수 있었다.As a result of applying the performance improving agent of the present invention to the concrete surface immersed in 3.6% aqueous NaCl solution for 90 days to examine the effect of sodium silicate, chloride concentration was reduced regardless of the type and amount of sodium silicate, especially silicic acid 40% by weight of sodium chloride showed the most significant effect of immobilization, sodium silicate Na 2 O · showed that the Na 2 O · 4SiO 2 3SiO 2 is greater than the effect of chloride immobilized. In addition, the effect of the type and amount of biochemicals on chloride immobilization decreased the chloride concentration by adding biochemicals. Especially, the chloride immobilization effect was found to be greatest at about 1% by weight of biochemicals, and sodium alginate was higher than casein. The chloride immobilization effect was shown to be large. As described above, 40% by weight of sodium silicate, 1% by weight of biochemicals, and 0.3% by weight of surfactants were found to be most effective in chloride immobilization, and the performance of the present invention on concrete surfaces containing chloride ions therein under salt damage. It was found that the application of the modifier reduces the chloride ion concentration and is effective in preventing salts.

도2는 중성화 회복실험결과를 나타낸 것이다.Figure 2 shows the results of the neutralization recovery experiment.

도면에 도시된 바와 같이, 표준양생을 28일간 실시한 100×100×100mm 콘크리트 시험체 6개를 온도 30℃, 상대습도 60%, 이산화탄소 농도 10%인 조건의 챔버에 넣고 90일간 중성화 촉진을 실시하였다. 중성화 촉진실험을 실시한 시편 3개를 페놀프탈레인 용액으로 살포하여 중성화 깊이를 측정하고, 그 다음 콘크리트 깊이별로 pH를 측정하였다. 중성화 촉진실험을 실시한 콘크리트에 본 발명의 성능개선제를 도포한 결과, 알칼리 부여제 5중량%까지는 알칼리 부여제의 첨가량이 많을 수록 중성화 깊이가 감소하고, pH가 상승하는 결과를 얻었고, 그 이상의 첨가량에서 더 이상 중성화 회복 효과가 없는 것으로 나타났으며, 또한 알칼리 부여제 NaOH는 Ca(OH)2보다 중성화 회복에 효과가 있는 것으로 나타났다. 이상과 같이 중성화 회복에는 알칼리 부여제를 5중량%에서 효과가 가장 큰 것으로 나타났으며, 본 발명의 성능개선제를 중성화된 콘크리트 표면에 도포하면 pH가 상승하여 콘크리트의 재알칼리화에 효과가 있음을 알 수 있었다.As shown in the figure, six 100 × 100 × 100 mm concrete test specimens subjected to 28 days of standard curing were placed in a chamber at a temperature of 30 ° C., a relative humidity of 60%, and a carbon dioxide concentration of 10% to facilitate neutralization for 90 days. Three specimens subjected to the neutralization promotion test were sprayed with phenolphthalein solution to measure the neutralization depth, and then the pH was measured for each concrete depth. As a result of applying the performance improving agent of the present invention to the concrete subjected to the neutralization acceleration test, up to 5% by weight of alkali-imparting agent, the higher the addition amount of the alkali-imparting agent, the lower the neutralization depth and the pH were increased. It was no longer shown to have a neutralizing recovery effect, and the alkali-imparting agent NaOH was shown to be more effective at recovering neutralization than Ca (OH) 2 . As mentioned above, it was found that the alkaline imparting agent was most effective at 5% by weight to recover the neutralization, and when the performance improving agent of the present invention was applied to the neutralized concrete surface, it was found that the pH was increased to have an effect on re-alkalization of concrete. Could.

도3은 인발강도 실험결과를 나타낸 것이다.Figure 3 shows the pullout strength test results.

도면에 도시된 바와 같이 표준양생을 28일간 실시한 305×305×76mm 각주 콘크리트 시편을 7일간 건조시키고, 본 발명의 성능개선제를 도포하여 7일간 양생시킨 다음, ASTM D 4541에 규정된 Pull off 시험장치로 10mm 깊이의 콘크리트 인발강도를 측정하였다. 규산나트륨의 영향을 검토하기 위하여 콘크리트 표면에 본 발명의 성능개선제를 도포한 결과, 규산나트륨의 종류와 양에 관계없이 인발강도가 증가하였으며, 특히 규산나트륨 40%에서 인발강도가 가장 크게 나타났으며, 규산나트륨 Na2O·3SiO2보다 Na2O·4SiO2가 인발강도 증진효과가 큰 것으로 나타났다. 그리고, 인발강도 증진효과에 생화학물질의 종류와 양이 미치는 영향은 생화학물질을 첨가함으로서 인발강도가 증가하였으며, 특히 생화학물질 1중량% 정도에서 인발강도 증진효과가 가장 큰 것으로 나타났다. 또한 계면활성제는 0.3중량%에서 인발강도 증진효과가 가장 큰 것으로 나타났다. 이상과 같이 인발강도 증진에는 규산나트륨 40중량%, 생화학물질1중량%, 계면활성제 0.3중량%가 가장 효과가 있는 것으로 나타났으며, 본 발명의 성능개선제를를 콘크리트에 도포함으로서 콘크리트 표면강도를 개선시킬 수 있음을 알 수 있었다.As shown in the figure, the 305 × 305 × 76mm footnote concrete specimens subjected to 28 days of standard curing were dried for 7 days, and then cured for 7 days by applying the performance improving agent of the present invention, followed by a pull-off test apparatus specified in ASTM D 4541. The concrete pullout strength of 10mm depth was measured. As a result of applying the performance improving agent of the present invention to the surface of concrete to examine the effect of sodium silicate, the pullout strength increased regardless of the type and amount of sodium silicate. , sodium silicate Na 2 O · Na 2 O · 4SiO 2 than the 3SiO 2 showed the promoting effect of pull-out strength greater. In addition, the effect of the type and amount of biochemicals on the increase in the pullout strength was increased by adding biochemicals, and the pullout strength enhancement was the greatest at about 1% by weight of the biochemicals. In addition, the surfactant was found to have the greatest effect of enhancing the pullout strength at 0.3% by weight. As described above, 40% by weight of sodium silicate, 1% by weight of biochemicals, and 0.3% by weight of surfactants were most effective in improving the pullout strength, and the concrete surface strength was improved by applying the performance improving agent of the present invention to concrete. I could see that.

도4는 투기성 실험결과를 나타낸 것이다.Figure 4 shows the experimental results of the air permeability.

도면에 도시된 바와 같이 표준양생을 28일간 실시한 305×305×76mm 각주 콘크리트 시편을 7일간 건조시키고, 본 발명의 성능개선제를 도포하여 7일간 양생시킨 다음, Torrent Permeability Tester로 콘크리트 투기성을 측정하였다. 규산나트륨의 영향을 검토하기 위하여 콘크리트 표면에 본 발명의 성능개선제를 도포한 결과, 규산나트륨의 종류와 양에 관계없이 투기계수가 감소하였으며, 특히 규산나트륨 40중량%에서 투기계수가 가장 작게 나타났으며, 규산나트륨 Na2O·3SiO2보다 Na2O·4SiO2가 수밀성 증진효과가 큰 것으로 나타났다. 그리고, 수밀성 증진효과에 생화학물질의 종류와 양이 미치는 영향은 생화학물질을 첨가함으로써 투기계수가 감소하였으며, 특히 생화학물질 1중량% 정도에서 투기성 감소효과가 가장 큰 것으로 나타났다. 그리고, 알긴산나트륨이 카제인보다 수밀성 증진효과가 큰 것으로 나타났으며, 또한, 계면활성제는 0.3중량%에서 수밀성 증진효과가 가장 큰 것으로 나타났다. 이상과 같이 수밀성 증진에는 규산나트륨 40중량%, 생화학물질 1중량%, 계면활성제 0.3중량%가 가장 효과가 있는 것으로 나타났으며, 본 발명의 성능개선제를 콘크리트 표면에 도포함으로서 콘크리트의 조직이 치밀해져 이산화탄소 가스, 질소가스, 산소등 콘크리트에 악영향을 미치는 이물질을 차단시키는데 상당한 효과가 있음을 알 수 있었다.As shown in the figure, the 305 × 305 × 76mm footnote concrete specimens subjected to 28 days of standard curing were dried for 7 days, cured for 7 days by applying the performance improving agent of the present invention, and then the concrete permeability was measured by a Torrent Permeability Tester. As a result of applying the performance improving agent of the present invention to the surface of concrete to examine the effect of sodium silicate, the number of permeability decreased regardless of the type and amount of sodium silicate. was, the sodium silicate is Na 2 O · Na 2 O · 4SiO 2 than 3SiO 2 showed a large increase water-tightness effect. In addition, the effect of the type and amount of biochemicals on the water-tightness-promoting effect was reduced by adding biochemicals, and the effect of reducing air permeability was the greatest at about 1% by weight of biochemicals. In addition, sodium alginate was shown to have a greater water-tightness-promoting effect than casein, and the surfactant showed the greatest water-tightness-promoting effect at 0.3% by weight. As mentioned above, 40% by weight of sodium silicate, 1% by weight of biochemicals, and 0.3% by weight of surfactants were most effective in improving the watertightness. As the performance improving agent of the present invention was applied to the concrete surface, the structure of concrete became dense. It can be seen that there is a significant effect in blocking foreign substances that adversely affect the concrete such as carbon dioxide gas, nitrogen gas, oxygen.

도5는 투수성 실험결과를 나타낸 것이다.5 shows the results of permeability experiment.

도면에 도시된 바와 같이, 표준양생을 28일간 실시한 305×305×76mm 각주 콘크리트 시편을 7일간 건조시키고, 본 발명의 성능개선제를 도포하여 7일간 양생시킨 다음, GWT 투수성 시험장치로 콘크리트의 투수성을 측정하였다. 상기 규산나트륨의 영향을 검토하기 위하여 콘크리트 표면에 본 발명의 성능개선제를 도포한 결과, 규산나트륨의 종류와 양에 관계없이 투수계수가 감소하였으며, 특히 규산나트륨 40%에서 투수계수가 가장 작게 나타났으며, 규산나트륨 Na2O·3SiO2보다 Na2O·4SiO2가 수밀성 증진효과가 큰 것으로 나타났다. 그리고, 수밀성 증진효과에 생화학물질의 종류와 양이 미치는 영향은 생화학물질을 첨가함으로서 투기계수가 감소하였으며, 특히 생화학물질 1중량% 정도에서 수밀성 증진효과가 큰 것으로 나타났다. 또한 계면활성제는 0.3중량%에서 수밀성 증진효과가 가장 큰 것으로 나타났다. 이상과 같이 수밀성 증진에는 규산나트륨 40중량%, 생화학물질 1중량%, 계면활성제 0.3중량%가 가장 효과가 있는 것으로 나타났으며, 본 발명의 성능개선제를 콘크리트 표면에 도포함으로써 콘크리트의 조직이 치밀해져 염화물 이온, 황산염 이온, 산성비, 물등 콘크리트에 악영향을 미치는 이물질을 차단시키는데 상당한 효과가 있음을 알 수 있었다.As shown in the figure, the 305 × 305 × 76mm footnote concrete specimens subjected to 28 days of standard curing were dried for 7 days, cured for 7 days by applying the performance improving agent of the present invention, and then the permeability of concrete with the GWT permeability test apparatus. Sex was measured. As a result of applying the performance improving agent of the present invention to the concrete surface in order to examine the effect of sodium silicate, the coefficient of permeability was reduced regardless of the type and amount of sodium silicate. was, the sodium silicate is Na 2 O · Na 2 O · 4SiO 2 than 3SiO 2 showed a large increase water-tightness effect. In addition, the effect of the type and amount of biochemicals on the water-tightness-promoting effect was reduced by adding biochemicals, and the water-tightness-promoting effect was increased at about 1% by weight of biochemicals. In addition, the surfactant was found to have the greatest water-tightness enhancing effect at 0.3% by weight. As mentioned above, 40% by weight of sodium silicate, 1% by weight of biochemicals, and 0.3% by weight of surfactants were most effective in improving the watertightness, and the structure of the concrete was densified by applying the performance improving agent of the present invention to the concrete surface. It was found that there is a significant effect in blocking foreign substances that adversely affect concrete such as chloride ions, sulfate ions, acid rain, and water.

도6은 철근 전위차 실험결과를 나타낸 것이다.6 shows the results of rebar potential difference experiments.

도면에 도시된 바와 같이 175×175×450mm 각주 콘크리트에 직경 10mm 이형철근을 콘크리트 표면으로부터 20mm 깊이에 매입하여 철근 콘크리트 시편을 제작하여 표준양생을 5일간 실시하였다. 그리고, 철근 콘크리트 시편을 NaCl 10% 수용액에 10일동안 침적시켜 콘크리트 내부에 내장되어 있는 철근을 부식시켰다. 그 다음 콘크리트 표면에 본 발명의 성능개선제를 도포하여 주기적으로 철근 전위차를 측정하였다. 철근 전위차 측정은 ASTM C 876의 자연전위차의 측정법에 준하였으며, 기준전극은 포화 황산동-동 전극(copper-copper sulfate half cell)을 사용하였다. 재령 1일에서 재령 10일까지는 철근 전위차 값이 -200mV정도로 90%의 확률로 철근이 부식되지 않은 범위에 있다. 그리고, NaCl 10% 수용액에 10일동안 침적시킨 철근 콘크리트 시편은 콘크리트 덮개에 관계없이 -550mV 정도로 철근 부식이 99%의 확률범위인 -350mV를 초과하고 있으나, 철근 콘크리트 표면에 본 발명의 성능개선제를 도포한 결과, 재령이 경과함에 따라 전위차값이 증가되어 재령 90일에서 전위차가 철근이 부식되지 않는 범위인 90% 확률범위, 즉 염화물 수용액에 침전되기 전의 전위차에 근접하였다. 그리고, 철근부식 억제제인 트리에탄올아민 5중량% 이상부터 철근 부식억제 효과가 거의 비슷한 것으로 나타났다. 이상과 같이 본 발명의 성능개선제를 철근부식이 우려된 철근 콘크리트 표면에 도포하게 되면, 철근부식 억제에 효과가 뛰어남을 알 수 있었다.As shown in the drawing, a 10 mm diameter reinforced bar was embedded in 175 × 175 × 450 mm footed concrete at a depth of 20 mm from the concrete surface to produce reinforced concrete specimens, and standard curing was performed for 5 days. In addition, the reinforced concrete specimens were immersed in a 10% aqueous NaCl solution for 10 days to corrode the reinforcing bars embedded in the concrete. Then, the performance improving agent of the present invention was applied to the concrete surface to periodically measure the rebar potential difference. Rebar potential difference was measured according to the method of measuring the natural potential difference of ASTM C 876, and a reference electrode was used a saturated copper-copper sulfate half cell. From day 1 to day 10, the rebar potential difference is about -200mV and there is a 90% chance that the rebar is not corroded. In addition, the reinforced concrete specimens deposited in a 10% aqueous solution of NaCl for 10 days exceeded -350mV, which is a probability range of 99%, at -550mV, regardless of the concrete cover, but the performance improving agent of the present invention was applied to the reinforced concrete surface. As a result of application, the potential difference value increased with age, and the potential difference approached the potential difference before precipitation in the chloride aqueous solution at the age of 90 days in which the potential difference was not corroded. In addition, the reinforcing corrosion inhibitory effect was almost similar from 5 wt% or more of triethanolamine, which is a reinforcing corrosion inhibitor. As described above, when the performance improving agent of the present invention was applied to the reinforced concrete surface concerned with reinforcing corrosion, it was found that the effect of suppressing reinforcing corrosion was excellent.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

전술한 바와 같이 본 발명에 따르면, 표면처리형 성능개선제를 염해 및 중성화에 의해 성능이 저하되고 있는 콘크리트 구조물의 표면에 도포하여 침투시킬 경우, 콘크리트 내부의 염화물 이온을 고정화시키고, 활성상태에 있는 철근의 부식활동을 억제함은 물론, 저하된 콘크리트의 pH를 향상시키고 콘크리트의 구체를 강화하여 구조물의 성능을 향상시키는 효과를 가진다.As described above, according to the present invention, when the surface treatment type performance improving agent is applied to the surface of a concrete structure whose performance is deteriorated by salting and neutralization, and penetrated, the chloride ions in the concrete are fixed and the reinforcing bars in the active state are fixed. In addition to suppressing the corrosion activity of the concrete, it has the effect of improving the performance of the structure by improving the pH of the degraded concrete and strengthening the concrete spheres.

Claims (16)

주원료인 규산나트륨 15중량%∼70중량%와, 촉매제인 생화학물질 0.05중량%∼5.0중량%와, 증류수 25중량%∼84.05중량%를 포함하여 이루어진 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물.15% to 70% by weight of sodium silicate as a main raw material, 0.05% to 5.0% by weight of biochemicals as a catalyst, and 25% to 84.05% by weight of distilled water. 제 1 항에 있어서,The method of claim 1, 상기 규산나트륨이 Na2O·3SiO2과 Na2O·4SiO2중 선택된 하나로 이루어진 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물.The sodium silicate is a composition for the surface treatment type performance improving agent of reinforced concrete structure consisting of one selected from Na 2 O · 3 SiO 2 and Na 2 O · 4 SiO 2 . 제 1 항에 있어서,The method of claim 1, 상기 생화학물질이 알긴산나트륨과 우유에서 추출한 유지성분이 15중량%이하인 카제인중 선택된 하나로 이루어진 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물.The composition for surface treatment type performance improving agent of a reinforced concrete structure, wherein the biochemical material is selected from sodium alginate and casein having 15% by weight or less of oil or fat extracted from milk. 제 1 항 내지 제 3 항중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 혼합물의 점도를 강하시키기 위하여 3.0중량%이하의 계면활성제가 더 혼합된 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물.Composition for improving the surface treatment type performance of reinforced concrete structure in which more than 3.0% by weight of surfactant is further mixed to lower the viscosity of the mixture. 제 4 항에 있어서,The method of claim 4, wherein 상기 계면활성제가 C5H8SO2LiF(C2F4)3∼8또는 (C2H4O)nHF(C2F4)3∼8중 선택된 하나인 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물.Surface treatment type of reinforced concrete structure wherein the surfactant is selected from C 5 H 8 SO 2 LiF (C 2 F 4 ) 3-8 or (C 2 H 4 O) n HF (C 2 F 4 ) 3-8 Composition for improving performance. 제 1 항 내지 제 3 항중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 조성물에 7.0중량%이하의 철근부식 억제제가 더 혼합된 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물.The composition for the surface treatment performance-improving agent of reinforced concrete structure is further mixed with a corrosion inhibitor of less than 7.0% by weight to the composition. 제 6 항에 있어서,The method of claim 6, 상기 철근부식 억제제가 트리에탄올아민인 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물.Composition for improving the surface treatment type performance of the reinforced concrete structure wherein the reinforcing corrosion inhibitor is triethanolamine. 제 1 항 내지 제 3 항중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 혼합물이 pH13∼14를 유지할 수 있도록 7.0중량%이하의 알칼리 성능향상제가 더 혼합된 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물.Composition for improving the surface treatment performance of reinforced concrete structures in which more than 7.0% by weight of alkali performance enhancer is further mixed to maintain the pH 13-14. 제 8 항에 있어서,The method of claim 8, 상기 알칼리 성능향상제가 수산화나트륨 또는 수산화칼슘중 선택된 하나로 이루어진 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물.The composition for the surface treatment type performance improving agent of reinforced concrete structure, wherein the alkali performance improving agent is selected from sodium hydroxide or calcium hydroxide. Na2O·3SiO2또는 Na2O·4SiO2중 선택된 규산나트륨 15중량%∼70중량%에 알긴산나트륨과 카제인중 선택된 하나의 0.05중량%∼5.0중량%와, 증류수 25중량%∼84.05중량%를 교반하여 혼합한 혼합물을 70 ∼ 100℃로 가열하여 유지시키는 제1단계; 및Na 2 O · 3SiO 2 or Na 2 O · 4SiO with a 0.05% ~5.0% by weight of alginic acid is selected to 215% by weight to 70% by weight of sodium silicate selected from sodium caseinate, distilled water 25% by weight% by weight ~84.05 A first step of stirring and maintaining the mixed mixture by heating to 70 to 100 ° C; And 상기 혼합물이 균등하게 혼합되도록 아세트산을 1∼5시간 간격으로 한방울씩 적가반응시키는 제2 단계A second step of acetic acid dropwisely reacting dropwise at intervals of 1 to 5 hours so that the mixture is evenly mixed; 를 포함하는 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물의 제조방법.Method for producing a composition for surface treatment type performance improving agent of reinforced concrete structure comprising a. 제 10 항에 있어서,The method of claim 10, 상기 제1 단계의 가열이 1∼2시간동안 행해지는 것을 특징으로 하는 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물의 제조방법.Method for producing a surface treatment type performance improving composition of a reinforced concrete structure, characterized in that the heating of the first step is performed for 1 to 2 hours. 제 10 항 또는 제 11 항에 있어서,The method of claim 10 or 11, 상기 제2 단계의 적가반응은 5∼50방울씩 행하는 것을 특징으로 하는 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물의 제조방법.The dropping reaction of the second step is a method for producing a composition for surface treatment type performance improving agent of reinforced concrete structure, characterized in that for each 5 to 50 drops. 제 10 항 또는 제 11 항에 있어서,The method of claim 10 or 11, 상기 제2 단계의 반응시간은 1∼2일간 행하는 것을 특징으로 하는 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물의 제조방법.The reaction time of the second step is a method for producing a surface treatment performance improving composition of a reinforced concrete structure, characterized in that performed for 1 to 2 days. 제 10 항 또는 제 11 항에 있어서,The method of claim 10 or 11, 제2 단계 수행후 혼합물의 점도를 강하시키기 위하여 3중량%이하의 불소계 계면활성제를 혼합하여 균등하게 분산시키는 제3 단계를 더 포함하는 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물의 제조방법.Method for producing a surface treatment type performance improving composition for a reinforced concrete structure further comprises a third step of uniformly dispersing by mixing equal to or less than 3% by weight fluorine-based surfactant in order to lower the viscosity of the mixture after the second step. 제 10 항 또는 제 11 항에 있어서,The method of claim 10 or 11, 제2 단계 수행후, 철근 부식억제제인 7.0중량%이하의 트리에탄올아민을 첨가하는 제4 단계를 더 포함하는 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물의 제조방법.After performing the second step, the method of producing a surface treatment performance improving composition for a reinforced concrete structure further comprises a fourth step of adding a triethanolamine of less than 7.0% by weight of the steel corrosion inhibitor. 제 10 항 또는 제 11 항에 있어서,The method of claim 10 or 11, 상기 제2 단계 수행후, NaOH 또는 Ca(OH)2중 하나의 주성분으로 이루어진 알칼리부여제 7.0중량%이하를 더 혼합하여 상기 혼합물이 pH13∼14를 유지할 수 있도록 하는 제5 단계를 더 포함하는 철근 콘크리트 구조물의 표면처리형 성능 개선제용 조성물의 제조방법.After performing the second step, the rebar further comprises a fifth step of mixing more than 7.0% by weight of an alkali donor consisting of the main component of one of NaOH or Ca (OH) 2 to maintain the pH 13-14 Method for producing a composition for surface treatment type performance improving agent of concrete structures.
KR10-2002-0005551A 2002-01-31 2002-01-31 Performance improver and it's manufacturing process treating surface for reinforcement concrete structures attacked by chloride penetration and carbonation KR100448520B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0005551A KR100448520B1 (en) 2002-01-31 2002-01-31 Performance improver and it's manufacturing process treating surface for reinforcement concrete structures attacked by chloride penetration and carbonation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0005551A KR100448520B1 (en) 2002-01-31 2002-01-31 Performance improver and it's manufacturing process treating surface for reinforcement concrete structures attacked by chloride penetration and carbonation

Publications (2)

Publication Number Publication Date
KR20030065099A KR20030065099A (en) 2003-08-06
KR100448520B1 true KR100448520B1 (en) 2004-09-14

Family

ID=32220010

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0005551A KR100448520B1 (en) 2002-01-31 2002-01-31 Performance improver and it's manufacturing process treating surface for reinforcement concrete structures attacked by chloride penetration and carbonation

Country Status (1)

Country Link
KR (1) KR100448520B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265239B1 (en) 2011-01-27 2013-05-16 진도화성주식회사 Water repellency and non-freezing in winter aqueous concrete surface reinforcing agent based alkali silicate, manufacturing method thereof and method of treating concrete surface reinforcement using the same
KR102079900B1 (en) * 2019-07-23 2020-02-20 김소중 Method of reinforcement and protection of concrete by recovery of concrete neutralization
KR102091977B1 (en) * 2019-09-05 2020-03-20 김소중 Method of repairing and protecting outer surface of concrete structure by recovery of concrete neutralization of outer surface of concrete
KR20220039094A (en) 2020-09-21 2022-03-29 한국건설기술연구원 Cement composite having excellent salt resistance, and manufacturing method for the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884578B1 (en) * 2007-10-12 2009-02-19 연세대학교 산학협력단 Chloride threshold value method for steel corrosion in concrete
CN103979917B (en) * 2014-05-14 2015-11-04 株洲飞鹿高新材料技术股份有限公司 A kind of concrete protection floor material and preparation method thereof
KR102512525B1 (en) * 2020-08-25 2023-03-22 (주)에이치비티 Concrete and mortar rust inhibitor composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292235A (en) * 1986-06-12 1987-12-18 Hagiwara Kazuyoshi Water-base mold coating material and its production
JPH04321542A (en) * 1991-04-22 1992-11-11 Denki Kagaku Kogyo Kk Cement additive and cement composition
US5378279A (en) * 1990-08-10 1995-01-03 Conroy; Michel Enhanced cement mixed with selected aggregates
KR20000060273A (en) * 1999-03-13 2000-10-16 김수환 Ambient Temperature Curing Inorganic Binder Composition Comprising Colloid Silica Sol Catalyst, and Method of Treating Porous Structure Using the Same
KR20010100040A (en) * 2001-01-15 2001-11-14 송병창 Renewal and reform method for detrioration area at exposured reinforced steel concrete
KR20020007274A (en) * 2001-12-15 2002-01-26 정승교 Agent for surface treatment of concrete structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292235A (en) * 1986-06-12 1987-12-18 Hagiwara Kazuyoshi Water-base mold coating material and its production
US5378279A (en) * 1990-08-10 1995-01-03 Conroy; Michel Enhanced cement mixed with selected aggregates
JPH04321542A (en) * 1991-04-22 1992-11-11 Denki Kagaku Kogyo Kk Cement additive and cement composition
KR20000060273A (en) * 1999-03-13 2000-10-16 김수환 Ambient Temperature Curing Inorganic Binder Composition Comprising Colloid Silica Sol Catalyst, and Method of Treating Porous Structure Using the Same
KR20010100040A (en) * 2001-01-15 2001-11-14 송병창 Renewal and reform method for detrioration area at exposured reinforced steel concrete
KR20020007274A (en) * 2001-12-15 2002-01-26 정승교 Agent for surface treatment of concrete structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265239B1 (en) 2011-01-27 2013-05-16 진도화성주식회사 Water repellency and non-freezing in winter aqueous concrete surface reinforcing agent based alkali silicate, manufacturing method thereof and method of treating concrete surface reinforcement using the same
KR102079900B1 (en) * 2019-07-23 2020-02-20 김소중 Method of reinforcement and protection of concrete by recovery of concrete neutralization
KR102091977B1 (en) * 2019-09-05 2020-03-20 김소중 Method of repairing and protecting outer surface of concrete structure by recovery of concrete neutralization of outer surface of concrete
KR20220039094A (en) 2020-09-21 2022-03-29 한국건설기술연구원 Cement composite having excellent salt resistance, and manufacturing method for the same

Also Published As

Publication number Publication date
KR20030065099A (en) 2003-08-06

Similar Documents

Publication Publication Date Title
CN100393658C (en) Composition used for improving endurance performance of concrete
KR101194714B1 (en) Mortar composition with function of sulfuric acid resistance using silica for repairing concrete structure and method for recovering the same thereof
CN101580356B (en) Water-emulsion organic silicon waterproof agent
KR102365874B1 (en) Anti-corrosion and lightweight polymer mortar components for repair of deteriorated concrete structures
KR100743029B1 (en) Renewal and reform of durability method for detriorated steel reinforced concrete
KR100448520B1 (en) Performance improver and it's manufacturing process treating surface for reinforcement concrete structures attacked by chloride penetration and carbonation
CN105366978A (en) Permeable steel bar corrosion inhibitor for durability repair of concrete structure and preparation method thereof
CN105461349A (en) A corrosion-inhibiting reinforcing agent used for a surface layer of steel fiber reinforced concrete and a preparing method thereof
CN1982254A (en) Antiseptic concrete air-tight agent composition and its production
Munyao et al. Study on the effect of Thiobacillus intermedius bacteria on the physico-mechanical properties of mortars of ordinary portland cement
KR100466947B1 (en) Polymer mortar and method repair or supplementary concrete
US7670415B1 (en) Vapor barrier for porous structures and system
Mondal et al. Biomineralization, bacterial selection and properties of microbial concrete: A review
Meyer et al. Sulfuric acid attack on concrete sewer pipe
JP6828875B2 (en) Concrete protection method
KR101102249B1 (en) Method for repairing reinforced concrete structure using mortar having anticorrosive
JP2016188156A (en) Method for enhancing strength and extending life of existing concrete structure
CN114477847A (en) Concrete reinforced anti-cracking agent and preparation method and use method thereof
Umale et al. Study of effect of chemicals (acid) attack on strength and durability of hardened concrete
Ho Durability of concrete
KR100561233B1 (en) Ready mixed concrete contained watertight, inorganic, crack decreasing matter
JPH03285882A (en) Preventing method for deterioration of concrete structure
JP2005336012A (en) Sulfuric acid-resistant hydraulic composition and sulfuric acid-resistant hardened matter
Pushkarova et al. The principles of composite construction penetrability waterproofing mortars with increased service life
KR20020049478A (en) alkali recovering agent having corrosion inhibitor in reinforced concrete structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120904

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130903

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150902

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee