KR100448160B1 - Method for controlling and decreasing the exhaust gas after start automatic car - Google Patents

Method for controlling and decreasing the exhaust gas after start automatic car Download PDF

Info

Publication number
KR100448160B1
KR100448160B1 KR10-2002-0020994A KR20020020994A KR100448160B1 KR 100448160 B1 KR100448160 B1 KR 100448160B1 KR 20020020994 A KR20020020994 A KR 20020020994A KR 100448160 B1 KR100448160 B1 KR 100448160B1
Authority
KR
South Korea
Prior art keywords
increase
starting
range
automatic vehicle
warming
Prior art date
Application number
KR10-2002-0020994A
Other languages
Korean (ko)
Other versions
KR20030082329A (en
Inventor
나정욱
Original Assignee
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR10-2002-0020994A priority Critical patent/KR100448160B1/en
Publication of KR20030082329A publication Critical patent/KR20030082329A/en
Application granted granted Critical
Publication of KR100448160B1 publication Critical patent/KR100448160B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

본 발명은 오토매틱 차량의 시동 후 배출가스 저감 제어방법으로, 오토메틱 차량의 시동 후 인히비터 스위치의 정보가 엔 레인지 상태에서 시동증량이 1차 구배 및 2차구배를 거치는 단계; 상기 단계에서 시동증량의 2차 구배 종료 후 인히비터 스위치의 정보를 엔 레인지로 유지하면서 지연시간을 주는 단계; 상기 단계에서 지연시간 동안 난기증량을 감소시키는 단계; 상기 단계에서 난기증량 감소 후 난기증량이 일정하게 유지되도록 난기증량을 금지하는 단계; 상기 단계에서 인히비터 스위치의 정보를 디 레인지로 변경 시에 난기증량을 다시 보정하는 단계를 포함하는 것을 특징으로 한다.The present invention relates to a method for controlling emission reduction after starting of an automatic vehicle, the method comprising: after the start of the automatic vehicle, information of the inhibitor switch is subjected to a first gradient and a second gradient in an en-range state; Giving a delay time while maintaining the information of the inhibitor switch after the completion of the second gradient of the starting increase in the range; Reducing the increase in turbulence during the delay time in the step; Prohibiting the increase in warm up so that the warming up remains constant after the decrease in warming up; And correcting the increase in turbulence when the information of the inhibitor switch is changed to the range.

Description

오토매틱 차량의 시동 후 배출가스 저감 제어방법{Method for controlling and decreasing the exhaust gas after start automatic car}Method for controlling and reducing the exhaust gas after start automatic car}

본 발명은 오토매틱 차량의 시동 후 배출가스 저감 제어방법에 관한 것이다.The present invention relates to a method for controlling emission reduction after start-up of an automatic vehicle.

일반적으로, 종래에 오토매틱 차량의 시동 후 배출가스 제어방법은 시동 후 주행의 안전성을 위하여 공기연료혼합비(A/F)를 농후(Rich)하게 하여 제어하고 있다.In general, in the conventional method for controlling the exhaust gas after starting of an automatic vehicle, the air fuel mixture ratio (A / F) is controlled to be rich (Rich) for the safety of driving after starting.

즉, 공기연료혼합비(A/F)의 경우, 알피엠(rpm ; revolution per minute)과 충진효율(흡입공기량)에 따라 공기연료혼합비가 1(A/F=1)이 되게 하나의 기계식가속펌프(MAP ; Mechanical Acceleration Pump)를 이용하고 있으며, 온도에 따라 보정값을 줌으로써 공기연료혼합비(A/F)가 1이하가 될 시에 연료 피드백(Feed Back) 이전에 저온 상태에서 농후(Rich)하게 제어하였다.That is, in the case of the air fuel mixing ratio (A / F), one mechanical acceleration pump (1 / A = 1) is used to make the air fuel mixture ratio 1 (A / F = 1) according to RPM (revolution per minute) and filling efficiency (intake air volume). Mechanical Acceleration Pump (MAP) is used, and it gives rich control at low temperature before fuel feedback when air fuel mixture ratio (A / F) is below 1 by giving correction value according to temperature. It was.

이러한 방식은 저온 운전시 공기연료혼합비(A/F)가 희박(Lean)에 의해 운전성 악화를 방지하고, 쇼크 및 시동꺼짐 등을 방지하기 위한 것이다.This method is to prevent deterioration of operability due to lean (L / A) of air fuel mixture ratio (A / F) during low temperature operation, and to prevent shock and starting off.

종래의 오토매틱 차량의 배출가스 제어방법의 세부적인 사항은 도 1에 도시된 그래프와 같다.Details of a conventional method for controlling exhaust gas of an automatic vehicle are as shown in FIG. 1.

오토매틱 차량의 엔, 디 레인지(N Range, D range)에 관계없이 시동 후에 일정시간까지 시동시 연료량과 난기 증량값을 같이 보정해 주며, 이 때, 시동후 연료량의 경우 혼합하기 나름이지만, 통상적으로 5초 내외에서 종료하게 되었다.Regardless of the N range and D range of the automatic vehicle, the fuel amount and the warm-up increase value are corrected together for a certain time after starting.In this case, the amount of fuel after starting is usually mixed. It was finished in about 5 seconds.

또한, 난기 증량의 경우 보통 냉각 수온온도 80까지 일정량씩 감쇄하며 증량을 해주게 되어 있었다.In addition, in the case of warming, the cooling water temperature is usually 80 Until a certain amount of attenuation was to increase.

덧붙여 설명하자면, 이러한 증량보정을 하는 이유는 엔진의 운전상태에 따라서 이론 공연비 이외의 공연비가 요구되는 경우가 있기 때문에 실시한다.Incidentally, the reason for such increase correction is performed because an air-fuel ratio other than the theoretical air-fuel ratio may be required depending on the operating state of the engine.

특히 , 난기 증량의 경우에는, 엔진 워밍업 중에는 연료의 무화(atomization)가 나쁘기 때문에 연료분사량을 증량하기 위해 실시하는 증량이다.In particular, in the case of increasing the warming up, the amount of fuel is increased to increase the amount of fuel injection since the atomization of the fuel is bad during engine warm-up.

하지만, 종래의 오토매틱 차량의 배출가스 제어방법은 엔 레인지(N Range)나 디 레인지(D range)에 관계없이 동일한 제어방법이 적용됨으로써 다수의 문제가 발생한다. 즉, 공기연료혼합비(A/F)를 농후(Rich)하게 제어함으로써, 배출가스의 성분중 탄화수소(HC)나 일산화탄소(CO)의 다량발생을 가져오게 되어 환경오염에 큰 문제가 되었다.However, the conventional method for controlling the exhaust gas of an automatic vehicle generates a number of problems by applying the same control method regardless of the N range or the D range. In other words, by richly controlling the air fuel mixture ratio (A / F), a large amount of hydrocarbon (HC) and carbon monoxide (CO) in the components of the exhaust gas is generated, which is a big problem for environmental pollution.

또한, 촉매의 활성화도달시간(LOT)에도 큰 악영향을 미치게 되어, 촉매의 볼륨 및 귀금속 함유량이 증가함으로써 원가의 상승을 가져오는 단점이 있었다.In addition, the catalyst has a significant adverse effect on the activation arrival time (LOT) of the catalyst, which increases the cost of the catalyst by increasing the volume of the catalyst and the precious metal content.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로, 연료의 희박(Lean)화에 의해 일산화탄소 및 탄화수소의 배출량을 줄이면서 촉매 활성화도달시간(LOT)의 조기화를 추진하도록하는 오토매틱 차량의 시동 후 배출가스 저감 제어방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, after the start of the automatic vehicle to promote the early catalyst activation reaching time (LOT) while reducing the emissions of carbon monoxide and hydrocarbons by lean fuel (Lean) The purpose is to provide a method for controlling emission reduction.

도 1은 종래 기술에 따른 오토매틱 차량의 배출가스 제어방법에 따른 그래프이고,1 is a graph according to a method for controlling exhaust gas of an automatic vehicle according to the prior art,

도 2는 본 발명에 따른 오토메틱 차량의 시동 후 배출가스 저감 제어방법에 따른 블록도이고,2 is a block diagram according to a method for controlling emission reduction after starting of an automatic vehicle according to the present invention;

도 3은 본 발명에 따른 오토매틱 차량의 시동 후 배출가스 저감 제어방법에 따른 그래프이며,3 is a graph according to a method for controlling emission reduction after starting of an automatic vehicle according to the present invention;

도 4는 본 발명에 따른 오토매틱 차량의 시동 후 배출가스 저감 제어방법에 따른 플로우차트이다.4 is a flowchart of a method for controlling emission reduction after starting of an automatic vehicle according to the present invention.

상기한 목적을 달성하기 위한 본 발명의 형태에 따르면, 오토매틱 차량의 시동 후 배출가스 저감 제어방법으로, 오토메틱 차량의 시동 후 인히비터 스위치의 정보가 엔 레인지 상태에서 시동증량이 1차 구배 및 2차구배를 거치는 단계; 상기 단계에서 시동증량의 2차 구배 종료 후 인히비터 스위치의 정보를 엔 레인지로 유지하면서 지연시간을 주는 단계; 상기 단계에서 지연시간 동안 난기증량을 감소시키는 단계; 상기 단계에서 난기증량 감소 후 난기증량이 일정하게 유지되도록 난기증량을 금지하는 단계; 상기 단계에서 인히비터 스위치의 정보를 디 레인지로 변경 시에 난기증량을 다시 보정하는 단계를 포함하는 것에 의해 달성된다.According to an aspect of the present invention for achieving the above object, a method for controlling emission gas reduction after starting of an automatic vehicle, wherein the information of the initiator switch after starting of the automatic vehicle is increased in a range of the first gradient and the secondary Undergoing a gradient; Giving a delay time while maintaining the information of the inhibitor switch after the completion of the second gradient of the starting increase in the range; Reducing the increase in turbulence during the delay time in the step; Prohibiting the increase in warm up so that the warming up remains constant after the decrease in warming up; And re-correcting the increase in turbulence upon changing the information of the inhibitor switch to the derange in this step.

이하, 첨부된 도면을 참조하여 본 발명에 따른 오토매틱 차량의 시동 후 배출가스 저감 제어방법의 바람직한 실시 예를 상세하게 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the control method for reducing emissions after the start of the automatic vehicle according to the present invention.

도 2는 본 발명에 따른 오토메틱 차량의 시동 후 배출가스 저감 제어방법에 따른 블록도이고, 도 3은 본 발명에 따른 오토매틱 차량의 시동 후 배출가스 저감 제어방법에 따른 그래프이며, 도 4는 본 발명에 따른 오토매틱 차량의 시동 후 배출가스 저감 제어방법에 따른 플로우차트이다.2 is a block diagram according to a method for controlling emission reduction after starting of an automatic vehicle according to the present invention, FIG. 3 is a graph according to a method for controlling emission reduction after starting of an automatic vehicle according to the present invention, and FIG. Is a flowchart according to a method for controlling emission reduction after start-up of an automatic vehicle.

본 발명은 도 2에 도시된 바와 같이, 차량의 시동 후 엔 레인지 상태에서 시동증량을 하는 단계(S10); 시동증량 완료 후 인히비터 스위치의 정보를 엔 레인지으로 유지하면서 지연시간을 주는 단계(S20); 지연시간 동안 난기증량을 감소시키는 단계(S30); 난기증량을 금지시키는 단계(S40); 디 레인지 변경 시에 난기증량을 보정하는 단계(S50)으로 이루어진다.As shown in Figure 2, after the start of the vehicle starting step of increasing the starting state in the range (S10); Giving a delay time while maintaining the information of the inhibitor switch after the start-up increase is completed in a range (S20); Reducing the increase in turbulence during the delay time (S30); Prohibiting the increase in turbulence (S40); When the range is changed, the step of correcting the increase in turbulence is made (S50).

여기서, 인히비터 스위치(Inhibit On Switch)는 오토매틱 트랜스미션 차량의 시동시의 안전(스타트 세이프티)기구이다. 인히비터 스위치는 셀렉터 레버와 연동해서 작동하여 셀렉트 레버를 P 또는 N 위치에로하면 인히비터 스위치 내에서 전기회로가 접속하여 이그니션 회로가 형성됨으로써 엔진을 시동할 수 있다.Here, the inhibitor switch (Inhibit On Switch) is a safety (start safety) mechanism at the start of the automatic transmission vehicle. The inhibitor switch operates in conjunction with the selector lever so that when the select lever is in the P or N position, an electrical circuit is connected within the inhibitor switch to form an ignition circuit so that the engine can be started.

또한, 그 이외의 위치에서는 인히비터 스위치내의 전기회로는 OFF가 되기 때문에, 엔진을 시동할 수가 없는 안전장치이다.In addition, since the electric circuit in the inhibitor switch is turned OFF at other positions, it is a safety device that cannot start the engine.

일반적으로, 엔진의 난기시 까지는 보정중 연료에 관련된 보정값들은 시동시 증량, 시동후 증량, 난기 증량보정, 난기 가속증량보정 등으로 볼 수 있으며, 본 발명의 제어는 엔 레인지(N Range) 상태에서의 배출가스 저감 및 촉매의 활성화 도달시간(LOT)의 조기화를 위한 것이므로, 보정치 중 엔 레인지(N Range) 상태에서의 보정값에는 시동시 증량, 시동후 증량, 난기 보정증량값 들이 있다.In general, the correction values related to the fuel during correction until the engine warm up can be viewed as an increase in starting, an increase after starting, an increase in warming up, and an increase in warming up acceleration. The control of the present invention is in an N range state. In order to reduce the exhaust gas and to accelerate the LOT of catalyst activation, the correction value in the N range state includes the increase during start-up, the increase after start-up, and the warm up correction increase.

도 3의 그래프에 도시된 바와 같이, 종래의 오토매틱 차량의 시동 후 배출가스 제어방법의 시동시 증량 및 시동후 증량은 엔진의 시동 안정화를 위한 것으로써, 본 발명의 제어로직에서는 이를 그대로 유지시켰으며, 본 발명에서는 난기 보정증량 제어를 하여 배출가스 저감 및 촉매의 활성화도달시간(LOT)의 조기화를 달성하게 된다.As shown in the graph of Figure 3, the start-up and post-startup increase of the exhaust gas control method after the start of the conventional automatic vehicle is to stabilize the start of the engine, the control logic of the present invention was maintained as it is In the present invention, it is possible to achieve the reduction of the exhaust gas and the early activation arrival time (LOT) of the catalyst by controlling the increase in temperature correction.

도 3에서, 시동초기 연료량에서 시동연료증량을 실시하고, 시동연료증량은 1차구배 및 2차구배과정을 거치게 된다. 시동연료증량의 1차 구배 및 2차구배가 종료 후에 일정시간 동안 지연시간을 두고, 이 지연시간 동안 엔 레인지를 계속 유지시킨다.In Fig. 3, the starting fuel increase is performed at the initial fuel amount, and the starting fuel increase is subjected to the first and second gradient processes. There is a delay for a certain time after the first and second gradients of the starting fuel increments, and the range is maintained for this delay.

또한, 엔 레인지가 유지된 상태에서 지연시간 동안에 난기증량을 감소시키고, 지연시간이 경과 후에는 난기증량이 일정하도록 난기증량을 금지한다.In addition, it is prohibited to increase the warming up during the delay time in the state where the range is maintained, and to increase the warming up after the delay time has elapsed.

이론적으로 보면, 난기증량(KWUP) 금지때 까지 걸리는 지연시간(delay time) = 0.5 sec(임의 설정치)라고 가정하면, 난기증량(KWUP)의 감쇄는 지연시간 상의 난기증량(KWUP), 즉, 0.5 sec(지연 시간) 동안 난기증량(KWUP)이 1.0이 될 때 까지 난기증량을 감쇄시킨다. 그 후에, 난기증량을 금지 시킨다.Theoretically, assuming that the delay time until the KWUP is prohibited = 0.5 sec (arbitrary set point), the attenuation of the KWUP is the increase in the delay time (KWUP), ie 0.5 Decrease the increase in turbulence until the KWUP reaches 1.0 for sec. After that, the increase in warm up is prohibited.

그리고, 운전자가 운전을 위하여 디 레인지로 변경할 시에는 난기증량을 다시 보정한다. 일 실시예로, 디 레인지로 변경할 시에는 난기증량은 냉각수온 80일 경우 난기증량 보정치가 1이 된다.When the driver changes to the range for driving, the driver increases the amount of turbulence. In one embodiment, when the range is changed to increase the warming temperature of the cooling water 80 In this case, the augmentation correction value is 1.

도 3의 그래프에서 본 바와 같이, 종래 기술보다 공기연료 혼합비가 시동 후에 희박(Lean)하게 되기 때문에 배기온도가 상승하게 되며, 이러한 배기온도의 상승으로 촉매의 활성화도달시간(LOT)의 조기화가 가능하고, 공기연료 혼합비가 14.7:1인 이론 공연비에 접근하게 됨으로써 배출가스를 상당히 저감시키게 된다.As shown in the graph of FIG. 3, since the air fuel mixing ratio is lean after starting from the prior art, the exhaust temperature is increased, and the rise of the exhaust temperature enables early activation activation time (LOT) of the catalyst. In addition, by approaching the theoretical air-fuel ratio with the air fuel mixing ratio of 14.7: 1, the emission gas is significantly reduced.

도 4에 도시된 바와 같이, 본 오토매틱 차량의 시동 후 배출가스 저감 제어방법을 프로우 차트를 통해 더욱 더 상세하게 설명하면 다음과 같다.As shown in FIG. 4, the method for controlling emission reduction after start-up of the automatic vehicle will be described in more detail through a pro chart.

상기 오토메틱 차량의 시동 후에 공기연료 혼합비율의 정상유무를 확인한다(S61). 만일, 공기연료 혼합비율이 정상이 아니라면, 난기증량과 수온에 대한 보정 계수를 일치시킨다(S71).After the start of the automatic vehicle, it is checked whether the air fuel mixing ratio is normal (S61). If the air fuel mixing ratio is not normal, the warming factor and the correction coefficient for the water temperature are matched (S71).

그리고, 공기연료 혼합비율이 정상이라면, 시동증량이 완료되었는가를 확인한다(S62). 만일, 시동증량이 완료되지 않았다면, 수온에 대한 보정 계수(KWT)1.0 일 때, 난기증량(KWUP) = 1.0 +충진효율에 의한 보정계수(KPRS)가 되게 제어한다(S72).Then, if the air fuel mixing ratio is normal, it is checked whether the starting increase is completed (S62). If the start-up ramp is not complete, correction factor for water temperature (KWT) At 1.0, KWUP = 1.0 + Control to be the correction coefficient (KPRS) by the filling efficiency (S72).

이러한, 이론식은 수온 및 충진효율에 대한 보정을 행하면서 산출된 식이며, 이러한 조건은 도 3에서와 같이, 일정 알피엠(rpm ; revolution per minute)이상에서만 행하게 된다. 또한, 엔진 난기후에는 대부분 보정값이 1.0이므로 상기와 같은 이론식을 산출하게 된다.This, the theoretical formula is calculated while performing the correction for the water temperature and the filling efficiency, this condition is performed only at a certain revolution per minute (rpm), as shown in FIG. In addition, since most of the correction values are 1.0 after engine turbulence, the above theoretical equation is calculated.

다음으로, 시동증량 완료에 이상이 없다면, 인히비터 스위치의 정보가 엔 레인지(N Range)인가를 판단한다(S63). 만일, 인히비터 스위치의 정보가 엔 레인지(NRange)가 아니라면, 수온에 대한 보정 계수(KWT)1.0 일 때, 난기증량(KWUP) = 1.0 +충진효율에 의한 보정계수(KPRS)가 되게 제어한다(S72).Next, if there is no abnormality in the start-up increase completion, it is determined whether the information of the inhibitor switch is in the N range (S63). If the information of the inhibitor switch is not in the NR range, the correction coefficient for the water temperature (KWT) At 1.0, KWUP = 1.0 + Control to be the correction coefficient (KPRS) by the filling efficiency (S72).

인히비터스위치의 정보가 엔 레인지(N Range)라면, 현 난기증량에서 감소(Delay)시간 동안 수온에 의한 보정계수가 1(Kwt=1)이 될 때 까지 감쇄시킨다(S64).If the information of the inhibitor switch is in the N range, the attenuation is attenuated until the correction coefficient due to the water temperature becomes 1 (Kwt = 1) during the delay time at the increase in current temperature (S64).

여기서, 수온에 의한 보정계수(KWT) = 1.0 이라는 의미는 공기량을 검출하여 이에 대한 연료량을 산출한 값이 1.0이라는 의미이다.Here, the correction coefficient (KWT) = 1.0 by water temperature means that the value of detecting the amount of air and calculating the amount of fuel thereof is 1.0.

예를 들어, 공기량 X라는 값에 공기연료혼합비(A/F) = 14.7를 맞추기 위해 연료량이 Y값이 필요하다고 하자 이 때, 수온에 의한 보정계수(KWT)가 1.0 보다 커서 1.1이라면 공기량 X값에 필요한 연료량은 1.1Y가 되는 것이다. 반면, 수온에 의한 보정계수(KWT)가 1.0 보다 작다면 연료량은 줄어들게 된다.For example, suppose that the fuel amount is required to adjust the air fuel mixture ratio (A / F) = 14.7 to the value of air quantity X. At this time, if the correction coefficient (KWT) by water temperature is greater than 1.0 and 1.1, the air quantity X value The amount of fuel required is 1.1Y. On the other hand, if the correction coefficient by the water temperature (KWT) is less than 1.0, the fuel amount is reduced.

한편, 난기증량에서 감소(Delay)시간 동안 수온에 의한 보정계수가 1(Kwt=1)이 될 때 까지 감쇄시킨(S64) 후에는 수온에 의한 보정계수가 1(Kwt=1)이 되는 순간부터는 난기증량보정(KWUP)을 금지시킨다(S65).On the other hand, after attenuation (S64) until the correction coefficient due to the water temperature becomes 1 (Kwt = 1) during the delay time in the increase in warm-up temperature, the correction coefficient due to the water temperature becomes 1 (Kwt = 1). Proliferation correction (KWUP) is prohibited (S65).

차후에, 디 레인지로 변경할 시에는 난기증량을 다시 종래와 동일하게 보정한다(S66).Subsequently, when changing to the derange, the increase in turbulence is corrected again in the same manner as before (S66).

본 발명은 오토메틱 차량의 시동 후 엔 레인지(N Range)에서 일정시간 희박(Lean)화 제어를 하고 난 후 디 레인지(D Range)로 변경하여 운전성에 별 다른 영향을 주지 않으면서도 배출가스를 효율적을 감소시키고, 촉매의 활성화 도달시간을 조기화시켜 촉매의 원가를 절감할 수 있는 우수한 효과가 있다.According to the present invention, after the automatic vehicle is started, the lean range is controlled at a certain range in N range, and then the D range is changed to efficiently discharge gas without affecting the operability. There is an excellent effect that can reduce the cost of the catalyst by reducing, and by early catalyst activation arrival time.

Claims (4)

오토매틱 차량의 시동 후 배출가스 저감 제어방법으로,As a control method of emission reduction after starting the automatic vehicle, 오토메틱 차량의 시동 후 인히비터 스위치의 정보가 엔 레인지 상태에서 시동증량이 1차 구배 및 2차구배를 거치는 단계;After the start of the automatic vehicle, starting information increases through a first gradient and a second gradient in a state where the information of the inhibitor switch is in a range; 상기 단계에서 시동증량의 2차 구배 종료 후 인히비터 스위치의 정보를 엔 레인지로 유지하면서 지연시간을 주는 단계;Giving a delay time while maintaining the information of the inhibitor switch after the completion of the second gradient of the starting increase in the range; 상기 단계에서 지연시간 동안 난기증량을 감소시키는 단계;Reducing the increase in turbulence during the delay time in the step; 상기 단계에서 난기증량 감소 후 난기증량이 일정하게 유지되도록 난기증량을 금지하는 단계;Prohibiting the increase in warm up so that the warming up remains constant after the decrease in warming up; 상기 단계에서 인히비터 스위치의 정보를 디 레인지로 변경 시에 난기증량을 다시 보정하는 단계를 포함하는 것을 특징으로 하는 오토메틱 차량의 시동 후 배출가스 저감 제어방법.And re-correcting the increase in turbulence when the information of the inhibitor switch is changed to the range in the step. 제 1항에 있어서,The method of claim 1, 상기 시동증량이 1차 구배 및 2차구배를 거치는 단계에 앞서 공기연료 혼합비율의 정상유무를 확인하는 단계를 더 포함하는 것을 특징으로 하는 오토매틱 차량의 시동 후 배출가스 저감 제어방법.The method of claim 1 further comprising the step of checking whether or not the air fuel mixing ratio is normal prior to the step of passing the starting increment of the first and second gradients. 제 1항에 있어서,The method of claim 1, 상기 지연시간 동안 난기증량을 감소시키는 단계는,Reducing the increase in turbulence during the delay time, 상기 지연시간 동안 수온에 의한 보정계수가 1이 될 때 까지 난기증량을 감소시키는 것을 특징으로 하는 오토매틱 차량의 시동 후 배출가스 저감 제어방법.After the start of the automatic vehicle, the exhaust gas reduction control method characterized in that for reducing the increase in warm-up until the correction coefficient due to the water temperature. 제 1항에 있어서,The method of claim 1, 상기 난기증량이 일정하게 유지되도록 난기증량을 금지하는 단계는,Prohibiting the increase in warm up so that the warming up is constant, 상기 난기증량이 수온에 의한 보정계수가 1이 되는 순간부터 난기증량을 금지시키는 것을 특징으로 하는 오토메틱 차량의 시동 후 배출가스 저감 제어방법.A method for reducing exhaust gas after starting of an automatic vehicle, characterized in that the increase in warm-up is prohibited from the moment when the warming-up increase becomes a correction coefficient of 1 by water temperature.
KR10-2002-0020994A 2002-04-17 2002-04-17 Method for controlling and decreasing the exhaust gas after start automatic car KR100448160B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0020994A KR100448160B1 (en) 2002-04-17 2002-04-17 Method for controlling and decreasing the exhaust gas after start automatic car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0020994A KR100448160B1 (en) 2002-04-17 2002-04-17 Method for controlling and decreasing the exhaust gas after start automatic car

Publications (2)

Publication Number Publication Date
KR20030082329A KR20030082329A (en) 2003-10-22
KR100448160B1 true KR100448160B1 (en) 2004-09-10

Family

ID=32379352

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0020994A KR100448160B1 (en) 2002-04-17 2002-04-17 Method for controlling and decreasing the exhaust gas after start automatic car

Country Status (1)

Country Link
KR (1) KR100448160B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526735A (en) * 2003-08-26 2006-11-24 スォングソォ キム Automobile engine start control method for reducing harmful gas emissions including unburned hydrocarbons

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566038A (en) * 1979-06-26 1981-01-22 Fuji Heavy Ind Ltd Air-fuel ratio controlling device for internal combustion engine with automatic transmission
JPS62298639A (en) * 1986-06-16 1987-12-25 Nippon Carbureter Co Ltd Air-fuel ratio control device for engine
KR100195495B1 (en) * 1996-12-09 1999-06-15 류정열 Reset threshold time control method of study counter in ecu
KR20010059257A (en) * 1999-12-30 2001-07-06 이계안 Method for engine idle speed controlling of vehicle
KR20010059407A (en) * 1999-12-30 2001-07-06 이계안 Method for engine controlling of vehicle
KR100397977B1 (en) * 2001-05-23 2003-09-19 현대자동차주식회사 Engine control method for eliminating emission during cold start and idle for a vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566038A (en) * 1979-06-26 1981-01-22 Fuji Heavy Ind Ltd Air-fuel ratio controlling device for internal combustion engine with automatic transmission
JPS62298639A (en) * 1986-06-16 1987-12-25 Nippon Carbureter Co Ltd Air-fuel ratio control device for engine
KR100195495B1 (en) * 1996-12-09 1999-06-15 류정열 Reset threshold time control method of study counter in ecu
KR20010059257A (en) * 1999-12-30 2001-07-06 이계안 Method for engine idle speed controlling of vehicle
KR20010059407A (en) * 1999-12-30 2001-07-06 이계안 Method for engine controlling of vehicle
KR100397977B1 (en) * 2001-05-23 2003-09-19 현대자동차주식회사 Engine control method for eliminating emission during cold start and idle for a vehicle

Also Published As

Publication number Publication date
KR20030082329A (en) 2003-10-22

Similar Documents

Publication Publication Date Title
JP3680491B2 (en) Control device for internal combustion engine
US7848869B2 (en) Controller of internal combustion engine of compression ignition combustion type
JP2005127316A (en) Fuel injection control method of lpi engine, and its device
JPH11173184A (en) Control device of internal combustion engine
KR890017448A (en) Adaptive control system for internal combustion engine and operating method of internal combustion engine
CN111791877A (en) Control device and control method for hybrid vehicle
EP2251539B1 (en) Electric current supply control apparatus for glow plug, and glow plug and electric current supply apparatus connected to the glow plug
JP3654010B2 (en) Control device for internal combustion engine
EP1284363B1 (en) Ignition timing control device for internal combustion engine
KR100448160B1 (en) Method for controlling and decreasing the exhaust gas after start automatic car
CN111791878B (en) Control device and control method for hybrid vehicle
US7460947B2 (en) Power generation control system and method
US6418713B1 (en) Method for generating additional engine loads during start-up
KR101544388B1 (en) Method for improving engine idle starting ability and catalyst effect
KR20200124112A (en) Fuel injection quantity correction method for vehicle
KR20180009004A (en) Control method for removing water in fuel cell
JP3883587B2 (en) Fuel injection valve control method for gaseous fuel internal combustion engine
EP0742362A2 (en) Fuel injection control system applicable upon starting diesel engine
CN114876659B (en) Method and device for improving control accuracy of mixed gas and vehicle
CN114087103B (en) Method and device for controlling ignition angle of engine and computer storage medium
US6786198B1 (en) Cold start compensation for P-I-D engine governor
JP2009103095A (en) Combustion control device for diesel engine
KR100440162B1 (en) Method of controlling fuel for accleration and deceleration of vehicle under cold driving
JPH10159628A (en) Control device for internal combustion engine
JP2009114857A (en) Combustion control system of diesel engine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee