KR100444141B1 - Anode active materials for lithium secondary battery, anode plates and secondary battery using them - Google Patents
Anode active materials for lithium secondary battery, anode plates and secondary battery using them Download PDFInfo
- Publication number
- KR100444141B1 KR100444141B1 KR10-2001-0073568A KR20010073568A KR100444141B1 KR 100444141 B1 KR100444141 B1 KR 100444141B1 KR 20010073568 A KR20010073568 A KR 20010073568A KR 100444141 B1 KR100444141 B1 KR 100444141B1
- Authority
- KR
- South Korea
- Prior art keywords
- negative electrode
- secondary battery
- hydrogen
- lithium secondary
- electrode active
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 리튬 이차전지용 음극 활물질, 이를 사용한 음극판 및 이차전지에 관한 것으로서, 상세하게는, 콜로이드 분산으로 제조하여 동결 건조한 평균 입경 20 내지 80 ㎚의 철 산화물(γ-ferrite) 및/또는 니켈 산화물 미립자를 기본촉매로 사용하여 400 내지 700℃의 환원분위기에서 환원시킨 후, 일산화탄소 및/또는 탄화수소를 원료가스로 하여 이동상 및/또는 고정상의 촉매 표면에서 수소와 혼합하여 촉매 표면에서 640 내지 700℃로 기상 분해하여 제조되는 다층 탄소나노튜브를 리튬 이차전지용 음극 활물질로서 사용한다.The present invention relates to a negative electrode active material for a lithium secondary battery, a negative electrode plate and a secondary battery using the same, and in detail, iron oxide (γ-ferrite) and / or nickel oxide fine particles having an average particle diameter of 20 to 80 nm prepared by colloidal dispersion and freeze-dried. After reducing in a reducing atmosphere of 400 to 700 ℃ using a basic catalyst, and mixed with hydrogen in the catalyst surface of the mobile phase and / or fixed bed using carbon monoxide and / or hydrocarbon as the raw material gas gas phase at 640 to 700 ℃ The multi-layered carbon nanotubes produced by decomposition are used as negative electrode active materials for lithium secondary batteries.
본 발명에서 음극 활물질로 사용되는 고결정성 다층 탄소나노튜브는 별도의 흑연화및 고순도화 처리없이도 높은 흑연화성 및 높은 충방전 용량을 발현하며, 리튬 이온 저장/제거특성의 경우 높은 결정성에 기인하여 충방전시 0.3 Vvs.Li/Li+이하에서 고용량을 보이는 효과가 있다.In the present invention, the highly crystalline multilayer carbon nanotubes used as the negative electrode active material express high graphitization and high charge / discharge capacity without separate graphitization and high purity treatment, and are charged due to high crystallinity in the case of lithium ion storage / removal characteristics. 0.3 V vs. discharge It has the effect of showing a high capacity under Li / Li + .
Description
본 발명은 리튬 이차전지용 음극 활물질, 이를 이용한 음극판 및 이차전지에 관한 것으로, 더욱 상세하게는, 본 발명의 방법에 따라 제조된 고결정성 다층 탄소나노튜브(highly graphitized multi-walled carbon nanotubes)를 리튬 이차전지용 음극 활물질 등으로 사용하는 기술을 제공한다.The present invention relates to a negative electrode active material for a lithium secondary battery, a negative electrode plate and a secondary battery using the same, and more specifically, to a high-crystalline graphitized multi-walled carbon nanotubes (highly graphitized multi-walled carbon nanotubes) prepared according to the method of the present invention lithium secondary Provided is a technique for use as a negative electrode active material for batteries.
락킹 체어(rocking chair) 타입의 이차전지는, 금속리튬을 사용하는 이차전지와는 달리, 음극으로 사용되는 흑연계 탄소재료의 뛰어난 사이클 안정성을 기반으로 하여 500 사이클 후에도 초기용량의 80% 이상을 보이는 고성능 이차전지의 한 종류이다.The locking chair type secondary battery, unlike the secondary battery using metal lithium, exhibits more than 80% of its initial capacity even after 500 cycles based on the excellent cycle stability of the graphite-based carbon material used as the negative electrode. It is a kind of high performance secondary battery.
현재, 리튬 이차전지의 음극 활물질로는 탄소재료가 국한되어 사용되고 있다. 이 중, 흑연계 탄소재료는 뛰어난 결정성에 기인하여, 0.3 V vs. Li/Li+이하에서 발현되는 전위의 평탄부(Plateau)를 가지는 장점 때문에 고성능 이차 전지용 음극재료로 적합하다(Carbon,38, 1261).Currently, carbon materials are limited and used as negative electrode active materials of lithium secondary batteries. Among these, the graphite-based carbon material is 0.3 V vs. owing to its excellent crystallinity. It is suitable as a negative electrode material for a high performance secondary battery because of its advantage of having a flat portion of a potential expressed below Li / Li + ( Carbon , 38 , 1261).
흑연계 탄소재료를 전지용 음극재료로 사용하기 위해서는 인조흑연의 경우, 이흑연화성 전구체(Graphitizable precusors)를 2400℃ 이상의 고온에서 흑연화 처리를 통해 제조하여야 하며, 종래의 고결정성 천연흑연의 경우에도 잔존하는 불순물을 제거하기 위해 할로겐 가스를 이용한 고온의 고순화처리를 거쳐야 하므로 제조 비용이 상당히 높은 문제점이 있었다.In order to use the graphite-based carbon material as a negative electrode material for batteries, in the case of artificial graphite, graphitizable precusors should be manufactured by graphitizing at a high temperature of 2400 ° C. or higher, and remain even in the case of conventional high crystalline natural graphite. In order to remove impurities, high-purity treatment using a halogen gas has to be performed, resulting in a high manufacturing cost.
따라서, 본 발명의 목적은 이러한 종래 기술의 문제점을 제거하는 것으로서, 저가의 고결정성 탄소재료를 제조하기 위한 방법으로, 700℃ 이하의 낮은 열처리 온도만으로 제조된 재료임에도 불구하고 흑연화 처리한 탄소재료보다 뛰어난 결정성과 0.3 Vvs. Li/Li+이하의 리튬 이온 저장 및 제거성능을 가지는 리튬 이차전지용 음극 활물질을 제공하는 것이다.Accordingly, an object of the present invention is to eliminate such problems of the prior art, and is a method for producing a low-cost, high-crystalline carbon material, a graphitized carbon material in spite of being a material produced only at a low heat treatment temperature of 700 ℃ or less Better crystallinity and 0.3 V vs. It is to provide a negative electrode active material for a lithium secondary battery having a lithium ion storage and removal performance of less than Li / Li + .
본 발명의 다른 목적은, 종래 흑연계 음극 활물질의 제조시 필수적인 흑연화및 고순도화 처리를 거치지 않고도 흑연계 음극 활물질를 만들 수 있고, 1400℃ 이하의 제조 조건에서 제조한 탄소재의 탄소육각 망면의 면간거리(d002)가 0.3400 nm 미만, 비표면적 100 m2/g이하의 고결정성 탄소재료를 얻어낼 수 있는 방법으로, 그에 따라 고흑연화성 탄소재료를 생산에 소요되는 초기투자비 및 생산비를 극단적으로 낮출 수 있어 제조 비용을 획기적으로 줄일 수 있는 리튬 이차전지용 음극 활물질을 제공하는 것이다.Another object of the present invention is to provide a graphite-based negative electrode active material without undergoing the graphitization and high purity treatment, which is essential for the production of a conventional graphite-based negative electrode active material, and the surface of the carbon hexagon mask surface of the carbon material manufactured under the manufacturing conditions of 1400 ℃ or less distance between the initial investment and production cost extremely (d 002) is 0.3400 to nm less than, the method which can be obtained a highly-crystallized carbon material, a specific surface area of 100 m or less 2 / g, and accordingly it takes to produce a graphitizable carbon material It can be lowered to provide a negative active material for a lithium secondary battery that can significantly reduce the manufacturing cost.
도 1은 실시예 1에 따라 제조된 리튬 이차전지용 음극 활물질인 탄소나노튜브의 고분해능 투과형 전자현미경 사진이고;1 is a high-resolution transmission electron micrograph of carbon nanotubes as a negative electrode active material for a lithium secondary battery prepared according to Example 1;
도 2는 실시예 1에 따라 제조된 리튬 이차전지용 음극 활물질인 탄소나노튜브의 CuKα광각 엑스선 회절패턴이고;2 is a CuKα wide-angle X-ray diffraction pattern of carbon nanotubes as a negative electrode active material for a lithium secondary battery prepared according to Example 1;
도 3은 실시예 5 및 비교예 1 내지 3에 따른 리튬 이온 제거 특성도이고;3 is a lithium ion removal characteristics according to Example 5 and Comparative Examples 1 to 3;
도 4는 실시예 5에 따른 방전 사이클 안정도이다.4 is a discharge cycle stability according to the fifth embodiment.
이러한 목적을 달성하기 위한 본 발명의 리튬 이차전지용 음극 활물질은,The negative electrode active material for lithium secondary battery of the present invention for achieving the above object,
콜로이드 분산으로 제조하여 동결 건조한 평균 입경 20 내지 80 nm의 철 산화물(γ-ferrite) 및/또는 니켈 산화물 미립자를 기본촉매로 사용하여 400 내지 700℃의 환원분위기에서 환원시킨 후, 일산화탄소 및/또는 탄화수소를 원료가스로 하여 이동상 및/또는 고정상의 촉매 표면에서 수소와 혼합하여 촉매 표면에서 640 내지 700℃로 기상 분해하여 제조하는 것을 특징으로 한다.Prepared by colloidal dispersion, iron oxide (γ-ferrite) and / or nickel oxide fine particles having an average particle diameter of 20 to 80 nm and freeze-dried were reduced in a reducing atmosphere of 400 to 700 ° C. using carbon monoxide and / or hydrocarbon. It is characterized in that the raw material gas is mixed with hydrogen at the surface of the catalyst in the mobile phase and / or fixed bed to produce a gas phase decomposition at 640 ~ 700 ℃ on the catalyst surface.
따라서, 본 발명은 콜로이드 분산으로 제조하여 동결 건조한 극미세 철 산화물 및/또는 니켈 산화물을 기본촉매로 사용하고 촉매 상에 에틸렌 등의 탄화수소를 분해시켜 카본 필라멘트를 성장시키는 화학적 기상 성장법(Chemical vapor growth method)에 의해 리튬 이차전지용 음극 활물질로 사용될 수 있는 다층 나노탄소튜브를 제조한다.Accordingly, the present invention uses a chemical vapor growth method of growing carbon filaments by decomposing hydrocarbons such as ethylene on a catalyst by using lyophilized ultrafine iron oxide and / or nickel oxide as a base catalyst by colloidal dispersion. method) to manufacture a multi-layer nano-carbon tube that can be used as a negative electrode active material for lithium secondary batteries.
본 명세서에서 사용되는 용어인 "기본촉매"는 환원처리전의 철 산화물 및/또는 니켈 산화물을 의미하며, "촉매"는 환원처리후의 철 산화물 및/또는 니켈 산화물을 의미한다. 본 발명의 기상분해 반응은 주로 촉매에서 일어나는 반응을 의미하지만, 환원처리가 되어있지 않은 일부 기본촉매의 반응도 포함하는 개념이다.As used herein, the term "base catalyst" refers to iron oxide and / or nickel oxide before reduction, and "catalyst" refers to iron oxide and / or nickel oxide after reduction. The gas phase decomposition reaction of the present invention mainly refers to a reaction occurring in the catalyst, but is a concept including a reaction of some basic catalysts not subjected to reduction treatment.
상기 극미세 철 산화물 및/또는 니켈 산화물 입자는 입자간의 응결이 극히 제한됨으로써 각각의 입자가 반응점(reaction point)으로서 작용하는 것이 바람직하므로, 물을 용매로 한 콜로이드 상으로 분산시켜 균일하고 안정한 분산상태로 유지한 상태로 동결건조하여 사용된다. 상기 니켈 산화물 미립자에 관한 내용은 일부 문헌(神鳥和彦, 表面, 32-3, 35, 1994 등)에서 확인할 수 있다.The ultrafine iron oxide and / or nickel oxide particles have a very limited condensation between particles, so that each particle acts as a reaction point. It is used by lyophilization while maintaining the The contents of the nickel oxide fine particles can be found in some documents (Shinwawa, surface, 32-3, 35, 1994, etc.).
이러한 극미세 기본촉매를 환원분위기에서 환원시키는데, 환원분위기는 수소와 질소의 혼합가스, 수소와 아르곤의 혼합가스, 수소와 헬륨의 혼합가스 등을 사용할 수 있다. 상기 혼합가스 중의 수소의 함량은 바람직하게는 2 내지 50 부피%이다. 수소의 함량이 적으면 환원반응이 일어나기 어렵고, 많으면 폭발의 위험성이 있다.The ultrafine basic catalyst is reduced in a reducing atmosphere. The reducing atmosphere may use a mixed gas of hydrogen and nitrogen, a mixed gas of hydrogen and argon, a mixed gas of hydrogen and helium, and the like. The content of hydrogen in the mixed gas is preferably 2 to 50% by volume. When the content of hydrogen is small, it is difficult to cause a reduction reaction, and when there is a large amount, there is a risk of explosion.
환원처리의 온도는 보통 400 내지 700℃이며, 400℃ 이하이면 반응의 개시가 용이하지 않고 처리에 장시간이 요구되며, 700℃ 이상이면 미세 입자들의 응집 현상이 발생할 수 있다. 환원처리의 시간은 환원처리 온도와 같은 여러 조건에 의해 변화될 수 있는바, 대략 0.5 내지 24 시간이 소요된다. 하나의 구체적인 예로서, 상기 극미세 기본촉매를 수소-헬륨 혼합가스를 사용하여 550℃에서 2시간 환원처리하는 방법을 들 수 있다.The temperature of the reduction treatment is usually 400 to 700 ° C., if the temperature is 400 ° C. or less, the reaction may not be easily initiated and a long time is required for the treatment. If the temperature is 700 ° C. or more, aggregation of fine particles may occur. The time of the reduction treatment can be varied by various conditions such as the reduction treatment temperature, which takes about 0.5 to 24 hours. As one specific example, a method of reducing the ultrafine basic catalyst at 550 ° C. for 2 hours using a hydrogen-helium mixed gas may be mentioned.
상기 환원처리 과정의 구체적인 예를 살펴보면, 극미세 철 산화물 및/또는산화니켈 미립자를 내경 1 내지 25 ㎝의 석영관을 장착한 수평 또는 수직로의 중심부에 위치시켜 세라믹 보트 또는 도가니에 담은 후, 수소와 헬륨의 혼합비를 1 : 50 내지 1 : 2로 조절하여 0.1 내지 10 ㎝/sec의 유속으로 흘리면서 400 내지 900℃까지 승온한 후, 400 내지 550℃에서 10 분 내지 4 시간 동안 환원한다. 여기서, 더욱 바람직한 석영관의 내경은 3 내지 15 ㎝이며, 내경이 너무 작으면 생산량이 작게 되고 내경이 너무 크면 균일 영역(Uniform zone)을 넓게 형성할 수 없어서 결정화도가 떨어지는 문제점이 있다. 더욱 바람직한 유속은 2 내지 6 ㎝/sec이고, 유속이 너무 작거나 크면, 생산량과 제품의 결정화도가 떨어지는 문제점이 있다.Looking at the specific example of the reduction process, the ultra-fine iron oxide and / or nickel oxide fine particles are placed in the center of a horizontal or vertical furnace equipped with a quartz tube having an inner diameter of 1 to 25 cm in a ceramic boat or crucible, and then hydrogen After adjusting the mixing ratio of helium to 1: 50 to 1: 2 and flowing at a flow rate of 0.1 to 10 cm / sec, the temperature is raised to 400 to 900 ℃, and reduced at 400 to 550 ℃ for 10 minutes to 4 hours. Here, the more preferable inner diameter of the quartz tube is 3 to 15 cm, if the inner diameter is too small, the output is small, if the inner diameter is too large there is a problem that the uniformity (Uniform zone) can not be formed wide, the degree of crystallinity falls. More preferred flow rate is 2 to 6 cm / sec, if the flow rate is too small or too large, there is a problem that the yield and crystallinity of the product is poor.
상기 원료가스 중, 탄화수소는 수소와 탄소로 구성된 불포화 및/또는 포화 탄화수소로서, 탄소수가 1 내지 4인 아세틸렌(C2H2), 메탄(CH4), 에틸렌(C2H4), 에탄(C2H6), 프로필렌(C3H6), 프로판(C3H8), 부탄(C4H10), 부틸렌(C4H8), 부타디엔(C4H6)과 그의 이성질체로 구성된 군에서 선택된 하나 또는 둘 이상이 사용될 수 있다. 이러한 탄화수소는 단일의 형태로 사용되거나 Ar, He 등과 같은 불활성가스와의 혼합 형태로 사용될 수도 있다.In the source gas, hydrocarbons are unsaturated and / or saturated hydrocarbons composed of hydrogen and carbon, each having 1 to 4 carbon atoms such as acetylene (C 2 H 2 ), methane (CH 4 ), ethylene (C 2 H 4 ), and ethane ( C 2 H 6 ), propylene (C 3 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ), butylene (C 4 H 8 ), butadiene (C 4 H 6 ) and its isomers One or more than one selected from the group consisting of can be used. Such hydrocarbons may be used in a single form or in a mixture with an inert gas such as Ar, He or the like.
원료가스와 수소가스의 혼합비율은 체적당 원료가스의 비율이 바람직하게는 10 내지 95%이고, 더욱 바람직하게는 20 내지 90%이다. 원료가스의 비율이 10% 이하이면 생성되는 탄소나노튜브의 양이 작아 경제적이지 못하고, 95% 이상이면 반응이 일찍 종료되어 역시 경제적이지 못하다.The mixing ratio of source gas and hydrogen gas is preferably 10 to 95%, more preferably 20 to 90%. If the proportion of the source gas is less than 10%, the amount of carbon nanotubes produced is not economical, and if it is more than 95%, the reaction is terminated early and is not economical either.
상기 기상분해의 온도는 바람직하게는 640 내지 700℃이며, 더욱 바람직하게는 650 내지 680℃이다. 기상분해 온도가 640℃ 이하이면 결정성이 떨어지고, 700℃ 이상이면 결정성이 떨어지는 다른 미세구조의 탄소재료가 만들어질 수 있다. 기상분해의 시간은 기상분해 온도와 같은 여러 조건에 의해 변화될 수 있는바, 대략 10 분 내지 10 시간 정도가 소요된다. 하나의 구체적인 예로서, 일산화탄소-수소 혼합가스를 반응온도 650℃에서 1.5 시간 반응시키는 것을 들 수 있다.The temperature of the gas phase decomposition is preferably 640 to 700 ° C, more preferably 650 to 680 ° C. If the gas phase decomposition temperature is 640 ° C or less, the crystallinity is inferior, if it is 700 ° C or more, other microstructured carbon material may be made. The time of gas phase decomposition can be changed by various conditions such as the temperature of gas phase decomposition, and it takes about 10 minutes to 10 hours. As one specific example, the carbon monoxide-hydrogen mixed gas may be reacted at a reaction temperature of 650 ° C. for 1.5 hours.
이와 같이, 극미세 입자 내지 그의 환원체로부터 성장한 탄소 나노튜브를 헬륨 가스로 분위기를 치환하여 상온으로 냉각한 다음 최종적으로 다층 탄소나노튜브를 회수하게 된다.As described above, the carbon nanotubes grown from the ultrafine particles or the reducing bodies thereof are replaced with helium gas, cooled to room temperature, and finally, the multilayer carbon nanotubes are recovered.
이렇게 제조된 고결정성 탄소나노튜브는 종래의 탄소나노튜브에 비해 낮은 비표면적을 가지며, 상대적으로 높은 결정성과 전기도전성 및 0.0 ~ 0.3 Vvs. Li/Li+에서의 충방전 비용량이 뛰어나 리튬 이차전지용 음극 활물질로서 최적의 조건을 가진다. 또한, 전극제조를 위한 전극합제를 만들 때의 가공성이 종래의 플레이크상 흑연재료를 사용한 경우보다 뛰어나므로, 싸이클 안정성이 우수하다.The high crystalline carbon nanotubes thus prepared have a lower specific surface area than conventional carbon nanotubes, and have relatively high crystallinity and electrical conductivity and 0.0 to 0.3 V vs. It is excellent in charge / discharge specific amount in Li / Li + and has optimum conditions as a negative electrode active material for lithium secondary batteries. Moreover, since the workability at the time of making an electrode mixture for electrode manufacture is superior to the case where the conventional flake graphite material is used, it is excellent in cycling stability.
본 발명은 또한 이러한 음극 활물질을 사용한 리튬 이전전지용 음극판에 관한 것이다.The present invention also relates to a negative electrode plate for a lithium transfer battery using such a negative electrode active material.
본 발명에 따른 리튬 이차전지용 음극판의 제조 예를 살펴보면,Looking at the manufacturing example of the negative electrode plate for a lithium secondary battery according to the present invention,
상기 다층 탄소나노튜브의 활물질, 유기 고분자 및/또는 올리고머 상태의 결합재, 전도성 고분자 및/또는 탄소 도전재를 용매에 분산 또는 용해시켜 반죽(dough) 또는 슬러리(slurry) 형태로 만든 다음, 이를 금속 호일 또는그리드(grid)에 도포하여 제조한다.The active material, organic polymer and / or oligomeric binder, conductive polymer and / or carbon conductive material of the multilayer carbon nanotubes are dispersed or dissolved in a solvent to form a dough or slurry, which is then metal foil. Or by applying to a grid.
상기 결합재로는 0.0 ~ 3.0 V vs. Li/Li+사이의 전위대에서 분해되지 않으며 화학적 안정성 및 결착성이 우수한 고분자가 바람직하다. 보다 구체적으로는, 에틸렌프로필렌디엔 단량체(ethylene-propylene diene monomer), 테트라에틸렌글리콜디아크릴레이트(tetra(ethylene glycol) diacrylate), 폴리디메틸실록산(polydimethylsiloxane), 에틸렌-에틸아크릴레이트(ethylacrylate) 공중합체, 에틸렌-비닐아세테이트(vinylacetate) 공중합체와 폴리비닐리덴디플로라이드(polyvinylidene difluoride), 비닐리덴디플로라이드-헥사플로로프로필렌(heaxfluoropropylene) 공중합체(copolymer), 비닐리덴디플로라이드-무수말레이산(maleic anhydride) 공중합체, 폴리비닐클로라이드(polyvinylchloride), 폴리메틸메타아크릴레이트, 폴리메타아크릴레이트(polymethacrylate), 셀룰로즈 트리아세테이트(cellulose triacetate), 폴리우레탄(polyurethane), 폴리술폰(polysulfone), 폴리에테르(polyether), 폴리에틸렌옥사이드(polyethyleneoxide), 폴리이소부틸렌(polyisobutylene), 폴리부틸디엔(polybutyldiene), 폴리비닐알콜(polyvinylalcohol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리이미드(polyimide), 폴리비닐포르말(polyvinyl formal), 아크릴로니트릴부틸디엔 고무(acrylonitrilebutyldiene rubber), 스타이렌부타다이엔고무 (Styrene-Butadiene-Rubber)와 그의 올리고머 및 실리콘 고분자(polysilicone)로 이루어진 군에서 선택된 하나 또는 둘 이상의 혼합물 또는 두 가지 이상의 공중합체가 특히 바람직하다.The binder is 0.0 ~ 3.0 V vs. Preferred are polymers which do not decompose in the potential band between Li / Li + and are excellent in chemical stability and binding properties. More specifically, ethylene propylene diene monomer (ethylene-propylene diene monomer), tetraethylene glycol diacrylate (tetra (ethylene glycol) diacrylate), polydimethylsiloxane (polydimethylsiloxane), ethylene-ethyl acrylate (ethylacrylate) copolymer, Ethylene-vinylacetate copolymer, polyvinylidene difluoride, vinylidene difluoride-hexafluoropropylene copolymer, vinylidene difluoride-maleic anhydride ( maleic anhydride copolymer, polyvinylchloride, polymethylmethacrylate, polymethacrylate, cellulose triacetate, polyurethane, polysulfone, polyether polyether, polyethyleneoxide, polyisobutylene, polybutyldiene (po lybutyldiene, polyvinylalcohol, polyacrylonitrile, polyimide, polyvinyl formal, acrylonitrilebutyldiene rubber, styrenebutadiene rubber (Styrene-Butadiene-Rubber), one or two or more mixtures or two or more copolymers selected from the group consisting of oligomers and polysilicones thereof are particularly preferred.
상기 도전재는 전극의 이온 및/또는 전자전도성을 증진시키는 목적으로 사용되므로 그 형상에 특별히 제한은 없으며, 구상, 섬유상, 판상 등의 것을 사용할 수 있다. 보다 구체적으로, 입상 재료로는 카본 블랙(Carbon Blacks), 썰멀 블랙(Thermal Blacks), 퍼니스 블랙(Furnace blacks), 메조카본 마이크로 비즈(Mesocarbon Microbeads)와 구상 흑연재 등이 있고, 섬유상 재료로는 기상성장 탄소섬유, 섬유상 나노탄소, 탄소 나노튜브 등이 있으며, 판상 재료로는 천연흑연이 있으며, 이러한 재료들을 하나 또는 둘 이상으로 혼합하여 사용할 수도 있다. 보다 바람직하게는, 카본 블랙, 썰멀 블랙, 퍼니스 블랙, 메조카본 마이크로 비즈, 기상성장 탄소섬유, 섬유상 나노탄소, 탄소 나노튜브나, 이들의 하나 또는 둘 이상의 혼합 형태를 사용한다.Since the said conductive material is used for the purpose of improving the ion and / or electron conductivity of an electrode, there is no restriction | limiting in particular in the shape, A spherical shape, a fibrous form, plate shape, etc. can be used. More specifically, the granular materials include carbon blacks, thermal blacks, furnace blacks, mesocarbon microbeads and spherical graphite, and the fibrous materials include vapor phase. Growth carbon fibers, fibrous nanocarbon, carbon nanotubes, and the like, the plate material is natural graphite, it may be used by mixing one or more of these materials. More preferably, carbon black, smalmal black, furnace black, mesocarbon microbeads, vapor-grown carbon fibers, fibrous nanocarbons, carbon nanotubes, or a mixture of one or two or more thereof are used.
음극판을 만들 때, 균일한 상을 만들고 가공에 적합한 점도를 얻기 위하여, 유기 용제 및/또는 물을 용매 및/또는 분산매로 하여 도포에 적당한 반죽 및/또는 슬러리로 만든다. 제조 스케일, 제조 조건 (건조온도, 코팅 및 라미네이팅 속도등)에 따라 영향을 받기는 하지만, 바람직한 용매로는, N-메틸피롤리디논(N-methylpyrrolidinone), 디메틸포름아미드(dimethylformamide), 디메틸아세트아미드(dimethylacetamide), 헥사메틸포스포아미드(hexamethylphosphoramide), 테트라히드로푸란,아세토니트릴(acetonitrile), 시클로헥산온, 클로로포름, 디클로로메탄, 디메틸술폭시드(dimethylsulfoxide), 아세톤, 디옥센과 다양한 케톤 (ketone) 등을 들 수 있다. 반죽, 슬러리 등을 만들 때, 최종적인 전극판의 기공도를 제어하기 위하여 분쇄 또는 밀링 과정을 거칠 수도 있으며, 기공도는 BET 법 및 영상분석(Image analysis) 법으로 측정하였을 때 50% 이하로 만드는 것이 적당하며, 기공율을 제어하기 위해 전극판의 제조과정중에 열압착 과정을 포함시킬 수도 있다.When making the negative plate, in order to make a uniform phase and obtain a viscosity suitable for processing, organic solvents and / or water are used as a solvent and / or a dispersion medium to make dough and / or slurry suitable for application. Depending on manufacturing scale and manufacturing conditions (drying temperature, coating and laminating speed, etc.), preferred solvents include N-methylpyrrolidinone, dimethylformamide and dimethylacetamide. (dimethylacetamide), hexamethylphosphoramide, tetrahydrofuran, acetonitrile, cyclohexanone, chloroform, dichloromethane, dimethylsulfoxide, acetone, dioxene and various ketones Can be mentioned. When making dough or slurry, grinding or milling may be performed to control the porosity of the final electrode plate, and the porosity may be 50% or less as measured by the BET method and the image analysis method. It is suitable, and may include a thermocompression process during the manufacturing of the electrode plate to control the porosity.
본 발명은 또한 이러한 음극판을 사용한 리튬 이차전지에 관한 것이다. 리튬 이차전지의 구성과 그에 관한 제조방법은 당업계에 공지되어 있으므로 이에 대한 자세한 설명은 생략한다.The present invention also relates to a lithium secondary battery using such a negative electrode plate. The construction of the lithium secondary battery and a manufacturing method thereof are well known in the art, and thus a detailed description thereof will be omitted.
이하, 실시예와 그에 대한 비교예를 참조하여 본 발명을 더욱 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples thereof, but the scope of the present invention is not limited thereto.
실시예 1Example 1
콜로이드 분산으로 제조하여 동결 건조한 평균 입경 약 40 ㎚의 극미세 철 산화물(γ-ferrite, γ-Fe3O4) 미립자(神鳥和彦, 表面, 32-3, 35, 1994) 50 ㎎를 세라믹 보트에 담아 내경 10 cm의 석영관을 장착한 수평로의 중심부에 위치시킨 뒤, 수소의 체적당 혼합비율이 20%인 수소-헬륨 혼합가스를 2 내지 4 ㎝/sec의 유속으로 흘리면서 550℃까지 승온한 후, 550℃에서 2시간 동안 환원 처리하였다.50 mg of ultrafine iron oxide (γ-ferrite, γ-Fe 3 O 4 ) fine particles (γ-ferrite, γ-Fe 3 O 4 ) particles prepared by colloidal dispersion and freeze-dried with an average particle diameter of about 40 nm were placed in a ceramic boat. It was placed at the center of a horizontal furnace equipped with a 10 cm inner diameter quartz tube, and heated to 550 ° C. while flowing a hydrogen-helium mixed gas having a mixing ratio of 20% by volume of hydrogen at a flow rate of 2 to 4 cm / sec. Thereafter, reduction treatment was performed at 550 ° C. for 2 hours.
그런 다음, 일산화탄소의 혼합비율이 80%인 일산화탄소-수소 혼합가스를 유속 200 ㎖/min으로 하여 650℃에서 1.5시간 반응시켜 다층 탄소나노튜브를 제조하고 반응이 끝난 후, 헬륨 가스로 분위기를 치환하여 상온으로 냉각한 다음 철 산화물 촉매 입자로부터 성장한 나노튜브를 상기 세라믹 보트로부터 회수하였다. 회수된 탄소나노튜브의 무게는 1024 ㎎이었다.Then, a carbon monoxide-hydrogen mixed gas having a carbon monoxide mixing ratio of 80% was reacted at 650 ° C. for 1.5 hours at a flow rate of 200 ml / min to prepare multilayer carbon nanotubes, and after the reaction was completed, the atmosphere was replaced with helium gas. After cooling to room temperature, nanotubes grown from the iron oxide catalyst particles were recovered from the ceramic boat. The weight of the recovered carbon nanotubes was 1024 mg.
상기에서 제조된 다층 탄소나노튜브를 고분해능 투과형 전자현미경(High resolution transmission electron microscope: ×9,000,000배)으로 촬영한 사진이 도 1에 개시되어 있다. 도 1의 사진으로부터, 본 발명에 따른 다층 탄소나노튜브는 평균 직경이 25㎚이며 발달된 흑연 결정 층면을 지니고 있음을 알 수 있다.A photograph taken of the multilayer carbon nanotubes prepared above with a high resolution transmission electron microscope (x9,000,000 times) is shown in FIG. 1. From the photograph of FIG. 1, it can be seen that the multilayer carbon nanotubes according to the present invention have an average diameter of 25 nm and have an advanced graphite crystal layer surface.
또한, 상기에서 제조된 탄소나노튜브를 CuKα의 광원을 이용한 광각 엑스선 회절분석기를 사용하여 분말 흑연 결정자 분석법(學進法, 大谷彬郞, 炭素纖維, 附錄, 講談社, 東京, 1984, (일본어))을 사용하여 40 ㎃, 30 ㎸의 조건으로 5 내지 90°까지 회절 패턴을 조사하여 나온 결과를 도 2에 나타내었다. 도 2의 광각 엑스선 회절패턴(이하, "XRD 패턴"이라 한다)으로부터 계산한 다층 탄소나노튜브의 평균 면간거리(d002)는 0.3380 ㎚로 매우 높은 흑연화성(고결정성)을 나타내는 것을 알 수 있다. BET N2흡착법에 의해 측정한 비표면적은 86 ㎡/g이었다.In addition, the carbon nanotubes prepared above were subjected to powder graphite crystallite analysis using a wide-angle X-ray diffractometer using a light source of CuKα (學 進 法, 大谷 彬 郞, 炭素 纖維, 附錄, 講 談 社, 東京, 1984, (Japanese)) 2 shows the results of irradiating the diffraction pattern to 5 to 90 ° under the conditions of 40 Hz and 30 Hz. It can be seen that the average interplanar distance (d 002 ) of the multilayer carbon nanotubes calculated from the wide-angle X-ray diffraction pattern (hereinafter referred to as "XRD pattern") of FIG. 2 shows very high graphitization (high crystallinity) of 0.3380 nm. . The specific surface area measured by BET N 2 adsorption method was 86 m 2 / g.
실시예 2Example 2
원료가스로서 일산화탄소 대신에 아세틸렌(C2H2)을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 다층 탄소나노튜브를 제조하였다. 제조되어 회수된 탄소나노튜브의 무게는 824 ㎎이었고, 생성된 탄소 나노튜브의 XRD 패턴은 도 2와 유사하며, XRD 패턴으로부터 계산된 탄소 나노튜브의 평균 면간거리(d002)는0.3390 ㎚로 고결정성임을 알 수 있다. BET N2흡착법에 의해 측정한 비표면적은 72 ㎡/g이었다.Except for using acetylene (C 2 H 2 ) in place of the carbon monoxide as a raw material gas was a multi-layered carbon nanotubes were prepared in the same manner as in Example 1. The manufactured and recovered carbon nanotubes weighed 824 mg, and the XRD pattern of the produced carbon nanotubes was similar to that of FIG. 2, and the average interplanar distance (d 002 ) of the carbon nanotubes calculated from the XRD patterns was found to be 0.3390 nm. It can be seen that qualitative. The specific surface area measured by the BET N 2 adsorption method was 72 m 2 / g.
실시예 3Example 3
일산화탄소의 혼합비율을 80% 대신에 20%로 하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 다층 탄소나노튜브를 제조하였다. 제조되어 회수된 탄소나노튜브의 무게는 340 ㎎이었고, 생성된 나노튜브의 XRD 패턴은 도 2와 유사하며, XRD 패턴으로부터 계산된 나노튜브의 평균 면간거리(d002)는 0.3390 ㎚로 고결정성임을 알 수 있다. BET N2흡착법에 의해 측정한 비표면적은 54 ㎡/g이었다.The multilayer carbon nanotubes were manufactured in the same manner as in Example 1, except that the mixing ratio of carbon monoxide was 20% instead of 80%. The weight of the manufactured and recovered carbon nanotubes was 340 mg, and the XRD pattern of the produced nanotubes was similar to that of FIG. 2, and the average interplanar distance (d 002 ) of the nanotubes calculated from the XRD patterns was 0.3390 nm. Able to know. The specific surface area measured by BET N 2 adsorption method was 54 m 2 / g.
실시예 4Example 4
극미세 철 산화물 대신에 극미세 니켈 산화물 미립자를 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 다층 탄소나노튜브를 제조하였다. 제조되어 회수된 탄소나노튜브의 무게는 530 ㎎이었고, 생성된 나노튜브의 XRD 패턴은 도 2와 유사하며, XRD 패턴으로부터 학진법으로 계산된 나노튜브의 평균 면간거리(d002)는 0.3398 ㎚로 비교적 고결정성에 해당함을 알 수 있다. 또한, BET N2흡착법에 의해 측정한 비표면적은 38 ㎡/g이었다.The multilayer carbon nanotubes were manufactured in the same manner as in Example 1, except that ultrafine nickel oxide fine particles were used instead of the ultrafine iron oxide. The weight of the manufactured and recovered carbon nanotubes was 530 mg, and the XRD pattern of the produced nanotubes was similar to that of FIG. 2, and the average interplanar distance (d 002 ) of the nanotubes calculated by the school method from the XRD pattern was 0.3398 nm. It can be seen that it corresponds to a relatively high crystallinity. In addition, the specific surface area measured by the BET N 2 adsorption method was 38 m 2 / g.
본 발명에 따라 제조된 다층 탄소나노튜브를 리튬 이차전지용 음극재인 활물질로 하여 음극판을 제조한 뒤 충방전 실험을 행한 내용을 하기 실시예에서 기술한다.The contents of the charge and discharge experiments after preparing the negative electrode plate using the multilayer carbon nanotubes prepared according to the present invention as an active material which is a negative electrode material for a lithium secondary battery are described in the following examples.
실시예 5Example 5
음극판의 활물질로서 실시예 1에서 제조된 다층 탄소나노튜브와, 결합재로서 PVdF를 93 : 7의 비율(중량비)로 혼합하여 음극판을 제조하였다. 이렇게 제조된 음극판을, 탄산 에틸렌(ethylene carbonate)과 탄산 디메틸(dimethyl carbonate)의 혼합용매에 LiPF6를 1M의 농도비로 녹인 용액을 전해액으로 사용하여, 50 mAg-1의 전류밀도로 충방전 실험을 행하였다. 그 결과가 도 3에 'A'로서 도시되어있는 바, 도 3에서 볼 수 있는 바와 같이, 본 발명에 따른 음극 활물질은 0.0 ~ 0.3 Vvs.Li/Li+사이에서 뚜렷한 스테이지 거동을 보여 결정성이 천연 흑연 및 3000℃에서 제조된 인조 흑연에 필적하는 수준임을 알 수 있다.A negative electrode plate was prepared by mixing the multilayer carbon nanotubes prepared in Example 1 as an active material of the negative electrode plate and PVdF as a binder in a ratio of 93: 7 (weight ratio). The negative electrode plate thus prepared was charged and discharged at a current density of 50 mAg -1 using a solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate at a concentration ratio of 1 M as an electrolyte. It was done. The result is shown in Figure 3 as 'A', as can be seen in Figure 3, the negative electrode active material according to the present invention is 0.0 ~ 0.3 V vs. It can be seen that the crystallinity is comparable to that of natural graphite and artificial graphite prepared at 3000 ° C by showing a distinct stage behavior between Li / Li + .
또한, 상기와 같이 제조된 음극판에 대해 1.35 M LiPF6/EC+PC 용매에서 C/5의 전류속도로 코인셀 반전지를 만들어 120회의 충방전 실험을 행한 결과를 도 4에 나타내었다. 도 4에서 볼 수 있는 바와 같이, 110회 사이클 후에도 재료의 열화가 일어나지 않아 우수한 사이클 안정성을 보임을 알 수 있다.In addition, 120 charge / discharge experiments were performed on the negative electrode plate prepared as described above by making a coin cell half cell at a current rate of C / 5 in a 1.35 M LiPF 6 / EC + PC solvent. As can be seen in Figure 4, the material does not deteriorate even after 110 cycles it can be seen that excellent cycle stability.
실시예 6Example 6
음극판의 활물질로서 실시예 1에서 제조된 다층 탄소나노튜브, 도전재로서 실시예 1에서 제조된 다층 탄소나노튜브, 결합재로서 PVdF를 86 : 7 : 7의 비율로 하였다는 점을 제외하고는 실시예 5와 동일한 방법으로 음극판을 제조하여 충방전 실험을 행한 결과, 실시예 5와 거의 동일한 결과를 얻을 수 있었다.Except that the multilayer carbon nanotubes prepared in Example 1 as the active material of the negative electrode plate, the multilayer carbon nanotubes prepared in Example 1 as the conductive material, and PVdF in the ratio of 86: 7: 7: A negative electrode plate was manufactured in the same manner as in Example 5, and the charge and discharge experiments were conducted. As a result, almost the same results as in Example 5 were obtained.
본 발명에 따른 방법과의 비교를 위하여 하기와 같은 다양한 방법에 의한 비교 실험을 행하였다.In order to compare with the method according to the present invention, a comparative experiment by various methods was performed.
비교예 1Comparative Example 1
본 발명에 따른 다층 탄소나노튜브 대신에 브라질리안 천연흑연(brazilian natural graphites)을 활물질로 사용하였다는 점을 제외하고는 실시예 5와 동일한 방법으로 음극판을 제조하여 충방전 실험을 행하였다. 그 결과를 도 3에 'B'로서 나타내었다.Charge and discharge experiments were carried out by fabricating a negative electrode plate in the same manner as in Example 5 except that brazilian natural graphites were used as active materials instead of the multilayer carbon nanotubes according to the present invention. The results are shown as 'B' in FIG.
비교예 2Comparative Example 2
본 발명에 따른 다층 탄소나노튜브 대신에 일본 페토카사의 시판용 MCF(mesophase pitch-based carbon fibers)를 활물질로 사용하였다는 점을 제외하고는 실시예 5와 동일한 방법으로 음극판을 제조하여 충방전 실험을 행하였다. 그 결과를 도 3에 'C'로서 나타내었다.Charge and discharge experiments were carried out by preparing a negative electrode plate in the same manner as in Example 5 except that commercially available mesophase pitch-based carbon fibers (MCF) were used as an active material instead of multilayer carbon nanotubes according to the present invention. It was done. The results are shown as 'C' in FIG.
비교예 3Comparative Example 3
본 발명에 따른 다층 탄소나노튜브 대신에 일본 오사카가스사제 시판용 흑연화된 MCMBs(mesocarbon microbeads)를 활물질로 사용하였다는 점을 제외하고는 실시예 5와 동일한 방법으로 음극판을 제조하여 충방전 실험을 행하였다. 그 결과를 도 3에 'D'로서 나타내었다.Charge and discharge experiments were carried out by preparing a negative electrode plate in the same manner as in Example 5 except that commercially available graphitized MCMBs (mesocarbon microbeads) manufactured by Osaka Gas Co., Ltd. were used instead of the multilayer carbon nanotubes according to the present invention. It was. The results are shown as 'D' in FIG.
상기 실시예 5와 비교예 1 내지 3의 결과를 함께 보여주고 있는 도 3을 참조하여 살펴보면, 3000℃ 이상의 비활성 분위기에서 열처리해야만 고결정성을 얻을 수 있는 종래의 활물질(비교예 1 내지 3)과 비교하여, 저온(1000℃ 이하)에서 제조된 본 발명의 다층 탄소나노튜브 활물질(실시예 5)은 마찬가지로 0.0 ~ 0.3 V vs. Li/Li 이하에서 스테이지 거동을 보이는 것으로 보아 우수한 결정성을 가짐을 알 수 있다.Referring to FIG. 3, which shows the results of Example 5 and Comparative Examples 1 to 3, it is compared with conventional active materials (Comparative Examples 1 to 3) which can obtain high crystallinity only by heat treatment in an inert atmosphere of 3000 ° C. or higher. Thus, the multilayer carbon nanotube active material (Example 5) of the present invention prepared at a low temperature (1000 ° C. or less) was 0.0 to 0.3 V vs. It can be seen that it shows excellent crystallinity by showing stage behavior below Li / Li.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형이 가능한 것이다.Those skilled in the art to which the present invention pertains can make various applications and modifications within the scope of the present invention based on the above contents.
본 발명에 따른 리튬 이차전지용 음극 활물질은, 종래의 흑연계 탄소재료와 달리 고비용의 흑연화 및 고순도화 처리를 거치지 않은 채 제조할 수 있는 유일한 고결정성 탄소원료로서, 적은 비용으로 생산가능한 고흑연화성 탄소재료이므로 낮은 생산단가의 이차 전지양산에 크게 기여할 수 있는 효과가 있다.Unlike the conventional graphite-based carbon material, the negative electrode active material for a lithium secondary battery according to the present invention is the only high crystalline carbon raw material that can be manufactured without undergoing high-cost graphitization and high purity treatment, and has a high graphitization property that can be produced at low cost. Since it is a carbon material, there is an effect that can greatly contribute to the production of secondary batteries of low production cost.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000070509 | 2000-11-24 | ||
KR20000070509 | 2000-11-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020040646A KR20020040646A (en) | 2002-05-30 |
KR100444141B1 true KR100444141B1 (en) | 2004-08-09 |
Family
ID=19701337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0073568A KR100444141B1 (en) | 2000-11-24 | 2001-11-24 | Anode active materials for lithium secondary battery, anode plates and secondary battery using them |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100444141B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100434848B1 (en) * | 2001-12-11 | 2004-06-07 | 일진나노텍 주식회사 | Method of fabricating lithium ion secondary battery using carbon nanotube and lithium ion secondary battery fabricated by the same |
KR100473621B1 (en) * | 2002-05-31 | 2005-03-10 | 한국전기연구원 | Method of fabricating electrode of Lithium secondary battery and Lithium secondary battery with the electrode |
WO2018088557A1 (en) * | 2016-11-14 | 2018-05-17 | 株式会社 東芝 | Non-aqueous electrolyte cell and cell pack |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11335106A (en) * | 1998-03-25 | 1999-12-07 | Shimadzu Corp | Production of carbon |
KR20010042303A (en) * | 1998-03-31 | 2001-05-25 | 크레머, 포프 | Lithium battery and electrode |
KR20010055503A (en) * | 1999-12-10 | 2001-07-04 | 김순택 | Negative active material for lithium secondary battery and method of preparing same |
US6280697B1 (en) * | 1999-03-01 | 2001-08-28 | The University Of North Carolina-Chapel Hill | Nanotube-based high energy material and method |
JP2001266873A (en) * | 2000-03-16 | 2001-09-28 | Hitachi Maxell Ltd | Negative electrode for non-aqueous secondary battery, its manufacturing method and non-aqueous secondary battery using the same |
-
2001
- 2001-11-24 KR KR10-2001-0073568A patent/KR100444141B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11335106A (en) * | 1998-03-25 | 1999-12-07 | Shimadzu Corp | Production of carbon |
KR20010042303A (en) * | 1998-03-31 | 2001-05-25 | 크레머, 포프 | Lithium battery and electrode |
US6280697B1 (en) * | 1999-03-01 | 2001-08-28 | The University Of North Carolina-Chapel Hill | Nanotube-based high energy material and method |
KR20010055503A (en) * | 1999-12-10 | 2001-07-04 | 김순택 | Negative active material for lithium secondary battery and method of preparing same |
JP2001266873A (en) * | 2000-03-16 | 2001-09-28 | Hitachi Maxell Ltd | Negative electrode for non-aqueous secondary battery, its manufacturing method and non-aqueous secondary battery using the same |
Also Published As
Publication number | Publication date |
---|---|
KR20020040646A (en) | 2002-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101866004B1 (en) | Nano-silicon composite negative electrode material used for lithium ion battery, process for preparing the same and lithium ion battery | |
Cao et al. | Metal etching method for preparing porous graphene as high performance anode material for lithium-ion batteries | |
Wang et al. | Constructing Fe3O4@ N-rich carbon core-shell microspheres as anode for lithium ion batteries with enhanced electrochemical performance | |
EP2537801B1 (en) | Method for producing a carbon material | |
Inagaki et al. | Nanocarbons––recent research in Japan | |
JP4190292B2 (en) | Method for producing nanostructured material | |
WO2019113993A1 (en) | Carbon nanotube and method for fabrication thereof | |
KR20090015449A (en) | Method for the preparation of porous graphite carbon with high crystallinity using sucrose as a carbon precursor | |
CN109748282B (en) | Method for preparing nano silicon carbide at low temperature | |
Liu et al. | Microstructure regulation of pitch-based soft carbon anodes by iodine treatment towards high-performance potassium-ion batteries | |
Tao et al. | Engineering defect‐enabled 3D porous MoS2/C architectures for high performance lithium‐ion batteries | |
Zhang et al. | Carbon nanoflakes for energy storage: scalable and low-cost synthesis, excellent performances toward comprehensive application | |
CN114057181B (en) | Method for preparing oxygen atom doped three-dimensional porous ultrathin carbon nanosheets | |
KR100421557B1 (en) | Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them | |
CN109110744B (en) | Preparation method of hollow tubular polyaniline-based carbon material | |
Liu et al. | Freeze-casting preparation of three-dimensional directional porous LiFePO4-graphene composite aerogel for lithium-ion battery | |
Li et al. | Effects of raw materials on the structures of three dimensional graphene/amorphous carbon composites derived from biomass resources | |
KR100444141B1 (en) | Anode active materials for lithium secondary battery, anode plates and secondary battery using them | |
JP3484174B2 (en) | Multi-walled carbon nanotube and method for producing the same | |
KR100444140B1 (en) | Conducting materials for high quality secondary battery and secondary batteries using them | |
Zhang et al. | A facile strategy for Co 3 O 4/Co nanoparticles encapsulated in porous N-doped carbon nanofibers towards enhanced lithium storage performance | |
Itoi et al. | Constraint spaces in carbon materials | |
Inagaki | Structure and texture of carbon materials | |
Kijima et al. | Efficient thermal conversion of polyyne-type conjugated polymers to nano-structured porous carbon materials | |
Li et al. | Hierarchical three-dimensional graphene-based carbon material for high-performance lithium ion batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
AMND | Amendment | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130704 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20140708 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20161004 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20170802 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20180730 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20190902 Year of fee payment: 16 |