KR100431516B1 - Method for preparing high concentration of phenylacetaldehyde from styrene oxide using microorganism without hydrogenation of styrene oxide - Google Patents

Method for preparing high concentration of phenylacetaldehyde from styrene oxide using microorganism without hydrogenation of styrene oxide Download PDF

Info

Publication number
KR100431516B1
KR100431516B1 KR1019960070747A KR19960070747A KR100431516B1 KR 100431516 B1 KR100431516 B1 KR 100431516B1 KR 1019960070747 A KR1019960070747 A KR 1019960070747A KR 19960070747 A KR19960070747 A KR 19960070747A KR 100431516 B1 KR100431516 B1 KR 100431516B1
Authority
KR
South Korea
Prior art keywords
styrene oxide
phenylacetaldehyde
organic solvent
styrene
microorganism
Prior art date
Application number
KR1019960070747A
Other languages
Korean (ko)
Other versions
KR19980051828A (en
Inventor
이병형
황순욱
김종근
조남륜
Original Assignee
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사 filed Critical 에스케이 주식회사
Priority to KR1019960070747A priority Critical patent/KR100431516B1/en
Publication of KR19980051828A publication Critical patent/KR19980051828A/en
Application granted granted Critical
Publication of KR100431516B1 publication Critical patent/KR100431516B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: A method for preparing phenylacetaldehyde from styrene oxide using a microorganism is provided, thereby preparing high concentration of phenylacetaldehyde without hydrogenation of styrene oxide. CONSTITUTION: The method for preparing high concentration of phenylacetaldehyde from styrene oxide using a microorganism comprises the steps of: adding 1 to 10 mg of Pseudomonas putida(KCTC 0203BP) into 1 ml of styrene oxide and organic solvent; and culturing the microorganism at 30 to 70 deg. C, wherein the log p of the organic solvent is 3.5 or more; the organic solvent is hexane, heptane, octane or hexadecane; and Pseudomonas putida KCTC 0203BP produces styrene oxide isomerase and phenylacetaldehyde reductase, thereby converting styrene oxide into phenylacetaldehyde in the presence of the organic solvent.

Description

균주를 이용한 페닐아세트알데하이드의 제조방법Method for producing phenylacetaldehyde using strains

본 발명은 균주를 이용한 페닐아세트알데하이드의 제조방법에 관한 것으로, 좀 더 상세하게는 스티렌 옥사이드 이소머라제 및 페닐아세트알데하이드 리덕타제 생산능을 갖는 슈도모나스 푸티다 균주를 이용하여 유기용매상에서 스티렌 옥사이드로부터 페닐아세트알데하이드를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing phenylacetaldehyde using a strain, and more particularly, to a phenyl oxide from styrene oxide in an organic solvent using a Pseudomonas putida strain having styrene oxide isomerase and phenylacetaldehyde reductase production ability. It relates to a process for preparing acetaldehyde.

1979년에 Shirai와 Hisatsuka(Agric. Biol. Chem. 43: 1399-1406)는 슈도모나스(Pseudomonas) 균주에 의해 스티렌과 스티렌 옥사이드에서 페닐에탄올의 생성을 확인하였고 반응 메카니즘은 스티렌 에폭시제나제 효소에 의해 스티렌에서 스티렌 옥사이드로 되고, 그 다음 스티렌 옥사이드 리덕타제 효소에 의해 페닐에탄올이 생성된다고 제안하였다. Baggi (System. Appl. Microbiol. 4: 141-147, 1983)등은 슈도모나스 플루오레슨스(Pseudomonas fluorescens)에 의한 대사 경로를 제안하였는데, 스티렌에서 중간체로 페닐초산이 생성된다고 하였다. Hartmans (Appl. Environ. Microbiol. 55: 2850-2855, 1989)등은 스티렌 분해균주인 산토박터(Xanthobacter) 균주를 분리하여 스티렌 옥사이드에서 스티렌 옥사이드 이소머라제 효소에 의해 페닐아세트알데하이드로 전환되고, 페닐아세트알데하이드 디하이드로나제 효소에 의해 페닐초산으로 전환된다고 제안하였다. Warhurst(Appl. Environ. Microbiol. 60: 1137-1145, 1994)등은 로도코커스 로도크로스(Rhodococcus rhodochrous) NCIMB 13259를 이용하여 스티렌에서 스티렌 시스-글리콜로 진행됨을 제안하였다. 최근에 O'connor(Appl. Environ. Microbiol. 61: 544-548, 1995)등은 슈도모나스 푸티다(Pseudomonas putida) CA-3를 이용하여 스티렌 옥사이드에서 페닐아세트알데하이드로, 페닐아세트알데하이드에서 페닐초산으로 진행됨을 확인하였다. 그러나, 상기 슈도모나스 푸티다 균주에 의해 생산된 효소는 온도에 대한 안정성이 낮은 경향이 있었다.In 1979 Shirai and Hisatsuka (Agric. Biol. Chem. 43: 1399-1406) confirmed the production of phenylethanol in styrene and styrene oxide by Pseudomonas strains and the reaction mechanism was styrene by styrene epoxygenase enzyme. Styrene oxide, and then phenylethanol is produced by the styrene oxide reductase enzyme. Baggi (System. Appl. Microbiol. 4: 141-147, 1983) proposed a metabolic pathway by Pseudomonas fluorescens, which is said to produce phenylacetic acid as an intermediate in styrene. Hartmans (Appl. Environ. Microbiol. 55: 2850-2855, 1989), isolated from Xanthobacter strain, a styrene degradation strain, were converted from styrene oxide to phenylacetaldehyde by styrene oxide isomerase enzyme, and phenyl It is proposed to convert to acetaldehyde dehydronase enzyme to phenylacetic acid. Warhurst (Appl. Environ. Microbiol. 60: 1137-1145, 1994) suggested that rhodeococide rhodochrous NCIMB 13259 proceeds from styrene to styrene cis-glycol. O'connor (Appl. Environ. Microbiol. 61: 544-548, 1995) recently used Pseudomonas putida CA-3 to convert styrene oxide to phenylacetaldehyde and phenylacetaldehyde to phenylacetic acid. Confirmed to proceed. However, enzymes produced by the Pseudomonas putida strain tended to have low temperature stability.

본 발명자들은 유공(주) 울산 정유공장과 PO/SM 공장의 주변에서 분리한 스티렌 분해균주들중 새로운 슈도모나스 푸티다 균주가 스티렌 옥사이드를 페닐초산으로 대사하는데, O'connor등(1995)이 사용한 슈도모나스 푸티다 CA-3 균주와는 다르게 페닐아세트알데하이드에서 페닐에탄올을 거쳐 페닐초산으로 대사하는 것을 확인하였다. 이에 수용액상에서 페닐아세트알데하이드 및 2-페닐에탄올을 생산하는 방법 및 균주에 관한 특허를 출원하기 위하여 1995년 10월 19일에 한국과학기술원에 슈도모나스 푸티다 KCTC 0203BP를 기탁하였고, 10월 26일자로 특허출원 제 95-37419호로 출원하였다.The present inventors found that a new Pseudomonas putida strain metabolizes styrene oxide to phenylacetic acid among styrene degrading strains isolated from Ulsan Oil Refinery Plant and PO / SM plant, Pseudomonas used by O'connor et al. (1995). Unlike putida CA-3 strain, it was confirmed that the phenylacetaldehyde metabolizes through phenylethanol to phenylacetic acid. In order to apply for a patent on a method and strain for producing phenylacetaldehyde and 2-phenylethanol in aqueous solution, Pseudomonas putida KCTC 0203BP was deposited with the Korea Advanced Institute of Science and Technology on October 19, 1995, and patented on October 26 Filed in application 95-37419.

한편, 기질 및 생성물질인 스티렌 옥사이드 및 페닐아세트알데하이드 또는 2-페닐에탄올의 용해도는 수용액에서 낮으므로 반응을 진행시키는데 불리한 점이 있다. 또한 페닐아세트알데하이드에서 2-페닐에탄올이 생성되므로 스티렌 옥사이드에서 페닐아세트알데하이드를 얻는데는 단점이 많다.On the other hand, the solubility of the substrate and the styrene oxide and phenylacetaldehyde or 2-phenylethanol, which is a substrate, is low in aqueous solution, which is disadvantageous in proceeding with the reaction. In addition, since 2-phenylethanol is produced from phenylacetaldehyde, there are many disadvantages in obtaining phenylacetaldehyde from styrene oxide.

이를 극복하기 위하여 본 발명에서는 유기용매상에서 반응을 진행하여 페닐아세트알데하이드에서 2-페닐에탄올로 가는 길을 차단하고 스티렌 옥사이드에서 페닐아세트알데하이드만을 얻고 또한 용해도의 증가로 생성능이 증가시킬 수 있었다.In order to overcome this problem, in the present invention, the reaction was carried out in an organic solvent to block the path from phenylacetaldehyde to 2-phenylethanol, and only phenylacetaldehyde was obtained from styrene oxide.

따라서, 본 발명의 목적은 균주를 이용하여 고농도의 페닐아세트알데하이드를 제조하는 방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method for producing a high concentration of phenylacetaldehyde using a strain.

상기 목적을 달성하기 위한 본 발명의 제조방법은 유기용매 존재하에서 스티렌 옥사이드에 슈도모나스 푸티다 KCTC 0203BP를 첨가시킨 다음, 30∼70℃의 온도범위로 유지시키는 것으로 이루어진다.The method of the present invention for achieving the above object consists of adding Pseudomonas putida KCTC 0203BP to styrene oxide in the presence of an organic solvent, and then maintaining the temperature range of 30 ~ 70 ℃.

이하 본 발명을 좀더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.

본 발명에서 사용되는 미생물은 슈도모나스 푸티다 KCTC 0203BP 자체 및 반응에 관여된 효소를 의미한다. 상기 균주는 유기용매 존재하에서 스티렌 옥사이드를 페닐아세트알데하이드로 전환시킨다. 이때 상기 유기용매와 스티렌 옥사이드의 혼합량 1㎖에 대하여 상기 균체의 첨가량은 1∼10㎎이 바람직한데, 1㎎ 미만이면 반응이 느리게 진행되고, 10㎎을 초과하면 반응속도가 증가하지 않는 단점이 있다. 본 발명자들에 의해 확인되어 제안된 미생물에 의한 반응 메카니즘은 하기 반응식 Ⅰ과 같다.Microorganism used in the present invention means Pseudomonas putida KCTC 0203BP itself and means the enzyme involved in the reaction. The strain converts styrene oxide to phenylacetaldehyde in the presence of an organic solvent. At this time, the amount of the cells added is preferably 1 to 10 mg with respect to 1 ml of the mixed amount of the organic solvent and styrene oxide. If the amount is less than 1 mg, the reaction proceeds slowly, and if the amount exceeds 10 mg, the reaction rate does not increase. . The reaction mechanism by the microorganisms identified and proposed by the inventors is shown in Scheme I below.

[반응식 Ⅰ]Scheme I

스티렌 옥사이드 이소머라제(효소 1)Styrene oxide isomerase (enzyme 1)

스티렌 옥사이드 → 페닐아세트알데하이드Styrene oxide → phenylacetaldehyde

페닐아세트알데하이드 리덕타제(효소 2)Phenylacetaldehyde reductase (enzyme 2)

→ 페닐에탄올 →페닐초산→ phenyl ethanol → phenyl acetate

+2H+ + 2H +

즉, 페닐아세트알데하이드에서 페닐에탄올로 가는 경우 2개의 수소 이온이 필요한데 수용액상에서는 수소 이온이 존재하나 유기용매상에서는 수소 이온이 존재하지 않으므로 더이상 반응이 진행되지 않는다. 따라서 유기용매를 사용하면 기질 및 생성물의 용해도 증가에 따른 고농도 반응이 가능하고, 또한 2-페닐에탄올이 생성되지 않으므로 고농도의 페닐아세트알데하이드를 얻을 수 있는 장점이 있다.In other words, when going from phenylacetaldehyde to phenylethanol, two hydrogen ions are required, but the hydrogen ions are present in the aqueous solution, but the hydrogen ions are not present in the organic solvent. Therefore, the use of an organic solvent has the advantage that a high concentration reaction is possible according to the increased solubility of the substrate and the product, and also 2-phenylethanol is not produced, thereby obtaining a high concentration of phenylacetaldehyde.

본 발명에 따르면, 상기 스티렌 옥사이드는 유기용매에 용해시켜 사용하는데, 이때 유기용매내에서 스티렌 옥사이드의 농도는 특별한 제한을 받지는 않지만, 경제성을 고려하여 1% 이상이 바람직하고, 스티렌 옥사이드의 자체 독성에 따른 취급상의 문제 및 경제성 때문에 10% 미만이 바람직하다.According to the present invention, the styrene oxide is used by dissolving in an organic solvent, in which the concentration of styrene oxide in the organic solvent is not particularly limited, but in consideration of economical efficiency is preferably 1% or more, self-toxicity of styrene oxide Less than 10% is preferred due to handling problems and economics.

한편 , 유기용매상 반응에서 Log p(여기서, p는 옥탄올과 물에 용해되는 분배계수)가 중요한 인자로 작용하는데, Log p가 작으면 낮은 전환율을 나타내므로 통상적인 반응에서 Log p는 2.5 이상으로 사용되고 있다(Manjon et al., 1991 Biotechnol, Lett., 13: 339-334). 본 발명에서는 Log p가 3.5 이상인 모든 유기용매를 사용할 수 있고, 바람직하게는 헥산(Log p = 3.5), 헵탄, 옥탄, 또는 헥사데칸 등이 있다.On the other hand, Log p (where p is the partition coefficient dissolved in octanol and water) is an important factor in the organic solvent reaction. (Manjon et al., 1991 Biotechnol, Lett., 13: 339-334). In the present invention, any organic solvent having a log p of 3.5 or more can be used, and preferably hexane (Log p = 3.5), heptane, octane, or hexadecane.

본 발명에 따라 생성된 화합물은 개스크로마토그래피(휴렛-패카드사 제품, 모델 5890)를 이용하여 정량하였다. 분석조건으로는 HP-1캐피러리 칼럼(내경 0.2 ㎜, 길이 25m)을 100℃에서 1분간 가열하고, 분당 10℃씩 250℃까지 증가시킨 후 250℃에서 1분간 정지시켰다. 캐리어로는 헬륨개스를 분당 2㎖의 속도로 흘렸다. 스티렌 옥사이드는 5.7분, 페닐아세트알데하이드는 5.3분, 페닐에탄올은 6.3분, 페닐초산은 8.1분에서 검출되었고, GC-MSD(개스크로마토그래피; HP5890 Ⅱ, MSD; HP5972)로 각각의 물질을 확인하였다. 이상의 실험조건에 의해 화합물을 분석하였고, 상기 분석방법은 하기 실시예에 적용하였다.Compounds produced according to the invention were quantified using gas chromatography (Hewlett-Packard, Model 5890). As analytical conditions, the HP-1 capital column (inner diameter 0.2 mm, length 25 m) was heated at 100 ° C. for 1 minute, increased to 10 ° C. per minute to 250 ° C., and stopped at 250 ° C. for 1 minute. Helium gas was flowed into the carrier at a rate of 2 ml per minute. Styrene oxide was detected at 5.7 minutes, phenylacetaldehyde at 5.3 minutes, phenylethanol at 6.3 minutes, and phenylacetic acid at 8.1 minutes, and the respective substances were identified by GC-MSD (gas chromatography; HP5890 II, MSD; HP5972). The compound was analyzed by the above experimental conditions, and the analysis method was applied to the following examples.

이하 실시예를 통하여 본 발명을 좀 더 구체적으로 설명하지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.

실시예 1Example 1

1 ℓ용 플라스크에 300㎖의 배지액을 넣고 균(슈도모나스 푸티다 KCTC 0203BP)을 접종한 후 스티렌을 유일한 에너지원과 탄소원으로 하여 약 2일간 배양한 후 배양된 균을 원심분리기에 의해 분리한 후 동결건조시킨다. 동결건조된 슈도모나스 푸티다 균체 5㎎을 실리콘 고무마개로 공기의 흐름을 차단시킨 15 ㎖ 바이알에 넣고, 5%의 스티렌 옥사이드를 포함한 헥산용액 5㎖을 바이알에 주입한 후 교반조를 사용하여 30℃에서 반응시켰다. 하기 표 1에 기재된 일정시간마다 바이알에서 일정량의 내용물을 회수하여 얼음에 급냉각시켜 반응을 중단시킨 후 원심분리기로 균체와 생성물을 분리한 후 상등액을 상기 방법에 따라 개스크로마토그래피로 정량 분석하였다. 그 결과는 하기 표 1과 같다.Inoculate 300 ml of medium solution into 1 l flask, inoculate bacteria (Pseudomonas putida KCTC 0203BP), incubate for about 2 days with styrene as the only energy source and carbon source, and isolate the cultured cells by centrifugation. Lyophilize. 5 mg of lyophilized Pseudomonas putida cells were placed in a 15 ml vial which blocked the flow of air with a silicone rubber stopper, 5 ml of a hexane solution containing 5% styrene oxide was injected into the vial, and then stirred at 30 ° C. using a stirring tank. Reacted. After a certain amount of contents were recovered from the vial at a predetermined time shown in Table 1, the reaction was stopped by quenching on ice, and the cells and products were separated by a centrifuge, and the supernatant was quantitatively analyzed by gas chromatography according to the above method. The results are shown in Table 1 below.

5% 스티렌 옥사이드/헥산을 반응시킨 경우When reacting 5% styrene oxide / hexane 반응시간 (시간)Response time (hours) 페닐아세트알데하이드 (mM)Phenylacetaldehyde (mM) 0.50.5 8.938.93 1One 11.9511.95 22 14.5414.54 33 22.7522.75 66 26.3626.36 2424 31.5331.53

실시예 2∼6Examples 2-6

상기 실시예 1 의 조건중 50㎎의 건조된 균체를 넣고 스티렌 옥사이드를 1%에서 10%까지 변화시켜 반응을 진행하였다. 3시간후의 결과를 하기 표2에 기재하였다.50 mg of the dried cells in the conditions of Example 1 was added to change the styrene oxide from 1% to 10% to proceed with the reaction. The results after 3 hours are shown in Table 2 below.

스티렌 옥사이드의 농도에 따른 영향Influence of Styrene Oxide Concentration 실시예Example 스티렌 옥사이드 (%)Styrene Oxide (%) 페닐아세트알데하이드 (mM)Phenylacetaldehyde (mM) 22 1One 2.472.47 33 33 6.796.79 44 55 10.2210.22 55 77 17.8217.82 66 1010 21.0321.03

실시예 7∼10Examples 7-10

상기 실시예 1의 조건중 5% 스티렌 옥사이드/헥산 용액에 균체량을 변화시켜 반응을 진행하였다. 24 시간후의 결과를 하기 표3에 기재하였다.The reaction was carried out by changing the amount of cells in a 5% styrene oxide / hexane solution of the conditions of Example 1. The results after 24 hours are shown in Table 3 below.

균체 양에 따른 페닐아세트알데하이드 생성 농도 변화Changes in Phenyl Acetaldehyde Formation with Different Cell Sizes 실시예Example 균체 양 (㎎)Cell mass (mg) 페닐아세트알데하이드 (mM)Phenylacetaldehyde (mM) 77 55 31.5331.53 88 1010 51.8951.89 99 2020 73.3273.32 1010 5050 92.1492.14

실시예 11∼13Examples 11-13

상기 실시예 1의 조건중 5% 스티렌 옥사이드를 포함한 옥탄용액에 동결건조된 균체 5㎎을 넣고 반응온도를 30℃에서 70℃까지 조절하여 0.5시간 반응후 생성물을 실시예 1에 따라 분석하였다. 그 결과를 하기 표4에 기재하였다.5 mg of lyophilized cells were added to an octane solution containing 5% styrene oxide in the conditions of Example 1, and the reaction temperature was adjusted from 30 ° C. to 70 ° C., and the product was analyzed according to Example 1. The results are shown in Table 4 below.

반응온도에 따른 생성물 농도 변화Product concentration change with reaction temperature 실시예Example 반응온도 (℃)Reaction temperature (℃) 페닐아세트알데하이드 (mM)Phenylacetaldehyde (mM) 1111 3030 9.489.48 1212 5050 9.869.86 1313 7070 13.4113.41

실시예 14Example 14

상기 실시예 1의 조건중 건조된 균체 50㎎을 15㎖ 바이알에 넣고 0.1% 스티렌 옥사이드를 포함한 헥산용액 5㎖을 바이알에 주입한 후 반응을 진행하였다. 24 시간후의 헥산층의 결과를 하기 표5에 기재하였다.50 mg of dried cells under the conditions of Example 1 was placed in a 15 ml vial, and 5 ml of a hexane solution containing 0.1% styrene oxide was injected into the vial, followed by reaction. The results of the hexane layer after 24 hours are shown in Table 5 below.

비교예 1Comparative Example 1

상기 실시예 1의 조건중 건조된 균체 50㎎을 15㎖ 바이알에 넣고 0.1% 스티렌 옥사이드를 함유하는 헥산용액과 물의 부피비를 1 : 1로 하여 바이알에 주입한 후 반응을 진행하였다. 24 시간후의 헥산층과 물층의 결과를 하기 표5에 기재하였다.50 mg of dried cells under the conditions of Example 1 were placed in a 15 ml vial, and the volume ratio of hexane solution and water containing 0.1% styrene oxide was 1: 1, and the reaction was carried out in a vial. The results of the hexane layer and the water layer after 24 hours are shown in Table 5 below.

비교예 2Comparative Example 2

상기 실시예 1의 조건중 건조된 균체 50㎎을 15㎖ 바이알에 넣고, 0.1% 스티렌 옥사이드를 포함한 수용액 5㎖을 바이알에 주입한 후 반응을 진행하였다. 24 시간후의 물층의 결과를 하기 표5에 기재하였다.50 mg of dried cells under the conditions of Example 1 were placed in a 15 ml vial, and 5 ml of an aqueous solution containing 0.1% styrene oxide was injected into the vial, followed by reaction. The results of the water layer after 24 hours are shown in Table 5 below.

액상에 따른 페닐아세트알데하이드 및 페닐에탄올의 조성Composition of Phenyl Acetaldehyde and Phenyl Ethanol According to Liquid Phase 실시예및 비교예Examples and Comparative Examples 상 (phase)Phase 페닐아세트알데하이드(mM)Phenyl Acetaldehyde (mM) 페닐에탄올 (mM)Phenylethanol (mM) 비고Remarks 실시예 14Example 14 헥산층Hexane layer 4.334.33 00 비교예 1Comparative Example 1 물층Water layer 00 2.562.56 헥산층Hexane layer 0.370.37 0.600.60 비교예 2Comparative Example 2 물층Water layer 00 2.242.24

실시예 15∼18Examples 15-18

상기 실시예 1의 조건중 헥산대신 헵탄, 옥탄, 헥사데칸을 사용하여 반응을 진행하였다. 4시간 반응후 생성물을 상기 실시예 1에 따라 분석하였다. 그 결과를 하기 표6에 기재하였다.In the conditions of Example 1, instead of hexane, heptane, octane, and hexadecane were used for the reaction. After 4 hours reaction the product was analyzed according to Example 1 above. The results are shown in Table 6 below.

용매에 따른 생성물 농도 변화Product concentration change with solvent 실시예Example 용매menstruum 페닐아세트알데하이드 (mM)Phenylacetaldehyde (mM) Log PLog p 1515 헥산Hexane 21.2121.21 3.53.5 1616 헵탄Heptane 41.6241.62 4.04.0 1717 옥탄octane 47.1747.17 4.54.5 1818 헥사데칸Hexadecane 37.7537.75 8.88.8

이상과 같이 슈도모나스 푸티다 KCTC 0203BP를 이용하여 유기용매상에서 스티렌 옥사이드로부터 페닐아세트알데하이드를 합성하였다. 상기 실시예 및 비교예를 통하여 스티렌 옥사이드에서 페닐아세트알데하이드를 거쳐 페닐에탄올로 대사하는 균주를 이용하여 유기용매상에서 반응시키는 경우에 수소첨가 반응이 일어나지 않으므로 페닐아세트 알데하이드를 고농도로 제조할 수 있음을 알 수 있었다.As described above, phenylacetaldehyde was synthesized from styrene oxide on an organic solvent using Pseudomonas putida KCTC 0203BP. It can be seen from the above examples and comparative examples that phenylacetaldehyde can be prepared at a high concentration because the hydrogenation does not occur when the styrene oxide is reacted on an organic solvent using a strain metabolized to phenylethanol via phenylacetaldehyde. Could.

Claims (5)

유기용매 존재하에서 스티렌 옥사이드에 슈도모나스 푸티다 KCTC 0203BP를 첨가시킨 다음, 30∼70℃의 온도범위로 유지시키는 것을 특징으로 하는 균주를 이용한 페닐아세트알데하이드의 제조방법.Pseudomonas putida KCTC 0203BP is added to the styrene oxide in the presence of an organic solvent, and then maintained in a temperature range of 30 ~ 70 ℃ phenylacetaldehyde production method using a strain. 제 1항에 있어서, 상기 균주의 첨가량이 유기용매와 스티렌 옥사이드의 혼합량 1㎖에 대하여 1∼10㎎임을 특징으로 하는 균주를 이용한 페닐아세트알데하이드의 제조방법.The method for producing phenylacetaldehyde using a strain according to claim 1, wherein the added amount of the strain is 1 to 10 mg based on 1 ml of the mixed amount of the organic solvent and styrene oxide. 제 1항에 있어서, 상기 스티렌 옥사이드의 농도가 1∼10%임을 특징으로 하는 균주를 이용한 페닐아세트알데하이드의 제조방법.The method of claim 1, wherein the concentration of the styrene oxide is 1-10%. 제 1항에 있어서, 상기 유기용매의 Log p가 3.5 이상인 것을 특징으로 하는 균주를 이용한 페닐아세트알데하이드의 제조방법.The method for producing phenylacetaldehyde using a strain according to claim 1, wherein the log p of the organic solvent is 3.5 or more. 제 1항 또는 제 4항에 있어서, 상기 유기용매가 헥산, 헵탄, 옥탄 또는 헥사데칸임을 특징으로 하는 균주를 이용한 페닐아세트알데하이드의 제조방법.The method of claim 1 or 4, wherein the organic solvent is hexane, heptane, octane or hexadecane.
KR1019960070747A 1996-12-23 1996-12-23 Method for preparing high concentration of phenylacetaldehyde from styrene oxide using microorganism without hydrogenation of styrene oxide KR100431516B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960070747A KR100431516B1 (en) 1996-12-23 1996-12-23 Method for preparing high concentration of phenylacetaldehyde from styrene oxide using microorganism without hydrogenation of styrene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960070747A KR100431516B1 (en) 1996-12-23 1996-12-23 Method for preparing high concentration of phenylacetaldehyde from styrene oxide using microorganism without hydrogenation of styrene oxide

Publications (2)

Publication Number Publication Date
KR19980051828A KR19980051828A (en) 1998-09-25
KR100431516B1 true KR100431516B1 (en) 2004-07-16

Family

ID=37340865

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960070747A KR100431516B1 (en) 1996-12-23 1996-12-23 Method for preparing high concentration of phenylacetaldehyde from styrene oxide using microorganism without hydrogenation of styrene oxide

Country Status (1)

Country Link
KR (1) KR100431516B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006459A1 (en) 2011-03-30 2012-10-04 Technische Universität Bergakademie Freiberg Preparing an aryl aldehyde/ketone from a cyclic aryl epoxide, useful e.g. as a flavoring agent, where process takes place in a cell-free reaction mixture comprising styrene-oxide isomerase in an aqueous solution and the aryl epoxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927110A (en) * 1974-01-18 1975-12-16 Cosden Oil & Chem Co Thermolysis of styrene oxide
KR0164051B1 (en) * 1996-03-29 1998-11-16 남창우 Preparation process of 2-phenyl ethanolic ester compounds using lipase
KR100289089B1 (en) * 1995-10-26 2001-11-30 남창우 Pseudomonas putida producing styreneoxide isomerase and phenylaldehyde reductase and method for manufacturing phenylethanol and phenylacetaldehyde by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927110A (en) * 1974-01-18 1975-12-16 Cosden Oil & Chem Co Thermolysis of styrene oxide
KR100289089B1 (en) * 1995-10-26 2001-11-30 남창우 Pseudomonas putida producing styreneoxide isomerase and phenylaldehyde reductase and method for manufacturing phenylethanol and phenylacetaldehyde by using the same
KR0164051B1 (en) * 1996-03-29 1998-11-16 남창우 Preparation process of 2-phenyl ethanolic ester compounds using lipase

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEVIN O''CONNER etc.; Applied and Environmental Microbiology, p.3594-3599; Oct.1996 *
KEVIN O''CONNER etc.; Applied and Environmental Microbiology, p.544-548; 1995 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006459A1 (en) 2011-03-30 2012-10-04 Technische Universität Bergakademie Freiberg Preparing an aryl aldehyde/ketone from a cyclic aryl epoxide, useful e.g. as a flavoring agent, where process takes place in a cell-free reaction mixture comprising styrene-oxide isomerase in an aqueous solution and the aryl epoxide
DE102011006459B4 (en) 2011-03-30 2018-10-11 Technische Universität Bergakademie Freiberg Process for the enzymatic synthesis of aromatic aldehydes or ketones

Also Published As

Publication number Publication date
KR19980051828A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
Fukui et al. Enzymatic synthesis of poly-β-hydroxybutyrate in Zoogloea ramigera
Krumholz et al. Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate
JPH0284198A (en) Production of optically active alpha-substituted organic acid and organism and enzyme to be used therefor
IE832505L (en) Microbial production of indigo
US4375515A (en) Method for producing microbial cells and use thereof to produce oxidation products
Mars et al. Bioconversion of limonene to increased concentrations of perillic acid by Pseudomonas putida GS1 in a fed-batch reactor
US4250259A (en) Microbiological production of ketones from C3 -C6 secondary alcohols
US4269940A (en) Microbiological alkane oxidation process
Van den Tweel et al. Bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by Alcaligenes denitrificans NTB-1
Schramm et al. Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp.
JPH084515B2 (en) Method for producing organic compound
Schnell et al. Degradation of hydroxyhydroquinone by the strictly anaerobic fermenting bacterium Pelobacter massiliensis sp. nov.
Bonting et al. Anaerobic metabolism of 2-hydroxybenzoic acid (salicylic acid) by a denitrifying bacterium
KR100431516B1 (en) Method for preparing high concentration of phenylacetaldehyde from styrene oxide using microorganism without hydrogenation of styrene oxide
Fontanille et al. Pseudomonas rhodesiae PF1: a new and efficient biocatalyst for production of isonovalal from α-pinene oxide
FR2461753A1 (en) PROCESS FOR THE PREPARATION OF A CEPHALOSPORINE BY FERMENTATION AND MICROORGANISM FOR CARRYING OUT SAID METHOD
EP0098138A2 (en) Microbial cells and the use thereof to produce oxidation products
US4268630A (en) Microbiological production of ketones from C3 -C6 alkanes
Vermeij et al. Purification and Characterization of Coenzyme F390 Synthetase from Methanobacterium thermoautotrophicum (strain H)
Aoki et al. Partial purification and characterization of a bacterial dioxygenase that catalyzes the ring fission of 2-aminophenol
Ui et al. Production of acetylacetoin by bacterial fermentation
JP2936552B2 (en) Method for producing optically active (S)-(+)-3-halo-1,2-propanediol
KR100289089B1 (en) Pseudomonas putida producing styreneoxide isomerase and phenylaldehyde reductase and method for manufacturing phenylethanol and phenylacetaldehyde by using the same
Kuratsu et al. Factors affecting broth viscosity and coenzyme Q 10 production by Agrobacterium species
KR100373151B1 (en) Enantioselective lipase and acinetobacter sp. sy-01 strain producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080507

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee