KR100428841B1 - Nitrogen oxide removal in low temperature plasma process using propylene and ozone - Google Patents

Nitrogen oxide removal in low temperature plasma process using propylene and ozone Download PDF

Info

Publication number
KR100428841B1
KR100428841B1 KR10-1998-0042378A KR19980042378A KR100428841B1 KR 100428841 B1 KR100428841 B1 KR 100428841B1 KR 19980042378 A KR19980042378 A KR 19980042378A KR 100428841 B1 KR100428841 B1 KR 100428841B1
Authority
KR
South Korea
Prior art keywords
ozone
propylene
temperature plasma
low temperature
present
Prior art date
Application number
KR10-1998-0042378A
Other languages
Korean (ko)
Other versions
KR20000025340A (en
Inventor
목영선
김병기
남인식
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR10-1998-0042378A priority Critical patent/KR100428841B1/en
Publication of KR20000025340A publication Critical patent/KR20000025340A/en
Application granted granted Critical
Publication of KR100428841B1 publication Critical patent/KR100428841B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/323Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/104Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/17Exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Treating Waste Gases (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

본 발명은 배가스에 반응첨가제로서 오존과 프로필렌을 주입하여 질소산화물의 제거에 필요한 산화성 라디칼을 다량 발생시키도록 유도함으로서 질소산화물의 제거효율을 크게 증가시키고, 운전전력을 크게 저감시킬 수 있도록 한 프로필렌 및 오존을 이용한 저온 플라즈마 공정의 질소산화물 제거방법에 관한 것으로, 코로나 방전을 이용하는 저온 플라즈마 공정에서 반응첨가제로서 프로필렌 ( [C3H6] / [NO x] )을 0.3-2, 오존([O3] / [C3H6] )을 0.1-0.4범위의 농도로 동시에 주입하여 질소 산화물의 산화반응 촉진 및 운전전력을 저감할 수 있도록 하여서 된 것이다.The present invention injects ozone and propylene as reaction additives to the exhaust gas to induce a large amount of oxidative radicals necessary for the removal of nitrogen oxides, thereby greatly increasing the removal efficiency of nitrogen oxides and greatly reducing the operating power. The present invention relates to a method for removing nitrogen oxides in a low temperature plasma process using ozone, wherein propylene ([C 3 H 6 ] / [NO x]) is 0.3-2 and ozone ([O 3 ] as a reaction additive in a low temperature plasma process using corona discharge. ] / [C 3 H 6 ]) at the same time in the concentration range of 0.1-0.4 to promote the oxidation reaction of nitrogen oxide and reduce the operating power.

Description

프로필렌 및 오존을 이용한 저온 플라즈마 공정의 질소산화물 제거방법Nitrogen oxide removal in low temperature plasma process using propylene and ozone

본 발명은 배가스에 반응첨가제로서 오존과 프로필렌을 주입하여 질소산화물의 제거에 필요한 산화성 라디칼을 다량 발생시키도록 유도함으로서 질소산화물의 제거효율을 크게 증가시키고, 운전전력을 크게 저감시킬 수 있도록 한 프로필렌 및 오존을 이용한 저온 플라즈마 공정의 질소산화물 제거방법에 관한 것이다.The present invention injects ozone and propylene as reaction additives to the exhaust gas to induce a large amount of oxidative radicals necessary for the removal of nitrogen oxides, thereby greatly increasing the removal efficiency of nitrogen oxides and greatly reducing the operating power. The present invention relates to a method for removing nitrogen oxides in a low temperature plasma process using ozone.

일반적으로 펄스폭이 1/1,000,000초 이내인 극도로 짧은 펄스 고전압을 인가하여 배가스에 방전을 시키면 플라즈마 상태가 되어 0,OH,HO2와 같은 다량의 산화성 라디칼 및 오존이 발생되며, 질소산화물은 이러한 성분들과의 반응으로 제거된다.In general, when an extremely short pulse high voltage with a pulse width of less than 1 / 1,000,000 seconds is applied to discharge the exhaust gas, a plasma state is generated, and a large amount of oxidative radicals and ozone such as 0, OH, HO 2 are generated. It is removed by reaction with the components.

배가스에 포함되어 있는 질소산화물은 주로 NO이고 NO제거 기구는 다음과 같다.Nitrogen oxides contained in flue gas are mainly NO and NO removal mechanism is as follows.

여기서 생성된 NO2는 암모니아 및 수분과의 불균일 화학반응으로 제거되며 최종생성물은 질산암모늄(초안)이다.The NO 2 produced here is removed by heterogeneous chemical reactions with ammonia and water and the final product is ammonium nitrate (draft).

저온 플라즈마를 이용한 탈질기술은 건식 공정이며, 최종생성물인 질산암모늄이 비료로 이용될 수 있는 등 장점이 있으나, 본 기술이 다른 탈질공정과 비교하여 경쟁력을 갖추고 산업에 적용될 수 있도록 하기 위해서는 소비전력을 보다 저감시켜야 할 필요성이 있다.Denitrification using low-temperature plasma is a dry process, and there is an advantage that the final product, ammonium nitrate, can be used as a fertilizer.However, in order to make the technology more competitive and applicable to other industries than other denitrification processes, There is a need for further reduction.

NO의 전환율을 향상시켜 소비전력을 저감하기 위하여 반응첨가제로서 탄화수소가 배가스에 주입되고 있으며, 현재까지 에틸렌이 가장 우수한 성능을 나타내는 첨가제로 알려져 있다.In order to improve the conversion of NO and reduce the power consumption, hydrocarbons are injected into the flue gas as a reaction additive, and ethylene is known as an additive that has the best performance.

본 발명은 배가스에 반응첨가제로서 오존과 프로필렌을 주입하여 질소산화물의 제거에 필요한 산화성 라디칼을 다량 발생시키도록 유도함으로서 질소산화물의 제거효율을 크게 증가시키고 운전전력을 크게 저감시킬 수 있도륵 한 프로필렌 및 오존을 이용한 저온 플라즈마 공정의 질소산화물 제거방법을 제공함에 그 목적이 있다.The present invention injects ozone and propylene as reaction additives to the exhaust gas to induce a large amount of oxidative radicals necessary for the removal of nitrogen oxides, thereby greatly increasing the removal efficiency of nitrogen oxides and significantly reducing the operating power. It is an object of the present invention to provide a method for removing nitrogen oxides in a low temperature plasma process using ozone.

이와같은 목적을 갖는 본 발명은 코로나방전을 이용하는 저온 플라즈마 공정에서 반응첨가제로서 프로필렌 ( [C3H6] / [NOX] )을 0.3-2, 오존( [O3] / [C3H6] )을 0.1-0.4범위의 농도로 동시에 주입하여 질소산화물의 산화반응 촉진 및 운전전력을 저감할 수 있도록 함을 특징으로 한다.The present invention having the above object is propylene ([C 3 H 6 ] / [NO X ]) 0.3-2, ozone ([O 3 ] / [C 3 H 6 ) as a reaction additive in a low-temperature plasma process using corona discharge ]) Can be injected at a concentration in the range of 0.1-0.4 to promote the oxidation reaction of nitrogen oxide and reduce the operating power.

도 1a 및 도 1b는 본 발명에 따른 저온 플라즈마 반응기의 사시도 및 단면도,1A and 1B are a perspective view and a cross-sectional view of a low temperature plasma reactor according to the present invention;

도 2는 본 발명에 따른 펄스발생장치의 전기회로도,2 is an electrical circuit diagram of a pulse generator according to the present invention;

도 3은 본 발명에 따른 실험장치의 개략도,3 is a schematic view of an experimental apparatus according to the present invention,

도 4는 본 발명에 따른 펄스 전압 및 전류 파형을 나타낸 그래프,4 is a graph showing a pulse voltage and a current waveform according to the present invention;

도 5는 본 발명에 따른 프로필렌과 에틸렌의 NO 제거율 비교를 나타낸 그래프,5 is a graph showing a comparison of NO removal rate of propylene and ethylene according to the present invention;

도 6은 본 발명에 따른 프로필렌 주입량에 따른 NO 제거율 변화를 나타낸 그래프,6 is a graph showing a change in NO removal rate according to the propylene injection amount according to the present invention,

도 7은 본 발명에 따른 올레핀 및 오존 주입에 의한 NO 제거율을 나타낸 그래프.7 is a graph showing the NO removal rate by olefin and ozone injection according to the present invention.

〈도면의 주요부분에 대한 부호설명〉<Code Description of Main Parts of Drawing>

10 : 접지판 20 : 방전선10: ground plate 20: discharge line

본 발명의 도 1a 및 도 1b는 본 발명에 따른 저온 플라즈마 반응기의 사시도 및 단면도이고, 도 2는 본 발명에 따른 펄스발생장치의 전기 회로도이며, 도 3는 본 발명에 따른 실험장치의 개략도이다.1A and 1B of the present invention are a perspective view and a cross-sectional view of a low temperature plasma reactor according to the present invention, FIG. 2 is an electrical circuit diagram of a pulse generator according to the present invention, and FIG. 3 is a schematic diagram of an experimental apparatus according to the present invention.

그리고 도 4는 본 발명에 따른 펄스 전압 및 전류 파형을 나타낸 그래프이고, 도 5는 본 발명에 따른 프로필렌과 에틸렌의 NO 제거율 비교를 나타낸 그래프이며, 도 6은 본 발명에 따른 프로필렌 주입량에 따른 NO 제거율 변화를 나타낸 그래프이고, 도 7은 본 발명에 따른 올레핀 및 오존 주입에 의한 NO 제거율을 나타낸 그래프이다.4 is a graph showing a pulse voltage and a current waveform according to the present invention, Figure 5 is a graph showing a comparison of the NO removal rate of propylene and ethylene according to the present invention, Figure 6 is a NO removal rate according to the propylene injection amount according to the present invention Figure 7 is a graph showing the change, Figure 7 is a graph showing the NO removal rate by olefin and ozone injection according to the present invention.

이와 같은 본 발명은 코로나방전을 이용하는 저온 플라즈마 공정에서 반응첨가제로서 프로필렌( [C3H6] / [NOX] ) 및 오존( [O3] / [C3H6] )을 동시에 주입하여 질소산화물의 산화반응 촉진 및 운전전력을 저감시키되, 상기 프로필렌의 농도 주입비는 0.3-2 범위이고, 오존의 농도 주입비는 0.1-0.4 범위로 하였다.In the present invention, propylene ([C 3 H 6 ] / [NO X ]) and ozone ([O 3 ] / [C 3 H 6 ]) are simultaneously injected as nitrogen in the low temperature plasma process using corona discharge. Promote the oxidation reaction of the oxide and reduce the operating power, the concentration injection ratio of propylene is 0.3-2 range, the concentration injection ratio of ozone is 0.1-0.4 range.

이와 같이 구성된 본 발명의 작용을 설명하면 다음과 같다.Referring to the operation of the present invention configured as described above is as follows.

도 1에서 도시된 바와 같이 방전선(20)에는 양의 펄스 고전압이 인가되며 음극으로 사용되는 평판은 접지되어 있다. 방전선(20)간의 거리 및 방전선(20)과 접지판(10)의 거리는 모두 1.5Cm이고, 방전선(20)의 직경은 0.8mm이며, 방전선(20)과 접지판(10)의 재질은 스테인레스이다.As shown in FIG. 1, a positive pulse high voltage is applied to the discharge line 20, and the flat plate used as the cathode is grounded. The distance between the discharge lines 20 and the distance between the discharge line 20 and the ground plate 10 are all 1.5 cm, the diameter of the discharge line 20 is 0.8 mm, and the distance between the discharge line 20 and the ground plate 10. The material is stainless.

한편 본 발명에서 사용된 펄스발생장치의 전기 회로는 고전압 공급장치에서 발생되는 직류 고전압을 10kΩ 저항을 이용하여 2.0nF 콘덴서에 충전시켰다가 스위치 역할을 하는 스파크갭 전극을 통해 순간적으로 방전시키면 펄스 고전압이 방전선(20)에 인가되고, 이때 반응기 내부, 즉, 방전선(20)과 접지판(10)사이의 기체는 저온 플라즈마 상태가 된다 (도 2참조)Meanwhile, the electric circuit of the pulse generator used in the present invention charges a 2.0 nF condenser using a 10 kΩ resistor to a 2.0 nF capacitor using a 10 kΩ resistor, and then discharges it instantaneously through a spark gap electrode serving as a switch. Is applied to the discharge line 20, at which time the gas inside the reactor, i.e., between the discharge line 20 and the ground plate 10, becomes a low temperature plasma state (see FIG. 2).

실험에 사용된 펄스발생회로는 펄스당 대략 0.2J의 에너지를 반응기에 전달할 수 있다. 상기한 펄스발생회로는 펄스반복율 (1초당 방전선(20)에 인가된 펄스 횟수)이 10-50Hz의 범위에서 운전되었다.The pulse generation circuit used in the experiment can deliver approximately 0.2 J of energy per pulse to the reactor. The pulse generation circuit described above was operated in a pulse repetition rate (number of pulses applied to the discharge line 20 per second) in a range of 10-50 Hz.

도 3는 본 발명에서 사용된 실험장치의 개략도를 나타낸다. 배가스의 유량은 1.2m3/h이고 약 3%의 수분을 함유하고 있다. NO 및 NO2의 농도가 각각 270ppm 및 30ppm인 배가스가 실험장치로 도입되었다. 배가스의 주입성분은 질소78%, 산소 19%, 수분 3%으로 이루어져 있다.Figure 3 shows a schematic diagram of the experimental apparatus used in the present invention. The flow rate of the flue gas is 1.2m 3 / h and contains about 3% water. Is the concentration of NO and NO 2 270ppm and 30ppm, respectively exhaust gas was introduced into the experimental apparatus. The injection component of the flue gas consists of 78% nitrogen, 19% oxygen, and 3% moisture.

또한 도 4는 방전선(20)에 인가된 펄스 전압 및 전류의 파형을 나타낸 것으로, 최대 전압은 약 21kV, 최대 전류는 약 120A, 그리고 펄스폭은 약 250ns이었다. 펄스당 공급된 에너지(E)는 다음과 같이 전압(V) 및 전류(I)를 곱한 후 시간(t)에 대해 적분하여 계산되며, 소비전력(P)은 펄스당 공급된 에너지에 펄스반복을(f)을 곱하여 얻을 수 있다.4 shows the waveforms of the pulse voltage and the current applied to the discharge line 20. The maximum voltage was about 21 kV, the maximum current was about 120 A, and the pulse width was about 250 ns. The energy supplied per pulse (E) is calculated by multiplying the voltage (V) and current (I) and then integrating over time (t), and the power consumption (P) is applied to the energy supplied per pulse. It can be obtained by multiplying (f).

상기의 식으로 부터 저온 플라즈마 반응기에 펄스당 공급되는 에너지를 계산하면 196mJ이며, 펄스반복율이 10-50Hz일 때 소비전력은 2-10 W 범위이다.When the energy supplied per pulse to the low temperature plasma reactor is calculated from the above equation, it is 196 mJ, and the power consumption is in the range of 2-10 W when the pulse repetition rate is 10-50 Hz.

그리고 도 5는 에틸렌 또는 프로필렌이 NO제거효율에 미치는 영향을 나타낸 것으로, 에틸렌 또는 프로필렌은 질소산화물 초기농도에 대해 양론비로 주입되었다. 상기 도 5의 가로축은 투입된 전력밀도를 나타내는데, 이때 전력밀도는 소비전력을 처리되는 배가스 유량으로 나눈값으로 정의 되었다.And Figure 5 shows the effect of ethylene or propylene on the NO removal efficiency, ethylene or propylene was injected in stoichiometric ratio for the initial concentration of nitrogen oxides. The horizontal axis of FIG. 5 represents the input power density, wherein the power density is defined as a value obtained by dividing the power consumption by the exhaust gas flow rate to be processed.

상기와 같이 에틸렌이나 프로필렌을 배가스에 주입하면 NO제거효율이 크게 향상되며, 특히 프로필렌은 에틸렌보다 훨씬 우수한 성능을 나타내고 있다. 한편 첨가제를 주입하지 않았을 때 60%의 NO제거효율을 얻기 위해서는 약 7.3Wh/m3의 전력이 투입되어야 하나, 프로필렌을 주입하면 약 2.5Wh/m3의 전력만이 소모되므로 첨가제를 주입하지 않았을 때와 비교하면 겨우 1/3의 전력만이 소모되는 효과를 가져온다.As described above, when ethylene or propylene is injected into the exhaust gas, the NO removal efficiency is greatly improved. In particular, propylene shows much better performance than ethylene. On the other hand, in order to obtain 60% NO removal efficiency when no additives are injected, about 7.3Wh / m 3 of electric power should be applied.However, when propylene is injected, only about 2.5Wh / m 3 of power is consumed. Compared with time, only 1/3 of the power is consumed.

이와 같은 결과는 플라즈마 상태에서 발생되는 OH 라디칼, 오존 등이 에틸렌 또는 프로필렌과 반응하여 알킬라디칼 및 알콕시 라디칼을 생성하기 때문인데, 알킬 라디칼 및 알콕시 라디칼은 산소와 반응시 HO2라디칼을 발생시켜 반응(2)가 일어날 수 있도록 하거나 산화성이 강한 페록시 라디칼 형태로 되어 NO를 NO2로 직접 산화시킬 수 있다.This is because OH radicals, ozone, etc. generated in the plasma state react with ethylene or propylene to generate alkyl radicals and alkoxy radicals. The alkyl radicals and alkoxy radicals generate HO 2 radicals when reacted with oxygen to react ( 2) can be generated or in the form of highly oxidizing peroxy radicals which can directly oxidize NO to NO 2 .

도 6은 프로필렌 주입량에 따른 NO 제거효율 변화를 나타낸 것으로 이를 설명하면 다음과 같다.Figure 6 shows the change in NO removal efficiency according to the propylene injection amount as follows.

프로필렌의 주입량이 증가되면 OH라디칼 및 오존과 반응하여 생성되는 알킬 라디칼 및 알콕시 라디칼이 증가되므로 NO전환율이 향상되는바, 적정 프로필렌 주입량은 투입되는 전력밀도 및 원하는 NO전환율에 따라 다를 것이나 프로필렌 [C3H6] / [NOX] 농도비가 2.0이상되면 더 이상 전환을 향상에 효과를 나타내지 못한다. 또,프로필렌을 주입함에 의해 전환율에 있어 20%이상 두드러진 효과를 얻기 위해서 [C3H6] / [NOX] 농도비가 0.3이상은 되어야 한다.When the injection amount of propylene increases because OH radicals and increasing the alkyl radicals and alkoxy radicals that are generated by reacting with the ozone bar that NO conversion rate is improved, and appropriate Propylene volume specified would vary depending on the input electric power density and the desired NO conversion rate of propylene [C 3 H 6 ] / [NO X ] Concentration ratios above 2.0 no longer show any effect on improving conversion. In addition, the concentration ratio of [C 3 H 6 ] / [NO X ] must be 0.3 or more in order to obtain a 20% or more prominent effect on the conversion rate by injecting propylene.

에틸렌이나 프로필렌과 같은 올레핀계 탄화수소 첨가시 NO전환율이 향상되는 반응기구가 OH 및 오존 등에 의한 것이면, 배가스에 인위적으로 OH 또는 오존을 주입하면 보다 우수한 효과를 나타낼 것이다.If the reactor to improve the NO conversion rate when the olefin hydrocarbon such as ethylene or propylene is added by OH and ozone, artificially injecting OH or ozone into the exhaust gas will have a better effect.

그러나 OH 라디칼은 수명이 수 마이크로초 이내로 매우 짧아 이러한 라디칼을 외부에서 발생시켜 주입한다는 것이 매우 어렵다. 라디칼과 달리 오존은 수명이 매우 긴 성분이므로 외부에서 생성시켜 주입하는 것이 가능하다. 오존 주입에 따른 또다른 잇점은 반응(5)에 의해 NO가 NO2로 산화될 수 있다는 점이다. 도 7은 올레핀계 탄화수소와 오존을 동시 주입 했을 때의 NO전환율을 나타내고 있다. 올레핀계 탄화수소는 NOX초기농도와 같은 농도로 주입되었고, 오존은 올레핀계 탄화수소 초기 농도의 0.1-0.4배로 주입되었다. 오존을 올레핀계 탄화수소 초기농도의 0.4배 이하로 주입한 것은 미반응 오존이 배출되는 것을 방지하기 위함이다. 상기 도 7의 실험은 배가스에서 수분을 완전히 제거하고 수행하였는데, 이는 플라즈마 상태에서 수분으로부터 발생되는 OH라디칼의 영향을 배제하여 순수히 오존의 영향만을 살펴보기 위함이다.However, OH radicals have a very short lifespan within a few microseconds, which makes it very difficult to generate and inject these radicals externally. Unlike radicals, ozone is a component that has a very long lifespan, so it can be generated and injected externally. Another benefit of ozone injection is that NO can be oxidized to NO 2 by reaction (5). Fig. 7 shows the NO conversion rate when olefin hydrocarbon and ozone are injected at the same time. The olefinic hydrocarbons were injected at the same concentration as the initial NO x concentration, and the ozone was injected at 0.1-0.4 times the initial concentration of the olefinic hydrocarbons. The injection of ozone at 0.4 times the initial concentration of the olefinic hydrocarbon is to prevent the release of unreacted ozone. The experiment of FIG. 7 was performed by completely removing moisture from the exhaust gas. This is to examine only the effect of ozone purely by excluding the influence of OH radicals generated from water in a plasma state.

이상에서 살펴본 바와같이 OH 라디칼이 없더라도 오존의 존재시 에틸렌이나 프로필렌은 NO 전환율 향상에 상당한 효과를 나타내었다.As described above, even in the absence of OH radicals, ethylene or propylene in the presence of ozone showed a significant effect on improving NO conversion.

이상과 같은 본 발명은 저온 플라즈마 공정에 의한 배가스 처리시 오존 및 올레핀계 탄화수소를 주입하게 되면 NO의 전환율이 크게 향상되어 궁극적으로 NO제거에 필요한 소비전력이 저감됨은 물론, 프로필렌은 우수한 첨가제로 알려져 있는 에틸렌과의 비교에서도 보다 높은 성능을 보여줌으로서, 코로나방전을 이용한 질소산화물 제거시 반응첨가제로서 오존 및 프로필렌을 첨가하여 질소산화물 제거효율을 증가시키고 질소산화물 제거에 필요한 운전전력을 크게 저감시키는 효과를 얻었다.In the present invention as described above, when ozone and olefinic hydrocarbons are injected during flue gas treatment by a low temperature plasma process, conversion of NO is greatly improved, and ultimately, power consumption required for NO removal is reduced, and propylene is known as an excellent additive. Compared with ethylene, it showed higher performance. By adding ozone and propylene as a reaction additive when removing nitrogen oxides using corona discharge, the efficiency of nitrogen oxide removal was increased and the operation power required for nitrogen oxide removal was greatly reduced. .

Claims (1)

코로나방전을 이용하는 저온 플라즈마 공정에서 반응첨가제로서 프로필렌( [C3H6] / [NOX] )을 0.3-2, 오존( [O3] / [C3H6] )을 0.1-0.4범위의 농도로 동시에 주입하여 질소산화물의 산화반응 촉진 및 운전전력을 저감할 수 있도록 함을 특징으로 하는 프로필렌 및 오존을 이용한 저온 플라즈마 공정의 질소산화물 제거방법.Propylene ([C 3 H 6 ] / [NO X ]) as 0.3-2 and Ozone ([O 3 ] / [C 3 H 6 ]) as 0.1 ~ 0.4 in the low temperature plasma process using corona discharge A method of removing nitrogen oxides in a low-temperature plasma process using propylene and ozone, characterized by simultaneously injecting at a concentration to promote oxidation reaction of nitrogen oxides and to reduce operating power.
KR10-1998-0042378A 1998-10-10 1998-10-10 Nitrogen oxide removal in low temperature plasma process using propylene and ozone KR100428841B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0042378A KR100428841B1 (en) 1998-10-10 1998-10-10 Nitrogen oxide removal in low temperature plasma process using propylene and ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0042378A KR100428841B1 (en) 1998-10-10 1998-10-10 Nitrogen oxide removal in low temperature plasma process using propylene and ozone

Publications (2)

Publication Number Publication Date
KR20000025340A KR20000025340A (en) 2000-05-06
KR100428841B1 true KR100428841B1 (en) 2004-08-06

Family

ID=19553587

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0042378A KR100428841B1 (en) 1998-10-10 1998-10-10 Nitrogen oxide removal in low temperature plasma process using propylene and ozone

Country Status (1)

Country Link
KR (1) KR100428841B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230009744A (en) 2021-07-09 2023-01-17 한국핵융합에너지연구원 Plasma water treatment apparatus for removing color with restraining total nitrogen and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467800B1 (en) * 2001-10-09 2005-01-24 재단법인 포항산업과학연구원 Method for Simultaneous Removal of Air Pollutants from Flue Gas by Using Non-thermal Plasma Techniques

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354167A (en) * 1976-10-27 1978-05-17 Hitachi Ltd Cleaning apparatus for exhaust gas of combustion
JPS59222213A (en) * 1983-05-30 1984-12-13 Japan Atom Energy Res Inst Treatment of waste gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354167A (en) * 1976-10-27 1978-05-17 Hitachi Ltd Cleaning apparatus for exhaust gas of combustion
JPS59222213A (en) * 1983-05-30 1984-12-13 Japan Atom Energy Res Inst Treatment of waste gas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"펄스 코로나 방전 공정내에서의 질소산화물과 탄화수소계열 첨가제의 반응메커니즘", 1998, 대한환경공학회 발행, 98년도 춘계학술연구발표회 논문초록집, B-11(pp. 160∼161) *
대한한경공학회 춘계학술연구논문160~161 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230009744A (en) 2021-07-09 2023-01-17 한국핵융합에너지연구원 Plasma water treatment apparatus for removing color with restraining total nitrogen and method thereof

Also Published As

Publication number Publication date
KR20000025340A (en) 2000-05-06

Similar Documents

Publication Publication Date Title
Burlica et al. Pulsed plasma gliding-arc discharges with water spray
US8173075B2 (en) Device for generation of pulsed corona discharge
KR100239598B1 (en) Multi-stage gaseous pollutant destruction apparatus and method
Yan et al. Control of flow stabilized positive corona discharge modes and NO removal characteristics in dry air by C02 injections
Dang et al. Degradation of organic molecules by streamer discharges in water: coupled electrical and chemical measurements
Mok et al. Removal of nitric oxide in a pulsed corona discharge reactor
KR100428841B1 (en) Nitrogen oxide removal in low temperature plasma process using propylene and ozone
Chung et al. Study on reduction of energy consumption in pulsed corona discharge process for NOx removal
KR100365368B1 (en) Method for treating toxic compounds using non-thermal plasma
KR100448632B1 (en) Apparatus and method for simutaneous removal of air pollutants using non-thermal plasma technology
Yan et al. NOx removal from air streams by a superimposed AC/DC energized flow stabilized streamer corona
DE19847096A1 (en) Plasma-chemical reduction of gaseous and solid pollutants in exhaust gases comprises use of dielectrically-limited discharges in a combustion chamber of IC engine
Samaranayake et al. Pulsed power production of ozone in O/sub 2//N/sub 2/in a coaxial reactor without dielectric layer
Yan et al. Evaluation of NOx removal by corona induced non-thermal plasmas
MuhammadArifMalik Pulsed corona discharges and their applications in toxic VOCs abatement
Jaworek et al. Removal of NOx from NO2∶ NO∶ N2 mixture by a pulsed and dc streamer corona in a needle-to-plate reactor
Kadowaki et al. Effect of pre-charging to plasma reactor on repetitive barrier discharges produced by reciprocal traveling wave voltage pulse
Shang et al. Enhancement of NOx abatement by advancing initiation of C3H6 oxidation chemistry with a corona radical shower
Dong et al. The influence of interface phenomenon on removal of NO and SO 2 in corona discharge reactor with water film
Matsumoto et al. Performances of nanosecond pulsed discharge
Tsukamoto et al. NO/sub x/and SO/sub 2/removal by pulsed power at a thermal power plant
CN217479127U (en) Novel dirty waste water ion deodorization device
Saito et al. Effect of coexisting gases on NO removal using corona discharge
KR100328936B1 (en) Method for improvement of no removal efficiency by using hydrocarbon additives in a pulsed corona discharge process
KR101152335B1 (en) Apparatus having nozzle for additive using for treating harmful gas

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130411

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140411

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160408

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170412

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee