KR100426962B1 - A Impregnated Adsorbent to remove Hydrogen Sulfide Gas and a Preparation Method of the Same - Google Patents

A Impregnated Adsorbent to remove Hydrogen Sulfide Gas and a Preparation Method of the Same Download PDF

Info

Publication number
KR100426962B1
KR100426962B1 KR10-2001-0012834A KR20010012834A KR100426962B1 KR 100426962 B1 KR100426962 B1 KR 100426962B1 KR 20010012834 A KR20010012834 A KR 20010012834A KR 100426962 B1 KR100426962 B1 KR 100426962B1
Authority
KR
South Korea
Prior art keywords
activated carbon
impregnated
hydrogen sulfide
adsorbent
concentration
Prior art date
Application number
KR10-2001-0012834A
Other languages
Korean (ko)
Other versions
KR20020072837A (en
Inventor
박영성
이석기
황수덕
차선영
Original Assignee
황수덕
박영성
이석기
차선영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황수덕, 박영성, 이석기, 차선영 filed Critical 황수덕
Priority to KR10-2001-0012834A priority Critical patent/KR100426962B1/en
Publication of KR20020072837A publication Critical patent/KR20020072837A/en
Application granted granted Critical
Publication of KR100426962B1 publication Critical patent/KR100426962B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment

Abstract

본 발명은 0.01∼2.0몰농도의 디에탄올아민 용액에 활성탄을 첨착시켜 제조되는 것을 특징으로 하는 첨착흡착제와 입자 크기가 8×30메쉬이고, 비표면적이 1050m2/g, 평균세공반경이 13∼20Å인 활성탄을 준비하는 단계; 상기 활성탄을 0.01∼2.0몰농도의 디에탄올아민용액에 첨착하는 단계; 혼합된 활성탄-첨착액 슬러리를 교반기에서 3∼5시간동안 교반하는 단계; 교반된 활성탄-첨착액 슬러리를 세척, 여과하는 단계; 및 세척, 여과된 활성탄을 130∼170℃에서 18∼36시간동안 건조하는 단계로 구성되는 황화수소 가스 제거용 첨착흡착제의 제조방법을 제공하기 위한 것으로, 낮은 농도의 디에탄올아민용액으로 첨착한 첨착흡착제에서 황화수소 가스의 높은 흡착능을 얻을 수 있는 점을 고려할때, 저비용으로 황화수소를 비롯한 악취 및 휘발성유기물질 등의 유해가스 제거를 위한 첨착흡착제로 효과가 있다.The present invention is prepared by impregnating activated carbon in a diethanolamine solution having a concentration of 0.01 to 2.0 moles, and a particle size of 8 × 30 mesh, specific surface area of 1050 m 2 / g, average pore radius of 13 to Preparing activated carbon having 20 kPa; Attaching the activated carbon to a diethanolamine solution at a concentration of 0.01 to 2.0 moles; Stirring the mixed activated carbon-adhesive slurry in a stirrer for 3-5 hours; Washing and filtering the stirred activated carbon-adhesive slurry; And to provide a method for producing a hydrogen sulfide gas adsorbent adsorbent consisting of washing and drying the filtered activated carbon for 18 to 36 hours at 130 ~ 170 ℃, impregnated adsorbent impregnated with a low concentration of diethanolamine solution Considering the high adsorption capacity of hydrogen sulfide gas at, it is effective as an impregnated adsorbent for removing harmful gases such as hydrogen sulfide, odor and volatile organic substances at low cost.

Description

황화수소 제거용 디에탄올아민 첨착흡착제 및 이의 제조방법{A Impregnated Adsorbent to remove Hydrogen Sulfide Gas and a Preparation Method of the Same}A Impregnated Adsorbent to remove Hydrogen Sulfide Gas and a Preparation Method of the Same}

본 발명은 황화수소 가스 제거용 디에탄올아민 첨착흡착제 및 이의 제조방법에 관한 것으로, 보다 상세하게는 0.01∼2.0몰의 디에탄올아민 용액에 활성탄을 첨착시켜 제조되는 첨착흡착제를 특징으로 한다.The present invention relates to a diethanolamine impregnated adsorbent for removing hydrogen sulfide gas and a method for preparing the same, and more particularly, to an additive adsorbent prepared by impregnating activated carbon in a 0.01 to 2.0 mole diethanolamine solution.

산업 발달에 따른 각종 유해물질의 처리 능력 한계와 함께 심각한 환경오염의 대두는 어제 오늘의 문제가 아니다. 이중 여러 장소에서 발생하는 황화수소 가스는 위장이나 폐에 흡수되어 질식, 폐질환, 신경중추마비 등을 일으키는 위해성이 큰 기체로 이의 효율적인 처리 방안 모색이 당면한 과제로 부각되고 있다.The rise of serious environmental pollution along with the limitation of the processing capacity of various harmful substances according to industrial development is not the problem of yesterday. Hydrogen sulfide gas generated in various places is a dangerous gas that is absorbed into the stomach or lungs and causes asphyxiation, lung disease, nerve central paralysis, etc., and it is emerging as a challenge to find an effective treatment method.

최근, 황화가스 수소를 좀 더 효율적으로 제거하기 위해 대한민국 특허 등록제216985호에서는 KI첨착활성탄의 제조방법이, 대한민국 특허 공개 제2000-49532호에서는 요오드산칼륨(KI03)을 첨착시킨 활성탄 및 활성섬유탄소의 제조방법이, 그리고 본 발명의 출원인들에 의한 대한민국 특허출원 제2000-43734호에서 수산화나트륨과 디에탄올아민의 혼합용액에 동시 첨착된 활성탄이 수산기와 아민기로부터 유도되는 두 가지 염기성분의 상승작용에 의해 낮은 온도에서도 황화수소 흡착능을 보이는 동시첨착흡착제와 이의 제조방법에 대하여 공지한 바 있다.Recently, in order to remove hydrogen sulfide gas more efficiently, Korean Patent Registration No. 216985 has a method for producing KI-adapted activated carbon, and Korean Patent Publication No. 2000-49532 has activated carbon and activated fiber impregnated with potassium iodide (KI0 3 ). The method for preparing carbon and the two basic components derived from hydroxyl and amine groups of activated carbon simultaneously co-attached to a mixed solution of sodium hydroxide and diethanolamine in Korean Patent Application No. 2000-43734 by the applicants of the present invention It has been known about the coadsorption adsorbent and its manufacturing method which show hydrogen sulfide adsorption capacity even at low temperature by synergy.

그러나, 이들 첨착제는 고농도의 첨착물질을 사용하거나, 두 가지의 혼합용액을 사용하므로 제조 비용이 많이 드는 문제점이 있었다.However, these additives have a problem that the manufacturing cost is high because the use of a high concentration of the additives, or using a mixture of the two.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 구입이 용이하면서 저농도의 디에탄올아민 만을 첨착흡착제로 사용하여 제조경비를 크게 절감하면서 동시에 황화수소 제거능이 우수한 첨착흡착제를 개발하여 본 발명을 완성하게 되었다.The present invention has been made to solve the problems of the prior art as described above, by using only a low concentration of diethanolamine as an adsorbent adsorbent, while greatly reducing the manufacturing cost and at the same time to develop an adsorbent adsorbent excellent in hydrogen sulfide removal ability The invention was completed.

본 발명의 목적은 제조경비가 크게 절감되고 황화수소 제거능이 우수한 디에탄올아민 첨착흡착제를 제공하는 것이다.An object of the present invention is to provide a diethanolamine impregnated adsorbent having a significant reduction in manufacturing cost and excellent hydrogen sulfide removal ability.

본 발명의 또 다른 목적은 상기한 첨착흡착제의 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for producing the impregnated adsorbent.

제도1a은 비첨착활성탄의 내부단면을 나타낸 전자주사현미경 사진.Scheme 1a is an electron scanning micrograph showing the internal cross section of non-impregnated activated carbon.

제도1b는 본 발명의 1.0몰농도의 디에탄올아민용액으로 첨착한 활성탄 내부의 전자주사현미경 사진.Drawing 1b is an electron scanning microscope photograph of the inside of activated carbon impregnated with 1.0 mol of diethanolamine solution of the present invention.

상기한 목적을 달성하기 위하여, 본 발명은 0.01∼2.0몰농도의 디에탄올아민수용액을 첨착흡착제로 사용하는 것을 특징으로 한다. 또한 입자 크기가 8×30메쉬이고, 비표면적이 1050m2/g, 평균세공반경이 13∼20Å인 활성탄을 준비하는 단계; 상기 활성탄을 0.01∼2.0몰농도의 디에탄올아민용액에 첨착하는 단계; 혼합된 활성탄-첨착액 슬러리를 교반기에서 3∼5시간동안 교반하는 단계; 교반된 활성탄-첨착액 슬러리를 세척, 여과하는 단계; 및 세척, 여과된 활성탄을 130∼170℃에서 18∼36시간동안 건조하는 단계로 구성되는 황화수소 가스 제거용 첨착흡착제의 제조방법을 제공하기 위한 것이다In order to achieve the above object, the present invention is characterized by using a diethanolamine aqueous solution of 0.01 to 2.0 molar concentration as an adhesive adsorbent. Preparing an activated carbon having a particle size of 8 × 30 mesh, a specific surface area of 1050 m 2 / g, and an average pore radius of 13 to 20 GPa; Attaching the activated carbon to a diethanolamine solution at a concentration of 0.01 to 2.0 moles; Stirring the mixed activated carbon-adhesive slurry in a stirrer for 3-5 hours; Washing and filtering the stirred activated carbon-adhesive slurry; And washing and filtering the activated carbon at 130 to 170 ° C. for 18 to 36 hours.

이하 실시예 및 비교예에 의하여 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples according to the gist of the present invention.

본 발명에 사용된 활성탄은 입자상 제품으로 입자크기는 8×30 mesh이고, 비표면적은 1050m2/g이고, 충진밀도는 0.43∼0.47g/cc이며, 세공부피는 0.6∼0.8cc/g이고, 평균세공입경은 13∼20Å이다. 상기한 활성탄을 증류수로 수 차례 세척한 후 120℃ 건조기에서 24시간 이상 건조하고 데시게이터에 보관한다.Activated carbon used in the present invention is a particulate product, the particle size is 8 × 30 mesh, the specific surface area is 1050m 2 / g, the filling density is 0.43 ~ 0.47g / cc, the pore volume is 0.6 ~ 0.8cc / g, The average pore size is 13 to 20 mm 3. The activated carbon is washed several times with distilled water and then dried in a 120 ° C. dryer for at least 24 hours and stored in a desiccator.

실시예1:세척 건조된 활성탄에 0.01몰농도의 디에탄올아민 용액 250㎖와 120℃에서 24시간 이상을 건조한 후 데시게이터에 보관중인 활성탄 10g을 교반기로 교반시킨다. 충분히 교반된 활성탄-디에탄올아민용액 혼합 슬러리를 진공펌프로 수 차례 세척, 여과시킨다. 세척, 여과된 활성탄을 120℃에서 하루동안 건조시킨 후,초기 활성탄 무게와의 변화로부터 첨착율을 산출하고 데시게이터 내에 보관한다. 활성탄에 함침된 디에탄올아민의 첨착율(Wt%) 변화는 첨착 시약인 디에탄올아민 용액의 농도조절을 통해 이루어진다.Example 1 and the mixture was stirred to wash the dried over 24 hours in diethanolamine solution 250㎖ and 120 ℃ of 0.01 molar concentration in the dried activated carbon and then being stored in a desiccator with a stirrer 10g of activated carbon. The sufficiently stirred activated carbon-diethanolamine solution mixed slurry was washed several times with a vacuum pump and filtered. The washed and filtered activated carbon is dried at 120 ° C. for one day, after which the deposition rate is calculated from the change from the initial activated carbon weight and stored in the desiccator. The change in the deposition rate (Wt%) of diethanolamine impregnated in activated carbon is achieved by adjusting the concentration of the diethanolamine solution.

실시예2 내지 실시예8: 0.0125몰농도, 0.1몰농도, 0.5몰농도, 0.6몰농도, 0.75몰농도, 1.0몰농도 및 2.0몰농도의 디에탄올아민용액을 사용한 것 이외에는 실시예1과 동일한 방법으로 디에탄올아민첨착용액을 제조하였다.Examples 2-8: The same method as in Example 1, except that a diethanolamine solution of 0.0125 molar concentration, 0.1 molar concentration, 0.5 molar concentration, 0.6 molar concentration, 0.75 molar concentration, 1.0 molar concentration and 2.0 molar concentration was used. The diethanolamine impregnation solution was prepared.

비교예: 디에탄올아민용액으로 첨착하지 않고 상기한 활성탄을 그대로 사용한다.Comparative Example: The above-mentioned activated carbon is used as it is without impregnation with diethanolamine solution.

본 발명에서는 BET표면적 분석, 전자주사현미경분석, 열천칭분석, 원소분석, 중화적정분석 등을 수행하여 첨착된 활성탄의 기공표면의 물리화학적인 특성을 조사하였다.In the present invention, the BET surface area analysis, electron scanning microscope analysis, thermobalance analysis, elemental analysis, neutralization titration analysis, etc. to investigate the physicochemical properties of the pore surface of the impregnated activated carbon.

(1) 비표면적 측정(1) Specific surface area measurement

비첨착활성탄 및 첨착활성탄의 비표면적은 BET(Brunauer, Emmet, Teller) 질소 흡ㆍ탈착력을 이용한 M-P(Multi-Point)법으로 측정하였고, 분석기는 미국 퀀타크로머 사(Quanta Chromer Co)의 Autosorb-1을 사용하였다.The specific surface area of non-impregnated activated carbon and impregnated activated carbon was measured by MP (Multi-Point) method using BET (Brunauer, Emmet, Teller) nitrogen adsorption and desorption power, and the analyzer was measured by Autosorb-Quanta Chromer Co. 1 was used.

(2) 열천칭 분석(2) thermobalance analysis

디에탄올아민용액으로 첨착된 활성탄의 열적 변화 특성을 조사하기 위해 열천칭(Du-pont, 2050)을 사용하여 승온·탈착 실험을 수행하였다. 열천칭분석은 활성탄 시료를 샘플 팬에 올려 놓은 후, 질소가스 분위기 하에서 10oC/min으로 가열하고, 100℃에서 1시간을 유지한 후, 다시 1000℃까지 10oC/min 속도로 승온시키면서 탄소표면에 존재하는 산소그룹이 분해되어 일산화탄소와 이산화탄소로 분출될 때 수반되는 질량감소특성을 조사하였다.Temperature and desorption experiments were performed using thermobalance (Du-pont, 2050) to investigate the thermal change characteristics of activated carbon impregnated with diethanolamine solution. Thermal balance analysis, after placing the activated carbon sample in the sample pan, heated to 10 o C / min under nitrogen gas atmosphere, and maintained at 100 ℃ for 1 hour, and then heated up to 1000 ℃ at a rate of 10 o C / min The mass loss characteristics associated with the decomposition of oxygen groups present on the surface of carbon and ejected into carbon monoxide and carbon dioxide were investigated.

(3) 원소분석(3) Elemental Analysis

디에탄올아민용액으로 첨착된 활성탄 시료의 원소 변화 특성을 파악하기 위해 유기 원소 분석기(C, H, N -1000 Elemental analyzer.(LECO. Co. USA))를 사용하여 원소분석을 하였다.Elemental analysis was performed using an organic element analyzer (C, H, N-1000 Elemental analyzer. (LECO. Co. USA)) to determine the elemental change characteristics of the activated carbon sample impregnated with diethanolamine solution.

(4) pH 분석(4) pH analysis

디에탄올아민용액으로 첨착된 활성탄 시료 0.5g을 증류수 20ml가 담긴 50ml 파이렉스용기에 첨가시킨 후 12시간 동안 기계적 진탕을 실시했다. 이 용액을 정지시킨 후 4.5㎛의 나일론 멤브레인 필터로 여과하여 pH측정기(HM-30V)로 상등액의 pH를 측정하였다.0.5 g of activated carbon sample impregnated with diethanolamine solution was added to a 50 ml Pyrex container containing 20 ml of distilled water, and mechanical shaking was performed for 12 hours. The solution was stopped and filtered with a 4.5 탆 nylon membrane filter to measure the pH of the supernatant with a pH meter (HM-30V).

(5) 중화적정분석(Boehm method)(5) Boehm method

디에탄올아민용액으로 첨착된 활성탄 시료 1g을 강도가 다른 각각의 탄산수소타트륨(NaHCO3), 탄산나트륨(Na2CO3), 수산화나트륨(NaOH) 0.1몰농도의 염기용액 100ml와 혼합하여 48시간동안 기계적 진탕 후, 활성탄을 침강시켜 맑은 용액을 얻었다. 이때 얻어진 상등액 10ml를 pH 측정장치가 부착된 적정장치(Metrohm titroprocessor Model 682)을 사용하여 탄소표면에 존재하는 산성관능기의 양을 측정하였다.1 g of activated carbon sample impregnated with diethanolamine solution was mixed with 100 ml of a 0.1 molar concentration of base solution of 0.1 t of sodium hydrogen carbonate (NaHCO 3 ), sodium carbonate (Na 2 CO 3 ), and sodium hydroxide (NaOH) having different strengths for 48 hours. After mechanical shaking for a while, the activated carbon was allowed to settle to obtain a clear solution. The amount of the acidic functional group present on the surface of the carbon was measured using a titrator (Metrohm titroprocessor Model 682) equipped with a pH measuring device 10ml of the supernatant.

첨착활성탄의 첨착량 변화: 디에탄올아민용액 농도를 0.1∼1몰농도 범위에서 변화시켰을 때, 용액의 농도가 높아질수록 첨착량은 증가하는 것으로 나타났으며, 그 결과를 표1에 나타내었다.Adsorption amount of impregnated activated carbon: When the concentration of diethanolamine solution was changed in the range of 0.1 to 1 molar concentration, the amount of impregnation increased as the concentration of the solution increased, and the results are shown in Table 1.

첨착활성탄의 비표면적 및 SEM특성: 비첨착활성탄, 0.1몰농도 및 1.0몰농도 디에탄올아민용액으로 표면처리된 활성탄의 비표면적은 각각1050m2/g, 713m2/g, 671m2/g으로 측정되었고, 비표면적은 혼합용액의 농도에 대체적으로 반비례하는 것으로 나타났으며, 그 결과를 표2와 도1a와 도1b에 나타내었다. 도1a는 비첨착활성탄의 내부단면을 나타낸 것으로 미세 기공이 분포하는 것을 보이고, 도1b는 1.0몰농도의 디에탄올아민용액으로 첨착한 활성탄 내부의 미세 기공은 첨착 과정을 통해 많은 부분이 막혀 있음을 보여 주고 있다.The specific surface area and SEM characteristics of the impregnated activated carbon: bicheom complex of activated carbon, 0.1 mol concentration and a specific surface area of 1.0 molar diethanol surface-treated activated carbon to the amine solution were 1050m 2 / g, 713m 2 / g, 671m measured by the 2 / g The specific surface area was generally inversely proportional to the concentration of the mixed solution, and the results are shown in Table 2 and FIGS. 1A and 1B. Figure 1a shows the internal cross-section of the non-impregnated activated carbon shows that the fine pores are distributed, Figure 1b shows that a large portion of the fine pores inside the activated carbon impregnated with a 1.0 molar concentration of diethanolamine solution is blocked through the deposition process. Is showing.

첨착활성탄의 열천칭분석: 첨착활성탄의 승온·탈착 실험결과를 표3에 나타내었다. 디에탄올아민용액의 농도가 증가할수록 첨착활성탄의 질량감소율이 증가하였다. 이러한 승온·탈착에 의해 일어나는 질량감소는 산소와 탄소가 결합해서 여러 가지 조성의 화합물인 CXOY를 생성하게 되고, 이 화합물이 가열에 의해 CO와 CO2의 혼합물로 급격하게 분해되는 것이다.Thermal balance analysis of impregnated activated carbon: Table 3 shows the results of elevated temperature and desorption of impregnated activated carbon. As the concentration of diethanolamine solution increased, the mass reduction rate of the impregnated activated carbon increased. The mass loss caused by the temperature rise and desorption is combined with oxygen and carbon to form C X O Y , a compound of various compositions, which is rapidly decomposed into a mixture of CO and CO 2 by heating.

원소분석: 비첨착활성탄과 0.0125몰농도 디에탄올아민 용액으로 첨착된 활성탄의 원소 분석(Elemental Analysis) 결과를 표4에 나타내었다. 비첨착활성탄과 첨착활성탄의 원소분석을 비교하면 산소원자의 함량이 22.45%에서 26.05%로 증가하였고, 수소원자의 함량도 2.5%에서 2.56%로 증가하였다.Elemental Analysis: Table 4 shows the results of elemental analysis of activated carbon impregnated with non-impregnated activated carbon and 0.0125 molar diethanolamine solution. In comparison of the elemental analysis of the impregnated activated carbon and the impregnated activated carbon, the oxygen atom content increased from 22.45% to 26.05% and the hydrogen atom content increased from 2.5% to 2.56%.

중화적정분석: 첨착활성탄의 산도를 조사하기 위해 Boehm이 제안한 방법에 따라 중화적정한 결과를 표5에 나타내었다. 첨착율이 9.78∼18.62wt%로 증가하였을 때, 탄산수소나트륨에 의해 적정된 강산성의 카르복실기 그룹은0∼0.0505meq/g-AC, 탄산나트륨에 의해 적정된 카르복실기와 약산성의 카르복실기인 락톤기는 0∼0.1086meq/g-AC, 수산화나트륨에 의해 적정된 카르복실기, 락톤기 및 페놀기는 0.0252∼0.1824meq/g-AC 범위에서 용액의 농도에 반비례하여 산도(acidity)가 변하는 것을 보여주고 있다. 이것은 디에탄올아민용액의 농도가 증가함에 따라서 산성 관능기에 속하는 카르복실기, 락톤기, 페놀기의 양이 감소하기 때문이다.Neutralization titration analysis: Table 5 shows the results of neutralization titration according to the method proposed by Boehm to investigate the acidity of impregnated activated carbon. When the deposition rate increased from 9.78 to 18.62 wt%, the strongly acidic carboxyl group titrated by sodium hydrogen carbonate was 0 to 0.0505 meq / g-AC, the carboxyl group titrated by sodium carbonate and the lactone group to be weakly acidic carboxyl group were 0 to 0.1086. The carboxyl, lactone and phenol groups titrated by meq / g-AC, sodium hydroxide have been shown to change in acidity in inverse proportion to the concentration of the solution in the range of 0.0252 to 0.1824 meq / g-AC. This is because the amount of carboxyl, lactone and phenol groups belonging to the acidic functional groups decreases as the concentration of diethanolamine solution increases.

첨착활성탄의 pH와 적정곡선 검토: 첨착활성탄에 대한 pH변화를 표6에 나타내었다. 디에탄올아민용액의 농도를 0.0몰농도에서 1.0몰농도로 변화시킬 때, pH는 거의 일정하게 유지되는 것을 보여주고 있다. 이는 첨착시약으로 주입된 디에탄올아민이 공유결합을 이루는 물질이므로 첨착과정에서 이온으로 해리되지 않고 디에탄올아민 분자형태로 활성탄의 기공내에 부착되기 때문에 디에탄올아민용액의 농도를 높여도 첨착활성탄의 pH변화가 일어나지 않는 것이다.Examination of pH and titration curve of impregnated activated carbon: Table 6 shows the pH change of impregnated activated carbon. When the concentration of diethanolamine solution was changed from 0.0 molar concentration to 1.0 molar concentration, the pH was shown to be maintained almost constant. This is because the diethanolamine injected into the impregnated reagent forms a covalent bond, so it does not dissociate into ions in the process of deposition, but attaches to the pores of activated carbon in the form of diethanolamine molecules, so even if the concentration of diethanolamine solution is increased, There is no change in pH.

첨착활성탄의 평형흡착량에 대한 온도영향: 온도변화에 따른 비첨착 활성탄의 황화수소가스의 평형흡착량 변화를 표7에 보여주고 있다. 황화수소가스의 주입농도가 4.96mg/ℓ일 때 흡착온도를 25℃에서 45℃로 증가시킬 경우, 황화수소가스의 흡착량은 13.24mg/gAC에서 2.01mg/gAC로 약 85% 감소한 것으로 나타났다. 이처럼 황화수소가스의 평형 흡착량이 흡착온도에 반비례하는 것은 비첨착 활성탄의 경우 온도가 증가할수록 흡착질가스의 휘발성이 증대되면서 물리적인 결합(physical bonding)을 방해하기 때문이다.Temperature Effect on Equilibrium Adsorption of Impregnated Activated Carbon: Table 7 shows the change in equilibrium adsorption amount of hydrogen sulfide gas of non-impregnated activated carbon with temperature change. When the adsorption temperature of hydrogen sulfide gas was increased from 4.96 mg / L to 25 ° C. to 45 ° C., the adsorption amount of hydrogen sulfide gas was reduced by about 85% from 13.24 mg / gAC to 2.01 mg / gAC. As such, the equilibrium adsorption amount of hydrogen sulfide gas is inversely proportional to the adsorption temperature because, in the case of non-adsorption activated carbon, as the temperature increases, the volatilization of the adsorbate gas increases, which hinders physical bonding.

또한, 디에탄올아민용액에 첨착된 활성탄의 흡착온도에 따른 평형흡착량의 변화를 표8에 나타내었다. 흡착온도를 25℃에서 45℃로 증가시킬 경우, 평형흡착량은 오히려 크게 증가하는 것으로 나타나 비첨착 활성탄과 상반된 결과를 보여주고 있다. 특히, 흡착온도 45℃조건의 경우, 비첨착조건에 비해 2∼3배 높은 23∼34.4mgH2S /g-AC 범위의 평형흡착능을 보였다. 이는 첨착활성탄의 경우 흡착제 내부기공표면에 부착된 강염기성의 아민기와 산성을 띄는 황화수소의 화학흡착에 의해 온도가 증가할수록 평형흡착량이 증가하기 때문이고, 고온조건일수록 첨착활성탄이 황화수소가스 흡착처리에 효율적으로 적용될 수 있다.In addition, the change in the equilibrium adsorption amount according to the adsorption temperature of the activated carbon impregnated in the diethanolamine solution is shown in Table 8. When the adsorption temperature is increased from 25 ° C to 45 ° C, the equilibrium adsorption amount is rather increased, showing a result opposite to that of non-bonded activated carbon. In particular, in the case of the adsorption temperature of 45 ℃ condition, the equilibrium adsorption capacity of 23 ~ 34.4mgH 2 S / g-AC range was 2-3 times higher than the non-adhesion condition. This is because in the case of impregnated activated carbon, the equilibrium adsorption amount increases as the temperature increases due to the chemical adsorption of strongly basic amine groups and acidic hydrogen sulfide attached to the inner pore surface of the adsorbent. Can be applied.

첨착활성탄의 농도에 따른 평형 흡착량 변화: 디에탄올아민용액의 농도변화에 따른 비첨착활성탄의 황화수소가스 평형 흡착량을 표9에 나타내었다. 황화수소가스의 평형흡착량은 온도를 25℃에서 45℃ 범위에서 적용하고, 황화수소가스 농도를 4.96mg/L에서 18.23mg/L로 증가시켰을 때, 3.75mg/g-AC에서 31.56mg/g-AC범위에서 흡착가스의 농도에 비례하여 평형흡착량이 증가하였다.Equilibrium Adsorption with Different Concentrations of Impregnated Activated Carbon: Table 9 shows the equilibrium adsorption of hydrogen sulfide gas of non-impregnated activated carbon with the concentration of diethanolamine solution. The equilibrium adsorption amount of hydrogen sulfide gas is 31.56 mg / g-AC at 3.75 mg / g-AC when the temperature is applied in the range of 25 ° C. to 45 ° C. and the hydrogen sulfide gas concentration is increased from 4.96 mg / L to 18.23 mg / L. Equilibrium adsorption increased in proportion to concentration of adsorbed gas.

또한, 황화수소가스 주입농도변화에 따른 디에탄올아민용액으로 첨착된 활성탄의 평형흡착량을 표10에 나타내었다. 역시, 25℃에서 45℃의 온도범위에서 황화수소가스의 농도를 4.96mg/L에서 18.23mg/L로 증가시켰을 때, 황화수소가스의 평형흡착량은 5.6mg /g-AC에서 34.4mg /g-AC범위에서 농도에 비례하여 증가하였으며, 전체적으로 비첨착활성탄보다 다소 높은 흡착능을 보였다.In addition, the equilibrium adsorption amount of activated carbon impregnated with diethanolamine solution according to the hydrogen sulfide gas injection concentration is shown in Table 10. Also, when the hydrogen sulfide gas concentration was increased from 4.96 mg / L to 18.23 mg / L in the temperature range of 25 ° C. to 45 ° C., the equilibrium adsorption amount of hydrogen sulfide gas was 34.4 mg / g-AC at 5.6 mg / g-AC. It increased in proportion to the concentration in the range, showed a slightly higher adsorption capacity than the non-impregnated activated carbon as a whole.

상기 성능평가에 있어서, 저농도의 디에탄올아민수용액을 첨착액으로 사용한 첨착흡착제는 황화수소 가스의 흡착력이 매우 뛰어난 것으로 판명되었다.In the above performance evaluation, the impregnated adsorbent using the low concentration of diethanolamine aqueous solution as the impregnated solution was found to have excellent adsorption power of hydrogen sulfide gas.

이상에서 살펴본 바와 같이 본 발명에 의하면, 낮은 농도의 디에탄올아민용액으로 첨착한 첨착흡착제에서 황화수소 가스의 높은 흡착능을 얻을 수 있는 점을 고려할때, 저비용으로 황화수소를 비롯한 악취 및 휘발성유기물질 등의 유해가스 제거를 위한 첨착흡착제로 사용할 수 있는 효과가 있다.As described above, according to the present invention, considering the fact that a high adsorption capacity of hydrogen sulfide gas can be obtained in an impregnated adsorbent impregnated with a low concentration of diethanolamine solution, harmful substances such as hydrogen sulfide, odors, and volatile organic substances at low cost can be obtained. There is an effect that can be used as an adhesive adsorbent for gas removal.

Claims (3)

삭제delete 0.01∼2.0몰농도의 디에탄올아민수용액을 첨착흡착제로 사용하는 황화수소 가스제거용 첨착흡착제에 있어서, 입자 크기가 8×30메쉬이고, 비표면적이 1050m2/g, 평균세공반경이 13∼20Å인 활성탄이 첨착되는것을 특징으로 하는 황화수소 가스 제거용 첨착흡착제.Hydrogen sulfide gas adsorbent using 0.01 to 2.0 molar concentration of diethanolamine solution as an adsorbent, wherein the particle size is 8 × 30 mesh, the specific surface area is 1050 m 2 / g, and the average pore radius is 13 to 20 GPa. Impregnated adsorbent for removing hydrogen sulfide gas, characterized in that the activated carbon is impregnated. 입자 크기가 8×30메쉬이고, 비표면적이 1050m2/g, 평균세공반경이 13∼20Å인 활성탄을 준비하는 단계; 상기 활성탄을 0.01∼2.0몰농도의 디에탄올아민용액에 첨착하는 단계; 혼합된 활성탄-첨착액 슬러리를 교반기에서 3∼5시간동안 교반하는 단계; 교반된 활성탄-첨착액 슬러리를 세척, 여과하는 단계; 및 세척, 여과된 활성탄을 130∼170℃에서 18∼36시간동안 건조하는 단계로 구성되는 황화수소 가스 제거용 첨착흡착제의 제조 방법.Preparing activated carbon having a particle size of 8 x 30 mesh, a specific surface area of 1050 m 2 / g, and an average pore radius of 13 to 20 microns; Attaching the activated carbon to a diethanolamine solution at a concentration of 0.01 to 2.0 moles; Stirring the mixed activated carbon-adhesive slurry in a stirrer for 3-5 hours; Washing and filtering the stirred activated carbon-adhesive slurry; And washing and drying the filtered activated carbon at 130 to 170 ° C. for 18 to 36 hours.
KR10-2001-0012834A 2001-03-13 2001-03-13 A Impregnated Adsorbent to remove Hydrogen Sulfide Gas and a Preparation Method of the Same KR100426962B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0012834A KR100426962B1 (en) 2001-03-13 2001-03-13 A Impregnated Adsorbent to remove Hydrogen Sulfide Gas and a Preparation Method of the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0012834A KR100426962B1 (en) 2001-03-13 2001-03-13 A Impregnated Adsorbent to remove Hydrogen Sulfide Gas and a Preparation Method of the Same

Publications (2)

Publication Number Publication Date
KR20020072837A KR20020072837A (en) 2002-09-19
KR100426962B1 true KR100426962B1 (en) 2004-04-13

Family

ID=27697209

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0012834A KR100426962B1 (en) 2001-03-13 2001-03-13 A Impregnated Adsorbent to remove Hydrogen Sulfide Gas and a Preparation Method of the Same

Country Status (1)

Country Link
KR (1) KR100426962B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324098B1 (en) * 2011-08-19 2013-10-31 오원춘 Production equipment for impregnated activated carbon and production method using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113837A (en) * 1977-09-26 1978-09-12 Union Carbide Corporation Process for separating polymeric contaminants from aqueous absorbent solutions used to treat organic gas-containing gas streams
US4137294A (en) * 1968-12-17 1979-01-30 Metallgesellschaft Aktiengesellschaft Process of scrubbing fuel synthesis gases to remove acid gases and organic sulfur compounds
US4152217A (en) * 1978-06-30 1979-05-01 Exxon Research & Engineering Co. Amine regeneration process
KR980000568A (en) * 1998-01-21 1998-03-30 정영무 Impregnated activated carbon for removing sulfide gas and its manufacturing method
US6099815A (en) * 1999-03-23 2000-08-08 The Sulfatreat Company Method for removing carbonyl sulfide from fluids using carbon monoxide
KR20020010006A (en) * 2000-07-28 2002-02-02 박영성 A Simultaneous Impregnated Adsorbent for Elimination of Hydrogen Sulfide Gas and a Preparation Method Using the Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137294A (en) * 1968-12-17 1979-01-30 Metallgesellschaft Aktiengesellschaft Process of scrubbing fuel synthesis gases to remove acid gases and organic sulfur compounds
US4113837A (en) * 1977-09-26 1978-09-12 Union Carbide Corporation Process for separating polymeric contaminants from aqueous absorbent solutions used to treat organic gas-containing gas streams
US4152217A (en) * 1978-06-30 1979-05-01 Exxon Research & Engineering Co. Amine regeneration process
KR980000568A (en) * 1998-01-21 1998-03-30 정영무 Impregnated activated carbon for removing sulfide gas and its manufacturing method
US6099815A (en) * 1999-03-23 2000-08-08 The Sulfatreat Company Method for removing carbonyl sulfide from fluids using carbon monoxide
KR20020010006A (en) * 2000-07-28 2002-02-02 박영성 A Simultaneous Impregnated Adsorbent for Elimination of Hydrogen Sulfide Gas and a Preparation Method Using the Same

Also Published As

Publication number Publication date
KR20020072837A (en) 2002-09-19

Similar Documents

Publication Publication Date Title
US9757709B1 (en) Method for forming an acid-treated fly ash activated carbon
CN106076283B (en) A kind of nano-cellulose/poly-dopamine hydrogel adsorbent and the preparation method and application thereof
Seredych et al. Reactive adsorption of hydrogen sulfide on graphite oxide/Zr (OH) 4 composites
Asada et al. Ammonia adsorption on bamboo charcoal with acid treatment
Liu et al. Sorption removal of cephalexin by HNO 3 and H 2 O 2 oxidized activated carbons
Aslam et al. Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream
El-Sayed et al. A study of acetaldehyde adsorption on activated carbons
JP2006312164A (en) Gas adsorbent and its production method and filter for gas adsorption
Olivito et al. Cellulose citrate: A convenient and reusable bio-adsorbent for effective removal of methylene blue dye from artificially contaminated water
CA1265412A (en) Insoluble compositions for removing mercury from a liquid medium
US20190083953A1 (en) Manganese Oxide Nanoarchitectures for Broad-Spectrum Removal of Toxic Gases in Air-Filtration Applications
KR100426962B1 (en) A Impregnated Adsorbent to remove Hydrogen Sulfide Gas and a Preparation Method of the Same
Hofman et al. NO2 removal by adsorbents prepared from waste paper sludge
JP5420434B2 (en) Composite gas adsorbent, composite gas adsorbent composition, and adsorption filter using the same
EP1908516A1 (en) Adsorbent and process for producing the same
US8658555B1 (en) Compositions comprising zirconium hydroxide and graphite oxide and methods for use
JP5611657B2 (en) Hydrogen sulfide gas removing agent, method for detecting hydrogen sulfide gas using the same, and hydrogen sulfide gas removing apparatus
JP2838601B2 (en) Odor gas adsorbent
Jeyaseelan et al. Microfabrication of covalent organic framework-based magnetic bio-ceramic beads for defluoridation of water
JP5013503B2 (en) Method for producing hydrophobic activated carbon
KR100374691B1 (en) A Simultaneous Impregnated Adsorbent for Elimination of Hydrogen Sulfide Gas and a Preparation Method Using the Same
JP2016193414A (en) Chemical filter
US20200188874A1 (en) A sorbent and a filter
JPH11285633A (en) Adsorption remover for lower aliphatic aldehydes
JP7414636B2 (en) Gas adsorbent, method for producing the gas adsorbent, and gas adsorption method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070222

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee