KR100426824B1 - Preparation of mono-dispersed fine cobalt powder - Google Patents

Preparation of mono-dispersed fine cobalt powder Download PDF

Info

Publication number
KR100426824B1
KR100426824B1 KR10-2001-0053792A KR20010053792A KR100426824B1 KR 100426824 B1 KR100426824 B1 KR 100426824B1 KR 20010053792 A KR20010053792 A KR 20010053792A KR 100426824 B1 KR100426824 B1 KR 100426824B1
Authority
KR
South Korea
Prior art keywords
cobalt powder
cobalt
powder
completely dissolved
hours
Prior art date
Application number
KR10-2001-0053792A
Other languages
Korean (ko)
Other versions
KR20030020118A (en
Inventor
김동진
정헌생
길대섭
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR10-2001-0053792A priority Critical patent/KR100426824B1/en
Publication of KR20030020118A publication Critical patent/KR20030020118A/en
Application granted granted Critical
Publication of KR100426824B1 publication Critical patent/KR100426824B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt

Abstract

본 발명은 단분산 미립 코발트 분말 제조방법에 관한 것으로, 그 목적은 폴리올법에 의해 코발트 분말을 제조하여, 분말의 형태와 입도를 제어하고, 응집현상을 제거하여, 고순도의 단분산 코발트 분말을 합성할 수 있는 단분산 미립 코발트 분말 제조방법을 제공하는 것이다.The present invention relates to a method for producing monodispersed cobalt powder, the purpose of which is to prepare a cobalt powder by the polyol method, to control the form and particle size of the powder, to remove the coagulation phenomenon, to synthesize a high purity monodisperse cobalt powder It is to provide a monodisperse fine cobalt powder production method that can be.

본 발명은 상기 수산화 코발트를 폴리올에 넣어 완전용해시키는 단계; 상기 수산화 코발트가 완전용해된 용액에 첨가제를 완전용해시키는 단계; 상기 수산화 코발트 및 첨가제가 완전용해된 용액을 반응기에 넣고 가열멘틀로 210℃까지 가열하는 단계; 상기 210℃를 유지하며 1~2 시간동안 환원반응시키는 단계; 상기 환원반응 완료후 이를 상온에서 냉각시키는 단계; 상기 냉각시킨 후 에탄올 또는 아세톤에 의해 세척과 여과를 실시하는 단계; 상기 세척과 여과 실시 후 전기오븐에서 50℃로 24 시간 건조하는 단계를 통해 마이크론 및 서브 마이크론 크기의 균질한 형태와 고순도를 지닌 단분산 미립 코발트 분말 제조방법을 제공함에 있다.The present invention comprises the steps of completely dissolving the cobalt hydroxide in a polyol; Completely dissolving an additive in the solution in which the cobalt hydroxide is completely dissolved; Putting the solution in which the cobalt hydroxide and the additive were completely dissolved into a reactor and heating it to 210 ° C. with a heating mantle; Reducing the reaction for 1 to 2 hours while maintaining the 210 ℃; Cooling it at room temperature after the reduction reaction is completed; Washing and filtering with ethanol or acetone after the cooling; After the washing and filtration is carried out to dry at 50 ℃ 24 hours in an electric oven to provide a method for producing mono-dispersed fine cobalt powder having a homogeneous form and high purity of micron and sub-micron size.

Description

단분산 미립 코발트 분말 제조방법{Preparation of mono-dispersed fine cobalt powder}Preparation of mono-dispersed fine cobalt powder

본 발명은 단분산 미립 코발트 분말 제조방법에 관한 것으로, 폴리올을 용매 및 환원제로 사용하고 첨가제에 의해 코발트 분말의 입도와 형태를 제어하여, 고순도와 단분산성을 지닌 코발트 분말을 합성할 수 있는 단분산 미립 코발트 분말 제조방법에 관한 것이다.The present invention relates to a method for producing monodisperse fine cobalt powder, wherein the polyol is used as a solvent and a reducing agent, and the cobalt powder having high purity and monodispersity can be synthesized by controlling the particle size and shape of the cobalt powder with an additive. A method for producing fine cobalt powder.

일반적으로 좁은 입도분포와 고순도를 유지하고 있는 미립(2㎛ 이하)의 금속분말은 표면적과 반응성이 급격히 증가하기 때문에 첨단산업 분야에서 전자재료용도전성 잉크, 페이스트 그리고 접착제로, 그리고 초경공구재료, 자성재료, 자성유체, 촉매 및 연료전지 등의 모원료로 널리 사용되고 있다.In general, fine metal powder (2 ㎛ or less), which has a narrow particle size distribution and high purity, has a sharp increase in surface area and reactivity, so it is used as a conductive ink, paste, and adhesive for electronic materials, and carbide tools, magnetic materials It is widely used as a parent material for materials, magnetic fluids, catalysts and fuel cells.

미립금속분말의 제조법에는 금속의 기계적 분사법, 고체금속의 기계적 분쇄법, 화합물의 환원법, 화합물의 열분해법, 화합물의 전해법, 증발 및 응고법 등으로 세분할 수 있으나 대상 분말의 순도, 밀도, 평균입도, 입도분포, 비표면적 및 기타 필요한 특성을 고려하여 적합한 제조방법을 선택하고 있으며, 코발트 분말의 경우 수소가스를 환원제로 사용하여 합성하고 있다.The preparation method of fine metal powder can be subdivided into mechanical spraying method of metal, mechanical grinding method of solid metal, reduction method of compound, thermal decomposition method of compound, electrolysis method of compound, evaporation and coagulation method, etc. In consideration of particle size, particle size distribution, specific surface area and other necessary properties, a suitable manufacturing method is selected. In the case of cobalt powder, hydrogen gas is synthesized using a reducing agent.

상기 가압수소 환원법에 의하여 코발트 분말을 합성할 경우, 반응시간은 짧은 장점이 있으나, 제조된 코발트 분말이 응집형상을 보이며, 형상제어가 매우 어렵고 회수율이 낮은 단점이 있다. 또한 보관시 산화반응이 일어나기 쉬워 불순물 함량이 높게 되는 등 여러 가지 문제점이 있었다.When synthesizing the cobalt powder by the pressurized hydrogen reduction method, the reaction time has a short advantage, but the cobalt powder produced shows a cohesive shape, very difficult to control the shape and has a low recovery rate. In addition, there are various problems, such as an easy oxidation reaction occurs when the impurity content is high.

본 발명은 상기와 같은 문제점을 고려하여 이루어진 것으로, 그 목적은 폴리올법에 의해 코발트 분말을 제조하여, 분말의 형태와 입도를 제어하고, 응집현상을 제거하여, 고순도의 단분산 코발트 분말을 합성할 수 있는 단분산 미립 코발트 분말 제조방법을 제공하는 것이다.The present invention has been made in view of the above problems, and an object thereof is to prepare a cobalt powder by a polyol method, to control the form and particle size of the powder, to remove the coagulation phenomenon, and to synthesize high purity monodisperse cobalt powder. It is to provide a monodisperse fine cobalt powder production method that can be.

본 발명은 상기 수산화 코발트를 폴리올에 넣어 완전용해시키는 단계; 상기 수산화 코발트가 완전용해된 용액에 첨가제를 완전용해시키는 단계; 상기 수산화 코발트 및 첨가제가 완전용해된 용액을 반응기에 넣고 가열멘틀로 210℃까지 가열하는 단계; 상기 210℃를 유지하며 1~2 시간동안 환원반응시키는 단계; 상기 환원반응 완료후 이를 상온에서 냉각시키는 단계; 상기 냉각시킨 후 에탄올 또는 아세톤에 의해 세척과 여과를 실시하는 단계; 상기 세척과 여과 실시 후 전기오븐에서 50℃로 24 시간 건조하는 단계를 통해 마이크론 및 서브 마이크론 크기의 균질한 형태와 고순도를 지닌 단분산 미립 코발트 분말 제조방법을 제공함에 있다.The present invention comprises the steps of completely dissolving the cobalt hydroxide in a polyol; Completely dissolving an additive in the solution in which the cobalt hydroxide is completely dissolved; Putting the solution in which the cobalt hydroxide and the additive were completely dissolved into a reactor and heating it to 210 ° C. with a heating mantle; Reducing the reaction for 1 to 2 hours while maintaining the 210 ℃; Cooling it at room temperature after the reduction reaction is completed; Washing and filtering with ethanol or acetone after the cooling; After the washing and filtration is carried out to dry at 50 ℃ 24 hours in an electric oven to provide a method for producing mono-dispersed fine cobalt powder having a homogeneous form and high purity of micron and sub-micron size.

도 1 은 본 발명의 실시 예 1을 나타낸 X-선 회절 분석도1 is an X-ray diffraction analysis showing Example 1 of the present invention

도 2 는 본 발명의 실시 예 1을 주사전자현미경으로 본 확대사진Figure 2 is an enlarged photograph of Example 1 of the present invention seen with a scanning electron microscope

도 3 은 본 발명의 실시 예 2를 주사전자현미경으로 본 확대사진Figure 3 is an enlarged photograph of Example 2 of the present invention with a scanning electron microscope

도 4 는 본 발명의 실시 예 3을 주사전자현미경으로 본 확대사진Figure 4 is an enlarged photograph of Example 3 of the present invention seen with a scanning electron microscope

폴리올법은 Pt, Pd, Ag, Cu 등 환원이 용이한 금속분말과 Co, Ni, Cd, Pb 등과 같이 비교적 환원이 어려운 금속까지도 초미립의 단분산 입자로 합성할 수 있기 때문에 1990년대 이후 활발히 연구 개발되고 있는 방법으로, 본 발명은 마이크론 및 서브 마이크론 크기의 균질한 형태와 고순도를 지닌 코발트 분말을 제조하기 위하여 전구체로 사용된 Co(OH)2 를 용매 polyol(Ethylene glycol + Diethylene glycol)에 완전 용해시킨 후 첨가제(PVP, AgNO3, PdCl2)를 첨가한 후 4구 플라스크에 넣는다. 준비된 혼합용액을 가열멘틀(heating mantle)을 사용하여 반응온도까지 가열한 후 환원반응이 완료될 때까지 반응시간을 유지시킨 후, 환원반응이 종료되면 에탄올 및 아세톤을 사용하여 세척과 여과를 실시한 후 50℃로 24시간 건조하여 코발트 분말을 제조하도록 되어 있다.The polyol method has been actively studied since the 1990s because it is possible to synthesize metal powders, such as Pt, Pd, Ag, Cu, which are easy to reduce, and even metals which are relatively difficult to reduce, such as Co, Ni, Cd, and Pb, into ultrafine monodisperse particles. As a method being developed, the present invention is a complete dissolution of Co (OH) 2 used as a precursor to prepare cobalt powder having a homogeneous form and high purity of micron and submicron size in a solvent polyol (Ethylene glycol + Diethylene glycol). After the addition of additives (PVP, AgNO3, PdCl2) to the four-necked flask. After heating the prepared mixed solution to the reaction temperature using a heating mantle (heating mantle) and maintaining the reaction time until the completion of the reduction reaction, washing and filtration using ethanol and acetone after the reduction reaction is complete It is made to dry at 50 degreeC for 24 hours, and to manufacture cobalt powder.

이하 본 발명을 실시예에 의거 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

실시 예 1Example 1

코발트분말 제조의 전구체로 사용된 Co(OH)2 9.4774g을 에틸렌 글리콜(Ethylene glycol) 60ml 와 디에틸렌 글리콜(Diethylene glycol) 240ml의 혼합용액에 완전 용해시킨다. Co(OH)2를 용해시킨 용액에 4.387g의 PVP를 용해시킨다. PVP가 완전 용해되면 반응기에(4구 플라스크) 넣은 다음 가열멘틀로써 210℃까지 가열시킨다. 용액의 온도가 210℃에 도달하면 반응온도를 유지시키면서 2시간 동안 환원반응시킨다. 2시간이 경과하면 가열멘틀을 끄고 상온에서 냉각시킨 후 에탄올 또는 아세톤을 사용하여 세척과 여과를 실시한다. 이때, 상기 냉각은 40~50℃ 이하의 온도범위를 유지할 때까지 냉각시킨다. 그 후 분말은 전기 오븐에서 50℃로 24시간 건조하고, 건조된 분말은 X-선 회절 분석기를 이용하여 코발트의 생성 여부를 확인하였으며, 주사전자 현미경을 사용하여 코발트 분말의 입도와 형상을 관찰하였다.9.4774 g of Co (OH) 2 used as a precursor for cobalt powder was completely dissolved in a mixed solution of 60 ml of ethylene glycol and 240 ml of diethylene glycol. Dissolve 4.387 g of PVP in a solution of Co (OH) 2. Once the PVP is completely dissolved, it is placed in a reactor (four-necked flask) and then heated to 210 ° C. with a heating mantle. When the temperature of the solution reaches 210 ℃ is reduced for 2 hours while maintaining the reaction temperature. After 2 hours, the heating mantle is turned off, cooled to room temperature, washed and filtered using ethanol or acetone. At this time, the cooling is cooled until it maintains a temperature range of 40 ~ 50 ℃ or less. After that, the powder was dried in an electric oven at 50 ° C. for 24 hours, and the dried powder was checked for cobalt production using an X-ray diffraction analyzer, and the particle size and shape of the cobalt powder were observed using a scanning electron microscope. .

도 1 은 본 발명의 실시 예 1을 나타낸 X-선 회절 분석도를 도시한 것으로, 2θ 값 44°에서 Co 피크(peak)를 관찰할 수 있으며, 반응산물의 입자가 미세하여 피크강도가 샤프(sharp)하지 않고 약하게 나타나고 있다.FIG. 1 shows an X-ray diffractogram of Example 1 of the present invention, where the Co peak can be observed at a 2θ value of 44 °, and the peak intensity is sharp due to the fine particles of the reaction product. It is not sharp but appears weak.

도 2 는 본 발명의 실시예 1 을 주사전자현미경으로 본 확대사진를 도시한 것으로, 코발트 분말의 형태는 완전구형이었으며, 입자크기는 2.0~2.5㎛ 크기의 균질한 입도분포를 구비하고 있다.Figure 2 shows an enlarged photograph of Example 1 of the present invention with a scanning electron microscope, the form of cobalt powder was a perfect spherical shape, the particle size has a homogeneous particle size distribution of 2.0 ~ 2.5㎛ size.

또한, 상기 본 실험조건보다 PVP 의 첨가량을 증가시키면 코발트 분말의 입도가 약간 증가하며, 형태 및 크기가 불균질해지게 된다.In addition, when the addition amount of PVP is increased than the present experimental conditions, the particle size of the cobalt powder slightly increases, and the shape and size become heterogeneous.

실시 예 2Example 2

코발트분말 제조의 전구체로 사용된 Co(OH)2 9.4774g을 에틸렌 글리콜(Ethylene glycol) 60ml 와 디에틸렌 글리콜(Diethylene glycol) 240ml 의 혼합 용액에 완전 용해시킨다. Co(OH)2를 용해시킨 용액에 0.0861g의 AgNO3를 용해시킨다. AgNO3가 완전 용해되면 반응기에(4구 플라스크) 넣은 다음 가열멘틀로써 210℃까지 가열시킨다. 용액의 온도가 210℃에 도달하면 반응온도를 유지시키면서 1시간 동안 환원반응시킨다. 1시간이 경과하면 가열멘틀을 끄고 상온에서 냉각시킨 후 에탄올 또는 아세톤을 사용하여 세척과 여과를 실시한다. 이때, 상기 냉각은 40~50℃ 이하의 온도범위를 유지할 때까지 냉각시킨다. 그 후 분말은 전기 오븐에서 50℃로 24시간 건조하고, 주사전자 현미경을 사용하여 코발트 분말의 입도와 형상을 확인하였다.9.4774 g of Co (OH) 2 used as a precursor for cobalt powder was completely dissolved in a mixed solution of 60 ml of ethylene glycol and 240 ml of diethylene glycol. 0.0861 g of AgNO 3 is dissolved in a solution of Co (OH) 2. Once AgNO 3 is completely dissolved, it is placed in a reactor (four-necked flask) and then heated to 210 ° C. with a heating mantle. When the temperature of the solution reaches 210 ℃ it is reduced for 1 hour while maintaining the reaction temperature. After 1 hour, the heating mantle is turned off, cooled to room temperature, washed and filtered using ethanol or acetone. At this time, the cooling is cooled until it maintains a temperature range of 40 ~ 50 ℃ or less. Thereafter, the powder was dried at 50 ° C. for 24 hours in an electric oven, and the particle size and shape of the cobalt powder were confirmed using a scanning electron microscope.

도 3 은 본 발명의 실시예 2 를 주사전자현미경으로 본 확대사진를 도시한 것으로, 평균 입자크기는 약 0.5㎛ 정도로, 구형의 코발트 분말이 합성되었으나 PVP를 첨가한 조건보다는 형태가 균질하지 않음을 알 수 있다.Figure 3 shows a magnified view of the second embodiment of the present invention with a scanning electron microscope, the average particle size of about 0.5㎛, spherical cobalt powder was synthesized, but the form is not homogeneous than the conditions added with PVP Can be.

상기 실시예 2 를 실시예 1 과 비교할 경우, PVP를 첨가했을 때보다 AgNO3를 첨가했을 때, 입자크기가 감소하며, 반응시간이 1시간으로 단축됨을 알 수 있다.When comparing Example 2 with Example 1, it can be seen that when AgNO 3 is added than when PVP is added, the particle size is reduced, and the reaction time is shortened to 1 hour.

실시 예 3Example 3

코발트분말 제조의 전구체로 사용된 Co(OH)2 9.4774g을 에틸렌 글리콜(Ethylene glycol) 60ml 와 디에틸렌 글리콜(Diethylene glycol) 240ml 의혼합 용액에 완전 용해시킨다. Co(OH)2를 용해시킨 용액에 0.015g의 PdCl2를 용해시킨다. PdCl2가 완전 용해되면 반응기에(4구 플라스크) 넣은 다음 가열멘틀로써 210℃까지 가열시킨다. 용액의 온도가 210℃에 도달하면 반응온도를 유지시키면서 1시간 동안 반응시킨다. 1시간이 경과하면 가열멘틀을 끄고 상온에서 냉각시킨 후 에탄올 또는 아세톤을 사용하여 세척과 여과를 실시한다. 이때, 상기 냉각은 40~50℃ 이하의 온도범위를 유지할 때까지 냉각시킨다. 그 후 분말은 전기 오븐에서 50℃로 24시간 건조하고, 주사전자 현미경을 사용하여 코발트 분말의 입도와 형상을 확인하였다.9.4774 g of Co (OH) 2 used as a precursor for cobalt powder was completely dissolved in a mixed solution of 60 ml of ethylene glycol and 240 ml of diethylene glycol. 0.015 g of PdCl 2 is dissolved in a solution of Co (OH) 2. Once PdCl 2 is completely dissolved, it is placed in a reactor (four-necked flask) and then heated to 210 ° C. with a heating mantle. When the temperature of the solution reaches 210 ℃ it is reacted for 1 hour while maintaining the reaction temperature. After 1 hour, the heating mantle is turned off, cooled to room temperature, washed and filtered using ethanol or acetone. At this time, the cooling is cooled until it maintains a temperature range of 40 ~ 50 ℃ or less. Thereafter, the powder was dried at 50 ° C. for 24 hours in an electric oven, and the particle size and shape of the cobalt powder were confirmed using a scanning electron microscope.

도 4 는 본 발명의 실시예 3 을 주사전자현미경으로 본 확대사진를 나타낸 것으로, 평균 입자크기는 약 0.1~0.2㎛이며 형태는 PVP나 AgNO3 를 첨가한 조건보다 불규칙하다.Figure 4 shows an enlarged photograph of Example 3 of the present invention with a scanning electron microscope, the average particle size of about 0.1 ~ 0.2㎛ and the shape is more irregular than the conditions added with PVP or AgNO3.

이와 같이 본 발명은 Co(OH)2를 전구체로 사용하여 폴리올에서 미립의 코발트 분말을 제조하는데 있어 첨가되는 첨가제의 종류 및 양에 따라 코발트 분말 제조시 입도와 형태를 제어할 수 있으며, 고순도와 단분산성을 지닌 코발트 분말을 합성할 수 있다.As described above, the present invention can control the particle size and shape when preparing cobalt powder according to the type and amount of additives added to prepare fine cobalt powder in polyol using Co (OH) 2 as a precursor, Cobalt powders with acid can be synthesized.

또한, 본 발명에서 제조한 코발트 분말은 순도가 높고 입자간 응집현상이 일어나지 않으며 좁은 입도분포와 구형을 나타내기 때문에 초경공구의 점결제, 초합금, 전자파 차폐소재 등의 원료분말로 사용될 수 있다. 특히 본 방법으로 합성한코발트 분말을 초경공구나 고속도강의 점결제로 사용시 재료 내에 코발트가 균질 하게 분포되어 기공도가 낮아지기 때문에 기존의 방법으로 합성한 코발트 분말을 점결제로 사용한 경우보다 절삭시간이 50% 정도 단축되며 소결온도를 약 50~75℃ 낮출 수 있는 등 많은 효과가 있다.In addition, the cobalt powder prepared in the present invention can be used as a raw material powder of cemented carbide tools, superalloys, electromagnetic shielding materials, etc., because of high purity, no agglomeration between particles, and a narrow particle size distribution and spherical shape. Particularly, when cobalt powder synthesized by this method is used as a cement for cemented carbide or high speed steel, cobalt is uniformly distributed in the material, resulting in lower porosity. It is shortened by about% and can lower the sintering temperature by about 50 ~ 75 ℃.

Claims (3)

에틸렌 글리콜과 디에틸렌 글리콜의 혼합액인 폴리올에 수산화코발트를 넣어 완전용해시키는 단계;Completely dissolving cobalt hydroxide into a polyol, which is a mixture of ethylene glycol and diethylene glycol; 상기 수산화코발트가 완전용해된 용액에 PVP, AgNO3, PdCl2로 이루어진 군중 선택된 하나의 첨가제를 넣어 완전용해시키는 단계;Dissolving the cobalt hydroxide completely dissolved by adding one selected from the group consisting of PVP, AgNO 3 and PdCl 2 to the solution completely dissolved; 상기 수산화 코발트 및 첨가제가 완전용해된 용액을 반응기에 넣고 가열멘틀로 210℃까지 가열하는 단계;Putting the solution in which the cobalt hydroxide and the additive were completely dissolved into a reactor and heating it to 210 ° C. with a heating mantle; 상기 210℃를 유지하며 1~2 시간동안 환원반응시키는 단계;Reducing the reaction for 1 to 2 hours while maintaining the 210 ℃; 상기 환원반응 완료후 이를 상온에서 냉각시키는 단계;Cooling it at room temperature after the reduction reaction is completed; 상기 냉각시킨 후 에탄올 또는 아세톤에 의해 세척과 여과를 실시하는 단계;Washing and filtering with ethanol or acetone after the cooling; 상기 세척과 여과 실시 후 전기오븐에서 50℃로 24 시간 건조하는 단계를 포함하는 것을 특징으로 하는 단분산 미립 코발트 분말 제조방법.Mono-dispersed fine cobalt powder manufacturing method comprising the step of washing and filtration and drying at 50 ℃ for 24 hours in an electric oven. 삭제delete 삭제delete
KR10-2001-0053792A 2001-09-03 2001-09-03 Preparation of mono-dispersed fine cobalt powder KR100426824B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0053792A KR100426824B1 (en) 2001-09-03 2001-09-03 Preparation of mono-dispersed fine cobalt powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0053792A KR100426824B1 (en) 2001-09-03 2001-09-03 Preparation of mono-dispersed fine cobalt powder

Publications (2)

Publication Number Publication Date
KR20030020118A KR20030020118A (en) 2003-03-08
KR100426824B1 true KR100426824B1 (en) 2004-04-14

Family

ID=27722194

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0053792A KR100426824B1 (en) 2001-09-03 2001-09-03 Preparation of mono-dispersed fine cobalt powder

Country Status (1)

Country Link
KR (1) KR100426824B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051660B1 (en) 2008-07-22 2011-07-26 한국기계연구원 Porous nickel metal powder and its manufacturing method
KR101252059B1 (en) 2011-02-10 2013-04-12 한국지질자원연구원 Apparatus for manufacturing cobalt powder using slurry re reduction method and manufacturing method of manufacturing cupper powder using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195350A (en) * 2020-08-19 2021-01-08 衢州华友钴新材料有限公司 Preparation method of coarse particle cobalt cluster

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539041A (en) * 1982-12-21 1985-09-03 Universite Paris Vii Process for the reduction of metallic compounds by polyols, and metallic powders obtained by this process
JPH06346118A (en) * 1993-06-04 1994-12-20 Japan Energy Corp Method for pulverizing indium or indium alloy
JP2000256707A (en) * 1999-03-05 2000-09-19 Univ Osaka Production of hyperfine particle and hyperfine particle
KR100368054B1 (en) * 2000-08-30 2003-01-15 한국지질자원연구원 Synthesis of fine cobalt powders

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539041A (en) * 1982-12-21 1985-09-03 Universite Paris Vii Process for the reduction of metallic compounds by polyols, and metallic powders obtained by this process
JPH06346118A (en) * 1993-06-04 1994-12-20 Japan Energy Corp Method for pulverizing indium or indium alloy
JP2000256707A (en) * 1999-03-05 2000-09-19 Univ Osaka Production of hyperfine particle and hyperfine particle
KR100368054B1 (en) * 2000-08-30 2003-01-15 한국지질자원연구원 Synthesis of fine cobalt powders

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051660B1 (en) 2008-07-22 2011-07-26 한국기계연구원 Porous nickel metal powder and its manufacturing method
KR101252059B1 (en) 2011-02-10 2013-04-12 한국지질자원연구원 Apparatus for manufacturing cobalt powder using slurry re reduction method and manufacturing method of manufacturing cupper powder using the same

Also Published As

Publication number Publication date
KR20030020118A (en) 2003-03-08

Similar Documents

Publication Publication Date Title
KR101193762B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
KR100809982B1 (en) Method for manufacturing copper nanoparticles using microwave
KR100836659B1 (en) Method for manufacturing metal nanoparticles
WO2009090748A1 (en) Silver composite nanoparticle and process and apparatus for producing the same
Huang et al. Preparation of fine nickel powders via reduction of nickel hydrazine complex precursors
US20200156158A1 (en) Silver particles and manufacturing method therefor
US9309119B2 (en) Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
CN112543686A (en) Preparation method of silver-copper mixed powder with core-shell structure by using wet process
KR100490668B1 (en) Method for manufacturing nano-scale silver powders by wet reducing process
KR20150028970A (en) Silver powder
WO2012123442A1 (en) Manufacture of base metal nanoparticles using a seed particle method
Sinha et al. Synthesis of nanosized copper powder by an aqueous route
KR101102877B1 (en) Copper powder for silver coated and manufacturing method
KR100426824B1 (en) Preparation of mono-dispersed fine cobalt powder
KR100851815B1 (en) A method of preparing nano silver powder
JP2010512462A (en) Preparation of nanoparticles containing iron and titanium
KR20120020343A (en) Synthesis method of platy silver powder of size and thickness controlled by addition agents and platy silver powder thereof
WO2006090151A1 (en) Process of forming a nanocrystalline metal alloy
JP2012224885A (en) Method for producing metal porous body
KR100768004B1 (en) Method For Manufacturing Metal Nano Particle
KR102017177B1 (en) A method for preparing high-purity silver nano powder using wet process
KR101463067B1 (en) Synthesis of porous metal particles by ultrasonic irradiation
KR102023711B1 (en) A silver nano powder of high purity
JP2013040358A (en) Method for manufacturing metal porous body
Seshadri et al. Preparation of monodispersed, submicron gold particles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111125

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 18