KR100419317B1 - A method for increasing the removal efficiency of radio nuclides using acetic acid and sodium acetate on dicomtaminating the soil contaminated radio nuclides by electrokinetic method - Google Patents

A method for increasing the removal efficiency of radio nuclides using acetic acid and sodium acetate on dicomtaminating the soil contaminated radio nuclides by electrokinetic method Download PDF

Info

Publication number
KR100419317B1
KR100419317B1 KR10-2001-0074138A KR20010074138A KR100419317B1 KR 100419317 B1 KR100419317 B1 KR 100419317B1 KR 20010074138 A KR20010074138 A KR 20010074138A KR 100419317 B1 KR100419317 B1 KR 100419317B1
Authority
KR
South Korea
Prior art keywords
soil
acetic acid
sodium acetate
solution
column
Prior art date
Application number
KR10-2001-0074138A
Other languages
Korean (ko)
Other versions
KR20030043126A (en
Inventor
김계남
원휘준
오원진
정종헌
유재형
Original Assignee
한국수력원자력 주식회사
한국원자력연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사, 한국원자력연구소 filed Critical 한국수력원자력 주식회사
Priority to KR10-2001-0074138A priority Critical patent/KR100419317B1/en
Publication of KR20030043126A publication Critical patent/KR20030043126A/en
Application granted granted Critical
Publication of KR100419317B1 publication Critical patent/KR100419317B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • B09C1/085Reclamation of contaminated soil chemically electrochemically, e.g. by electrokinetics
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/11Electrochemical processes, e.g. electrodialysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 원자력시설 주변에 코발트,세슘 및 스트론튬등의 방사성핵종으로 오염된 토양을 복원시키기 위한 동전기적 방법에 의한 방사성 오염토양 제염시에 초산과 초산나트륨의 완충용액을 이용한 방사성핵종의 제거방법에 관한 것으로 더욱 상세하게는 초산과 초산나트륨의 완충용액을 이용하여 토양컬럼 내의 수산이온농도의 상승을 억제시켜 종래의 방법에 비해 높은 제거효율을 갖게한 방법으로 토양컬럼의 양극저수조에 초산나트륨을 주입시키고 음극에는 초산을 주입하며 토양컬럼 내에는 같은 몰농도의 초산과 초산나트륨을 혼합한 초산완충액을 주입하여 페하(pH)상승을 5.0 이하로 억제시켜 수산화 침전물의 형성을 방지하여 오염된 토양 내의 방사성핵종의 제거효율을 약 90% 이상으로 향상시킨 것으로 방사성핵종으로 오염된 토양을 동전기적방법으로 제염함에 있어서,단면직경과 컬럼길이의 비가 1:5-7인 원통형의 토양컬럼에 0.01-0.05M의 초산(CH3COOH)과 초산나트륨(CH3COONa) 완충용액을 오염토양에 주입하고 혼합한 후 틈이 발생하지 않도록 다져서 주입시키고 토양컬럼의 양선단에는 여과지가 설치되고 일측의 양극저수조에는 0.01-0.05M의 초산나트륨 용액을 주입하고 타측의 음극 저수조에는 5-15M의 초산용액을 상부에서 계속 주입하면서 교반시키고 토양세척폐액과 초산용액이 유입되는 음극저수조의 하단으로 용액을 방출시키며 토양컬럼 내에 0.05-0.5㎃의 전류를 송전시켜 방사성핵종이 이온이동 및 전기삼투에 의해 음극저수조 쪽으로 이동시켜서 토양컬럼 내부의페하(pH)를 5이하로 억제시켜 수산화 침전물의 형성을 방지하여 방사성핵종의 제거효율을 향상시킨 것을 특징으로 하는 초산과 초산나트륨의 완충용액을 이용한 방사성핵종의 제거방법.The present invention relates to a method for removing radionuclides using a buffer solution of acetic acid and sodium acetate during the decontamination of radioactive soils by electrokinetic methods for restoring soil contaminated with radionuclides such as cobalt, cesium, and strontium around nuclear facilities. More specifically, sodium acetate is injected into the anode column tank of the soil column by using a buffer solution of acetic acid and sodium acetate to suppress the increase of the concentration of hydroxide ions in the soil column, which has a higher removal efficiency than the conventional method. Inject the acetic acid to the cathode and inject the acetic acid buffer solution mixed with acetic acid and sodium acetate at the same molarity to the soil column to suppress the rise of pH below 5.0 to prevent the formation of hydroxide precipitates to prevent radioactivity in the contaminated soil. The removal efficiency of radionuclides has been improved to about 90% or more. In the term as decontamination method, the cross-sectional diameter and column length ratio of 1: acetic acid (CH 3 COOH) and sodium acetate (CH 3 COONa) buffer 0.01-0.05M of the soil column of a cylindrical 5-7 in contaminated soil After injecting and mixing, it is infused to prevent cracking. Filter paper is installed at both ends of the soil column, and 0.01-0.05M sodium acetate solution is injected into one anode reservoir and 5-15M acetate solution is added to the other cathode reservoir. Is continuously stirred at the top, and the solution is discharged to the bottom of the cathode reservoir where the soil washing solution and the acetic acid solution are introduced. It is moved to the side to suppress the pH inside the soil column to less than 5 to prevent the formation of hydroxide precipitates, characterized in that to improve the radionuclide removal efficiency Method of removing radionuclide using buffer solution of acetic acid and sodium acetate.

Description

초산과 초산나트륨의 완충용액을 이용한 방사성핵종의 제거방법{A method for increasing the removal efficiency of radio nuclides using acetic acid and sodium acetate on dicomtaminating the soil contaminated radio nuclides by electrokinetic method}A method for increasing the removal efficiency of radio nuclides using acetic acid and sodium acetate on dicomtaminating the soil contaminated radio nuclides by electrokinetic method}

본 발명은 원자력시설 주변에 코발트,세슘 및 스트론튬등의 방사성핵종으로 오염된 토양을 복원시키기 위한 동전기적 방법에 의한 방사성 오염토양 제염시에 초산과 초산나트륨의 완충용액을 이용한 방사성핵종의 제거방법에 관한 것으로 더욱 상세하게는 초산과 초산나트륨의 완충용액을 이용하여 토양컬럼 내의 수산이온농도의 상승을 억제시켜 종래의 방법에 비해 높은 제거효율을 갖게한 방법으로 토양컬럼의 양극저수조에 초산나트륨을 주입시키고 음극에는 초산을 주입하며 토양컬럼 내에는 같은 몰농도의 초산과 초산나트륨을 혼합한 초산완충액을 주입하여 페하(pH)상승을 5.0 이하로 억제시켜 수산화 침전물의 형성을 방지하여 오염된 토양 내의 방사성핵종의 제거효율을 약 90% 이상으로 향상시킨 것이다.The present invention relates to a method for removing radionuclides using a buffer solution of acetic acid and sodium acetate during the decontamination of radioactive soils by electrokinetic methods for restoring soil contaminated with radionuclides such as cobalt, cesium, and strontium around nuclear facilities. More specifically, sodium acetate is injected into the anode column tank of the soil column by using a buffer solution of acetic acid and sodium acetate to suppress the increase of the concentration of hydroxide ions in the soil column, which has a higher removal efficiency than the conventional method. Inject the acetic acid to the cathode and inject the acetic acid buffer solution mixed with acetic acid and sodium acetate at the same molarity to the soil column to suppress the rise of pH below 5.0 to prevent the formation of hydroxide precipitates to prevent radioactivity in the contaminated soil. The removal efficiency of the nuclide was improved to about 90% or more.

일반적으로 선진외국에서는 넓은 지역에 방사성핵종으로 오염된 토양을 효과적으로 제염시키기 위한 기술을 개발해왔으며 그 방법으로 한 쌍의 전극을 오염된 토양의 양쪽에 위치시키고 직류전위를 통과시키는 동전기적인 방법으로 토양을 제염시켰다.In general, advanced foreign countries have developed technologies for effectively decontaminating soil contaminated with radionuclides in large areas. In this way, a pair of electrodes are placed on both sides of the contaminated soil and the galvanic method passes through the DC potential. Was decontaminated.

토양 내의 방사성핵종은 주로 두가지 현상에 의해 이동되며 첫 번째는 전기삼투(Electro-osmosis)로 포화된 유체와 오염물질이 전극쪽으로 흐르는 전기동력학적 현상이며,두번째는 하전된 이온이 전기장 내에서 움직이는 이온이동이 있다.Radionuclides in the soil are mainly transported by two phenomena, the first is an electrokinetic phenomenon in which saturated fluids and contaminants flow towards the electrode due to electroosmosis, and the second is the ion where charged ions move in the electric field. There is a move.

종래의 동전기적방법에 의한 방사성핵종 즉,스트론튬 및 코발트를 제염하기 위한 실험은 먼저 큰 용기에 포화 혼합된 카올린 크레이(Kaolin Clay)[Kaolinite + 초산과 초산나트륨 혼합용액 + Co2+(또는 Sr2+)용액]샘플 150㎤을 만들고 이것을 용기에 넣어 용액과 토양을 혼합한 후 Co2+(또는 Sr2+)이 카올린 크레이에 흡착 평형을 이르도록 용기를 밀폐하여 교반기에 넣고 2일간 교반시킨 후 이 포화 토양을 도 1 에 도시된 토양제염장치의 컬럼에 조금씩 다지면서 주입시킨다.Experiments for decontamination of radionuclides, strontium and cobalt, by conventional electrokinetic methods are carried out by first mixing kaolin clay [Kaolinite + a mixture of acetic acid and sodium acetate + Co 2+ (or Sr 2 ) saturated in a large container. +) solution] was then create a sample 150㎤ put this in a container mix the solution and soil Co 2+ (2+ or Sr) the container tightly closed so as to reach the adsorption equilibrium in the kaolin cray into a stirrer stirred for 2 days This saturated soil is injected into the column of the soil decontamination apparatus shown in FIG.

이때 토양컬럼 내부에 공극이 발생하지 않도록 충분히 다지면서 서서히 카올린 크레이를 주입하였다.At this time, kaolin cray was slowly injected while compacting enough to prevent voids in the soil column.

상기 토양제염장치의 실린더형 토양컬럼은 길이가 20.0㎝ 이고,직경은 2.8㎝ 이고 토양컬럼의 양선단에는 여과지가 설치되고 양측의 저수조 내에는 티타늄전극이 설치되며 토양컬럼의 부피는 123㎤,컬럼을 채운 카올린 크레이의 무게는 94.8g이고 카올린 크레이를 포화시키기 위해 필요한 0.01M Co2+(또는 Sr2+)용액 용량을 카올린 크레이의 밀도 및 공극률에 근거하여 계산한 결과 75.7㎖이었으며 이 토양컬럼의 한 쪽은 양극에 다른 한 쪽은 음극에 연결되어 있으며 토양컬럼에 전압경사를 주기 위해 양쪽전극에 40V의 전압을 가해주었고 이때 전류는 약 0.1㎃를 나타냈다.The cylindrical soil column of the soil decontamination apparatus has a length of 20.0 cm, a diameter of 2.8 cm, filter papers are installed at both ends of the soil column, and titanium electrodes are installed in both reservoirs, and the volume of the soil column is 123 cm 3, column. The weight of kaolin cray filled with rice was 94.8g, and the amount of 0.01M Co 2+ (or Sr 2+ ) solution needed to saturate the kaolin cray was 75.7ml based on the density and porosity of kaolin cray. One side is connected to the anode and the other is connected to the cathode. A voltage of 40V is applied to both electrodes to incline the soil column with a current of about 0.1 mA.

그리고 초산과 초산나트륨 용액을 사용하지 않고 토양제염을 수행하였을 때토양제염 실험전 측정한 토양컬럼 내의 카올린 크레이(Kaolinite + SrCl2용액)의 페하(pH)는 4.0이었다.When soil decontamination was performed without using acetic acid and sodium acetate solution, the pH of kaolin cray (Kaolinite + SrCl 2 solution) in the soil column measured before the soil decontamination experiment was 4.0.

그러나 토양제염 실험 직후 아래 식과 같이 양극에서는 수소이온 방출로 인해 페하가 낮아지고 음극에서는 수산이온 방출로 인해 페하가 높아졌다.However, immediately after the soil decontamination experiment, the pH was lowered due to the release of hydrogen ions at the anode and the pH was increased due to the release of hydroxyl ions at the cathode.

2H2O - 4e-→ O2(g) + 4H+(anode) 2H 2 O - 4e - → O 2 (g) + 4H + (anode)

2H2O + 2e-→ H2(g) + 2OH-(cathode) 2H 2 O + 2e - → H 2 (g) + 2OH - (cathode)

토양제염 실험 개시 후 0.8일이 경과되었을 때 컬럼 양극으로부터 약 14㎝ 되는 지점과 컬럼 끝 사이의 구간에 있는 카올린 크레이의 페하는 도 2 와같이 12이상으로 높아졌으며 이 구간에 Sr(OH)2의 침전이 형성되었고 양극으로부터 약 14㎝ 부근에 도 3 과 같이 매우 높은 농도의 스트론튬 침전물이 형성됐다.Of the column to about 14㎝ page of kaolin cray point in the section between the column end which was also increased by more than 12, such as 2 Sr (OH) in the interval from the cathode 2, when the 0.8 days after the initiation of soil decontamination experiment A precipitate was formed and a very high concentration of strontium precipitate was formed as shown in FIG. 3 around 14 cm from the anode.

이 침전물로 인해 컬럼 내의 Kaolinite는 딱딱해지면서 수리전도도가 작아져 공극용액의 유동속도가 매우 작아졌으며 컬럼으로부터의 유출수 내의 Sr2+농도도 매우 감소되었다.This precipitate caused the kaolinite in the column to harden, resulting in a low hydroconductivity, resulting in a very low flow rate of the pore solution, and a very low Sr 2+ concentration in the effluent from the column.

결국 제염 후 토양컬럼 내의 스트론튬 제거율은 32%에 불과하였다.As a result, the strontium removal rate in the soil column after decontamination was only 32%.

상기한 실험에서와 같이 종래의 동전기적방법에 의한 스트론튬이나 코발트등의 방사성핵종의 제염시 토양컬럼 내의 페하가 상승하여 스트론튬과 코발트는 수산화 침전물을 형성하므로 제거효율이 저하되는 문제점이 있었다.As in the above experiment, when decontamination of radionuclides such as strontium or cobalt by the conventional electrokinetic method increases the pH in the soil column, so strontium and cobalt form hydroxide precipitates and thus have a problem in that removal efficiency is lowered.

따라서 본 발명은 상기한 종래의 문제점을 해결하기 위한 목적으로 창출된 것으로 동전기적방법을 이용하면서 초산과 초산나트륨의 완충용액을 사용하여 페하의 상승을 억제하고 제염효율을 향상시켜 방사성핵종에 오염된 토양 뿐만아니라 중금속 광산 및 화학공장등의 오염토양의 복원도 가능케한 방사성핵종의 제거방법을 제공하기 위한 것이다.Therefore, the present invention was created for the purpose of solving the above-mentioned conventional problems, using an electrokinetic method, using a buffer solution of acetic acid and sodium acetate to suppress the rise of phage and improve the decontamination efficiency, contaminated with radionuclides. It is to provide a method of removing radionuclides that enables the restoration of contaminated soils, as well as soils, heavy metal mines and chemical plants.

상기한 방사성핵종의 제거방법을 제공하기 위하여 카올린 크레이 토양 내에 0.01M의 방사성핵종(스트론튬,코발트)용액과 0.01-0.05M의 초산과 초산나트륨을 혼합한 완충용액을 주입 혼합한 후 방사성핵종을 토양 내에 흡착평형시키기 위해 교반기에 넣고 2일 동안 교반시킨 후 이 오염토양을 컬럼에 주입하고 컬럼의 양측 전극에 전압을 가하여 수십 시간 토양제염을 하고 토양컬럼의 양극저수조에는 0.01-0.05M의 초산나트륨 용액을 주입하고 음극에는 5-15M의 초산용액을 주입하여 페하를 5이하로 억제하여 컬럼내 토양의 수산화 침전물의 형성을 방지해줌으로써 토양 내의 방사성핵종의 제거효율을 향상시킨 방사성핵종의 제거방법을 제공할 수 있는 것이다.In order to provide a method for removing the radionuclides, a mixture of 0.01 M radionuclide (strontium and cobalt) solution and 0.01-0.05 M acetic acid and sodium acetate was injected and mixed into the kaolin cray soil. After putting it in the stirrer to equilibrate the adsorption in the stirrer and stirring it for 2 days, the contaminated soil is injected into the column and the soil is decontaminated for several tens of hours by applying voltage to both electrodes of the column, and the sodium acetate solution of 0.01-0.05M in the anode reservoir of the soil column. And a 5-15M acetic acid solution at the cathode to suppress the pH below 5 to prevent the formation of hydroxide precipitates in the column, thereby providing a method of removing radionuclides with improved radionuclide removal efficiency in the soil. You can do it.

도 1 은 종래의 동전기적 토양제염장치의 개략구조도1 is a schematic structural diagram of a conventional electrokinetic soil decontamination apparatus

도 2 는 종래 동전기적방법에 의한 제염 후 토양컬럼 내의 페하(pH) 분포도(초산과 초산나트륨 사용 전)Figure 2 is the pH distribution in the soil column after decontamination by conventional electrokinetic method (before using acetic acid and sodium acetate)

도 3 은 종래 동전기적방법에 의한 제염시 시간에 따른 잔류 스트론튬 농도분포도(초산과 초산나트륨 사용 전)Figure 3 is the distribution of residual strontium concentration with time during decontamination by conventional electrokinetic method (before using acetic acid and sodium acetate)

도 4 는 본 발명의 동전기적방법에 의한 제염시 초산과 초산나트륨 용액의 주입방법의 개략구조도4 is a schematic structural diagram of a method of injecting acetic acid and sodium acetate solution during decontamination by the electrokinetic method of the present invention

도 5 는 본 발명 동전기적방법에 의한 제염 후 토양컬럼 내의 페하(pH) 분포도(초산과 초산나트륨 사용 후)Figure 5 is the pH distribution in the soil column after decontamination by the electrokinetic method of the present invention (after using acetic acid and sodium acetate)

도 6 은 본 발명 동전기적방법에 의한 제염시 시간에 따른 잔류 코발트 농도분포도(초산과 초산나트륨 사용 후)Figure 6 is the residual cobalt concentration distribution according to the time of decontamination by the electrokinetic method of the present invention (after using acetic acid and sodium acetate)

도 7 은 본 발명 동전기적방법에 의한 제염시 시간에 따른 잔류 스트론튬 농도분포도(초산과 초산나트륨 사용 후)7 is a residual distribution of strontium concentration according to the time of decontamination by the electrokinetic method of the present invention (after using acetic acid and sodium acetate)

이하 발명의 요지를 첨부된 도면에 연계시켜 그 구성과 작용을 상세히 설명하면 다음과 같다.Hereinafter, the configuration and operation of the present invention will be described in detail with reference to the accompanying drawings.

도 4 는 본 발명의 동전기적방법에 의한 제염시 초산과 초산나트륨 용액의 주입방법의 개략구조도로서 방사성핵종으로 오염된 토양을 동전기적 토양제염장치에 초산과 초산나트륨 완충용액을 주입하여 제염시키는 개략적인 구조를 도시한 것이고,도 5 는 본 발명 동전기적방법에 의한 제염 후 토양컬럼 내의 페하(pH) 분포도로서 초산과 초산나트륨 완충용액을 사용하여 0.0,3.8일 후의 토양컬럼 내의 페하(pH)분포를 도시한 것이며,도 6,7 은 본 발명 동전기적방법에 의한 제염시 시간에 따른 잔류 코발트와 잔류 스트론튬 농도분포도로서 초산과 초산나트륨 완충용액을 사용하여 토양제염시간에 따른 잔류 코발트와 스트론튬의 농도 분포를 도시한 것이다.4 is a schematic structural diagram of a method of injecting acetic acid and sodium acetate solution during decontamination by the electrokinetic method of the present invention, which is a schematic diagram for decontaminating soil contaminated with radionuclides by injecting acetic acid and sodium acetate buffer into an electrokinetic soil decontamination apparatus. Fig. 5 shows the pH distribution in the soil column after decontamination by the electrokinetic method of the present invention, and the pH distribution in the soil column after 0.0,3.8 days using buffered sodium acetate and sodium acetate. 6, 7 is a concentration distribution of residual cobalt and residual strontium concentration according to time of decontamination by the electrokinetic method of the present invention using the acetate and sodium acetate buffer solution concentration of residual cobalt and strontium according to soil decontamination time The distribution is shown.

방사성핵종으로 오염된 토양을 동전기적방법으로 제염함에 있어서,In the electrokinetic method of decontaminating soil contaminated with radionuclides,

단면직경과 컬럼길이의 비가 1:5-7인 원통형의 토양컬럼에 0.01-0.05M의 초산(CH3COOH)과 초산나트륨(CH3COONa) 완충용액을 오염토양에 주입하고 혼합한 후 공극이 발생하지 않도록 다져서 주입시키고 토양컬럼의 양선단에는 여과지가 설치되고 일측의 양극저수조에는 0.01-0.05M의 초산나트륨 용액을 주입하고 타측의 음극 저수조에는 5-15M의 초산용액을 상부에서 계속 주입하면서 교반시키고 토양세척폐액과 초산용액이 유입되는 음극저수조의 하단으로 용액을 방출시키며 토양컬럼 내에 0.05-0.5㎃의 전류를 송전시켜 방사성핵종이 이온이동 및 전기삼투에 의해 음극저수조 쪽으로 이동시켜서 토양컬럼 내부의 페하(pH)를 5이하로 억제시켜 수산화 침전물의 형성을 방지하여 방사성핵종의 제거효율을 향상시킨 것이다.In a cylindrical soil column with a ratio of cross-sectional diameter and column length of 1: 5-7, 0.01-0.05M of acetic acid (CH 3 COOH) and sodium acetate (CH 3 COONa) buffers were injected into the contaminated soil and mixed. Do not crush and inject, and filter paper is installed at both ends of the soil column, and 0.01-0.05M sodium acetate solution is injected into one anode reservoir and 5-15M acetate solution is continuously stirred from the top to the cathode reservoir on the other side. The solution is discharged to the bottom of the cathode reservoir where the soil washing waste solution and the acetic acid solution are introduced, and the radionuclide is transferred to the cathode reservoir by ion transport and electroosmotic by transmitting a current of 0.05-0.5㎃ in the soil column. By inhibiting the pH below 5 to prevent the formation of hydroxide precipitates to improve the radionuclide removal efficiency.

이와같이된 본 발명은 방사성핵종에 오염된 토양의 제염효율을 향상시키기위하여 토양컬럼 내의 페하(pH)를 저감시키는 방법으로 실시예에 의한 실험에서 도 4 에 도시된 토양제염장치의 컬럼 내의 토양에 0.01M의 초산(CH3COOH)과 0.01M의 초산나트륨(CH3COONa)를 혼합한 완충용액을 주입 혼합시켰다.The present invention as described above is a method for reducing the pH in the soil column to improve the decontamination efficiency of the soil contaminated with radionuclides in the soil in the column of the soil decontamination apparatus shown in FIG. A buffer solution containing M acetate (CH 3 COOH) and 0.01 M sodium acetate (CH 3 COONa) was injected and mixed.

이때 주입되는 완충용액의 부피는 토양을 포화시키기 위해 필요한 양이며 토양컬럼 내에 틈이 발생하지 않도록 충분히 다져서 주입시킨다.At this time, the volume of the buffer solution to be injected is the amount necessary to saturate the soil and is injected with enough compaction so that a gap does not occur in the soil column.

그리고 양극저수조에 0.01M의 초산나트륨 용액을 주입하였고 음극저수조에는 음극저수조 용액의 페하가 5이하가 되도록 고농도의 초산 용액을 주입하면서 교반시켰다.In addition, 0.01 M sodium acetate solution was injected into the anode reservoir, and a high concentration of acetic acid solution was injected into the cathode reservoir so that the pH of the cathode reservoir solution was 5 or less.

상기의 실험중 전기삼투에 의해 컬럼 내의 용액이 양극에서 음극으로 계속 유동하므로 양극저수조의 상부에서 0.01M의 초산나트륨 용액을 계속주입하여 양극저수조가 가득 차도록 하고 토양세척폐액의 용량은 컬럼 내의 오염토양컬럼 공극부피의 약 1-4배이므로 필요한 초산나트륨 양은 공극부피의 1-3배가 되며 음극저수조는 토양컬럼으로부터 토양세척폐액이 계속 유입되고 음극저수조의 상부에서 페하를 5이하로 제어하기 위하여 초산용액을 계속 주입하므로 음극저수조의 하단 배출구로 용액을 방출시켰으며 방출된 용액의 부피를 정확히 눈금실린더로 측정하고 농도측정을 위해 주기적으로 3㎖를 채취하여 보관한다.As the solution in the column continues to flow from the anode to the cathode by the electroosmotic experiment, the anode reservoir is continuously infused with 0.01 M sodium acetate solution at the top of the anode reservoir to fill the anode reservoir and the volume of the soil washing waste is the soil contaminated in the column. The amount of sodium acetate needed is 1-3 times the volume of the voids, since the volume of the column is about 1-4 times the volume of the voids, and the acetic acid solution is continuously introduced with the soil washing waste from the soil column and the acetic acid solution to control the pH below 5 at the top of the cathode tank. Since the solution was continuously injected, the solution was discharged to the bottom outlet of the cathode reservoir, and the volume of the discharged solution was accurately measured by a graduated cylinder, and 3 ml was periodically collected and stored for concentration measurement.

이 채취된 용액들은 실험 완료 후 원자흡광광도법을 사용하여 용액 내의 코발트 농도를 측정하였다.After the experiments were completed, the cobalt concentration in the solution was measured using atomic absorption spectrometry.

한편 토양컬럼에 주입된 0.01M Co2+용액은 코발트가 토양에 평형흡착된 후 공극용액의 농도는 0.0056M Co2+이었으며 이 용액과 같은 0.0056M의 코발트 용액에 NaOH를 가하여 침전실험을 했다.On the other hand, 0.01M Co 2+ solution injected into the soil column was cobalt equilibrium adsorbed in the soil and the pore solution concentration was 0.0056M Co 2+ and NaOH was added to 0.0056M cobalt solution like this solution.

즉 페하가 12.0일때 100% 침전되었고,10.0일때 99%,8.0일때 65%,7.3일때 0%로 나타났다.This resulted in 100% precipitation at 12.0, 99% at 10.0, 65% at 8.0, and 0% at 7.3.

그러므로 토양제염 효율을 향상시키기 위해 컬럼 내의 카올린 크레이 혼합물의 페하를 7.0 이하로 유지시켜야 하며 초산과 초산나트륨 혼합액을 컬럼에 주입하고 초산용액을 음극저수조에 계속적으로 주입하면서 토양제염실험을 수행한 결과 컬럼의 14㎝ 후단 부분의 페하는 도 5 에서와 같이 초기에는 4.0 이었으나 실험이 끝나는 1.8일 후에는 단지 약 6.5로상승하였다.Therefore, to improve the soil decontamination efficiency, the pH of the kaolin cray mixture in the column should be kept below 7.0, and the soil decontamination experiment was carried out by injecting acetic acid and sodium acetate mixture into the column and continuously injecting acetic acid solution into the cathode reservoir. The peak of the 14 cm rear portion of was initially 4.0 as shown in FIG. 5, but rose to about 6.5 after 1.8 days of the end of the experiment.

이와같이 컬럼 내의 페하가 낮기 때문에 Co(OH)2는 형성되지 않았다.As such, Pe (OH) 2 was not formed because of the low pH in the column.

도 6 은 토양제염 시간 경과에 따른 토양컬럼 내에 잔류한 총 Co2+농도를 나타낸 것으로 제염 실험 중에 토양컬럼 내의 페하값이 억제되어 침전이 발생하지 않으므로 제염효율이 높게 나타났다.FIG. 6 shows the total Co 2+ concentration remaining in the soil column over time when soil decontamination time was suppressed because the pH value in the soil column was suppressed during the decontamination experiment.

즉,0.4일 후에는 토양컬럼 내의 초기 Co2+총량의 13.1%가 제염되었고,0.9일 후에는 46.8%가 제염되었으며,1.3일 경과 후에는 71.7%가 제염되었고,1.8일 후에는 94.6%가 제염되었다.That is, after 0.4 days, 13.1% of the initial amount of Co 2+ in the soil column was decontaminated. After 0.9 days, 46.8% was decontaminated. After 1.3 days, 71.7% was decontaminated. After 1.8 days, 94.6% was decontaminated. It became.

토양제염 실험을 마친 후 토양컬럼 내의 카올린 크레이를 꺼내어 5등분하여 카올린 크레이의 공극용액 내의 Co2+농도를 측정한 결과는 도 6 과 같고 수치모델로계산한 값과 일치하였다.After completion of the soil decontamination experiment, the kaolin cray in the soil column was taken out and divided into 5 parts to measure the concentration of Co 2+ in the pore solution of the kaolin cray as shown in FIG. 6 and was consistent with the numerical model.

도 7 은 초산과 초산나트륨을 사용하여 0.01M의 스트론튬으로 오염된 카올린 크레이를 제염한 후의 잔류 스트론튬의 농도 분포도를 도시한 것이다.Figure 7 shows the concentration distribution of residual strontium after decontamination of kaolin cray contaminated with 0.01 M of strontium using acetic acid and sodium acetate.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

그러므로 본 발명은 동전기적방법을 이용하면서 초산과 초산나트륨의 완충용액을 사용하여 종래 컬럼 내의 음극쪽 토양의 페하가 약 12.5까지 상승하여 수산화 침전물을 형성하여 제염효율이 감소하던 것을 페하의 상승을 억제하여 제염효율을 향상시키고 방사성핵종에 오염된 토양 뿐만아니라 중금속 광산 및 화학공장등의 오염토양의 복원도 가능케한 등의 효과를 가지는 것이다.Therefore, the present invention suppresses the increase in the pH of the decontamination efficiency of the cathode by increasing the pH of the negative electrode soil in the column up to about 12.5 using buffer solution of acetic acid and sodium acetate while using the electrokinetic method. Therefore, it has the effect of improving decontamination efficiency and restoring contaminated soil such as heavy metal mine and chemical plant as well as soil contaminated with radionuclides.

Claims (1)

방사성핵종으로 오염된 토양을 동전기적방법으로 제염함에 있어서,In the electrokinetic method of decontaminating soil contaminated with radionuclides, 단면직경과 컬럼길이의 비가 1:5-7인 원통형의 토양컬럼에 0.01-0.05M의 초산(CH3COOH)과 초산나트륨(CH3COONa) 완충용액을 오염토양에 주입하고 혼합한 후 공극이 발생하지 않도록 다져서 주입시키고 토양컬럼의 양선단에는 여과지가 설치되고 일측의 양극저수조에는 0.01-0.05M의 초산나트륨 용액을 주입하고 타측의 음극 저수조에는 5-15M의 초산용액을 상부에서 계속 주입하면서 교반시키고 토양세척폐액과 초산용액이 유입되는 음극저수조의 하단으로 용액을 방출시키며 토양컬럼 내에 0.05-0.5㎃의 전류를 송전시켜 방사성핵종이 이온이동 및 전기삼투에 의해 음극저수조 쪽으로 이동시켜서 토양컬럼 내부의 페하(pH)를 5이하로 억제시켜 수산화 침전물의 형성을 방지하여 방사성핵종의 제거효율을 향상시킨 것을 특징으로 하는 초산과 초산나트륨의 완충용액을 이용한 방사성핵종의 제거방법.In a cylindrical soil column with a ratio of cross-sectional diameter and column length of 1: 5-7, 0.01-0.05M of acetic acid (CH 3 COOH) and sodium acetate (CH 3 COONa) buffers were injected into the contaminated soil and mixed. Do not crush and inject, and filter paper is installed at both ends of the soil column, and 0.01-0.05M sodium acetate solution is injected into one anode reservoir and 5-15M acetate solution is continuously stirred from the top to the cathode reservoir on the other side. The solution is discharged to the bottom of the cathode reservoir where the soil washing waste solution and the acetic acid solution are introduced, and the radionuclide is transferred to the cathode reservoir by ion transport and electroosmotic by transmitting a current of 0.05-0.5㎃ in the soil column. Buffering pH and sodium acetate to prevent the formation of hydroxide precipitates by inhibiting pH below 5 to improve the removal efficiency of radionuclides How to remove the radionuclides with.
KR10-2001-0074138A 2001-11-27 2001-11-27 A method for increasing the removal efficiency of radio nuclides using acetic acid and sodium acetate on dicomtaminating the soil contaminated radio nuclides by electrokinetic method KR100419317B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0074138A KR100419317B1 (en) 2001-11-27 2001-11-27 A method for increasing the removal efficiency of radio nuclides using acetic acid and sodium acetate on dicomtaminating the soil contaminated radio nuclides by electrokinetic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0074138A KR100419317B1 (en) 2001-11-27 2001-11-27 A method for increasing the removal efficiency of radio nuclides using acetic acid and sodium acetate on dicomtaminating the soil contaminated radio nuclides by electrokinetic method

Publications (2)

Publication Number Publication Date
KR20030043126A KR20030043126A (en) 2003-06-02
KR100419317B1 true KR100419317B1 (en) 2004-02-19

Family

ID=29571543

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0074138A KR100419317B1 (en) 2001-11-27 2001-11-27 A method for increasing the removal efficiency of radio nuclides using acetic acid and sodium acetate on dicomtaminating the soil contaminated radio nuclides by electrokinetic method

Country Status (1)

Country Link
KR (1) KR100419317B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176956A1 (en) * 2011-06-21 2012-12-27 한국원자력연구원 Complex electrokinetic decontamination apparatus for decontamination of radionuclide
KR101292962B1 (en) * 2011-06-21 2013-08-02 한국원자력연구원 Complex electrokinetic decontaminating apparatus for decontaminating radionuclide
RU2540430C1 (en) * 2014-03-04 2015-02-10 Федеральное государственное бюджетное учреждение науки Центр геофизических исследований Владикавказского научного центра РАН и Правительства Республики Северная Осетия-Алания (ЦГИ ВНЦ РАН и РСО-А) Method to protect slope lands from natural and anthropogenic disasters
CN106904799B (en) * 2015-12-22 2020-05-12 有研工程技术研究院有限公司 Electric repair strengthening device and method for removing heavy metals in sludge by using same
CN114160565B (en) * 2021-12-08 2022-11-15 江苏澳洋环境科技有限公司 Electrochemical soil improvement system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398756A (en) * 1992-12-14 1995-03-21 Monsanto Company In-situ remediation of contaminated soils
US5458747A (en) * 1994-01-21 1995-10-17 Electrokinetics, Inc. Insitu bio-electrokinetic remediation of contaminated soils containing hazardous mixed wastes
US5725752A (en) * 1993-10-22 1998-03-10 Ea Technology Ltd. Electrokinetic decontamination of land
KR20000040340A (en) * 1998-12-17 2000-07-05 이종훈 Electrokinetic decontamination method for soils in radioactive waste drum and apparatus thereof
KR20010088497A (en) * 2001-07-27 2001-09-28 김수삼 Injection of nutrients and TEAs for bioremediation by electrical field method
KR20030029204A (en) * 2001-10-05 2003-04-14 주식회사 에코필 Method for decontamination of soil using electrokinetic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398756A (en) * 1992-12-14 1995-03-21 Monsanto Company In-situ remediation of contaminated soils
US5725752A (en) * 1993-10-22 1998-03-10 Ea Technology Ltd. Electrokinetic decontamination of land
US5458747A (en) * 1994-01-21 1995-10-17 Electrokinetics, Inc. Insitu bio-electrokinetic remediation of contaminated soils containing hazardous mixed wastes
KR20000040340A (en) * 1998-12-17 2000-07-05 이종훈 Electrokinetic decontamination method for soils in radioactive waste drum and apparatus thereof
KR20010088497A (en) * 2001-07-27 2001-09-28 김수삼 Injection of nutrients and TEAs for bioremediation by electrical field method
KR20030029204A (en) * 2001-10-05 2003-04-14 주식회사 에코필 Method for decontamination of soil using electrokinetic

Also Published As

Publication number Publication date
KR20030043126A (en) 2003-06-02

Similar Documents

Publication Publication Date Title
Acar et al. Electrokinetic remediation. I: Pilot-scale tests with lead-spiked kaolinite
KR100296374B1 (en) Method and apparatus for decontaminating contaminated soil in radioactive waste drum by electro-electric method
Weng et al. Enhancement of electrokinetic remediation of hyper-Cr (VI) contaminated clay by zero-valent iron
Puppala et al. Enhanced electrokinetic remediation of high sorption capacity soil
Li et al. Removal of Pb (II), Cd (II) and Cr (III) from sand by electromigration
Burris et al. In situ modification of an aquifer material by a cationic surfactant to enhance retardation of organic contaminants
JP2007326100A (en) Electrochemical system and method for removal of charged chemical species from contaminated liquid and solid waste
Yu et al. Theoretical evaluation of a technique for electrokinetic decontamination of soils
Ugaz et al. ELECTROKINETIC SOIL PROCESSING COMPLICATING FEATURES OF ELECTROKINETIC REMEDIATION OF SOILS AND SLURRIES: SATURATION EFFECTS AND THE ROLE OF THE CATHODE ELECTROLYSIS.
KR100419317B1 (en) A method for increasing the removal efficiency of radio nuclides using acetic acid and sodium acetate on dicomtaminating the soil contaminated radio nuclides by electrokinetic method
Kim et al. Removal of uranium from soil using full-sized washing electrokinetic separation equipment
Torok et al. The separation of radionuclide migration by solution and particle transport in soil
Purkis et al. Enhanced electrokinetic remediation of nuclear fission products in organic-rich soils
PT1603690E (en) Method for soil remediation and engineering
Kawachi et al. Model experimental study on the migration behavior of heavy metals in electrokinetic remediation process for contaminated soil
Kim et al. Development of vertical electrokinetic-flushing decontamination technology to remove 60Co and 137Cs from a Korean nuclear facility site
Li et al. Removal of Cu (II) and Cr (III) from naturally contaminated loam by electromigration
Kim et al. Decontamination of radioactive concrete using electrokinetic technology
KR20030066901A (en) Development of electrode compartment for enhanced electrokinetic remediation and post-treatment of waste water
Ahn et al. Characteristics of electrokinetic remediation of unsaturated soil contaminated by heavy metals-I: Experimental study
Viadero Jr et al. A laboratory-scale study of applied voltage on the electrokinetic separation of lead from soils
Akyüz et al. The sorption of cesium and strontium ions onto red-clay from Sivrihisar-Eskisehir (Turkey)
Putra et al. Removal of caesium by soil electrokinetic remediation on the effect of acetic acid and carbonate salt as electrolyte
Kim et al. Washing-electrokinetic decontamination for concrete contaminated with cobalt and cesium
Tanaka et al. Colloidal migration behavior of radionuclides sorbed on mobile fine soil particles through a sand layer

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111216

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141002

Year of fee payment: 11

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160205

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170224

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180206

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190207

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20200206

Year of fee payment: 17