KR100419059B1 - Fabrication method of SiC-Al2O3/Al composites - Google Patents

Fabrication method of SiC-Al2O3/Al composites Download PDF

Info

Publication number
KR100419059B1
KR100419059B1 KR10-1999-0059908A KR19990059908A KR100419059B1 KR 100419059 B1 KR100419059 B1 KR 100419059B1 KR 19990059908 A KR19990059908 A KR 19990059908A KR 100419059 B1 KR100419059 B1 KR 100419059B1
Authority
KR
South Korea
Prior art keywords
silicon carbide
molded body
aluminum
composite
alumina
Prior art date
Application number
KR10-1999-0059908A
Other languages
Korean (ko)
Other versions
KR20010063053A (en
Inventor
정두화
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR10-1999-0059908A priority Critical patent/KR100419059B1/en
Publication of KR20010063053A publication Critical patent/KR20010063053A/en
Application granted granted Critical
Publication of KR100419059B1 publication Critical patent/KR100419059B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes

Abstract

본 발명은 탄화규소-알루미나/알루미늄 복합체의 제조방법에 관한 것으로, 용융 실리카 분말 60 내지 90 중량% 및 탄화규소 분말 10 내지 40 중량%를 혼합하여 성형체를 제조하고, 상기 제조된 성형체를 소결한 후, 상기 소결된 성형체를 750 내지 1,100 ℃에서 용융시킨 알루미늄과 반응시키면 강도 및 파괴인성이 우수한 탄화규소-알루미나/알루미늄 복합체를 용이하게 제조할 수 있다.The present invention relates to a method for producing a silicon carbide-alumina / aluminum composite, wherein 60 to 90% by weight of fused silica powder and 10 to 40% by weight of silicon carbide powder are mixed to produce a molded body, and then sintering the manufactured molded body. When the sintered molded body is reacted with the molten aluminum at 750 to 1,100 ° C., a silicon carbide-alumina / aluminum composite having excellent strength and fracture toughness can be easily manufactured.

Description

탄화규소-알루미나/알루미늄 복합체의 제조방법{Fabrication method of SiC-Al2O3/Al composites}Fabrication method of SiC-Al2O3 / Al composites}

[발명이 속하는 기술분야][TECHNICAL FIELD OF THE INVENTION]

본 발명은 탄화규소-알루미나/알루미늄 복합체의 제조방법에 관한 것으로, 보다 상세하게는 파괴에 대한 저항성이 강한 재료로서 내마모부재, 구조재 또는 기계적 충격이 강하게 작용하는 곳에 이용될 수 있으며, 세라믹의 취약점인 파괴인성을 증진시킨 탄화규소-알루미나/알루미늄 복합체의 제조방법에 관한 것이다.The present invention relates to a method for producing a silicon carbide-alumina / aluminum composite, and more particularly, as a material resistant to fracture, it may be used where a wear resistant member, a structural member, or a mechanical impact is strongly applied. It relates to a method for producing a silicon carbide-alumina / aluminum composite having enhanced phosphorus fracture toughness.

[종래기술][Private Technology]

종래 세라믹/금속 복합체의 제조방법으로는 세라믹(SiC, Al2O3)분말이나 휘스커를 금속분말과 혼합하여 불활성 분위기에서 열처리함으로써 복합체를 얻거나, 다공성의 세라믹 성형체를 만든 후 상기 성형체에 용융금속을 물리적으로 침투시켜복합체를 제조하였다. 그러나 상기 방법은 복합체의 균질성을 확보하기가 어려우며, 제조공정상의 어려움이 많이 따르는 문제점도 있었다.Conventionally, a method of manufacturing a ceramic / metal composite is obtained by mixing a ceramic (SiC, Al 2 O 3 ) powder or whisker with a metal powder and heat-treating in an inert atmosphere, or obtaining a composite by forming a porous ceramic molded body and then melting the metal into the molded body. Was physically penetrated to prepare a composite. However, the method is difficult to secure the homogeneity of the composite, there was also a problem that a lot of difficulties in the manufacturing process.

또한 세라믹/금속 복합체의 제조는 용융금속을 기상과 직접 반응시켜 복합체를 얻는 방법과 세라믹 성형체와 용융금속 사이의 반응(용융금속치환반응법)에 의하여 복합체를 얻는 방법이 연구되고 있다. 상기 방법 중 전자의 경우는 복합체의 형상이나 미세구조제어에 어려움이 있고, 후자의 방법은 실리카 성형체와 용융 알루미늄이 화학적으로 하기 반응식 1과 같이 반응하여 비교적 쉽게 복합체를 얻을 수 있으며, 세라믹 성형체의 형상에 가까운 복합체를 얻을 수 있는 장점이 있으나, 제조공정이 복잡한 문제점이 있었다. 상기에서 용융금속의 치환반응에 의한 복합체 제조에 사용되는 세라믹 성형체로는 실리카 유리, 뮬라이트 또는 카올린족 광물 등이 사용되고 있다.Also, in the production of ceramic / metal composites, a method of obtaining a composite by directly reacting a molten metal with a gas phase and a method of obtaining a composite by a reaction between a ceramic molded body and a molten metal (molten metal substitution reaction method) have been studied. In the former method, it is difficult to control the shape or microstructure of the composite. In the latter method, the silica molded body and the molten aluminum are chemically reacted as shown in Scheme 1 below to obtain a composite relatively easily. Although there is an advantage of obtaining a complex close to, there was a complicated manufacturing process. Silica glass, mullite, or kaolin group minerals, etc. are used as the ceramic formed body used in the preparation of the composite by the substitution reaction of the molten metal.

[반응식 1]Scheme 1

3SiO2+ 4Al → 2Al2O3+ 3Si3SiO 2 + 4Al → 2Al 2 O 3 + 3Si

또한 내마모성이 높은 탄화규소를 알루미늄 금속과 복합시 다공질의 탄화규소 소결체에 용융 알루미늄을 물리적으로 침투시켜 탄화규소/알루미늄 복합체를 제조하는 방법이 사용되었으나 상기 방법도 제조공정이 복잡한 문제점이 있었다.In addition, a method of manufacturing a silicon carbide / aluminum composite by physically injecting molten aluminum into the porous silicon carbide sintered body when a high wear resistance silicon carbide is mixed with an aluminum metal has been used, but the manufacturing method has a complicated problem.

상기 종래기술의 문제점을 해결하기 위하여 본 발명은 용융금속의 치환반응에 사용되는 성형체인 실리카 유리나 실리카 소결체 대신에 탄화규소 분말과 용융실리카 분말을 출발물질로 하여 탄화규소-실리카계 성형체를 만들며, 소성된 탄화규소-실리카계 성형체를 용융 알루미늄과 치환반응시켜 강도 및 파괴인성이 우수한 탄화규소-알루미나/알루미늄 복합체의 제조방법을 제공하는 것을 목적으로 한다.In order to solve the above problems of the prior art, the present invention provides a silicon carbide-silica-based molded body using silicon carbide powder and molten silica powder as starting materials instead of silica glass or silica sintered body, which is a molded product used for the substitution reaction of molten metal. It is an object of the present invention to provide a method for producing a silicon carbide-alumina / aluminum composite having excellent strength and fracture toughness by subjecting a resultant silicon carbide-silica-based molded article to molten aluminum.

도 1은 본 발명에 의하여 제조된 탄화규소-알루미나/알루미늄 복합체의 형상을 나타낸 것이다.Figure 1 shows the shape of the silicon carbide-alumina / aluminum composite prepared according to the present invention.

상기 목적을 달성하기 위하여 본 발명은 용융 실리카 분말 60 내지 90 중량% 및 탄화규소 분말 10 내지 40 중량%를 혼합하여 성형체 제조하는 성형체 제조단계, 상기 제조된 성형체를 소결하는 소결단계 및 상기 소결된 성형체를 750 내지 1,100 ℃에서 용융시킨 알루미늄과 반응시키는 반응단계를 포함하는 것을 특징으로 하는 탄화규소-알루미나/알루미늄 복합체의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a molded article manufacturing step of producing a molded body by mixing 60 to 90% by weight of fused silica powder and 10 to 40% by weight of silicon carbide powder, a sintering step of sintering the manufactured molded article and the sintered molded body It provides a method for producing a silicon carbide-alumina / aluminum composite comprising a reaction step of reacting with the molten aluminum at 750 to 1,100 ℃.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 사용되는 상기 실리카분말은 비정질상의 용융실리카(fused silica)를 사용하는 것이 바람직하며, 순도는 고순도를 사용할수록 좋다. 상기 실리카 분말의 입자 크기는 소결성을 고려하여 20 마이크론 이하의 것을 사용하는 것이 좋다. 또한 상기 실리카분말과 탄화규소 분말을 혼합하여 제조한 성형체에서 실리카분말의 함량은 60 내지 90 중량%가 바람직하다.As the silica powder used in the present invention, it is preferable to use amorphous fused silica, and the higher the purity, the higher the purity. The particle size of the silica powder is preferably 20 microns or less considering the sinterability. In addition, the content of the silica powder in the molded body prepared by mixing the silica powder and silicon carbide powder is preferably from 60 to 90% by weight.

또한 본 발명에 사용되는 탄화규소 분말은 입자 크기에 의하여 크게 영향을 받지 않으나, 45 마이크론 이하의 분말을 사용하는 것이 좋으며, 상기 탄화규소 분말의 사용량은 상기 실리카분말과 탄화규소 분말을 혼합하여 제조한 성형체에서 10 내지 40 중량%인 것이 바람직하다.In addition, the silicon carbide powder used in the present invention is not significantly affected by the particle size, but it is preferable to use a powder of 45 microns or less, and the amount of the silicon carbide powder is prepared by mixing the silica powder and the silicon carbide powder. It is preferable that it is 10 to 40 weight% in a molded object.

본 발명에서 상기 실리카분말과 탄화규소 분말을 혼합하여 성형체를 제조하는 방법은 성형체 제조의 일반적인 방법들이 사용될 수 있다. 상기 방법의 대표적인 방법으로서 실리카와 탄화규소의 혼합분말을 금형 몰드에 넣고 유압성형기를 이용하여 성형체를 제조하는 방법을 들 수 있으며, 또 다른 방법으로는 상기 실리카분말과 탄화규소로 슬러리를 제조한 후 상기 슬러리를 석고 몰드에 스립캐스팅하여 성형체를 제조하는 방법을 들 수 있다.In the present invention, a method of preparing a molded body by mixing the silica powder and silicon carbide powder may be used in general methods of manufacturing a molded body. Representative methods of the above method include a method of preparing a molded body by using a hydraulic molding machine by putting a mixed powder of silica and silicon carbide into a mold mold, and another method is to prepare a slurry from the silica powder and silicon carbide The method of manufacturing a molded object by slip-casting the said slurry to a gypsum mold is mentioned.

또한 본 발명은 상기 제조한 성형체를 소결하는 단계를 포함한다. 상기 소결은 전기로를 이용하여 1,300 내지 1,400 ℃의 온도에서 약 2 시간 정도 성형체를 소성한 후 상기 전기로 내에서 냉각시키는 방법을 사용하는 것이 바람직하다. 상기에서 소성 온도가 1,300 ℃ 미만이면 성형체의 기공율이 높아 복합체 제조시 반응시간이 많이 소요되거나 균질한 복합체를 제조하기가 어렵다. 또한 제조온도가 1,400 ℃를 초과하면 성형체에 함유된 실리카의 구성 결정상이 비정질상에서 결정질(cristobalite)로 전이되면서 성형체 내부에 미세균열을 발생시켜 균질한 복합체를 얻기 어렵다.In another aspect, the present invention includes the step of sintering the molded body prepared above. The sintering is preferably used to sinter the molded body for about 2 hours at a temperature of 1,300 to 1,400 ℃ using an electric furnace and then to cool in the electric furnace. When the firing temperature is lower than 1,300 ° C., the porosity of the molded article is high, and thus, it is difficult to produce a homogeneous composite or a large reaction time. In addition, when the manufacturing temperature exceeds 1,400 ℃, the crystalline phase of the silica contained in the molded body is transferred from the amorphous phase to the crystalline (cristobalite) to generate microcracks inside the molded body, it is difficult to obtain a homogeneous composite.

또한 본 발명은 상기 소결된 성형체를 750 내지 1,100 ℃에서 용융시킨 알루미늄과 반응시키는 반응단계를 포함한다. 탄화규소-알루미나/알루미늄 복합체를 만들기 위해서는 제조된 성형체와 금속 알루미늄을 담은 알루미나 도가니를 상온의 노내부에 장입한 후 분당 10 ℃ 이하의 속도로 승온하여 750 내지 1,100 ℃가 되면 노내에 유지된 성형체를 알루미늄 용탕 속에 침적시켜 일정시간 동안 반응시긴 후 시편을 알루미늄 용탕 속에서 꺼내면 탄화규소-알루미나/알루미늄 복합체를 얻을 수 있다. 상기 성형체와 용융시킨 알루미늄의 반응에 있어서 성형체 내의 실리카는 상기 반응식 1의 반응에 의해 알루미나화되며, 석출된 금속 규소는 금속 알루미늄에 고용되거나 알루미늄 용탕 속으로 빠져 나온다. 상기 반응에서 탄화규소는 성형체 내부에 그대로 존재하여 탄화규소-알루미나/알루미늄 복합체가 형성된다. 상기 반응시 반응온도를 750 ℃ 미만으로 하면 금속알루미늄의 용융에 시간이 많이 소요되며, 알루미늄과 성형체의 반응에 의한 복합체의 생성속도가 너무 느리다. 또한 1,100 ℃를 초과하면 알루미늄 용탕표면의 산화속도가 빨라서 비효율적이다. 상기 반응의 최적 반응온도는 1,000 ℃이다.The present invention also includes a reaction step of reacting the sintered molded body with the molten aluminum at 750 to 1,100 ℃. In order to make the silicon carbide-alumina / aluminum composite, an alumina crucible containing the manufactured molded body and metal aluminum is charged into a furnace at room temperature, and then heated at a rate of 10 ° C. or less per minute, and the molded body maintained in the furnace is reached at 750 to 1,100 ° C. After depositing in the molten aluminum for a certain time, the specimen is taken out of the molten aluminum to obtain a silicon carbide-alumina / aluminum composite. In the reaction of the molded body with the molten aluminum, the silica in the molded body is aluminized by the reaction of Scheme 1, and the precipitated metal silicon is dissolved in the metal aluminum or escapes into the molten aluminum. In this reaction, silicon carbide remains in the molded body to form a silicon carbide-alumina / aluminum composite. When the reaction temperature is less than 750 ℃ during the reaction, it takes a long time to melt the metal aluminum, the production rate of the composite by the reaction of the aluminum and the molded body is too slow. In addition, if it exceeds 1,100 ℃, the oxidation rate of the molten aluminum surface is fast and inefficient. The optimum reaction temperature of the reaction is 1,000 ° C.

도 1은 본 발명에 의하여 제조되는 탄화규소-알루미나/알루미늄 복합체를 나타낸 것이다. 도 1에서 ①은 본 발명의 상기 반응단계 후의 시편외관을 나타낸 것이고, ②는 시편의 절단면을 나타낸 것이고, ③은 탄화규소-알루미나/알루미늄 복합체를 나타낸 것이고, ④는 미반응된 성형체 상태의 탄화규소-실리카계의 소결체를 나타낸 것이다. 상기 도면은 탄화규소-알루미나/알루미늄 복합체가 세라믹 성형체 형상에 따라 제조될 수 있음을 보여준다.1 shows a silicon carbide-alumina / aluminum composite prepared according to the present invention. In Fig. 1, ① represents the specimen appearance after the reaction step of the present invention, ② represents the cut surface of the specimen, ③ represents the silicon carbide-alumina / aluminum composite, and ④ represents the silicon carbide in the unreacted molded body state. -Shows a silica-based sintered body. The figure shows that silicon carbide-alumina / aluminum composites can be produced according to the ceramic shaped body shape.

이하 본 발명의 실시예를 기재한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것으로서 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.Hereinafter, examples of the present invention will be described. However, the following examples are intended to illustrate the invention and the present invention is not limited by the following examples.

[실시예 1]Example 1

용융 실리카 분말 60 중량%와 탄화규소 분말 40 중량%를 혼합하여 알루미나 포트에서 24 시간 볼밀링하여 슬러리를 제조하였다. 상기 슬러리를 50 MPa의 압력으로 15 ψ× 10 mm 크기의 펠렛상 시편을 제조하였다. 상기 성형시편을 전기로를 이용하여 1,250 내지 1,450 ℃의 온도범위에서 각각 소성하였으며, 이때 승온속도는 분당 5 ℃로 하였고, 냉각은 자연노냉을 시켰다. 이렇게 얻어진 성형체를 700 내지 1,100 ℃의 온도범위에서 용융시킨 알루미늄과 5 시간 반응시켜 탄화규소-알루미나/알루미늄 복합체를 제조하였다.A slurry was prepared by mixing 60 wt% of fused silica powder and 40 wt% of silicon carbide powder by ball milling in an alumina pot for 24 hours. The slurry was prepared into pellet-shaped specimens having a size of 15 ψ × 10 mm at a pressure of 50 MPa. The molded specimens were fired at a temperature range of 1,250 to 1,450 ° C., respectively, using an electric furnace. At this time, the temperature increase rate was 5 ° C. per minute, and the cooling was natural furnace cooling. The molded article thus obtained was reacted with aluminum melted at a temperature in the range of 700 to 1,100 ° C. for 5 hours to prepare a silicon carbide-alumina / aluminum composite.

[실시예 2 내지 3, 비교예 1 내지 5][Examples 2 to 3 and Comparative Examples 1 to 5]

하기 표 1과 같은 내용으로 상기 실시예 1과 동일한 방법으로 실시하였다.It was carried out in the same manner as in Example 1 with the same content as Table 1 below.

[표 1]TABLE 1

실시예Example 비교예Comparative example 1One 22 33 1One 22 33 44 55 성형체의 조성Composition of the molded body SiCSiC 4040 3030 3030 55 6060 3030 3030 3030 SiO2 SiO 2 6060 7070 7070 9595 4040 7070 7070 7070 용융실리카의 소성온도(℃)Firing temperature of molten silica (℃) 14001400 14001400 13001300 14001400 14001400 14001400 14501450 12501250 성형체의 특성Characteristics of the molded body 성형체의 상대밀도(%)Relative Density (%) of Molded Body 9393 9595 9090 9595 8282 9090 9595 7373 성형체 내 실시카의 결정상Crystal phase of the car in the molded body 비정질Amorphous 비정질Amorphous 비정질Amorphous 비정질Amorphous 비정질Amorphous 비정질Amorphous 결정질Crystalline 비정질Amorphous 금속 알루미늄과의 반응온도(℃)Reaction temperature with metal aluminum (℃) 10001000 800800 10001000 10001000 10001000 700700 11001100 10001000 반응성 및 복합체의 특성Reactivity and Complex Properties 생성두께 (mm/hr)Produce thickness (mm / hr) 3.03.0 2.52.5 2.52.5 3.03.0 2.02.0 0.10.1 3.03.0 0.10.1 복합체의 외관 상태Appearance state of the complex 양호Good 양호Good 양호Good 양호Good 불량Bad 미반응Unreacted 균열존재Crack 미반응Unreacted 복합체 특성Composite properties 고강도, 고내마도High strength, high wear resistance 고강도High strength 고강도High strength 내마모성 부족, 저강도Lack of wear resistance, low strength -- 강도열화Strength deterioration --

상기 표 1에서 실시예 1 내지 3의 복합체는 고강도이며, 복합체의 외관이 양호함을 보여주었으나, 비교예 1 내지 5는 강도가 낮고, 본 발명의 반응단계에서의 반응이 불량하거나 또는 반응이 일어나지 않는 결과를 보여주었다.In Table 1, the composites of Examples 1 to 3 have high strength and good appearance of the composite, but Comparative Examples 1 to 5 have low strength, and the reaction in the reaction step of the present invention is poor or the reaction is poor. It showed no result.

상기 표 1에서 비교예 1과 2는 성형체의 구성에 있어서 탄화규소 및 실리카의 함량이 바람직한 범위를 벗어난 것으로 성형체 내에 탄화규소의 함량이 적은 것은 복합체 제조에는 문제가 없으나 내마모성을 향상시키는 효과가 없으며, 탄화규소의 함유량이 40 중량%를 초과하는 경우에는 성형체 제조시 치밀화가 어려우며, 복합체 내 금속 알루미늄의 함량이 부족하며 강도발현이 어려웠다.In Comparative Examples 1 and 2 in Table 1, the content of silicon carbide and silica in the composition of the molded product is out of the preferred range, and the content of silicon carbide in the molded product is not a problem in manufacturing the composite, but there is no effect of improving the wear resistance. When the content of silicon carbide exceeds 40% by weight, it is difficult to densify the molded body, and the content of metal aluminum in the composite is insufficient and the strength is difficult to express.

또한 상기 표 1에서 비교예 3은 세라믹 성형체와 용융 알루미늄과의 반응시 반응온도가 바람직한 범위를 벗어난 것으로, 낮은 온도 때문에 금속 알루미늄이 충분히 용융되지 않아서 반응성이 부족한 때문이다. 또한 비교예에 기재하지는 않았지만 상기 반응온도가 1,100 ℃를 초과하면 복합체 생성반응시 용융 알루미늄의 표면의 산화속도가 빨라져서 좋지 않다.In addition, in Table 1, Comparative Example 3 is a reaction temperature outside the preferred range during the reaction between the ceramic molded body and the molten aluminum, because the metal aluminum is not sufficiently melted due to the low temperature is insufficient reactivity. In addition, although not described in the comparative example, if the reaction temperature exceeds 1,100 ℃, the oxidation rate of the surface of the molten aluminum during the complex formation reaction is not good.

또한 상기 표 1에서 비교예 4 및 5는 성형체의 소성온도가 바람직한 범위를 넘는 것으로, 상기 비교예 4는 성형체의 소성온도가 너무 높은 경우로 이 경우 소결체의 밀도는 충분하나 높은 소성온도로 인하여 비정질 실리카가 상전이되면서 성형체 내부에 균열이 발생되어 균질한 복합체를 제조할 수 없었다. 상기 비교예 5의 경우는 소성온도가 너무 낮기 때문에 제조된 성형체의 기공율이 높으며, 이로 인하여 성형체를 용융 알루미늄과 반응시 표면만 반응되며, 오랜 시간 유지하여도 복합체의 제조가 불가능하였다.In addition, in Table 1, Comparative Examples 4 and 5 are those in which the firing temperature of the molded body exceeds a preferable range. In Comparative Example 4, the firing temperature of the molded body is too high. In this case, the density of the sintered compact is sufficient, but due to the high firing temperature, As the phase transition of silica caused cracks in the molded body, it was not possible to produce a homogeneous composite. In the case of Comparative Example 5, because the firing temperature is too low, the porosity of the produced molded article is high, because of this, only the surface is reacted when the molded product is reacted with molten aluminum, it is impossible to produce a composite even if maintained for a long time.

상기에서 살펴본 바와 같이, 본 발명에 의하여 탄화규소-알루미나/알루미늄 복합체를 제조할 경우 용융 알루미늄을 기공이 많이 함유된 세라믹 기재에 물리적으로 함침시키는 방법보다 제조가 용이하며, 세라믹 성형체의 형상에 따라 모양의 변형이 가능하며, 강도 및 파괴인성이 높아서 구조재료 또는 내마모성 재료에 사용될 수 있는 탄화규소-알루미나/알루미늄 복합체를 제조할 수 있었다.As described above, when manufacturing the silicon carbide-alumina / aluminum composite according to the present invention, it is easier to manufacture than the method of physically impregnating molten aluminum in the ceramic substrate containing a lot of pores, the shape according to the shape of the ceramic molded body It can be modified, and the high strength and fracture toughness could be produced a silicon carbide-alumina / aluminum composite that can be used in structural materials or wear-resistant materials.

Claims (2)

용융 실리카 분말 60 내지 90 중량% 및 탄화규소 분말 10 내지 40 중량%를 혼합하여 성형체 제조하는 단계;Preparing a molded body by mixing 60 to 90% by weight of fused silica powder and 10 to 40% by weight of silicon carbide powder; 상기 제조된 성형체를 소결하는 단계; 및Sintering the manufactured molded body; And 상기 소결된 성형체를 750 내지 1,100 ℃에서 용융시킨 알루미늄 용탕에 침적시켜 하기 반응식에 의하여 알루미나를 형성하는 단계:Depositing the sintered molded body on the molten aluminum melt at 750 to 1,100 ° C. to form alumina according to the following reaction scheme: 3SiO2+ 4Al → 2Al2O3+ 3Si3SiO 2 + 4Al → 2Al 2 O 3 + 3Si 를 포함하는 것을 특징으로 하는 탄화규소-알루미나/알루미늄 복합체의 제조방법.Method for producing a silicon carbide-alumina / aluminum composite comprising a. 제 1항에 있어서, 상기 소결단계에서의 소결온도가 1,300 내지 1,400 ℃인 것을 특징으로 하는 탄화규소-알루미나/알루미늄 복합체의 제조방법.The method of claim 1, wherein the sintering temperature in the sintering step is 1,300 to 1,400 ℃ manufacturing method of the silicon carbide-alumina / aluminum composite.
KR10-1999-0059908A 1999-12-21 1999-12-21 Fabrication method of SiC-Al2O3/Al composites KR100419059B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0059908A KR100419059B1 (en) 1999-12-21 1999-12-21 Fabrication method of SiC-Al2O3/Al composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0059908A KR100419059B1 (en) 1999-12-21 1999-12-21 Fabrication method of SiC-Al2O3/Al composites

Publications (2)

Publication Number Publication Date
KR20010063053A KR20010063053A (en) 2001-07-09
KR100419059B1 true KR100419059B1 (en) 2004-02-14

Family

ID=19627717

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0059908A KR100419059B1 (en) 1999-12-21 1999-12-21 Fabrication method of SiC-Al2O3/Al composites

Country Status (1)

Country Link
KR (1) KR100419059B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948593B1 (en) * 2009-11-06 2010-03-23 다이섹(주) Manufacturing method of Ceramic composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311289A1 (en) * 1987-09-30 1989-04-12 Ngk Insulators, Ltd. SiC-Al2O3 composite sintered bodies and method of producing the same
KR950011369A (en) * 1993-10-14 1995-05-15 조말수 Method for preparing alumina-silicon carbide composite powder
WO1997001679A1 (en) * 1995-06-29 1997-01-16 Minnesota Mining And Manufacturing Company High entrance angle retroreflective article with spherical refracting elements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311289A1 (en) * 1987-09-30 1989-04-12 Ngk Insulators, Ltd. SiC-Al2O3 composite sintered bodies and method of producing the same
KR950011369A (en) * 1993-10-14 1995-05-15 조말수 Method for preparing alumina-silicon carbide composite powder
WO1997001679A1 (en) * 1995-06-29 1997-01-16 Minnesota Mining And Manufacturing Company High entrance angle retroreflective article with spherical refracting elements

Also Published As

Publication number Publication date
KR20010063053A (en) 2001-07-09

Similar Documents

Publication Publication Date Title
CN103626498B (en) Boron nitride based ceramic nozzle and preparation method thereof
JPH0633193B2 (en) Hard mullite-whisker felt manufacturing method
JPS62292683A (en) Composite body by osmotic process
KR101719284B1 (en) Sialon bonded silicon carbide material
JPH0545554B2 (en)
JP3000151B2 (en) Refractory support and method for producing the same
KR100419059B1 (en) Fabrication method of SiC-Al2O3/Al composites
JP3839537B2 (en) Production method of opaque quartz glass containing fine bubbles
JP2002226285A (en) Lightweight ceramic member and method for manufacturing the same
KR100758440B1 (en) Fabrication method of Al203-ZrO/Al composites
JPS627649A (en) Glass-ceramic product and its production
JPS629548B2 (en)
KR19990018885A (en) Method for producing alumina / aluminum composite
JPH03183641A (en) Oxygen-nitrogen glass composition, its presursor and vitreous ceramic and application thereof to preparation of composite material
KR101343808B1 (en) Composite for low temperature sinterable porcelain and manufacturing method of low temperature sinterable porcelain
WO1996000702A1 (en) Sintered quartz glass products and methods for making same
RU2170715C2 (en) Method of preparing products from sintered glass crystalline lithium alumosilicate material
KR20000009740A (en) Preparation method of alumina-spinel/aluminium composite
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
CN114920578B (en) Preparation method of porous anorthite/gehlenite complex-phase ceramic with low firing shrinkage rate
CN114085087B (en) Combined filler for sintering ceramic core and application method
CN114656249B (en) High-strength tawnite-based thin ceramic plate and preparation method thereof
KR19990018886A (en) Manufacturing Method of Alumina / Aluminum Composite Using Fused Silica Sintered Body
CN113173800B (en) beta-Sialon porous ceramic and preparation method thereof
JPS6374978A (en) Ceramic composite body

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee