KR100416653B1 - Sludge loosing method using Electo-chemical oxidation and reduction process for the polluted water treatment system - Google Patents

Sludge loosing method using Electo-chemical oxidation and reduction process for the polluted water treatment system Download PDF

Info

Publication number
KR100416653B1
KR100416653B1 KR10-2001-0020332A KR20010020332A KR100416653B1 KR 100416653 B1 KR100416653 B1 KR 100416653B1 KR 20010020332 A KR20010020332 A KR 20010020332A KR 100416653 B1 KR100416653 B1 KR 100416653B1
Authority
KR
South Korea
Prior art keywords
sludge
treatment
organic matter
wastewater
metabolism
Prior art date
Application number
KR10-2001-0020332A
Other languages
Korean (ko)
Other versions
KR20020080644A (en
Inventor
박두현
김시균
신인호
정유정
이대식
임중규
차진열
Original Assignee
주식회사 나인댑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나인댑스 filed Critical 주식회사 나인댑스
Priority to KR10-2001-0020332A priority Critical patent/KR100416653B1/en
Publication of KR20020080644A publication Critical patent/KR20020080644A/en
Application granted granted Critical
Publication of KR100416653B1 publication Critical patent/KR100416653B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Sludge (AREA)

Abstract

본 발명은 전기화학적 접촉산화환원반응에 의한 폐수처리공정 그리고 그에 적합한 장치에 관한 것이다.The present invention relates to a wastewater treatment process by an electrochemical catalytic redox reaction and a device suitable therefor.

각종 산업용수나 생활하수로 구성된 오폐수를 활성슬러지법에 의하여 유기물을 분해제거하면 슬러지가 발생한다. 발생된 슬러지는 감량과정을 거쳐 폐기하며, 소각, 해양투기등의 방법이 사용되어 또다른 2차적인 오염원인이 된다.Sludge is generated when organic matter is decomposed and removed by waste sludge composed of various industrial water or domestic sewage. The sludge generated is disposed of through the weight loss process and used as incineration, ocean dumping, etc., which is another secondary source of pollution.

본 발명은 미생물의 유기물분해대사를 최대한 촉진하도록 전극접촉에 의하여 조절하므로서 미생물의 에너지대사를 비정상적으로 높이고 불활성의 유기물도 접촉산화환원처리하여 대사효율성을 높이는 이중적인 작동에 의하여 대부분의 유기물을 분해처리하도록 하여 슬러지의 생성비를 낮추도록 하였다. 즉, 미생물이 다단계의 대사경로를 통하여 산화하면서 에너지를 소비하게 되는 데, 대사경로가 변형되거나 차단되는 경우 기능을 유지할 수 없게 되어 미생물이 보다 많은 에너지를 생산하도록 하므로서 미생물의 생장량과 관계없이 유기물의 분해효율을 높이도록 하는 것이다.The present invention is to control the decomposition of most organic matter by the dual operation to increase the metabolism efficiency by abnormally increasing the energy metabolism of the microorganism and the contact redox treatment of inert organic matter by controlling the electrode contact to promote the organic decomposition metabolism of the microorganism as much as possible. To lower the production rate of sludge. In other words, microorganisms consume energy while oxidizing through multi-step metabolic pathways. When metabolic pathways are altered or blocked, they cannot maintain their functions, allowing microorganisms to produce more energy. It is to increase the decomposition efficiency.

또한 이러한 장치들이 기존의 설비에 간단히 설치하여 사용가능하며, 공정의 변화나 시설물의 개체등의 작업이 필요없이 현존시설을 그대로 이용하도록 하므로서 운영비와 설치비용이 최소화하면서도 최대의 처리효율을 나타내도록 한 것이다.In addition, these devices can be easily installed and used in existing facilities, and the existing facilities can be used as they are without the need for process changes or individual objects of the facilities. will be.

Description

전기화학적 접촉산화환원반응에 의한 폐수처리공정에서의 슬러지 감량방법 {Sludge loosing method using Electo-chemical oxidation and reduction process for the polluted water treatment system}Sludge loosing method using Electo-chemical oxidation and reduction process for the polluted water treatment system

본 발명은 전기화학적 접촉산화환원반응에 의한 폐수처리공정에서의 슬러지 감량방법에 관한 것이다.The present invention relates to a sludge reduction method in a wastewater treatment process by an electrochemical catalytic redox reaction.

오수는 인간의 활동과정에서 사용하고 버린 용수로 생활하수가 대부분을 차지하고 있으며, 유기물의 함량이 높아 비교적 처리가 용이한 폐기물이다. 그러나 오수를 처리하는 과정에서 유기물의 30∼40%는 생물량으로 전환되어 난분해성 유기성 부유물, 무기물 등과 혼합되어 슬러지를 형성하게 되고 추가로 슬러지의 처리공정을 통해 감량과정을 거쳐서 폐기하게 된다.Sewage is a wastewater used and used in human activities. Most of the sewage is sewage. However, in the process of treating sewage, 30-40% of organic matter is converted into biomass and mixed with hardly decomposable organic suspended matter and inorganic matter to form sludge, which is further disposed of through sludge treatment.

일반적으로 슬러지의 60%는 수분이고 고형분 가운데 40%는 무기물이기 때문에 이론적으로 슬러지 가운데 36%정도가 유기물이다. 슬러지는 일반적으로 혐기 소화조를 통해 발효공법으로 처리되기 때문에 유기물의 60%정도만 분해되고 나머지는 다시 생물량으로 존속하게 되어 전체 슬러지의 약 38∼40%는 매립이나 해양투기, 소각등의 처리공정을 통하여 최종적으로 처리된다.In general, about 60% of the sludge is water and 40% of the solid is inorganic, so in theory, about 36% of the sludge is organic. Since sludge is generally treated by fermentation process through anaerobic digester, only 60% of organic matter is decomposed and the rest is retained as biomass. About 38-40% of the sludge is treated through landfill, ocean dumping, incineration, etc. Finally processed.

이같은 슬러지 처리공정은 오.폐수의 처리공정에 비하여 체류시간이 길기 때문에 용량의 대형화가 불가피하고, 처리과정에서 온난화가스, 악취등이 발생하기 때문에 2차적인 대기오염의 원인이 될 수 있다. 따라서 원초적인 슬러지의 감량기술은 슬러지의 처리비용, 처리시간, 2차오염뿐만아니라 매립, 소각, 해양투기등에 의한 문제를 부분적으로 해소할 수 있기 때문에 그 기능성이 갖는 잠재적 유용성을 확산, 보급할 필요가 있다.This sludge treatment process has a longer residence time than the treatment process of wastewater, which inevitably leads to an increase in capacity, and may cause secondary air pollution due to warming gas and odor generated during the treatment process. Therefore, the original sludge reduction technology can partially solve the problems caused by sludge treatment cost, treatment time, secondary pollution, landfilling, incineration, ocean dumping, etc. have.

폐수는 대부분 공업용수의 사용과정에서 발생하는 데 대상 공정에 따라 폐수의 종류와 성상의 차이가 크고 같은 폐수라도 성분함량 및 조성의 차이가 크기 때문에 획일적인 방법에 의한 처리가 불가능하다. 그러나 폐수 또한 오수와 같이 독성이나 난분해성이 아닌 경우에는 생물학적 처리공법에 의존하기 때문에 슬러지의 발생은 오수와 같이 폐수성분중의 유기물농도에 비례할 수 있다. 그러나 폐수의 슬러지에는 오수와 달리 공정 특유의 난분해성 및 잠재독성 물질이 포함될 수 있기 때문에 일단 슬러지가 발생하면 소각이나 매립시 특별한 관리가 요구될 수 있다. 따라서 슬러지의 발생량을 가능한 최소화하는 것이 환경보전과 경제적인 처리공정의 개발을 위해 유리하다.Most of the wastewater is generated in the process of using industrial water, and it is impossible to treat it in a uniform way because the difference in the content and composition of the wastewater is large depending on the target process. However, since the wastewater is not toxic or hardly decomposable, such as sewage, sludge generation may be proportional to the concentration of organic matter in the wastewater, such as sewage. However, sludge from wastewater, unlike sewage, may contain process-specific hardly decomposable and potentially toxic substances, so once sludge is generated, special management may be required for incineration or landfill. Therefore, minimizing sludge generation as much as possible is advantageous for environmental conservation and development of economical treatment process.

우리나라의 다양한 공업현장의 폐수와 관련된 폐수처리장에서는 다양한 종류의 난분해성 물질을 배출하기 때문에 화학적 응집처리를 요구하고 이에따른 화학슬러지의 발생량 또한 2차, 3차 처리공정을 통해 처리되어야 하기 때문에 실절적인 폐수의 처리는 원폐수의 처리보다 원폐수의 처리공정에서 발생하는 슬러지 처리를 위해 보다 많은 시간과 비용을 요구할 수 있다.Since wastewater treatment plants related to wastewater in various industrial sites in Korea discharge various kinds of hardly decomposable substances, chemical flocculation treatment is required, and the amount of chemical sludge generated must be treated through secondary and tertiary treatment processes. The treatment of waste water may require more time and cost for the treatment of sludge from the treatment of raw waste water than the treatment of raw waste water.

공업용 폐수를 생물학적으로 처리하기 위해서는 활성화된 호기성 미생물에 의하여 유기물을 흡착, 분해시키는 활성슬러지 공법이 가장 많이 이용되고 있으나, 슬러지 발생량이 많고 침전조에서 고액분리가 잘되지 않는 단점이 있다. 또한 폐수내의 다양한 난분해성 물질은 대부분 미생물의 활성에 영향을 줄 수가 있어 처리효율에 영향을 미치게 된다.In order to biologically treat industrial wastewater, the activated sludge method of adsorbing and decomposing organic substances by activated aerobic microorganisms is most used, but there are disadvantages in that a large amount of sludge is generated and solid-liquid separation in a sedimentation tank is difficult. In addition, various hardly decomposable substances in the waste water can affect the activity of most microorganisms and thus affect the treatment efficiency.

폐수의 유기물을 제거하기 위하여 현재 가장 보편화되어 있는 폐수처리기술은 일괄처리 방식으로 공장내에서 발생한 폐수를 통합처리하는 방식이다. 그러나 이방식은 생활폐수나 가정하수를 처리하는 방식으로 고농도, 난분해성의 공장폐수처리에는 많은 문제점을 안고 있으며, 비효율적 처리방식으로 인식되고 있다. 가장 바람직한 방법은 각 공정에서 발생하는 폐수를 종류별로 분류하여 처리하는 것인데 이를 위해서는 많은 추가적인 설비의 투자가 이루어져야 하고 공정별 처리공정을 연계하여야 하기 때문에 처리비용 또한 크게 요구된다. 이러한 일괄통합처리방식은 공정별로 세제, 중금속, 윤활유, 유기용제, 무기산등을 완전히 분리하여 배출할 수 있어야 가능하기 때문에 현실적으로 적용하기 어려운 처리방법이다.The most common wastewater treatment technology to remove organic matter from wastewater is the integrated treatment of wastewater generated in the plant in a batch process. However, this method is a method of treating domestic wastewater or household sewage, which has many problems in high concentration and hardly degradable factory wastewater treatment, and is recognized as an inefficient treatment method. The most preferable method is to classify and treat the wastewater generated in each process, which requires a lot of additional equipment investment and requires a high treatment cost because it requires linking process by process. This batch integrated treatment method is difficult to apply practically because it is possible to completely discharge the detergent, heavy metals, lubricants, organic solvents, inorganic acids, etc. by each process.

본 발명은 생물학적 처리공정에서 미생물의 생장환경을 불규칙하게 변화시켜미생물 대사활성을 촉진하고 궁극적으로 미생물의 산화-환원대사의 전환 기회를 인공적으로 제공함으로써 미생물의 대사과정에서 생산한 자유에너지 소비를 촉진하는 것이다.The present invention promotes microbial metabolic activity by irregularly changing the growth environment of microorganisms in a biological treatment process and ultimately promotes free energy consumption produced in the metabolic process of microorganisms by artificially providing an opportunity for microbial oxidation-reduction metabolism. It is.

또한 이같은 자유에너지의 소비 촉진을 위하여 고가의 설비나 추가시설이 필요없이 전극과 전극에 4V이하의 낮은 전력을 공급하는 시설의 설치만으로 목적한 대사활성을 촉진가능하게하는 것이다.In addition, in order to promote the consumption of free energy, it is possible to promote the desired metabolic activity only by the installation of the electrode and the low power supply of less than 4V to the electrode without the need for expensive facilities or additional facilities.

또한 음양의 전극으로 나뉘어져 호흡환경에 공급이 되므로 전극표면에서 난분해성 유기물이 산화되거나 환원될 수 있기 때문에 미생물에 의하여 분해가능한 구조로 변환되어 효율적인 분해제거가 가능하게 되는 것이다.In addition, since it is divided into yin and yang electrodes and is supplied to the respiratory environment, since the hardly decomposable organic matter may be oxidized or reduced on the electrode surface, it is converted into a structure decomposable by microorganisms, thereby enabling efficient decomposition and removal.

특히 음양전극의 변환에 의하여 가해지는 스트레스는 미생물의 기초대사 에너지의 과소비를 촉진하게 된다. 만약 미생물이 미생물환경에 유기물이 과량 존재하면 유기물을 분해하여 과소비에 필요한 에너지를 보충하고 생물량을 유지할 수 있는 조건을 형성할 수 있기 때문에 유기물의 분해, 제거 효율을 크게 증가하고자 하는 것이다.In particular, the stress exerted by the conversion of the negative electrode promotes the overconsumption of the metabolic energy of the microorganism. If microorganisms have an excessive amount of organic matter in the microbial environment, organic matters can be decomposed to replenish energy required for overconsumption and form conditions to maintain biomass, thereby greatly increasing the efficiency of decomposition and removal of organic matter.

도 1 은 대표적인 설치상태를 보여주는 사시도임.1 is a perspective view showing a representative installation state.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1:폭기조 2:다공성격막 3,4:전극형담체 15:침전조DESCRIPTION OF SYMBOLS 1 Aeration tank 2 Porous membrane 3, 4 Electrode carrier 15 Sedimentation tank

본 발명은 반응조내에 10톤당 일정한 크기의 전극전기화학적 접촉산화환원반응이 가능한 전극담체를 설치하고, 음양극의 크기를 동일하게 한 후 불규칙하게 음-양극을 변경할 수 있는 전압-전류 공급장치를 통하여 기존 공정의 구조 변경 없이 슬러지의 발생양을 획기적으로 절감할 수 있는 방법을 제공하고자 하는 것이다.The present invention is to install an electrode carrier capable of electrochemical catalytic redox reaction of a certain size per 10 tons in the reaction tank, through the voltage-current supply device that can change the negative-electrode irregularly after the same size of the negative electrode It is to provide a way to drastically reduce the amount of sludge generated without changing the structure of the existing process.

본 발명에서 공급되는 전압은 4V이하의 낮은 전압으로 미생물의 생리적 조건에 따라서 산화 또는 환원전극에 미생물이 흡착할 수 있게 된다. 즉, 호흡에 의하여 에너지를 생산하는 미생물은 배양액의 산화-환원 전위의 영향을 받기 때문에 환원성 환경을 요구하는 세균은 음극에 산화성 환경을 요구하는 세균은 양극에 흡착하여 유리한 생리대사를 유지한다. 호기성 호흡세균은 산화성 환경에서 대사활성이 촉진되며 혐기성 호흡세균은 환원성 환경에서 대사활성이 촉진된다. 이와같이 전기화학적으로 산화-환원전위를 일정하게 유지함으로서 미생물의 대사활성은 물론 전극표면에서 난분해성 유기물이 산화 또는 환원되어 미생물에 의하여 분해가능한 구조로 전환될 수 있고, 산화-환원반응에 의하여 안정화된 유기물은 미생물에 대한 저해작용이 감소하게 되어 그 효율성이 높아지는 것이다.The voltage supplied in the present invention is a low voltage of 4V or less to allow the microorganism to adsorb to the oxidation or reduction electrode according to the physiological conditions of the microorganism. That is, microorganisms that produce energy by respiration are affected by the oxidation-reduction potential of the culture medium, so that bacteria requiring a reducing environment are absorbed at the cathode, and bacteria that require an oxidative environment are absorbed at the anode to maintain favorable physiological metabolism. Aerobic respiratory bacteria promote metabolic activity in an oxidative environment and anaerobic respiratory bacteria promote metabolic activity in a reducing environment. By maintaining the oxidation-reduction potential constant in this way, the metabolic activity of the microorganism as well as the hardly decomposable organic matter on the electrode surface can be oxidized or reduced to be converted into a structure decomposable by the microorganism, and stabilized by the oxidation-reduction reaction. The organic matter is to reduce the inhibitory action on the microorganism is to increase the efficiency.

본 발명의 구체적인 예를 첨부한 도면에 의하여 설명한다.The specific example of this invention is demonstrated by attached drawing.

도 1 은 본 발명의 구체적인 설치상태를 도시한 사시도이다.1 is a perspective view showing a specific installation state of the present invention.

본 발명은 가정 및 산업현장에서 발생하는 오수와 폐수를 처리하는 활성슬러지법에 사용되는 폭기조에 있어서, 다공성격막(2)에 의하여 폭기조를 양분한 다음 양측 각각에 하나 이상의 전극형담체(3,4)를 설치하고, 전극형담체에 50~60mA, 0.5~4V의 직류 단자를 연결하여 다공성격막으로 분리된 일측은 산화계로 타측은 환원계로 유지되도록 구성된다. 공급된 직류의 음극과 양극을 변환하거나 전류량을 불규칙하게 변화시킴으로써 미생물의 대사활동이 촉진되어 오·폐수 처리시 슬러지의 발생이 감소하게 된다.본 발명에서 공급되는 전압은 0.5V이하로 공급시 전위차가 너무 약하여 목적한 산화환원계를 유지하는 효과를 거둘 수 없으며, 4V 이상으로 가하게 되면 내부의 염류가 전기화학적인 분해현상이 발생하여 염소가스의 발생과 같은 부생기체에 의한 미생물의 활성저하를 초래할 수 있다.The present invention, in the aeration tank used in the activated sludge method for treating sewage and wastewater generated at home and industrial sites, by dividing the aeration tank by the porous diaphragm (2), at least one electrode carrier (3, 4) on each side ), And 50 ~ 60mA, 0.5 ~ 4V DC terminals are connected to the electrode carrier, and one side separated by the porous diaphragm is configured to be maintained as an oxidizing system and the other side as a reducing system. The metabolic activity of microorganisms is promoted by changing the supplied cathode and anode of the direct current or changing the amount of current irregularly to reduce the generation of sludge in the treatment of wastewater. The voltage supplied in the present invention is 0.5V or less. Is too weak to maintain the desired redox system, and if it is added above 4V, salts inside will electrochemically decompose, resulting in deactivation of microorganisms caused by by-products such as chlorine gas. Can be.

본 발명에서 다공성격막(2)은 두께 5∼10㎜로 하며, 격막에 형성된 다공부(2a)를 통하여 반응성 유기물이 자유롭게 이동가능하게 된다. 다공성격막에 의한 양음의 2개층으로 구분하는 것은 반응이 격막으로 분리된 전체 영역에서 발생하기 때문에 극히 효과적이다.In the present invention, the porous membrane 2 has a thickness of 5 to 10 mm, and the reactive organic material is freely movable through the porous portion 2a formed in the membrane. Dividing into two layers of positive and negative by a porous diaphragm is extremely effective because the reaction occurs in the whole area separated by the diaphragm.

본 발명에서 전극형담체(3)(4)는 서로 다른 (+)(-)의 전극을 연결한 전기전도체로 구성된 것이며, 구체적으로는 일반적인 구리, 철등의 금속재가 적합하지만, 내부에 공급되는 오폐수의 특성이 다양하다는 점에 비추어 내화학성을 갖춘 무기질재의 도전체로서 세라믹전극체나 탄소전극체등을 사용하는 것이 바람직하다.In the present invention, the electrode carrier (3) (4) is composed of an electrical conductor connecting different (+) (-) electrodes, specifically, a general metal, such as copper, iron is suitable, but the waste water supplied to the inside It is preferable to use a ceramic electrode body or a carbon electrode body as a conductor of an inorganic material having chemical resistance in view of the variety of properties.

본 발명에 적합한 장치로서 제공한 도1에서는 폭기조의 내부에 전극형 담체(3)(4)를 3개 삽입하였으나 그 설치숫자는 용량에 의하여 증감가능하며, 크기또한 설치조의 크기와 용량에 맞추어 증감하여 준다. 또한 산기관(20)의 설치도 산화계와 환원계 모두에 설치하는 것이 효율적이며, 본 발명에서는 설명상 일측에만 설치하였으나 이것으로 본발명을 제한하고자 하는 것은 아니다.In FIG. 1 provided as a device suitable for the present invention, three electrode-type carriers 3 and 4 are inserted into the aeration tank, but the installation numbers thereof can be increased or decreased by capacity, and the size is also increased or decreased according to the size and capacity of the installation tank. Give it. In addition, it is efficient to install the diffuser 20 in both the oxidizing system and the reducing system. In the present invention, only one side is provided for explanation, but the present invention is not intended to be limited thereto.

본 발명에서 미설명부호 10은 유입수도관이며, 11은 환류유입도관이며, 15는 침전조이며, 20은 산기관이다.In the present invention, reference numeral 10 is an inlet water pipe, 11 is a reflux inlet pipe, 15 is a settling tank, 20 is an acid pipe.

이상의 본발명의 장치를 실제로 설치한 실시예로서 중랑하수 종말처리장 및 의정부시 소재 신성염료공장에서 제공한 염색폐수를 이용한 시험결과를 제시한다.As an example in which the apparatus of the present invention is actually installed, test results using dye wastewater provided by Jungnang Sewage Terminal Treatment Plant and Sinye Dye Plant in Uijeongbu City are presented.

표1(중랑하수 오수종말처리장 집수조의 처리결과)Table 1 (Results of the treatment tank of Jungnang Sewage Sewage Treatment Plant)

구 분division 분석항목Analysis item 실험기간(일); 단위 ㎎/ℓ;슬러지량-건조중량Duration of experiment (days); Unit mg / l; sludge amount-dry weight 1One 22 33 44 55 66 원 수enemy CODCOD 114114 115115 118118 111111 111111 123123 NO₃NO₃ 2.442.44 2.432.43 2.22.2 2.12.1 2.32.3 2.22.2 NO₂NO₂ 0.330.33 0.120.12 0.220.22 0.220.22 0.120.12 0.210.21 PO₄PO₄ 0.340.34 0.340.34 0.380.38 0.340.34 0.420.42 0.890.89 TNTN 11.311.3 12.312.3 12.312.3 10.910.9 14.514.5 15.915.9 TPTP 1.231.23 1.341.34 1.231.23 1.541.54 2.032.03 1.981.98 슬러지양Sludge 실험구Experiment CODCOD 17.617.6 12.412.4 21.421.4 19.719.7 25.525.5 28.728.7 NO₃NO₃ 2.212.21 1.941.94 1.891.89 2.002.00 1.991.99 1.781.78 NO₂NO₂ 0.330.33 0.210.21 0.120.12 0.120.12 0.220.22 0.240.24 PO₄PO₄ 0.580.58 1.231.23 1.361.36 0.980.98 1.461.46 1.881.88 TNTN 12.412.4 9.89.8 9.69.6 8.48.4 9.39.3 11.511.5 TPTP 1.331.33 1.111.11 1.021.02 1.141.14 1.231.23 1.231.23 슬러지양Sludge 12.712.7 11.511.5 10.810.8 13.113.1 12.512.5 11.411.4 대조구Control CODCOD 22.922.9 25.725.7 28.528.5 23.423.4 23.223.2 25.825.8 NO₃NO₃ 2.322.32 2.122.12 1.981.98 1.951.95 1.931.93 1.981.98 NO₂NO₂ 0.340.34 0.350.35 0.360.36 0.290.29 0.340.34 0.360.36 PO₄PO₄ 0.660.66 0.590.59 1.231.23 1.541.54 2.012.01 1.981.98 TNTN 13.313.3 12.112.1 12.512.5 11.511.5 10.610.6 10.310.3 TPTP 1.321.32 1.671.67 1.891.89 1.561.56 1.321.32 1.781.78 슬러지양Sludge 24.524.5 24.624.6 26.326.3 28.228.2 24.624.6 22.522.5

상기의 표1은 중랑하수 종말처리장의 오수 집수조에서 운반하여 그대로 사용한 오수처리과정에서 COD, 질산염, 아질산염, 인산염, 총인, 총질소등의 정량적 변화를 보여주는 것으로 처리효율이 전체적으로 10에서 20%가량 증가하였으며, 슬러지의 방출량은 50%이상 감소하였다. 표2(중랑하수종말처리장 오수의 처리결과) Table 1 shows the quantitative change of COD, nitrate, nitrite, phosphate, total phosphorus, total nitrogen, etc. during the sewage treatment used in the sewage collection tank of Jungnang Sewage Terminal Treatment Plant. The amount of sludge released was reduced by more than 50%. Table 2 (Results of Treatment of Sewage in Jungnang Sewage Treatment Plant)

구 분division 분석항목Analysis item 실험기간(일); 단위 ㎎/ℓ;슬러지량-건조중량Duration of experiment (days); Unit mg / l; sludge amount-dry weight 1One 22 33 44 55 66 원 수enemy CODCOD 123123 123123 115115 135135 134134 134134 NO₃NO₃ 2.652.65 3.113.11 3.233.23 3.233.23 3.43.4 3.93.9 NO₂NO₂ 0.430.43 0.340.34 0.330.33 0.230.23 0.330.33 0.340.34 PO₄PO₄ 0.540.54 0.520.52 0.480.48 0.450.45 0.370.37 0.590.59 TNTN 11.411.4 14.314.3 13.613.6 13.713.7 13.913.9 13.213.2 TPTP 1.431.43 1.7841.784 2.112.11 2.122.12 2.112.11 1.991.99 슬러지양Sludge 실험구Experiment CODCOD 21.321.3 14.514.5 15.415.4 16.216.2 22.422.4 24.524.5 NO₃NO₃ 1.671.67 1.561.56 1.661.66 1.551.55 1.741.74 1.651.65 NO₂NO₂ 0.430.43 0.420.42 0.390.39 0.230.23 0.210.21 0.250.25 PO₄PO₄ 0.450.45 0.340.34 0.340.34 0.320.32 0.430.43 0.440.44 TNTN 12.412.4 9.89.8 9.69.6 8.48.4 9.39.3 11.511.5 TPTP 1.211.21 1.221.22 0.990.99 0.890.89 1.341.34 1.121.12 슬러지양Sludge 11.911.9 13.213.2 15.415.4 16.116.1 13.613.6 13.413.4 대조구Control CODCOD 24.324.3 22.522.5 21.521.5 19.819.8 19.819.8 25.925.9 NO₃NO₃ 1.771.77 1.781.78 1.931.93 1.781.78 1.991.99 1.931.93 NO₂NO₂ 0.430.43 0.420.42 0.210.21 0.350.35 0.370.37 0.390.39 PO₄PO₄ 0.550.55 0.650.65 0.650.65 0.680.68 0.540.54 0.450.45 TNTN 12.612.6 13.113.1 13.613.6 12.612.6 13.813.8 14.314.3 TPTP 1.431.43 1.561.56 1.981.98 2.092.09 2.142.14 1.981.98 슬러지양Sludge 26.826.8 23.123.1 24.324.3 24.524.5 23.123.1 26.326.3

상기의 표2는 표1의 실험 2주일후 중랑하수 종말처리장의 오수 집수조에서 운반하여 그대로 사용한 오수의 처리과정의 결과로써 COD, 질산염, 아질산염, 인산염, 총인, 총질소 등의 처리효율이 전체적으로 10에서 20%증가하였고, 슬러지의 발생량은 60%이상 감소한 것으로 나타났다. 표3(염색폐수의 처리결과) Table 2 shows the results of the treatment of sewage used in the sewage collection tank of Jungnang Sewage Terminal Treatment Plant after 2 weeks of experiment of Table 1, and the treatment efficiency of COD, nitrate, nitrite, phosphate, total phosphorus, total nitrogen, etc. Was increased by 20% and sludge production decreased by more than 60%. Table 3 (Results of Treatment of Dye Wastewater)

구 분division 분석항목Analysis item 실험기간(일); 단위 ㎎/ℓ;슬러지량-건조중량Duration of experiment (days); Unit mg / l; sludge amount-dry weight 1One 22 33 44 55 66 원 수enemy CODCOD 17361736 18321832 19601960 19341934 18161816 18941894 NO₃NO₃ 7.67.6 8.38.3 8.28.2 7.87.8 8.28.2 8.68.6 NO₂NO₂ 0.280.28 0.320.32 0.340.34 0.360.36 0.290.29 0.270.27 PO₄PO₄ 27.927.9 28.328.3 23.623.6 24.424.4 30.430.4 25.625.6 TNTN 33.533.5 38.438.4 41.441.4 34.934.9 37.637.6 36.536.5 TPTP 98.698.6 89.889.8 91.591.5 95.295.2 95.695.6 96.196.1 슬러지양Sludge 실험구Experiment CODCOD 383383 415415 395395 413413 405405 393393 NO₃NO₃ 5.75.7 4.84.8 6.36.3 4.74.7 5.55.5 6.46.4 NO₂NO₂ 0.030.03 0.350.35 0.040.04 0.060.06 0.040.04 0.080.08 PO₄PO₄ 24.324.3 23.623.6 18.818.8 19.619.6 21.621.6 18.218.2 TNTN 28.628.6 26.526.5 30.230.2 22.322.3 28.628.6 31.231.2 TPTP 78.578.5 80.080.0 69.469.4 67.367.3 77.077.0 72.472.4 슬러지양Sludge 26.526.5 27.427.4 29.429.4 31.231.2 23.223.2 28.828.8 대조구Control CODCOD 504504 543543 512512 498498 487487 535535 NO₃NO₃ 6.46.4 7.37.3 8.48.4 8.88.8 7.37.3 6.96.9 NO₂NO₂ 0.20.2 0.10.1 0.230.23 0.20.2 0.10.1 0.20.2 PO₄PO₄ 22.922.9 28.528.5 25.425.4 22.122.1 24.324.3 25.925.9 TBTB 30.630.6 27.427.4 29.629.6 24.524.5 34.534.5 38.838.8 TPTP 83.283.2 79.979.9 78.278.2 80.080.0 83.283.2 84.384.3 슬러지양Sludge 63.663.6 59.859.8 61.861.8 67.667.6 59.859.8 60.460.4

상기의 표3은 용인시 소재 삼부염색폐수 처리장의 집수조에서 운반하여 그대로 사용한 폐수의 처리과정의 결과로써 COD, 질산염, 아질산염, 인산염, 총인, 총질소 등의 처리효율이 전체적으로 약 10에서 15% 증가하였고, 슬러지의 발생양은 40%이상 감소하였다.Table 3 above shows that the treatment efficiency of COD, nitrate, nitrite, phosphate, total phosphorus, total nitrogen, etc. was increased from about 10 to 15% as a result of the wastewater transported from the collection tank of Sambu Dyeing Wastewater Treatment Plant in Yongin. The amount of sludge produced was reduced by more than 40%.

이상 본 발명의 실시예에서 나타나듯이 오·폐수를 처리함에 있어 물리화학적인 전처리를 하지 않아도 슬러지의 발생량이 획기적으로 절감되어 슬러지의 매립이나 소각등으로 인한 문제점을 줄일 수 있게 된다.As shown in the embodiment of the present invention, in the treatment of the waste water, the generation amount of sludge is drastically reduced even without physical and chemical pretreatment, thereby reducing the problems caused by the landfill or incineration of the sludge.

특히 본 발명은 기존의 폭기조에 다공성격막과 전극형담체의 설치만으로 이와같은 효과를 거두게 되므로 설치시 설계 및 구조변경에 따른 비용의 발생이 거의 없다는 장점도 있어 현재의 어떠한 오·폐수 처리시스템에도 즉시 도입하여 적용할 수 있다.In particular, since the present invention achieves such an effect only by installing the porous diaphragm and the electrode-type carrier in the existing aeration tank, there is an advantage in that there is almost no cost incurred due to the design and structural change during the installation. It can be introduced and applied.

Claims (5)

삭제delete 삭제delete 가정 및 산업현장에서 발생하는 오수와 폐수를 처리하는 활성슬러지법에 사용되는 폭기조에 있어서, 다공성격막(2)으로 양분하고, 양측 각각에 하나 이상의 전극형담체(3, 4)를 설치한 폭기조(1)In the aeration tank used in activated sludge method for treating sewage and wastewater generated at home and industrial sites, the aeration tank is divided into a porous diaphragm 2, and one or more electrode carriers 3 and 4 are provided on each side. One) 제3항의 폭기조(1)에 설치된 전극형담체(3, 4)에 50~60mA, 0.5~4V의 직류전원을 공급하여 다공성격막(2)으로 분리된 일측은 산화계로, 타측은 환원계로 유지토록 하며, 음극과 양극을 변환하거나, 전류량을 불규칙하게 변화시킴으로써 미생물의 대사활동을 촉진시켜 오수와 폐수를 처리하는 방법Supplying a DC power supply of 50 ~ 60mA, 0.5 ~ 4V to the electrode carrier (3, 4) installed in the aeration tank (1) of claim 3 so that one side separated by the porous diaphragm (2) is maintained in the oxidizing system, the other side in the reducing system The method of treating sewage and wastewater by promoting the metabolic activity of microorganisms by changing the cathode and anode or changing the amount of current irregularly. 제4항에 있어서 다공성격막(2)에 형성된 다공부(2a)를 통하여 반응유기물이 자유롭게 이동하면서 오수와 폐수를 처리하는 방법The method according to claim 4, wherein the reaction organic matter is freely moved through the porous portion 2a formed in the porous diaphragm 2.
KR10-2001-0020332A 2001-04-17 2001-04-17 Sludge loosing method using Electo-chemical oxidation and reduction process for the polluted water treatment system KR100416653B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0020332A KR100416653B1 (en) 2001-04-17 2001-04-17 Sludge loosing method using Electo-chemical oxidation and reduction process for the polluted water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0020332A KR100416653B1 (en) 2001-04-17 2001-04-17 Sludge loosing method using Electo-chemical oxidation and reduction process for the polluted water treatment system

Publications (2)

Publication Number Publication Date
KR20020080644A KR20020080644A (en) 2002-10-26
KR100416653B1 true KR100416653B1 (en) 2004-01-31

Family

ID=27701282

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0020332A KR100416653B1 (en) 2001-04-17 2001-04-17 Sludge loosing method using Electo-chemical oxidation and reduction process for the polluted water treatment system

Country Status (1)

Country Link
KR (1) KR100416653B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768102A (en) * 1993-07-08 1995-03-14 Toyota Motor Corp Flocculating and separating method and device therefor
JPH1057987A (en) * 1996-08-14 1998-03-03 Nkk Corp Denitrification device of water
JPH11104666A (en) * 1997-10-01 1999-04-20 Inax Corp Water tank equipment and reclaimed water supply apparatus
KR19990071074A (en) * 1998-02-27 1999-09-15 최규양 Wastewater Treatment Method Using Electrochemical Reaction and Electrochemical Reactor
KR20010000432A (en) * 2000-09-28 2001-01-05 유병로 Advanced wastewater treatment using the electrolysis and coagulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768102A (en) * 1993-07-08 1995-03-14 Toyota Motor Corp Flocculating and separating method and device therefor
JPH1057987A (en) * 1996-08-14 1998-03-03 Nkk Corp Denitrification device of water
JPH11104666A (en) * 1997-10-01 1999-04-20 Inax Corp Water tank equipment and reclaimed water supply apparatus
KR19990071074A (en) * 1998-02-27 1999-09-15 최규양 Wastewater Treatment Method Using Electrochemical Reaction and Electrochemical Reactor
KR20010000432A (en) * 2000-09-28 2001-01-05 유병로 Advanced wastewater treatment using the electrolysis and coagulation

Also Published As

Publication number Publication date
KR20020080644A (en) 2002-10-26

Similar Documents

Publication Publication Date Title
Zhao et al. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor
CN102603119B (en) Garbage leachate treatment device and treatment method thereof
Dentel et al. Direct generation of electricity from sludges and other liquid wastes
CN101967029B (en) Method for treating ammonia nitrogen in garbage percolate by combining biological and chemical processes
WO2014082989A1 (en) Bioelectrochemical water treatment and apparatus
Tang et al. Simultaneous removal of nitrate and sulfate using an up-flow three-dimensional biofilm electrode reactor: Performance and microbial response
CN109205954A (en) Light electrolysis catalysis oxidation, biochemical treatment high-concentration waste hydraulic art
Olvera-Vargas et al. Bio-electro-Fenton: a new combined process–principles and applications
Liu et al. A pilot-scale three-dimensional electrochemical reactor combined with anaerobic-anoxic-oxic system for advanced treatment of coking wastewater
CN106986460B (en) Highly integrated back-flow type bioelectrochemical wastewater treatment device and wastewater treatment method
CN1978346A (en) Refuse leachate treatment technology
KR100974928B1 (en) Waste-water Treatment Apparatus
CN107840550B (en) Method for treating garbage leachate
Moghiseh et al. Microbial electrochemical system for the phenol degradation using alternating current: metabolic pathway study
CN111423066A (en) Sewage treatment system
CN107840444B (en) Treatment device for garbage leachate
CN101264974A (en) Device for increasing active sludge oxygen-consuming rate by using electrostatic field
Wang et al. Treatment of artificial soybean wastewater anaerobic effluent in a continuous aerobic–anaerobic coupled (CAAC) process with excess sludge reduction
KR20020079029A (en) A zero-sludge -discharging membrane bioreactor(Z-MBR) activated sludge process
KR100416653B1 (en) Sludge loosing method using Electo-chemical oxidation and reduction process for the polluted water treatment system
KR100490310B1 (en) Method for treating wastewater using iron electrolysis
KR101991991B1 (en) Dual-chamber type bioelectrochemical apparatus for removing arsenic and nitrogen compounds and the method
CN211733973U (en) Device for treating organic wastewater
Yu et al. Evaluation of bipolar electrocoagulation applied to biofiltration for phosphorus removal
CN113860482A (en) Method for treating livestock and poultry wastewater by coupling constructed wetland with microbial cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee