KR100415676B1 - A nonaging steel sheet for tube with superior formability and a method for manufacturing it - Google Patents

A nonaging steel sheet for tube with superior formability and a method for manufacturing it Download PDF

Info

Publication number
KR100415676B1
KR100415676B1 KR10-1999-0063195A KR19990063195A KR100415676B1 KR 100415676 B1 KR100415676 B1 KR 100415676B1 KR 19990063195 A KR19990063195 A KR 19990063195A KR 100415676 B1 KR100415676 B1 KR 100415676B1
Authority
KR
South Korea
Prior art keywords
steel
steel sheet
carbon
workability
manufacturing
Prior art date
Application number
KR10-1999-0063195A
Other languages
Korean (ko)
Other versions
KR20010060768A (en
Inventor
이종호
정양준
유문현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0063195A priority Critical patent/KR100415676B1/en
Publication of KR20010060768A publication Critical patent/KR20010060768A/en
Application granted granted Critical
Publication of KR100415676B1 publication Critical patent/KR100415676B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 관용강판의 제조방법에 관한 것으로, 강성분을 조정하고 냉간압연후 냉연판소둔조건을 적절히 제어함으로써, 우수한 가공성 및 내압특성을 갖는 관용강판 및 그 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for manufacturing a conventional steel sheet, by adjusting the steel composition and appropriately controlling the cold-rolled sheet annealing conditions after cold rolling, to provide a conventional steel sheet having excellent workability and pressure resistance characteristics and its manufacturing method have.

본 발명은 중량%로 탄소: 0.0015~0.010%, 망간: 0.50~1.20%, 인: 0.030~0.080%, 황: 0.015%이하, 알루미늄: 0.03~0.06%, 질소: 0.003%이하, 티타늄: 0.025~0.040%, 크롬: 0.040~0.06%, Mn/S의 원자비: 30~45, 잔부 Fe 및 기타 불가피한 불순물을 함유하고, 하기 관계식 1로 정의되는 유효 티타늄과 탄소의 원자비가 1.2~1.8인 가공성이 우수한 비시효성 관용강판 및 그 제조방법을, 그 기술적 요지로 한다.In the present invention, carbon: 0.0015 to 0.010%, manganese: 0.50 to 1.20%, phosphorus: 0.030 to 0.080%, sulfur: 0.015% or less, aluminum: 0.03 to 0.06%, nitrogen: 0.003% or less, titanium: 0.025 ~ 0.040%, chromium: 0.040 to 0.06%, Mn / S atomic ratio: 30 to 45, balance Fe and other unavoidable impurities, and the workability of 1.2 to 1.8 atomic ratio of effective titanium and carbon defined by the following relation 1 An excellent non-aging tolerance steel sheet and its manufacturing method are made into the technical summary.

[관계식 1][Relationship 1]

Ti*=Ti-(48/32)S-(48/14)NTi * = Ti- (48/32) S- (48/14) N

Description

가공성이 우수한 비시효성 관용강판 및 그 제조방법{A NONAGING STEEL SHEET FOR TUBE WITH SUPERIOR FORMABILITY AND A METHOD FOR MANUFACTURING IT}Non-ageing tolerance steel sheet with excellent workability and manufacturing method thereof {A NONAGING STEEL SHEET FOR TUBE WITH SUPERIOR FORMABILITY AND A METHOD FOR MANUFACTURING IT}

본 발명은 용접후 우수한 확관 가공성이 요구되는 산업용 잡관 및 우수한 내압 특성과 이방성이 요구되는 부탄가스관(압력용기)용 강판에 관한 것으로서, 보다 상세하게는 강성분과 냉간압연후 냉연판소둔조건을 제어함으로써, 우수한 가공성 및 내압특성을 얻을 수 있는 관용강판 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial miscellaneous pipe which requires excellent expandability after welding and a steel sheet for butane gas pipe (pressure vessel) requiring excellent pressure resistance and anisotropy, and more specifically, by controlling steel components and cold rolled annealing conditions after cold rolling. The present invention relates to a steel sheet and a method of manufacturing the same, which can obtain excellent workability and pressure resistance characteristics.

관용강판은 통상 관으로 가공되기 전에 도장처리가 실시되지만, 이 때 강판중에 고용탄소가 많이 존재하면, 그 고용탄소가 이동 전이를 고착한다.The conventional steel sheet is usually coated before being processed into a tube. At this time, if a large amount of solid solution carbon is present in the steel sheet, the solid solution carbon fixes the transfer transition.

이러한 현상 때문에 관용강판에 드로잉(Drawing) 가공을 실시하면, 스트레쳐 스트레인(Stretcher Strain)이 발생하여 외관불량을 일으킴과 동시에 연신이 감소하여 파단이 발생하기도 하고, 항복점이 상승하여 형상불량등을 일으킨다. 또한, 구부리는 가공정도의 가벼운 가공을 하여도 주름 등이 발생한다.Because of this phenomenon, when drawing steel sheet is used, stretcher strain occurs, which causes appearance defects and elongation decreases, and yield points increase, resulting in shape defects. . In addition, wrinkles, etc., occur even when the bending process is light.

이러한 문제점을 해결하기 위하여, 비시효성을 가진 가공성이 양호한 강판의개발이 진행되어 왔다.In order to solve such a problem, development of the steel plate which has a good aging property with inferiority has progressed.

예를들면, 저탄소 알루미늄 킬드(Al Killed)강을 소재로 하여 냉각속도가 느린 상소둔에 의하여 강중의 고용탄소를 저감시키는 방법이 있다. 그러나, 이방법은 제조효율이 떨어질 뿐만 아니라, 제조공정 증가로 표면 및 형상불량등의 결함을 유발한다. 또한, 이 방법으로 제조된 강판의 평균 랭크포드(Rankford)치(이하 평균r치)는 통상 1.3~1.4 정도이며, 최근 관용강판의 극박화 요구에 대응하기 위해서는 이 정도의 평균r치로는 충분한 가공성을 확보하였다고 볼 수 없다.For example, there is a method of reducing the solid solution carbon in the steel by low temperature annealing of low carbon aluminum (Al Killed) steel by the slow annealing. However, this method not only decreases manufacturing efficiency but also causes defects such as surface and shape defects due to an increase in manufacturing process. In addition, the average Rankford value (hereinafter average r value) of the steel sheet manufactured by this method is usually about 1.3 to 1.4, and in order to cope with the recent thinning demand of conventional steel sheet, the average r value of this degree is sufficient in workability. Cannot be secured.

한편, 극저탄소강을 소재로 하여 연속소둔에 의한 가공성이 양호한 비시효성 강판을 제조하는 시도가 되어 왔다.On the other hand, attempts have been made to produce a non-aging steel sheet having good workability by continuous annealing based on ultra low carbon steel.

예를들면, 일본 특공소 50-31531(연속소둔에 의한 비시효성 초가공용 강판의 제조방법)에는 강중의 전 탄소량, 질소량에 대하여 화학양론 이상의 다량의 티타늄, 니오븀 또는 지르코늄, 탄탈륨 등의 질화물 생성 성분을 첨가하여 고용상태의 탄소 및 질소를 화합물로서 고정하여 안정화하는 방법이 제안되었다. 그러나, 성분중 특히, 티타늄, 지르코늄, 탄탈륨은 화학적으로 대단히 활성적인 성분이므로 강판표면의 상태를 크게 열화시켜 내식성과 미려성이 요구되는 관용강판에는 적합하지 않다. 또한, 다량의 니오븀 첨가는 최종제품에서 폭 및 길이방향으로 재질편차를 유발하며, 재결정 온도가 크게 상승하여 소둔작업시 작업성 저하를 초래한다. 더욱이, 이러한 성분은 일반적으로 고가이며, 다량의 첨가는 합금성분 자체의 비용상승의 요인이 된다.For example, Japanese Special Public Works 50-31531 (Method for producing a non-aging superhard steel sheet by continuous annealing) generates a large amount of nitrides such as titanium, niobium or zirconium, tantalum, etc., which are stoichiometrically higher than the total amount of carbon and nitrogen in steel. A method of stabilizing by adding components to fix carbon and nitrogen in solid solution as a compound is proposed. However, among the components, titanium, zirconium, and tantalum are chemically very active components, and therefore, they are not suitable for conventional steel sheets requiring a great deterioration in the state of the steel sheet surface and requiring corrosion resistance and beautifulness. In addition, the addition of a large amount of niobium causes material deviations in the width and length directions in the final product, and the recrystallization temperature increases significantly, resulting in deterioration of workability during annealing. Moreover, such components are generally expensive, and a large amount of addition is a factor of the cost increase of the alloy component itself.

관용 강판의 재질은 로크웰(Rockwell) 표면경도(HR30T)값에 의한 조질도(Temper Grade)로 평가되며, 조질도 T-1(HR30T: 49±3), T-2(HR30T: 53±3), T-2.5(HR30T: 55±3), T-3(HR30T: 57±3)까지의 연질 관용강판 및 조질도 T-4(HR30T: 61±3), T-5(HR30T: 65±3), T-6(HR30T: 70±3)까지의 경질 관용강판으로 구분할 수 있다.The material of the steel sheet is evaluated as Temper Grade by Rockwell Surface Hardness (HR30T), T-1 (HR30T: 49 ± 3), T-2 (HR30T: 53 ± 3). , T-2.5 (HR30T: 55 ± 3), T-3 (HR30T: 57 ± 3), soft steel sheet and quality T-4 (HR30T: 61 ± 3), T-5 (HR30T: 65 ± 3 ), T-6 (HR30T: 70 ± 3), can be divided into hard steel sheets.

조질도 T-3 이하의 연질재는 주로 심한 가공을 받는 가공용 소재로서 비시효성, 심가공성 및 용접성이 요구되며, 조질도 T-4 이상의 경질재는 우수한 내압특성, 고가공성 및 고강도가 요구되는 부위에 적용되고 있다.Soft materials of less than T-3 are mainly processed for severe processing and require inaging, deep workability and weldability. Hard materials of more than T-4 are applied to areas requiring excellent pressure resistance, high workability and high strength. It is becoming.

일본특공(평)40-3020호 및 특공(소)36-10052호 등에서는 경도가 높은 T-4, T-5급의 이하의 연질재의 제조는 불가능하다. 특개소 61-207520호 공보는 소둔온도를 720~850℃로 극히 높게 하여 결정입경을 크게 하고 조질 압연율을 5~10%로 하여 통상의 조질압연이 곤란한 방법이며, 소둔온도 및 조질 압연율은 실용화에 큰 장해가 되는 방법이다.In Japanese Patent Application No. 40-3020 and Special Application No. 36-10052, soft materials of the following T-4 and T-5 grades with high hardness cannot be manufactured. Japanese Patent Application Laid-Open No. 61-207520 discloses a method in which annealing temperature is extremely high, such as 720 to 850 ° C., to increase the crystal grain size, and the temper rolling rate to 5 to 10%. It is a method that becomes a big obstacle to practical use.

대한민국 특허공개공보 제1999-010558호는 극저탄소강에 특수원소(Ti, B)를 첨가하여 소둔온도 690~740℃범위로 제조되는 T-2급 연질 주석도금 원판은 부탄가스관의 내압에 대한 안정성 향상을 위하여 강화된 관 내압기준(15kg/㎠이상)에 미달되며, 또한 돔(Dome) 제관시 이방성이 취약하여 압력 용기용으로서 적용하는데 있어서 가공성에 문제점이 있다. 또한 산업용 잡관으로 적용되는 T-3급 관용 강판은 용접후 확관 가공시 용접부위가 파열되는 문제점이 있다. 또한, 관용 강판을 제조하는 생산업체에서 조질도 T-3연질재와 T-4경질재의 생산비율은 대략 각각 40%, 45% 수준으로서 전체 관용강판의 80%이상을 점유하고 있으나, T-3 연질재와 T-4경질재를 1개 강종으로 제조할수 있는 방법은 아직까지 제안되지 않았다.Korean Patent Laid-Open Publication No. 1999-010558 is a T-2 grade soft tin-plated disc manufactured with an annealing temperature of 690 to 740 ° C by adding special elements (Ti, B) to ultra low carbon steel, and is stable against internal pressure of butane gas pipes. In order to improve the internal pressure of the pipe (15kg / ㎠ or more), and less than the anisotropy in the dome (Dome) is weak in anisotropy, there is a problem in the workability in applying as a pressure vessel. In addition, there is a problem that the welded portion of the T-3 grade steel sheet applied as an industrial miscellaneous pipe ruptures during expansion after welding. In addition, the production rate of T-3 soft materials and T-4 hard materials is roughly 40% and 45%, respectively, in the producers of steel sheets, which occupy more than 80% of all steel sheets. The method for producing soft and T-4 hard materials in one steel grade has not been proposed yet.

이에, 본 발명자는 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 강성분을 조정하고 냉간압연후 냉연판소둔조건을 적절히 제어함으로써, 우수한 가공성과 내압특성을 갖는 관용강판 및 그 제조방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have repeatedly conducted research and experiments to solve the above problems, and propose the present invention based on the results. The present invention adjusts the steel components and appropriately controls the cold rolling annealing conditions after cold rolling. By doing so, it is an object of the present invention to provide a conventional steel sheet having excellent workability and pressure resistance characteristics and its manufacturing method.

본 발명은 중량%로 탄소: 0.0015~0.0040%, 망간: 0.50~1.20%, 인: 0.030~0.080%, 황: 0.015%이하, 알루미늄: 0.03~0.06%, 질소: 0.003%이하, 티타늄: 0.025~0.040%, 크롬: 0.040~0.06%, Mn/S의 원자비: 30~45, 잔부 Fe 및 기타 불가피한 불순물을 함유하고, 하기 관계식 1로 정의되는 유효 티타늄과 탄소의 원자비가 1.2~1.8인 가공성이 우수한 비시효성 관용강판에 관한 것이다.In the present invention, carbon: 0.0015 to 0.0040%, manganese: 0.50 to 1.20%, phosphorus: 0.030 to 0.080%, sulfur: 0.015% or less, aluminum: 0.03 to 0.06%, nitrogen: 0.003% or less, titanium: 0.025 ~ 0.040%, chromium: 0.040 to 0.06%, Mn / S atomic ratio: 30 to 45, balance Fe and other unavoidable impurities, and the workability of 1.2 to 1.8 atomic ratio of effective titanium and carbon defined by the following relation 1 It relates to an excellent non-aging tolerance steel sheet.

[관계식 1][Relationship 1]

Ti*=Ti-(48/32)S-(48/14)NTi * = Ti- (48/32) S- (48/14) N

또한, 본 발명은 관용강판의 제조방법에 있어서,In addition, the present invention is a method of manufacturing a conventional steel sheet,

중량%로 탄소: 0.0015~0.0040%, 망간: 0.50~1.20%, 인: 0.030~0.080%, 황:0.015%이하, 알루미늄: 0.03~0.06%, 질소: 0.003%이하, 티타늄: 0.025~0.040%, 크롬: 0.040~0.06%, 망간과 황의 원자비: 30~45, 유효 티타늄과 탄소의 원자비: 1.2~ 1.8, 잔부 Fe 및 기타 불가피한 불순물로 조성된 강 슬라브를 재가열하고 열간압연한 후, 620~700℃의 온도범위에서 권취하고 80% 이상의 압하율로 냉간압연한 다음, 연속소둔로에서 710℃이상의 온도에서 소둔하는 것을 특징으로 하는 가공성이 우수한 비시효성 관용강판의 제조방법에 관한 것이다.By weight% Carbon: 0.0015 ~ 0.0040%, Manganese: 0.50 ~ 1.20%, Phosphorus: 0.030 ~ 0.080%, Sulfur: 0.015% or less, Aluminum: 0.03 ~ 0.06%, Nitrogen: 0.003% or less, Titanium: 0.025 ~ 0.040%, Chromium: 0.040 to 0.06%, manganese and sulfur atomic ratios: 30 to 45, effective titanium and carbon atomic ratios: 1.2 to 1.8, residual steel and other unavoidable impurities. The present invention relates to a method for producing a non-aging conventional steel sheet having excellent workability, which is wound at a temperature range of 700 ° C., cold rolled at a reduction ratio of 80% or more, and then annealed at a temperature of 710 ° C. or more in a continuous annealing furnace.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명의 탄소(C)는 연신, 평균 r값의 향상 관점에서 낮은 쪽이 바람직하다.The lower the carbon (C) of the present invention from the viewpoint of stretching and improving the average r value.

그러나, 슬라브 단계에서 탄소량이 0.0015% 미만의 경우는 입경이 현저히 조대화되어 가공후 최종단계 제품의 상태에서 오렌지필(Orange Peel) 현상이 발생될 위험성이 높다. 또한, 열간압연시의 변태점은 강중 탄소량의 영향을 크게 받는데, 그 함량이 적으면 변태점이 매우 상승하기 때문에 오스테나이트 단상역에서 마무리 압연을 끝낼수 없어서 균일하고 우수한 가공성이 요구되는 관용강판의 소재로서는 부적절하다.However, when the amount of carbon in the slab stage is less than 0.0015%, the particle size is significantly coarse, and there is a high risk that an orange peel phenomenon occurs in the state of the final stage product after processing. In addition, the transformation point during hot rolling is greatly influenced by the amount of carbon in the steel, but if the content is small, the transformation point is very high, so that it is not possible to finish the finish rolling in the austenitic single-phase zone, so that it is required to have a uniform and excellent workability. Inappropriate

한편, 탄소의 함량이 0.0040%를 초과하는 경우에는 냉간압연후 단시간의 소둔으로는 탈탄반응을 충분히 진행할 수 없고, 목표로 하는 비시효성을 얻을수 없게 된다. 또한, 실제 공업적으로 생산하는 경우는 라인의 길이에 제약이 있고, 소둔시간을 무한정 길게 할수 없기 때문에 탄소량도 한정된다.On the other hand, in the case where the carbon content exceeds 0.0040%, the decarburization reaction cannot proceed sufficiently by a short time annealing after cold rolling, and the target non-aging cannot be obtained. In addition, in actual industrial production, the length of the line is limited, and the amount of carbon is also limited because the annealing time cannot be extended indefinitely.

따라서, 상기 탄소는 특히 평균 r치의 향상 관점에서 0.0015~0.0040%로 제한하는 것이 바람직하다.Therefore, it is preferable to limit the carbon to 0.0015% to 0.0040%, especially from the viewpoint of improving the average r value.

상기 망간(Mn)은 강의 적열취성을 방지하기 위하여 첨가하는 원소로, 변태점을 저하시켜 열간압연사상에 있어서 압연조건의 규제를 완화시키는 역할을 한다. 즉, 또, 망간의 함량을 적정화함으로서 강판의 고용 강화량을 억제하고, 강판조직을 균일및 미세화하는 것이 가능하다.The manganese (Mn) is an element added to prevent the heat brittleness of the steel, and serves to reduce the transformation point to relax the regulation of the rolling conditions in hot rolling. In other words, by optimizing the content of manganese, it is possible to suppress the solid solution strengthening amount of the steel sheet and to make the steel sheet structure uniform and fine.

이러한 망간의 함량은 황(S)과 병행하여 설정하는 것이 바람직한데, 0.50~1.20%로 설정하는 것이 바람직하다. 이와 같이, 그 함량이 0.50%이상이면, 보론을 첨가하지 않아도 냉각시 Ar3변태온도를 낮추고 오스테나이트에서 페라이트 변태를 억제하여 저온에서 메시브(Massive) 변태를 일으킴으로써, 용접부의 냉각시 용접 열영향부의 결정립 이상 성장을 억제하는 효과를 나타낸다. 또한, 용접 열영향부의 경도 강하현상이 낮아 종래의 보론 첨가강과 유사한 특성을 나타나며, 재결정온도가 20~30℃정도 낮아져 소둔작업성이 개선된다.The content of such manganese is preferably set in parallel with sulfur (S), it is preferably set to 0.50 ~ 1.20%. As such, if the content is 0.50% or more, even if boron is not added, the Ar 3 transformation temperature is lowered during cooling and ferrite transformation is suppressed in austenite, thereby causing a mesh transformation at low temperature, thereby welding heat during cooling. It shows the effect of suppressing abnormal grain growth of the affected part. In addition, the hardness drop phenomenon of the weld heat affected zone is similar to the conventional boron-added steel, and the recrystallization temperature is lowered by about 20 ~ 30 ℃ improves the annealing workability.

그러나, 그 함량이 1.2%를 초과하면 재결정후의 경도값은 상승하지만, 오히려 경도가 감소할 뿐만 아니라, 연속소둔시 탈탄 반응이 지연되므로, 상기 성분범위는 0.5~1.2%로 설정하는 것이 바람직하다.However, if the content exceeds 1.2%, the hardness value after recrystallization increases, but rather, the hardness decreases, and since the decarburization reaction is delayed during continuous annealing, the component range is preferably set to 0.5 to 1.2%.

상기 황(S)은 연속소둔공정에서의 탈탄반응을 위해, 가능한 저감시키는 것이바람직하므로, 그 함량은 0.015% 이하로 하는 것이 바람직하다. 이에 대한 상세한 기구는 불명확하지만, 황을 저감함으로써, 강중의 석출물을 감소시켜 가공성을 향상시킬 수 있다.Since the sulfur (S) is preferably reduced as much as possible for the decarburization reaction in the continuous annealing process, the content thereof is preferably 0.015% or less. The detailed mechanism for this is unclear, but by reducing sulfur, it is possible to reduce precipitates in the steel to improve workability.

한편, 상기 망간과 황의 원자비는 망간화합물계 석출물의 크기 및 분포를 좌우할뿐만 아니라 연주 공정에서의 균열결함의 원인이 되므로, 이것의 제어는 재질의 안정적인 확보면에서 주요하다. 즉, 망간과 황의 원자비가 30미만이면 적열취성을 유발하고, 45를 초과하면 고용 망간량이 증가하여 목표로 하는 조질도 및 가공성을 확보할수 없으므로, 상기 망간에 대한 황의 원자비는 30~45로 설정하는 것이 바람직하다.On the other hand, the atomic ratio of manganese and sulfur not only influences the size and distribution of the manganese compound-based precipitates, but also causes cracking defects in the reproducing process, so control of this is important in terms of securing a stable material. In other words, if the atomic ratio of manganese and sulfur is less than 30, the thermal brittleness is induced. If the atomic ratio of manganese and sulfur exceeds 45, the amount of dissolved manganese is increased, so that the target quality and processability cannot be secured. Therefore, the atomic ratio of sulfur to manganese is set to 30 to 45. It is desirable to.

상기 알루미늄(Al)은 강중의 질소를 고정 및 안정화하는 중요한 성분으로, 비시효성 저감 관점에서는 그 함량이 0.030%이상인 것이 바람직하다. 그러나, 그 함량이 0.060%를 초과하면 성분비용이 상승할 뿐 아니라, 표면결함을 일으킬 위험성도 커지고, 슬라브 단계에서의 균열발생 위험성도 커진다. 따라서, 그 성분범위는 0.030~0.060%로 설정하는 것이 바람직하다.The aluminum (Al) is an important component for fixing and stabilizing nitrogen in the steel, the content is preferably 0.030% or more from the viewpoint of non-aging. However, if the content exceeds 0.060%, not only the component cost increases but also the risk of surface defects increases, and the risk of cracking in the slab stage also increases. Therefore, the component range is preferably set to 0.030 to 0.060%.

상기 인(P)은 조질강화로 인한 고용강화 및 결정립 미세화 효과를 갖는 원소로, 경질 관용강판을 제조할때는 가능한 다량으로 사용하는 것이 바람직하다.The phosphorus (P) is an element having a solid solution strengthening and grain refining effect due to temper strengthening, and it is preferable to use a large amount as much as possible when manufacturing a hard conventional steel sheet.

강중의 인이 증가하면, 냉연압연후 소둔시 재결정에 영향을 주어 재결정의 핵생성 및 결정립 성장을 억제한다. 즉, FeTiP계 석출물이 입계에 석출하여 주로 입내에 미세하게 석출되는 TiC계 석출물의 밀도가 감소하게 된다. 따라서, 미세한 TiC계 석출물의 석출이 억제됨으로써, 소둔판의 페라이트 결정립 성장이 촉진되어 평균 r값이 향상된다.따라서, 상기한 첨가효과를 얻기 위하여 P는 0.03%이상, 바람직하게는 0.041%이상 함유하는 것이다.The increase in phosphorus in steel affects recrystallization during annealing after cold rolling to inhibit nucleation and grain growth of recrystallization. That is, the FeTiP-based precipitates are precipitated at the grain boundary, and the density of the TiC-based precipitates, which are mainly finely precipitated in the mouth, is reduced. Therefore, the precipitation of fine TiC-based precipitates is suppressed, so that the ferrite grain growth of the annealing plate is promoted, and the average r value is improved. Therefore, P is contained in an amount of 0.03% or more, preferably 0.041% or more in order to obtain the above-mentioned addition effect. It is.

그러나, 그 함량이 0.080%를 초과하면 내식성 열화, 재료 취화 등의 문제를 유발할 뿐만 아니라, 재결정온도를 상승시키므로, 그 상한은 0.080%로 설정하는 것이 바람직하다. 즉, 양호한 내식성, 높은 가공성을 얻기 위해서는 인 함유량은 0.08%이하가 좋다.상기 질소(N)는 비시효성 저감 관점에서 그 상한을 0.003% 이하로 설정하는 것이 바람직하다. 즉, 질소가 다량으로 강중에 함유되면, 첨가하는 알루미늄에 의한 질소의 고정 및 안정화 효과가 충분히 작용하지 않고, 최종 제품단계에서 임계량 이상의 고용 질소가 잔존한다. 이 때문에, 제관시 플루팅(Flutting) 및 경가공시의 스트레쳐 스트레인(Stretcher Strain)발생 등의 부작용이 발생한다. 또한, 강중의 질소 함유량이 많은 경우는 균형이 맞는 알루미늄 첨가량을 증가시키는 것이 비시효 특성에는 유리하지만, 질소 함유량이 0.003%를 초과하면 연성의 열화가 현저할 뿐만 아니라, 슬라브 제조단계에서의 균열 발생 위험성이 증대하게 된다. 또한, 질소량이 0.003%를 초과하면 질소량에 대응하는 티타늄의 량도 많아져서 합금비용이 상승됨과 동시에 가공성의 열화를 초래한다.However, if the content exceeds 0.080%, not only problems such as deterioration of corrosion resistance and embrittlement of the material, but also increase recrystallization temperature, it is preferable to set the upper limit to 0.080%. In other words, the phosphorus content is preferably 0.08% or less in order to obtain good corrosion resistance and high workability. The upper limit of the nitrogen (N) is preferably set to 0.003% or less from the viewpoint of non-aging resistance reduction. That is, when a large amount of nitrogen is contained in the steel, the fixing and stabilizing effect of nitrogen by the aluminum to be added does not sufficiently work, and solid nitrogen above a critical amount remains in the final product stage. For this reason, side effects, such as fluting during piping and stretcher strain at the time of light processing, generate | occur | produce. In addition, when the nitrogen content in steel is high, it is advantageous for the non-aging property to increase the balanced addition amount of aluminum, but when the nitrogen content exceeds 0.003%, ductility deterioration is remarkable, and cracking occurs in the slab manufacturing stage. The risk is increased. In addition, when the amount of nitrogen exceeds 0.003%, the amount of titanium corresponding to the amount of nitrogen also increases, resulting in an increase in alloy cost and deterioration of workability.

따라서, 상기한 문제점을 방지하고, 평균 r치 등으로 대표되는 가공성을 더욱 향상시키기 위해서는 그 함유량을 0.003%이하로 설정하는 것이 바람직하다.Therefore, in order to prevent the above-mentioned problem and to further improve the workability represented by the average r value and the like, it is preferable to set the content to 0.003% or less.

상기 크롬(Cr)은 강내에서 강화를 위해 첨가되는 원소로서, 그 함량이 0.04% 미만인 경우에는 T-3및 T-4재에 대응하는 강화효과를 얻기 곤란하며, 0.06%를 초과하면, 주석도금원판의 강화효과는 증가하지만, 크롬량의 증가에 따른 제조원가의 상승을 초래하므로, 그 성분범위를 0.04~0.06%로 한정하는 것이 바람직하다.The chromium (Cr) is an element added for reinforcement in the steel, when the content is less than 0.04%, it is difficult to obtain a reinforcing effect corresponding to T-3 and T-4 materials, and when exceeding 0.06%, tin plating Although the reinforcing effect of the original plate is increased, the production cost is increased due to the increase in the amount of chromium. Therefore, it is preferable to limit the component range to 0.04 to 0.06%.

상기 티타늄(Ti)은 비시효성에 유효한 성분으로, 그 함량은 0.025~0.040%로 설정하는 것이 바람직한데, 그 이유는 그 함량이 0.025% 미만인 경우에는 가공공정에서 플루팅(flutting) 및 스트레쳐 스트레인(Stretcher Strain)등의 결함이 발생하고, 반면에 0.040%를 초과하면 재결정온도가 높아지고, 고용 티타늄에 의해 연속소둔시 페라이트상의 회복 및 재결정을 지연시켜 연속소둔 작업시 소둔온도를 높임으로서 소둔작업성을 나쁘게 하기 때문이다.The titanium (Ti) is an effective ingredient for inaging, the content is preferably set to 0.025 ~ 0.040%, the reason is that when the content is less than 0.025% fluting and strainer strain in the processing process When defects such as (Stretcher Strain) occur, on the other hand, when exceeding 0.040%, the recrystallization temperature becomes high, and the solid-state titanium delays the recovery and recrystallization of the ferrite phase during continuous annealing, thereby increasing the annealing temperature during continuous annealing. Because it makes you bad.

한편, 본 발명은 재질 및 가공성을 확보하기 위해서, 강내에 존재하는 탄소, 질소 및 황의 첨가량 등과의 조합에 의해 티타늄의 첨가량을 제어하는 것이 바람직하다. 즉, 하기 관계식 1로 정의되는 유효티타늄과 탄소의 원자비(Ti*/C)는 1.2~1.8로 설정하는 것이 바람직한데, 그 이유는 다음과 같다.On the other hand, in the present invention, in order to secure the material and workability, it is preferable to control the addition amount of titanium by combination with the addition amount of carbon, nitrogen, and sulfur present in the steel. That is, the atomic ratio (Ti * / C) of the effective titanium and carbon defined by the following relational formula 1 is preferably set to 1.2 to 1.8. The reason is as follows.

상기한 바와 같이, 유효티타늄과 탄소의 원자비를 1.2~1.8로 설정하면, 탄질화물 형성원소로서 첨가되는 티타늄은 미세하게 생성되는 니오븀 질화물과는 달리, 조대한 석출물로 강내에 석출되어, 페라이트상의 재결정 현상을 억제하지 않으면서고용되어 있는 탄소와 질소등을 고착하여 고용원소로 인하여 유발되는 시효현상을 억제할 수 있다. 즉, 단순히 탄소를 0.0015%미만으로 저감하는 것만으로는 얻을 수 없는 우수한 비시효 특성을 얻을 수 있는 것이다. 또한, 결정립의 미세화로 인해 성형시 표면거칠음을 방지할 수 있는 효과도 있다. 특히, 본 발명에서는 소재의 탄소량 수준이 낮기 때문에, 각 제조공정에서 결정입경의 조대화 및 최종제품의 표면 거칠음 방지라고 하는 점에서도 극히 우수한 효과를 발휘한다.As described above, when the atomic ratio of effective titanium to carbon is set to 1.2 to 1.8, titanium added as a carbonitride-forming element is precipitated in the steel as a coarse precipitate, unlike niobium nitride, which is finely formed, and has a ferrite phase. It is possible to suppress the aging phenomenon caused by the solid solution by fixing carbon and nitrogen which are employed without suppressing the recrystallization phenomenon. In other words, excellent non-aging characteristics cannot be obtained by simply reducing carbon to less than 0.0015%. In addition, due to the refinement of the crystal grains there is an effect that can prevent the surface roughness during molding. In particular, in the present invention, since the carbon level of the raw material is low, it has an extremely excellent effect in terms of coarsening of crystal grain size and preventing surface roughness of the final product in each manufacturing process.

[관계식 1][Relationship 1]

*Ti=Ti-(48/32)S-(48/14)N상기 원자비(Ti*/C)가 1.2 미만인 경우에는 내플루팅성 및 용접성이 저하되고, 1.8를 초과하는 경우에는 첨가효과가 포화된다.* Ti = Ti- (48/32) S- (48/14) N When the atomic ratio (Ti * / C) is less than 1.2, the fluting resistance and weldability are lowered, and when it exceeds 1.8, the additive effect is Is saturated.

상기와 같이 조성된 강 슬라브를 재가열하고 열간압연 및 열연권취한 후 냉간압연하고 냉연판소둔하는 공정을 통해 관용강판으로 만드는데, 상기 마무리열간압연온도는, 냉간압연 및 소둔후의 평균 r치로 대표되는 가공성을 양호하게 하기 위하여 Ar3변태점~950℃로 설정하는 것이 바람직하다. 그 이유는, 950℃를 초과하면, 강판의 조직이 조대화하기 쉽고 가공성이 열화하는 경향을 나타내기 때문이다.The steel slab formed as described above is reheated, hot rolled and hot rolled, and then cold rolled and cold rolled to form a steel sheet through a process of annealing. a is preferably set to Ar 3 transformation point ~ 950 ℃ to be improved. The reason is that when the temperature exceeds 950 ° C, the structure of the steel sheet tends to coarsen and exhibits a tendency to deteriorate in workability.

상기와 같은 열간압연종료후에는 가능한 한 신속하게 냉각을 개시하는 것이 강판조직의 미세화에 유리하기 때문에, 대략 0.3초 이내에서의 냉각개시가 이루어지도록 하는 것이 바람직하다. 냉각개시후에는 권취개시까지의 30℃/s 이상의 냉각속도로 냉각하는 것이 좋다. 이와 같이 하면, 강판의 조직을 보다 미세화할 수 있기 때문에 얻어진 최종제품의 가공성이 양호해진다.Since it is advantageous for the refinement of the steel sheet structure to start cooling as soon as possible after the end of the hot rolling as described above, it is preferable to start cooling within about 0.3 seconds. After the start of cooling, cooling at a cooling rate of 30 ° C./s or more until the start of winding is preferable. In this way, since the structure of a steel plate can be refined | miniaturized, the workability of the obtained final product becomes favorable.

그 후, 620℃~700℃의 온도범위에서 권취하는 것이 바람직한데, 그 이유는 그 온도가 620℃ 미만이면, 냉각의 불균일에 의하여 판형상에 불량을 일으켜 다음공정의 산세 및 냉간 압연에 지장을 초래하고, 700℃를 초과하면 스케일 두께가 증대하여 산세에 시간이 걸릴뿐만 아니라, 핫코일의 조직이 조대화하므로 최종적인 강판의 가공성을 나쁘게 하기 때문이다. 또한, 700℃를 초과한 권취온도로 한 경우는 권취후 냉각속도의 차이에서 강판 폭방향에서의 재질변동이 발생하기 때문에 바람직하지 않다.After that, it is preferable to wind up at a temperature range of 620 ° C to 700 ° C. If the temperature is less than 620 ° C, it causes defects in the plate shape due to uneven cooling, which hinders pickling and cold rolling in the next step. This is because when the temperature exceeds 700 ° C, not only does the scale thickness increase and the pickling takes time, but also the structure of the hot coil becomes coarse, thereby deteriorating the final workability of the steel sheet. In addition, the winding temperature exceeding 700 ° C. is not preferable because a material variation occurs in the steel plate width direction due to a difference in cooling rate after winding.

한편, 본 발명에서는 충분한 심가공성을 얻을수 얻기 위해, 상기 권취후 냉간압연을 80%이상의 압하율로 실시하는 것이 바람직하고, 보다 바람직하게는 85%이상인 것이 좋다. 이에 대한 상세한 기구는 불명확하지만, 냉간압연 압하율을 85%이상하면 연속소둔시의 탈탄반응이 촉진되는 경향이 있다.On the other hand, in the present invention, in order to obtain sufficient deep workability, it is preferable to perform cold rolling after the winding at a reduction ratio of 80% or more, and more preferably 85% or more. Although the detailed mechanism for this is unclear, when the cold rolling reduction is 85% or more, the decarburization reaction during continuous annealing tends to be promoted.

다음, 냉연판소둔을 실시하는데, 그 온도를 재결정이 완료되는 최저온도인 710℃ 이상으로 설정하면 높은 냉간압하율로 조직 미세화를 형성하여 강도를 향상시킬 수 있다. 또한, 소둔온도의 상한은 특히 규정하지 않지만, 연속소둔시에 강대의 파단 및 히트버클(Heat Buckle) 등의 결함을 일으키지 않는 조업상의 상한온도가 여기에 상당하고, 이러한 문제가 없으면 강의 조직상으로 오스테나이트가 출현하는 온도가 그 상한이 된다.이러한 점을 고려하여 바람직한 소둔온도의 상한값은 728℃로 설정하는 것이 바람직하다.한편, 소둔시간은 재질의 안정성을 도모하기 위하여, 18초 이상으로 설정하는 것이 바람직하다. 이와 같이 설정함으로써, 이 발명의 필수요건인 강판의 재결정이 충분히 달성할 수 있다.Next, cold-rolled annealing is carried out. If the temperature is set to 710 ° C. or more, which is the minimum temperature at which recrystallization is completed, the structure can be refined at a high cold reduction rate to improve strength. In addition, the upper limit of the annealing temperature is not particularly specified, but the upper limit temperature of the operation that does not cause breakage of the steel strip and defects such as heat buckles at the time of continuous annealing is equivalent to this. The upper limit of the temperature at which austenite appears is the upper limit. In view of this, the upper limit of the preferable annealing temperature is preferably set to 728 DEG C. On the other hand, the annealing time is set to 18 seconds or more in order to improve the stability of the material. It is desirable to. By setting it in this way, the recrystallization of the steel plate which is an essential requirement of this invention can fully be achieved.

그 후, 상기와 같이 제조된 관용강판의 두께는 0.40mm 이하로 하는 것이 바람직하다.Thereafter, the thickness of the conventional steel sheet manufactured as described above is preferably 0.40 mm or less.

(실시예)(Example)

하기 표1과 같이 조성된 용강을 연속주조후 슬라브를 1,250℃로 재가열하고 하기 표2의 제조조건으로 판두께가 0.25mm인 냉연 박강판으로 제조하였다.After continuous casting of molten steel as shown in Table 1, the slab was reheated to 1,250 ° C., and manufactured as a cold rolled thin steel sheet having a plate thickness of 0.25 mm under the manufacturing conditions of Table 2 below.

이 때, 소둔시간은 30초였고, 이 때 로내 분위기는 H24%+N296%의 혼합가스분위기였으며, 노점은 -15℃였다. 이와 같은 소둔후의 냉각속도는 25℃/s로서 일정하게 하였다.At this time, the annealing time was 30 seconds, the atmosphere in the furnace was a mixed gas atmosphere of H 2 4% + N 2 96%, the dew point was -15 ℃. The cooling rate after such annealing was made constant as 25 degree-C / s.

그 다음, 제조된 강판에 조질압연을 압하율 1.0% 로 일정하게 하여 실시한후, 페로스탄 타입(Ferrostan Type)의 전기주석 도금공정에서 #25번 주석도금하여 여러가지 시험을 실시하고, 그 시험결과를 하기 표2에 나타내었다.Then, after the tempered rolling was made constant at a rolling reduction rate of 1.0% on the manufactured steel sheet, various tests were performed by tin plating # 25 in a ferrostan type electro tin plating process, and the test results were obtained. It is shown in Table 2 below.

이 때, 인장특성은 통상의 JIS 5호 시험편을 이용하여 측정하였다.At this time, the tensile characteristic was measured using the normal JIS 5 test piece.

또한, 평균 r치는 JIS 5호 시험편을 이용하여 3점법을 측정하고, 압연방향에 대하여 0°, 45°, 90° 각방향의 r치를 각각 r0, r45, r90으로서 평균 r치=(r0+r90+2r45)/4, △r치=(r0+r90+2r45)/2로 산출하였다.In addition, the average r value was measured by a three-point method using a JIS No. 5 test piece, and the r value in each of 0 °, 45 °, and 90 ° directions with respect to the rolling direction was r 0 , r 45 , and r 90 , respectively. r 0 + r was calculated as 90 + 2r 45) / 4, △ r value = (r 0 + 2r 90 + r 45) / 2.

시효지수(Al)는 미리 변형을 부여한 후, 부하를 낮추어 100℃에서 30분 시효를 행한후 응력의 증가량으로 평가하였다.The aging index (Al) was evaluated as an increase in stress after the deformation was applied in advance, and the load was lowered and aged at 100 ° C. for 30 minutes.

내플루팅성, 용접성은 제관사에서 제조된 시편을 가공하여 육안평가하였으며, 내압은 제관사에서 부탄가스관을 제관하여 내압특성시험을 실시하여 얻은 것이다.Flute resistance and weldability were visually evaluated by processing specimens manufactured by a pipe mill. The internal pressure was obtained by performing a pressure resistance test on a butane gas pipe.

구분division 화학성분(중량%)Chemical composition (% by weight) CC MnMn PP SS Sol-AlSol-Al NN TiTi CrCr Ti*/C원자비Ti * / C atomic ratio Mn/S원자비Mn / S atomic cost 발명강AInventive Steel A 0.00280.0028 0.910.91 0.0640.064 0.0120.012 0.0520.052 0.00250.0025 0.0300.030 0.050.05 1.221.22 44.344.3 발명강BInventive Steel B 0.00340.0034 1.121.12 0.0380.038 0.0150.015 0.0440.044 0.00230.0023 0.0350.035 0.040.04 1.351.35 43.643.6 발명강CInvention Steel C 0.00350.0035 0.760.76 0.0770.077 0.0120.012 0.0490.049 0.00290.0029 0.0330.033 0.050.05 1.441.44 37.037.0 발명강DInventive Steel D 0.00300.0030 0.640.64 0.0510.051 0.0110.011 0.0340.034 0.00190.0019 0.0280.028 0.060.06 1.661.66 34.034.0 종래강EConventional Steel E 0.00360.0036 1.011.01 0.0560.056 0.0140.014 0.0400.040 0.00270.0027 0.0320.032 0.040.04 0.480.48 42.142.1 종래강FConventional Steel F 0.00340.0034 0.950.95 0.0620.062 0.0080.008 0.0450.045 0.00250.0025 0.0340.034 0.050.05 3.953.95 69.369.3 종래강GConventional Steel G 0.00250.0025 0.340.34 0.0410.041 0.0120.012 0.0520.052 0.00230.0023 0.0350.035 0.050.05 3.643.64 16.516.5 종래강HConventional Steel H 0.00300.0030 0.860.86 0.0180.018 0.0130.013 0.0450.045 0.00270.0027 0.0280.028 0.040.04 -0.25-0.25 38.638.6 종래강IConventional Steel I 0.00510.0051 0.790.79 0.0560.056 0.0130.013 0.0560.056 0.00260.0026 0.0400.040 0.050.05 2.272.27 35.535.5 종래강JConventional Steel J 0.00340.0034 0.910.91 0.0490.049 0.0080.008 0.0330.033 0.00380.0038 0.0250.025 0.040.04 -0.01-0.01 66.466.4 종래강KConventional Steel K 0.00350.0035 1.031.03 0.0610.061 0.0200.020 0.0510.051 0.00250.0025 0.0350.035 0.040.04 -1.02-1.02 30.130.1 종래강LConventional Steel L 0.00230.0023 0.660.66 0.0450.045 0.0140.014 0.0690.069 0.00270.0027 0.0360.036 0.060.06 2.492.49 27.527.5 *Ti=Ti-(48/32)S-(48/14)N* Ti = Ti- (48/32) S- (48/14) N

구분division 제조조건Manufacture conditions 품질 특성Quality characteristics 사상압연온도(℃)Finish rolling temperature (℃) 권취온도(℃)Winding temperature (℃) 냉연압하율(%)Cold rolling rate (%) 소둔온도(℃)Annealing Temperature (℃) 평균r치Average r value △r(±)Δr (±) Al(Kg/㎟)Al (Kg / mm2) YP-EL(%)YP-EL (%) 내압(kg/㎠)Internal pressure (kg / ㎠) 내플루팅성Fluting Resistance 용접성Weldability HR30THR30T 조질도Quality 등급Rating 확보secure 발명재1Invention 1 발명강AInventive Steel A 913913 670670 8787 725725 1.81.8 0.030.03 00 00 13.613.6 00 00 58.158.1 T3T3 00 발명재2Invention 2 915915 670670 8989 715715 1.81.8 0.050.05 00 00 15.515.5 00 00 61.961.9 T4T4 00 비교재3Comparative Material 3 914914 718718 8989 721721 1.21.2 0.250.25 0.30.3 00 13.913.9 00 00 56.356.3 T4T4 xx 비교재4Comparative Material 4 913913 670670 8686 702702 1.51.5 0.340.34 0.10.1 00 13.713.7 00 54.854.8 T3T3 xx 비교재5Comparative Material 5 915915 670670 8787 698698 1.31.3 0.380.38 0.30.3 00 13.513.5 00 58.358.3 T3T3 xx 비교재6Comparative Material 6 912912 670670 8989 702702 1.21.2 0.350.35 0.20.2 00 15.615.6 00 00 62.462.4 T4T4 xx 발명재7Invention 7 발명강BInventive Steel B 915915 670670 8787 724724 1.81.8 0.080.08 00 00 13.813.8 00 00 57.857.8 T3T3 00 비교재8Comparative Material 8 915915 670670 8989 704704 1.31.3 0.410.41 0.50.5 00 15.515.5 00 00 62.762.7 T4T4 xx 발명재9Invention Material 9 발명강CInvention Steel C 915915 670670 8787 721721 1.91.9 0.060.06 00 00 13.813.8 00 00 56.856.8 T3T3 00 비교재10Comparative Material 10 913913 670670 8989 705705 1.21.2 0.310.31 0.50.5 00 15.915.9 00 00 64.964.9 T5T5 xx 발명재11Invention 11 발명강DInventive Steel D 925925 670670 8787 721721 1.91.9 0.060.06 00 00 13.713.7 00 00 57.457.4 T3T3 00 비교재12Comparative Material 12 920920 670670 8787 706706 1.31.3 0.290.29 0.30.3 00 15.515.5 00 00 59.559.5 T4T4 xx 종래재13Conventional Materials 13 종래강EConventional Steel E 913913 670670 8787 718718 0.90.9 0.410.41 2.52.5 4.24.2 13.213.2 xx xx 54.854.8 T2.5T2.5 xx 종래재14Conventional Material14 종래강FConventional Steel F 915915 670670 8989 720720 1.01.0 0.380.38 4.54.5 4.64.6 13.513.5 xx 56.656.6 T3T3 xx 종래재15Conventional Material15 종래강GConventional Steel G 916916 670670 8787 721721 0.90.9 0.450.45 3.83.8 5.15.1 13.213.2 xx xx 54.254.2 T2.5T2.5 xx 종래재16Conventional Materials 16 종래강HConventional Steel H 915915 670670 8989 730730 0.80.8 0.360.36 3.93.9 4.54.5 13.413.4 xx xx 56.756.7 T3T3 xx 종래재17Conventional Materials 17 종래강IConventional Steel I 914914 670670 8787 718718 1.01.0 0.400.40 4.04.0 5.25.2 12.912.9 54.054.0 T2.5T2.5 xx 종래재18Conventional Materials 18 종래강JConventional Steel J 915915 670670 8989 723723 0.90.9 0.420.42 3.83.8 4.34.3 13.413.4 xx xx 56.556.5 T3T3 xx 종래재19Conventional materials 19 종래강KConventional Steel K 920920 670670 8787 712712 0.80.8 0.400.40 5.05.0 3.23.2 13.013.0 xx xx 53.453.4 T2.5T2.5 xx 종래재20Conventional 20 종래강LConventional Steel L 917917 670670 8989 715715 0.90.9 0.430.43 4.24.2 4.74.7 13.513.5 xx 56.456.4 T3T3 xx 주) 0: 양호, △: 불량, x: 매우불량Note: 0: good, △: bad, x: very bad

상기 표1 및 표2에 나타난 바와 같이, 발명강(A)~(D)는 유효 티타늄에 대한 탄소의 원자비가 모두 본 발명범위에 있어서, 강내의 고용원소를 완전히 고착, 석출시켜 항복점연신율(YP-EL)이 0을 나타내었다. 또한, 망간이 모두 0.60% 이상첨가되어 보론을 첨가히지 않아도 냉각시 Ar3변태온도를 낮추고, 오스테나이트에서 페라이트 변태를 억제하여 저온에서 메시브(Massive) 변태를 일으킴으로써, 용접부 냉각시 용접 열영향부의 결정립 이상 성장을 억제하는 효과를 나타내어, 재료가 용접상태가 우수하였다.As shown in Tables 1 and 2, the inventive steels (A) to (D) are all atomic ratios of carbon to effective titanium in the scope of the present invention, and completely fixed and precipitated solid solution elements in the steel to yield yield elongation (YP -EL) represents zero. In addition, all manganese is added at least 0.60% to lower the Ar 3 transformation temperature during cooling without adding boron, and to suppress the ferrite transformation in austenite, thereby causing the transformation at low temperature. The negative grain growth was suppressed and the material was excellent in the weld state.

한편, 이 발명의 범위를 벗어난 종래강은 동일한 발명강과 동일한 제조조건에서도 조질도가 낮은 T-2,5및 T-3급 강판이 얻어졌다.On the other hand, in the conventional steel outside the scope of the present invention, T-2, 5 and T-3 grade steel sheets having low quality were obtained even under the same manufacturing conditions as those of the same invention steel.

본 발명강을 이용하고 본 발명범위내의 제조조건으로 제조된 발명재는 모두 평균r치가 높고, △r치가 적었다(즉, 귀(Ear) 발생이 적다). 또한, 내플루팅성 및 용접성 모두 우수하였다. 특히, Al(시효지수) 및 YP-EL(항복점 연신율)은 모두 0으로 비시효성을 나타내어 현저한 개선효과가 있었다. 이와 같은 높은 평균r치와 적은△r치를 갖는 강판은 가공성과 동시에 양호한 귀발생이 없는 특성이 요구되는 돔 제관에 있어서 적합하다. 또한, 비시효성으로 연성이 우수한 발명 범위내의 강판은 고가공후 또는 그 후 시효처리가 실시된 후에도 성형성이 우수하다는 것을 확인하였다.All invention materials produced using the inventive steel under the manufacturing conditions within the scope of the present invention had a high average r value and a low Δr value (that is, less ear generation). In addition, both the fluting resistance and the weldability were excellent. In particular, both Al (aging index) and YP-EL (yielding point elongation) exhibited a non-aging property of 0, resulting in a marked improvement. Such a steel sheet having a high average r value and a small Δr value is suitable for dome production, which requires workability and good ear free characteristics. In addition, it was confirmed that the steel sheet within the invention range having excellent ductility due to non-aging was excellent in formability even after high processing or after aging treatment was performed thereafter.

한편, 냉연압하율 86%에서는 T-3급, 88%에서는 T-4급 강도를 확보할수 있으며, T-4급은 제관사에서 제관후 내압측정결과 규격기준 15kg/㎠이상을 만족하였다.On the other hand, in the cold rolling reduction rate 86%, T-3 grade and 88% T-4 grade strength can be secured.

반면에, 본 발명범위를 벗어난 비교재 및 종래재들은 가공특성을 대표하는평균r치, △r치, 내압, 내플루팅성 및 용접성이 본 발명강 대비 매우 불량하였다.On the other hand, the comparative materials and the conventional materials outside the scope of the present invention were very poor compared to the present invention steel, the average r value, Δr value, pressure resistance, fluting resistance and weldability representing the processing characteristics.

유효 티타늄에 대한 탄소의 원자비가 본 발명의 제한 조건보다 낮은 비교강(E),(H),(J),(K)를 이용한 종래재(13),(16),(18),(19)은 소둔온도 710℃이상에서 재결정은 완료되었지만, 유효 티타늄에 대한 원자비가 부족하기 때문에 캔 가공시 플루팅 현상이 발생하였으며, 용접상태가 불량하였다. 이것은 강내 고용원소의 존재에 의해 주석도금라인의 리플로우(Reflow) 공정 및 제관라인의 소부(Baking) 공정에서 이들 고용원소에 의한 변형시효가 발생하여 롤-포밍(Roll Forming) 가공시 꺽임(Flutting) 현상 및 스트레칭 스트레인(Stretcher Strain)현상이 발생하여 제관 가공성을 불량하게 하였다.Conventional materials (13), (16), (18), and (19) using comparative steels (E), (H), (J), and (K) whose atomic ratio of carbon to effective titanium is lower than the limiting conditions of the present invention. ) Recrystallization was completed at annealing temperature above 710 ℃, but due to lack of atomic ratio for effective titanium, fluting phenomenon occurred during can processing, and the welding condition was poor. This is due to the presence of elements in the steel, which causes deformation aging by these solid elements in the reflow process of the tin plating line and the baking process of the steel making line. ) And stretching strain (Stretcher Strain) phenomenon caused poor pipe workability.

본 발명강을 이용하지만, 소둔온도가 본 발명범위보다 낮은 비교재(4),(5), (6),(8),(10),(12)는 재결정이 완료되지 않아서 T3, T4재의 목표재질을 확보할수 없을 뿐만 아니라 재질의 편차가 커짐에 따라 평균 r치와 △r치가 각각 0.9~1.3 및 0.29~0.43 수준으로서 이방성 등 가공성이 현저히 저하하였다.Although the inventive steel is used, the comparative materials (4), (5), (6), (8), (10), and (12) whose annealing temperature is lower than the range of the present invention are not recrystallized. Not only could the target material not be secured, but as the variation of the material increased, the average r and Δr values were 0.9 ~ 1.3 and 0.29 ~ 0.43, respectively, and the workability such as anisotropy was significantly decreased.

또한, 본 발명에서 제안된 권취온도 620~700℃보다 높은 온도에서 권취한 비교재(3)은 핫코일의 조직이 조대화하여 권취후 냉각속도의 차이에서 강판 폭방향에서의 재질변동이 발생하기 때문에 평균 r치, △r치 등 가공성이 저하하였다.In addition, the comparative material (3) wound at a temperature higher than the winding temperature of 620 ~ 700 ℃ proposed in the present invention because the coil structure of the hot coil is coarse and the material variation in the width direction of the steel sheet occurs in the difference in cooling rate after winding Workability, such as an average r value and (triangle | delta) r value, fell.

망간에 대한 황의 원소비(Mn/S비)가 본 발명범위를 벗어난 종래강(F),(G), (J),(L)을 이용한 종래재(14), (15), (18), (20)는 동일한 냉간압하율에서 발명강대비 경도 및 내압이 매우 저하되었으며, 평균r치 및 △r치가 불량하였다.Elemental ratio of sulfur to manganese (Mn / S ratio) is outside the scope of the present invention prior art material (14), (15), (18) using conventional steels (F), (G), (J), (L) , (20) was very low in hardness and internal pressure compared to the invention steel at the same cold reduction rate, the average r value and △ r value was poor.

즉, 망간과 황의 원자비가 30미만으로 낮을 경우 적열취서의 원인으로 작용하고, 45를 초과하면 고용 망간량이 증가하여 목표로 하는 조질도 및 가공성을 확보할수 없게된다.In other words, if the atomic ratio of manganese and sulfur is less than 30, it acts as a cause of redness, and if it exceeds 45, the amount of dissolved manganese increases, and thus the target quality and processability cannot be secured.

상술한 바와 같이, 본 발명은 망간 및 인을 상향첨가하고, 냉간압연후 소둔조건을 적절히 제어함으로써, 비시효성, 용접성 및 재질강화를 확보하고, 이방성 효과를 강화함으로써, T-3급 연질관용 강판의 우수한 용접성, 확관 가공성 및 T-4급 경질 주석도금 원판의 우수한 내압특성과 이방성을 보유하며, 2종 모두 비시효성을 확보한 관용강판을 효율적으로 제조할 수 있는 효과가 있는 것이다.As described above, the present invention is added to the manganese and phosphorus upwards, by appropriately controlling the annealing conditions after cold rolling, to secure the non-aging, weldability and material reinforcement, and to strengthen the anisotropic effect, the steel sheet for T-3 grade flexible pipe It has excellent weldability, pipe workability, and excellent pressure resistance and anisotropy of T-4 grade hard tin plated disc, and both types have the effect of efficiently manufacturing non-aging steel sheets.

Claims (3)

중량%로 탄소: 0.0015~0.0040%, 망간: 0.50~1.20%, 인: 0.041~0.080%, 황: 0.015%이하, 알루미늄: 0.03~0.06%, 질소: 0.003%이하, 티타늄: 0.025~0.040%, 크롬: 0.040~0.06%, Mn/S의 원자비: 30~45, 잔부 Fe 및 기타 불가피한 불순물을 함유하고, 하기 관계식 1로 정의되는 유효 티타늄과 탄소의 원자비가 1.2~1.8인 가공성이 우수한 비시효성 관용강판By weight% Carbon: 0.0015 ~ 0.0040%, Manganese: 0.50 ~ 1.20%, Phosphorus: 0.041 ~ 0.080%, Sulfur: 0.015% or less, Aluminum: 0.03 ~ 0.06%, Nitrogen: 0.003% or less, Titanium: 0.025 ~ 0.040%, Chromium: 0.040 to 0.06%, atomic ratio of Mn / S: 30 to 45, balance of Fe and other unavoidable impurities, and excellent in workability with a processability of 1.2 to 1.8, which is an atomic ratio of effective titanium and carbon defined by Equation 1 below. Steel plate [관계식 1][Relationship 1] Ti*=Ti-(48/32)S-(48/14)NTi * = Ti- (48/32) S- (48/14) N 관용강판의 제조방법에 있어서,In the method of manufacturing a conventional steel sheet, 중량%로 탄소: 0.0015~0.0040%, 망간: 0.50~1.20%, 인: 0.041~0.080%, 황: 0.015%이하, 알루미늄: 0.03~0.06%, 질소: 0.003%이하, 티타늄: 0.025~0.040%, 크롬: 0.040~0.06%, 망간과 황의 원자비: 30~45, 유효 티타늄과 탄소의 원자비: 1.2~ 1.8, 잔부 Fe 및 기타 불가피한 불순물로 조성된 강 슬라브를 재가열하고 열간압연한 후, 620~700℃의 온도범위에서 권취하고 80% 이상의 압하율로 냉간압연한 다음, 연속소둔로에서 710~728℃의 온도에서 소둔하는 것을 특징으로 하는 가공성이 우수한 비시효성 관용강판의 제조방법By weight% Carbon: 0.0015 ~ 0.0040%, Manganese: 0.50 ~ 1.20%, Phosphorus: 0.041 ~ 0.080%, Sulfur: 0.015% or less, Aluminum: 0.03 ~ 0.06%, Nitrogen: 0.003% or less, Titanium: 0.025 ~ 0.040%, Chromium: 0.040 to 0.06%, manganese and sulfur atomic ratios: 30 to 45, effective titanium and carbon atomic ratios: 1.2 to 1.8, residual steel and other unavoidable impurities. A method for producing a non-aging conventional steel sheet having excellent workability, which is wound at a temperature range of 700 ° C., cold rolled at a reduction ratio of 80% or more, and then annealed at a temperature of 710 to 728 ° C. in a continuous annealing furnace. 제2항에 있어서, 상기 냉간압연시 압하율을 85% 이상으로 하는 것을 특징으로 하는 가공성이 우수한 비시효성 관용강판의 제조방법The method of manufacturing a non-ageing tolerant steel sheet excellent in workability according to claim 2, wherein the cold rolling reduction rate is 85% or more.
KR10-1999-0063195A 1999-12-28 1999-12-28 A nonaging steel sheet for tube with superior formability and a method for manufacturing it KR100415676B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063195A KR100415676B1 (en) 1999-12-28 1999-12-28 A nonaging steel sheet for tube with superior formability and a method for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063195A KR100415676B1 (en) 1999-12-28 1999-12-28 A nonaging steel sheet for tube with superior formability and a method for manufacturing it

Publications (2)

Publication Number Publication Date
KR20010060768A KR20010060768A (en) 2001-07-07
KR100415676B1 true KR100415676B1 (en) 2004-01-31

Family

ID=19630568

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0063195A KR100415676B1 (en) 1999-12-28 1999-12-28 A nonaging steel sheet for tube with superior formability and a method for manufacturing it

Country Status (1)

Country Link
KR (1) KR100415676B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544538B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 High Strength Bake Hardening Steel Sheet With Good Workability and Non Aging Property at Room Temperature and A Method for Manufacturing Thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1689901B1 (en) 2003-11-10 2018-03-21 Posco Cold rolled steel sheet having aging resistance and superior formability, and process for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287443A (en) * 1992-04-13 1993-11-02 Nippon Steel Corp Non-aging steel sheet for vessel excellent in neck-in workability
WO1994002946A1 (en) * 1992-07-27 1994-02-03 Thomas Jefferson University Methods and apparatus for non-invasive imaging including quenchable phosphor-based screens
KR950031266A (en) * 1994-02-17 1995-12-18 도자끼. 시노부 Manufacturing method of steel plate for non-aging can excellent in workability
KR970027345A (en) * 1995-11-30 1997-06-24 김종진 Surface treatment disc for D & I excellent in pressure resistance and its manufacturing method
JPH11314103A (en) * 1998-04-30 1999-11-16 Nippon Steel Corp Production of cold-rolled steel sheet excellent in aging resistance at normal temperature and workability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287443A (en) * 1992-04-13 1993-11-02 Nippon Steel Corp Non-aging steel sheet for vessel excellent in neck-in workability
WO1994002946A1 (en) * 1992-07-27 1994-02-03 Thomas Jefferson University Methods and apparatus for non-invasive imaging including quenchable phosphor-based screens
KR950031266A (en) * 1994-02-17 1995-12-18 도자끼. 시노부 Manufacturing method of steel plate for non-aging can excellent in workability
KR970027345A (en) * 1995-11-30 1997-06-24 김종진 Surface treatment disc for D & I excellent in pressure resistance and its manufacturing method
JPH11314103A (en) * 1998-04-30 1999-11-16 Nippon Steel Corp Production of cold-rolled steel sheet excellent in aging resistance at normal temperature and workability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544538B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 High Strength Bake Hardening Steel Sheet With Good Workability and Non Aging Property at Room Temperature and A Method for Manufacturing Thereof

Also Published As

Publication number Publication date
KR20010060768A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
RU2606361C2 (en) Steel sheet with high mechanical strength, ductility and formability properties, production method and use of such sheets
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
US7879160B2 (en) Cold rolled dual-phase steel sheet
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
US8221564B2 (en) Method for manufacturing high strength steel strips with superior formability and excellent coatability
JP4507851B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR101747034B1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same
WO1998045494A1 (en) Coated seizure-hardening type cold-rolled steel sheet having excellent aging resistance and method of production thereof
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
KR100415676B1 (en) A nonaging steel sheet for tube with superior formability and a method for manufacturing it
KR20190071360A (en) Ferritic stainless steel with excellent impact toughness and manufacturing method thereof
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
KR100470664B1 (en) A blackplate with excellent buckle resistance and expansibility and a method for manufacturing it
KR100340504B1 (en) A Method of Manufacturing Blackplate with Superior Formability
KR100349155B1 (en) Manufacturing Method of Surface-treated Plating Disc with Excellent Aging and Processability
CN111315909A (en) Ultra-high strength and high ductility steel sheet having excellent cold formability and method for producing same
KR20150007608A (en) High yield ratio high-strength hot rolled steel sheet having excellent impact resistance and method for manufacturing the same
KR100276300B1 (en) The manufacturing method of high strength hot rolling steel sheet with having low tensil strength
KR100238010B1 (en) The manufacturing method for tin plate steel sheet with resistance weldability
JP2631437B2 (en) Cold rolled steel sheet excellent in workability, bake hardenability and aging, and method for producing the same
KR20090068906A (en) Strong steel sheet for tinning and manufacturing method thereof
KR100276303B1 (en) The manufacturing method of pipe used low carbon cold rolling steel sheet with anti season creaking
JPH10280048A (en) Production of coating/baking haredening type cold rolled steel sheet excellent in strain aging resistance
JP2002105540A (en) Method for producing high strength hot rolled steel sheet
KR20230059478A (en) Ferritic stainless hot-rolled steel plate excellent in formability and method for production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140107

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150107

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170104

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180109

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee