KR100407518B1 - Method for manufacturing dimethyldichlorosilane - Google Patents

Method for manufacturing dimethyldichlorosilane Download PDF

Info

Publication number
KR100407518B1
KR100407518B1 KR1019950066605A KR19950066605A KR100407518B1 KR 100407518 B1 KR100407518 B1 KR 100407518B1 KR 1019950066605 A KR1019950066605 A KR 1019950066605A KR 19950066605 A KR19950066605 A KR 19950066605A KR 100407518 B1 KR100407518 B1 KR 100407518B1
Authority
KR
South Korea
Prior art keywords
reaction
weight
metal silicon
methyl chloride
gas
Prior art date
Application number
KR1019950066605A
Other languages
Korean (ko)
Other versions
KR970042570A (en
Inventor
전종필
신우호
Original Assignee
고려화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려화학 주식회사 filed Critical 고려화학 주식회사
Priority to KR1019950066605A priority Critical patent/KR100407518B1/en
Publication of KR970042570A publication Critical patent/KR970042570A/en
Application granted granted Critical
Publication of KR100407518B1 publication Critical patent/KR100407518B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/16Preparation thereof from silicon and halogenated hydrocarbons direct synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/40Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to vibrations or pulsations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PURPOSE: Provided is a novel method for manufacturing dimethyldichlorosilane by reacting metallic silicone and methylchloride, thereby increasing production yield of silane based compound and reducing the production cost thereof. CONSTITUTION: A novel method for manufacturing dimethyldichlorosilane by reacting metallic silicone and methylchloride, it is characterized by using an alloy type of contact mass in which metallic silicone is mixed with 0.78-1.56 wt.% of CuCl, 0.63-2.10 wt.% of ZnCl2, 0.63-2.1 wt.% of CsCl, 50-3000ppm of Sn and 0.1-0.2 wt.% of Al and the mixture thereof is melted, or a contact mass in which 0.78-1.56 wt.% of CuCl, 0.63-2.10 wt.% of ZnCl2, 0.63-2.1 wt.% of CsCl, 50-3000ppm of Sn and 0.1-0.2 wt.% of Al are precipitated in metallic silicone.

Description

디메틸디클로로실란의 제조방법Method for preparing dimethyldichlorosilane

본 발명은 디메틸디클로로실란의 제조방법에 관한 것으로서, 더욱 상세하게는 금속규소(Si), 구리 화합물, 아연 화합물, Cs, Sn 및 Al이 적절한 비율로 혼합되어 있는 접촉제(contact mass)와 메틸클로라이드(methylchloride)를 반응시켜 금속규소의 전환율을 높이고 단위시간당 실란계 화합물의 생성율을 증가시키며 온화한 반응조건을 유지시켜 생산비 절감효과를 얻을 수 있는 새로운 디메틸디클로로실란의 제조방법에 관한 것이다.The present invention relates to a method for preparing dimethyldichlorosilane, and more particularly, a contact mass and methyl chloride in which metal silicon (Si), copper compound, zinc compound, Cs, Sn and Al are mixed in an appropriate ratio. A method for preparing a new dimethyldichlorosilane, which can increase the conversion rate of metal silicon, increase the production rate of silane compounds per unit time by reacting (methylchloride), and maintain the mild reaction conditions, thereby reducing the production cost.

유기클로로실란 중에서도 특히 디메틸디클로로실란(dimethyldichlorosilane)의 제조방법은 여러 문헌에서 제시된 바 있다[미국특허 제 2,380,995 호 ; Organohalosilanes Precursors to silicones, Elsevier Publishing Company(1967) ; Catalyzed Direct reactions of silicon, ELSEVIER Press(1993) 등].Among organochlorosilanes, in particular, a method for preparing dimethyldichlorosilane has been suggested in several documents [US Patent No. 2,380,995; Organohalosilanes Precursors to silicones, Elsevier Publishing Company (1967); Catalyzed Direct reactions of silicon, ELSEVIER Press (1993) and the like.

일반적으로 유기클로로실란은 소위 직접합성법 또는 로우초우 합성법(Rochow synthesis)에 의해 제조되고 있으며, 디메틸디클로로실란의 경우 메틸클로라이드 (methylchloride)와 금속규소(metal silicon)을 구리 촉매 하에서 직접 반응시켜 제조하는 방법이 가장 일반적이다.In general, organic chlorosilanes are produced by so-called direct synthesis or Rochow synthesis, and in the case of dimethyldichlorosilane, methyl chloride and metal silicon are directly reacted under a copper catalyst. This is the most common.

그러나 상기 제조방법에 의한 경우 디메틸디클로로실란(이하, "M2"라 함) 이외에도 소량의 메틸트리클로로실란(이하, "M1"이라 함)과 트리메틸클로로실란(이하 "M3"이라 함)이 형성되고 그밖에도 메틸디클로로실란, 디메틸클로로실란, 디실란 등이 부산물로 생성된다.However, in addition to the dimethyldichlorosilane (hereinafter referred to as "M2"), a small amount of methyltrichlorosilane (hereinafter referred to as "M1") and trimethylchlorosilane (hereinafter referred to as "M3") are formed in the manufacturing method. In addition, methyldichlorosilane, dimethylchlorosilane, disilane and the like are produced as by-products.

상기 유기클로로실란 화합물 중에서도 산업적으로 가장 광범위하게 적용되어 지고 있는 것은 M2 인데, M2는 가수분해반응과 고분자화(polymerization)에 의해 실리콘 제품의 기초원료로 사용되는 오일(oil) 또는 껌(gun)등을 만들 수 있다. M2를 기초원료로 하여 폴리유기실록산 수지(미국특허 제 2,258,218 호, 제 2,258,222 호), 오일류(미국특허 제 2,469,888 호, 제 2,469,830 호), 그리고 엘라스토머(미국특허 제 2,448,756 호)를 제조한 바 있다.Among the organochlorosilane compounds, M2 is most widely applied industrially, and M2 is an oil or a gum used as a basic raw material of a silicone product by hydrolysis reaction and polymerization. You can make Polyorganosiloxane resins (US Pat. Nos. 2,258,218, 2,258,222), oils (US Pat. Nos. 2,469,888, 2,469,830), and elastomers (US Pat. No. 2,448,756) were prepared based on M2.

촉매를 사용한 직접합성법에 있어서, 반응결과에 영향을 미치는 요인으로는 첫째, 촉매와 금속규소(Si)로 이루어진 접촉제(contact mass)의 반응성 둘째, 촉매와 첨가제의 종류 셋째, 반응기의 형태 넷째, 그 밖의 합성조건(온도 등)이 있다.In the direct synthesis method using a catalyst, factors affecting the reaction results are as follows: first, reactivity of a contact mass composed of a catalyst and metal silicon (Si), second, types of catalyst and additives, fourth, type of reactor, There are other synthetic conditions (temperature, etc.).

그러나, 상기 요인들 중에서도 접촉제(contact mass)의 반응성이 가장 중요한 요인으로 작용하는 바, 접촉제는 촉매와 금속규소의 혼합방법, 생성된 화합물의 특성, 촉매의 종류, 촉매입자의 크기, 촉매의 입도 분포 등에 따라 메틸클로라이드와의 반응성은 크게 달라질 수 있으므로 접촉제의 제조기술은 매우 중요하다. 일반적인 접촉제의 제조방법으로는 촉매와 금속규소를 단순히 물리적으로 혼합하는 방법, 촉매와 금속규소를 함께 용융하여 합금을 만드는 방법, 또는 화학적 침착법 등이 있다.However, among the above factors, the reactivity of contact mass is the most important factor.The contact agent is a method of mixing the catalyst and the silicon of silicon, the characteristics of the compound produced, the type of catalyst, the size of the catalyst particles, the catalyst. Since the reactivity with methyl chloride can vary greatly depending on the particle size distribution of the, contact manufacturing technology is very important. Common methods for preparing a contact include a method of simply physically mixing the catalyst and the metal silicon, melting the catalyst and the metal silicon together to form an alloy, or chemical deposition.

메틸클로라이드와 금속규소의 반응을 위한 반응기로는 고정층 반응기, 교반층 반응기 또는 유동층 반응기가 사용되고 있고 이들 각각의 장단점이 있으나, 산업적인 생산 시 유동층 반응기를 사용하는 것이 유리하다. 금속규소와 메틸클로라이드의 반응 시 금속규소의 표면이 카본(carbon) 등으로 오염되어 반응성을 점차 상실하게 되는 문제가 생기는데, 반응기는 이러한 문제까지도 해결해 줄 수 있어야만 한다.As a reactor for the reaction of methyl chloride and metal silicon, fixed bed reactors, agitated bed reactors or fluidized bed reactors are used, each of which has advantages and disadvantages, but it is advantageous to use a fluidized bed reactor in industrial production. In the reaction of metal silicon with methyl chloride, the surface of the metal silicon is contaminated with carbon and thus gradually loses reactivity. The reactor must be able to solve such a problem.

또한, 메틸클로라이드와 금속규소의 반응 시 M2의 제조 수율을 높이기 위하여 구리촉매이외에도 다양한 조촉매 및 첨가제를 첨가할 수 있는데, 예를 들면 아연 또는 아연화합물(미국특허 제 2,464,033 호), 알루미늄(미국특허 제 2,403,370호), 주석, 망간 또는 니켈(영국특허 제 1,207,466 호), 코발트(영국특허 제 907,161 호), 염화칼륨(소련특허 제 306,650 호) 등이 있다. 그러나 이들 조촉매 및 첨가제를 첨가한 경우 직접합성 반응을 개선시키는 효과는 있지만, 다음과 같은 문제점들이 지적되고 있다. 그 문제점들로는 생성된 실란계 화합물중의 M2의 선택율이 낮고, 초기 반응유도시간이 길거나 또는 초기 반응온도가 높고, 단위시간당 생성되는 실란계 화합물의 생성물이 낮고, 금속규소의 전환율이 낮고, 촉매계 (catalyst system)가 불순물에 민감하게 반응하고, 그리고 디실란과 같은 폴리머의 생성율이 높다는 것이다.In addition, various cocatalysts and additives may be added in addition to the copper catalyst in order to increase the yield of M2 during the reaction of methyl chloride and metal silicon. For example, zinc or zinc compounds (US Pat. No. 2,464,033), aluminum (US patent) 2,403,370), tin, manganese or nickel (UK Patent No. 1,207,466), cobalt (UK Patent 907,161), potassium chloride (USSR 306,650), and the like. However, the addition of these promoters and additives has the effect of improving the direct synthesis reaction, the following problems have been pointed out. The problems include low selectivity of M2 in the produced silane compounds, long initial reaction induction time or high initial reaction temperature, low product of silane compounds produced per unit time, low conversion rate of metal silicon, catalyst system ( The catalyst system reacts sensitively to impurities and produces high polymers such as disilane.

이에 본 발명에서는 상기 종래의 직접합성법에서 나타나는 문제점들을 해결하기 위해 연구 노력한 결과 메틸클로라이드와 금속규소의 반응기를 새로이 고안하고 또한 금속규소에 구리 화합물, 아연화합물, Cs, Sn 및 Al가 적절한 비율로 혼합되어 있는 접촉제(contact mass)를 제조하여 사용함으로써 본 발명을 완성하였다.Therefore, in the present invention, as a result of research efforts to solve the problems appearing in the conventional direct synthesis method, a new reactor of methyl chloride and metal silicon was newly devised, and copper compound, zinc compound, Cs, Sn, and Al were mixed with metal silicon at an appropriate ratio. The present invention has been completed by preparing and using a contact mass.

따라서, 본 발명은 M2의 선택율을 최대한 상승시키고 금속규소의 전환율을 높여서 원료사용 효율을 증대시킴은 물론 단위시간당 실란계 화합물의 생성율을 개선하고 온화한 반응조건을 유지시켜 생산비 절감효과도 함께 얻을 수 있는 새로운 M2 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention can increase the selectivity of M2 as much as possible and increase the conversion rate of the metal silicon to increase the use efficiency of raw materials, as well as improve the production rate of silane compounds per unit time and maintain the mild reaction conditions, which can also reduce the production cost. The purpose is to provide a new M2 manufacturing method.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 금속규소(Si)와 메틸클로라이드(methylchloride)를 반응시켜 디메틸디클로로실란을 제조하는 방법에 있어서, 상기 금속규소(Si)에 CuCl 0.78 ∼1.56 무게%, ZnCl20.63 ∼ 2.10 무게%, CsCl 0.63 ∼ 2.1 무게%, Sn 50 ∼ 3,000 ppm 및 Al 0.1 ∼ 0.2 무게%를 혼합하여 용융한 합금형태의 접촉제 또는 금속규소(Si)에 이들이 침착되어 있는 형태의 접촉제를 사용하는 디메틸디클로로실란의 제조방법을 그 특징으로 한다.The present invention provides a method for producing dimethyldichlorosilane by reacting metal silicon (Si) with methyl chloride, 0.78 to 1.56% by weight of CuCl, 0.63 to 2.10% by weight of ZnCl 2 , and CsCl to the metal silicon (Si). Dimethyldichlorosilane using a contact form in the form of alloys melted by mixing 0.63 to 2.1% by weight, 50 to 3,000 ppm Sn and 0.1 to 0.2% by weight of Al or metal silicon (Si). The manufacturing method is characterized by that.

또한, 본 발명은 내경 2.5 ∼ 5 cm인 스테인레스 스틸 재질로 이루어져 있고 길이가 45 ∼ 60 cm인 반응관(1), 전기열선에 의한 가열방식을 선택하되 3개 구간으로 나누어 가열하여 위치에 따른 온도의 오차를 최소화하는 온도조절기(2), 반응관내의 반응물을 유동화하는 진동장치(3), 접촉제(contact mass) 덩어리 형성을 막아 주고 생성된 덩어리를 파쇄하는 초음파발진기(4), 반응생성물을 냉각하는 냉각장치(5), 그리고 생성물의 조성을 분석하는 기체크로마토그래피(6)로 이루어진 디메틸디클로로실란의 제조장치를 포함한다.In addition, the present invention is made of a stainless steel material having an internal diameter of 2.5 to 5 cm and a reaction tube (1) having a length of 45 to 60 cm, the heating method by electric heating wire is selected by dividing into three sections and the temperature according to the position Temperature controller (2) for minimizing the error of the device, vibrator (3) for fluidizing the reactants in the reaction tube, ultrasonic oscillator (4) for preventing the formation of contact mass and breaking up the generated mass, and the reaction product And an apparatus for producing dimethyldichlorosilane, which consists of a cooling device 5 for cooling and a gas chromatography 6 for analyzing the composition of the product.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 메틸클로라이드와 금속규소를 반응시킬 때 금속규소가 구리화합물, 아연화합물, Cs, Sn 및 Al과 반응하여 제조된 합금 또는 금속규소 주위에 이들이 침착되어 있는 형태의 접촉제(contact mass)를 사용하여 M2의 선택율을 높이고 금속규소의 전환율을 높임은 물론 반응조건이 온화하여 생산비 절감효과도 함께 얻을 수 있는 새로운 M2 제조방법에 관한 것이다.The present invention provides a contact mass in which metal silicon reacts with a copper compound, zinc compound, Cs, Sn, and Al or an alloy in which metals are deposited around metal silicon when methyl chloride reacts with metal silicon. The present invention relates to a new M2 manufacturing method that can increase the selectivity of M2, increase the conversion rate of metal silicon, and reduce the production cost due to the mild reaction conditions.

본 발명에서 사용되는 금속규소(Si)의 입도는 M2의 선택율과 Si의 전환율에 커다란 영향을 미치게 되므로 적절한 입도의 Si를 선택하는 것은 매우 중요하다.본 발명에서 사용될 수 있는 Si의 입도는 60 ∼ 325메쉬(mesh)이고, 바람직하기로는 100 ∼ 325메쉬이고, 특히 바람직하기로는 70%가 130 ∼ 150메쉬이고 나머지는 200메쉬를 초과하지 않는 경우이다.Since the particle size of the metal silicon (Si) used in the present invention has a great influence on the selectivity of M2 and the conversion of Si, it is very important to select Si having an appropriate particle size. It is 325 mesh (mesh), Preferably it is 100-325 mesh, Especially preferably, it is a case where 70% is 130-150 mesh and the remainder does not exceed 200 mesh.

본 발명에서는 촉매로서 구리화합물 예를 들면 염화제일구리(CuCl), 염화제이구리(Cul2), 산화제일구리(Cu2O), 산화제이구리(CuO) 등을 사용하며, 특히 CuCl을 사용할 경우 Si의 전환율이나 M2에 대한 선택율이 높았다. 촉매의 입도는 1 ∼ 100㎛, 바람직하기로는 5 ∼ 10㎛ 이다. 구리화합물은 금속규소에 대하여 5 ∼ 25 무게%(금속의 양으로 환산), 바람직하기로는 5 ∼ 12 무게% 사용되는 바, 만약 촉매가 5 무게% 미만 사용되면 반응속도가 너무 느리고, 25 무게%를 초과하면 Si 전환율 및 M2 선택도가 낮아지는 문제가 있다.In the present invention, a copper compound such as cuprous chloride (CuCl), cuprous chloride (Cul 2 ), cuprous oxide (Cu 2 O), cuprous oxide (CuO), and the like are used as the catalyst. The conversion rate and selectivity for M2 were high. The particle size of the catalyst is 1 to 100 µm, preferably 5 to 10 µm. The copper compound is used in an amount of 5 to 25% by weight (in terms of metal), preferably 5 to 12% by weight, based on the metal silicon. If the catalyst is used in an amount less than 5% by weight, the reaction rate is too slow and 25% by weight. If it exceeds, there is a problem that the Si conversion and M2 selectivity are lowered.

또한 본 발명에서는 조촉매(promoter)로서 아연 화합물 예를 들면 ZnCl2, ZnO 등을 사용하며, 특히 바람직하기로는 ZnCl2을 사용하는 것이다. 아연 화합물은 금속규소에 대하여 0.2 ∼ 1.5 무게% 사용되는 바, 만약 조촉매가 0.2 무게% 미만 사용되면 본 발명에서 목적으로 하는 유도기간의 단축효과를 얻을 수 없고, 1.5 무게%를 초과하면 M2 선택도가 낮아지는 문제가 있다.In the present invention, and it decided to use the ZnCl 2, ZnO, etc., for example a zinc compound as a promoter (promoter), particularly preferred is the use of ZnCl 2. Zinc compound is used 0.2 to 1.5% by weight relative to the metal silicon, if the promoter is used less than 0.2% by weight can not obtain a shortening effect of the induction period aimed in the present invention, if it exceeds 1.5% by weight M2 selection There is a problem that the degree is lowered.

그 밖도 기타 첨가제로서 Cs, Sn 및 Al 등 중에서 선택된 1종 또는 2종 이상이 첨가될 수 있는바, 바람직하기로는 CsCl, Sn 및 (CH3)4Sn을 적절히 혼합 사용하는 것이다. 첨가제로서 Cs를 사용할 경우 금속규소에 대하여 0.1 ∼ 3.0 무게%, 바람직하기로는 0.5 ∼ 1.5 무게%를 첨가하는데, 만약 그 사용량이 0.1 무게% 미만이면 첨가 효과가 미흡하고, 3 무게%를 초과하면 M2에 대한 선택율이 저하된다. Sn 또는 (CH3)4Sn 첨가할 경우 증기상(vapor phase)으로 만들어 투입하면 더 좋은 효과를 얻을 수 있고, 극소량 첨가하여도 초기 반응성 및 생성율을 배가시킬 수 있는데 이는 접촉제(contact mass)제조시 불균질 혼합 현상을 배제한 것으로 판단된다. Sn은 금속규소에 대하여 50 ∼ 3,000 ppm을 첨가하는데, 만약 그 첨가량이 상기 범위를 벗어나면 좋은 결과를 얻을 수 없다. 촉매와 조촉매를 사용하는 경우에 비교하여 촉매, 조촉매 및 첨가제를 사용하는 경우는 약 20배 이상의 실란계 화합물의 생성율이 증가하였고, 첨가제 중에서도 Sn을 사용하는 경우보다는 Sn 및 Cs를 함께 사용할경우 Si 전환율은 크게 상승하였다. Al은 금속규소에 대하여 0.01 ∼ 0.3 무게%, 바람직하기로는 0.1 ∼ 0.2 무게%을 첨가하는데, 만약 그 첨가량이 0.01 무게% 미만이면 첨가효과가 미흡하고, 0.3 무게%를 초과하면 부산물로 생성되는 M3의 선택도가 높아지는 문제가 있다.In addition, one or two or more selected from Cs, Sn, Al, and the like may be added as other additives. Preferably, CsCl, Sn, and (CH 3 ) 4 Sn are suitably mixed and used. When Cs is used as an additive, 0.1 to 3.0% by weight, preferably 0.5 to 1.5% by weight, of metal silicon is added. If the amount is less than 0.1% by weight, the effect of addition is insufficient. The selectivity to decreases. When Sn or (CH 3 ) 4 Sn is added, it can be made into a vapor phase to obtain a better effect, and the addition of a small amount can double the initial reactivity and production rate. It seems that the heterogeneous mixing phenomenon was excluded. Sn adds 50 to 3,000 ppm with respect to the metal silicon, but if the amount is out of the above range, good results cannot be obtained. In the case of using the catalyst and the promoter, the production rate of the silane compound was increased by about 20 times or more when the catalyst, the promoter and the additive were used. Among the additives, the use of Sn and Cs rather than the Sn is used. Si conversion rate rose significantly. Al is added in an amount of 0.01 to 0.3% by weight, preferably 0.1 to 0.2% by weight, based on the metal silicon. If the amount is less than 0.01% by weight, the effect of addition is insufficient. There is a problem that the selectivity of.

따라서 메틸클로라이드와 금속규소의 반응에 의한 M2 제조시 가장 좋은 반응계(system)는 구리 화합물, 아연 화합물, Cs 화합물, Sn 및 Al가 적절한 비율로 혼합되어 있는 상태로서, 규소금속에 대하여 구리화합물(금속의 양으로 환산) 0.5 ∼ 1.0 무게%, 아연 화합물(금속의 양으로 환산) 0.3 ∼ 1.0 무게%, Cs 화합물 0.5 ∼ 1.5 무게%, Sn 50 ∼ 3,000 ppm 및 Al 0.1 ∼ 0.2 무게%인 경우이다.Therefore, the best reaction system for the production of M2 by the reaction of methyl chloride and metal silicon is a state in which copper compound, zinc compound, Cs compound, Sn and Al are mixed in an appropriate ratio. 0.5 to 1.0% by weight, zinc compound (in terms of metal) 0.3 to 1.0% by weight, Cs compound 0.5 to 1.5% by weight, Sn 50 to 3,000 ppm and Al 0.1 to 0.2% by weight.

또한 반응온도는 250 ∼ 340℃ 범위를 유지하는 것이 바람직하며, 상기 온도범위내에서는 반응온도가 상승함에 따라 실란계 화합물의 생성율은 증가하는 경향을 보이지만, 340℃를 초과하면 M2의 선택율은 크게 감소하게된다. 따라서 가장 바람직한 반응온도는 290 ∼ 310℃ 이다.In addition, it is preferable to maintain the reaction temperature in the range of 250 to 340 ° C. In the above temperature range, the production rate of the silane-based compound tends to increase as the reaction temperature increases. Will be done. Therefore, the most preferable reaction temperature is 290-310 degreeC.

이러한 반응이 지속되면 필연적으로 금속규소가 소모되면서 점차 입자가 작아지고 결국에는 내부에 기공을 가지는 덩어리를 형성하게 되어 메틸클로라이드 기체(CH3Cl)와의 접촉을 어렵게 하며 반응성의 하강, 국부적인 온도의 상승 및 불균형을 생성시켜 M2에 대한 선택도, Si의 전환율, 생성물의 생성율 등을 저하시키게 한다. 이에 본 발명에서는 균질한 온도분포와 입자간의 마찰을 극대화시켜 덩어리 생성을 억제하고 생성된 덩어리는 내부에서 직접 파쇄되도록 하는 반응기를 고안하여 사용하였다.If this reaction persists, the metal silicon is inevitably consumed, and the particles gradually become smaller and eventually form a mass having pores therein, making contact with methyl chloride gas (CH 3 Cl) difficult. Elevations and imbalances are generated to lower selectivity to M2, conversion of Si, production rate of product, and the like. Therefore, in the present invention, the reactor was designed to suppress the formation of lumps by maximizing the friction between the homogeneous temperature distribution and the particles and to directly crush the produced lumps.

본 발명에서 사용되는 반응기는 첨부도면에 나타낸 바와 같으며, 반응관(1)은 내경 2.5 ∼ 5 cm인 스테인레스 스틸 파이프(SUS 316) 재질로 이루어져 있고 길이는 45 ∼ 60 cm이다. 가열은 전기열선에 의한 가열방식을 선택하였고, 3개구간으로 나누어 가열되고 각각 자동온도제어(PID)방식의 온도조절기(2)에 의해 1℃ 오차로 제어된다. 이렇게 3개구간으로 나누어 가열함으로써 위치에 따른 온도의 오차를 최소화하고 정확한 온도제어를 하도록 한다. 반응관 하단부의 진동 장치(3)에 의해 반응기 전체가 진동되어 반응관 내부의 반응물은 유동층을 형성하면서 입자간에 마찰이 발생하게된다. 또한, 반응관 중간부에 설치된 초음파 발진기(4)는 금속규소와 메틸클로라이드의 반응에 따른 접촉제(contact mass) 덩어리 형성을 막아 주어 생성된 덩어리는 파쇄되도록 하였다. 이로써 반응과정 중 균질한 온도분포와 입자간의 마찰을 극대화시켜 새로운 금속규소표면을 생성시킴으로써 실란계 화합물 생성을 위한 금속규소에 대한 메틸클로라이드 기체의 흡착을 촉진시킨다.The reactor used in the present invention is as shown in the accompanying drawings, the reaction tube (1) is made of a stainless steel pipe (SUS 316) material having an internal diameter of 2.5 to 5 cm and a length of 45 to 60 cm. The heating method was selected by the heating method by electric heating wire, divided into three sections and heated and controlled by the temperature controller 2 of the automatic temperature control (PID) method with a 1 ° C error. Thus, heating is divided into three sections to minimize the temperature error according to the position and to control the temperature accurately. The entire reactor is vibrated by the vibrating device 3 at the lower end of the reaction tube, so that the reactants inside the reaction tube generate friction between particles while forming a fluidized bed. In addition, the ultrasonic oscillator 4 installed in the middle of the reaction tube prevented the formation of contact masses due to the reaction of the metal silicon and methyl chloride, so that the produced masses were crushed. This maximizes the homogeneous temperature distribution and friction between the particles during the reaction to create a new metal silicon surface to promote the adsorption of methyl chloride gas to the metal silicon for the production of silane compounds.

본 발명에 따른 M2 제조방법은 첨부도면을 중심으로 구체적으로 설명하면 다음과 같다.M2 manufacturing method according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명에서는 금속규소와 메틸클로라이드 기체의 반응 시 금속규소를 구리 화합물, 아연 화합물 그리고 첨가제로서 Cs, Sn, Al, Mn을 합금 형태로 또는 금속 규소 주위에 이들이 침착된 형태로 접촉제(contact mass)를 만들어 사용하였다. 접촉제(contact mass)의 제조과정을 좀더 구체적으로 설명하면, 먼저 촉매, 조촉매, 첨가제 등을 혼합한 다음, 질소분위기의 밀폐상자에서 무게를 달고 이것을 병에 담은 후, 진동믹서에서 균질 혼합하였다. 그리고 나서 여기에 금속규소를 혼합하고 다시 2시간동안 진동믹서에서 혼합하여 물리적으로 균질한 혼합물을 얻는다. 이 혼합물을 반응관(1)의 원료 투입구(1-1)에 투입하고, 기체 유입구(1-2)로 질소기체 (N2)를 유입하면서 반응기는 5℃/1분씩 서서히 승온하여 350 ∼ 400℃까지 승온시킨 다음, 3 ∼ 6시간 유지시키면 금속규소와 촉매, 조촉매 및 첨가제가 반응하여 합금을 만들거나 또는 금속규소 표면에 이들이 침착되어 있는 접촉제(contact mass)를 만든다.In the present invention, a contact mass in the form of an alloy or Cs, Sn, Al, Mn in the form of an alloy, or in the form of depositing them around a metal silicon in the reaction of the metal silicon and methyl chloride gas Was used. In more detail, the process of preparing the contact mass is first mixed with a catalyst, a cocatalyst, and an additive, and then weighed in a sealed box of a nitrogen atmosphere and placed in a bottle, followed by homogeneous mixing in a vibration mixer. . Then, metal silicon is mixed and mixed in a vibration mixer for 2 hours to obtain a physically homogeneous mixture. The mixture was introduced into the raw material inlet 1-1 of the reaction tube 1, the nitrogen gas (N 2 ) was introduced into the gas inlet 1-2, and the reactor was gradually heated up at 5 ° C./1 min to 350 to 400. After the temperature is raised to 3 ° C. and maintained for 3 to 6 hours, the metal silicon and the catalyst, the promoter and the additive react to form an alloy or a contact mass in which they are deposited on the metal silicon surface.

상기에서 제조한 접촉제는 250℃ 이하로 냉각시키고, 온도조절기(2)를 조절하여 반응관 내부온도를 250 ∼ 340℃ 범위로 유지시킨 다음, 기체 유입구(1-2)로의 질소기체(N2) 유입을 중단하고 메틸클로라이드 기체(CH3Cl)를 유입하는데 메틸클로라이드 기체는 유입에 앞서 미리 예열대(1-3)에서 약 250℃로 예열하여 15 ∼ 50ℓ/시간의 속도로 유입하였다. 그리고 반응관(1) 내부는 유리프릿필터(1-4)가 장착되어 있어 메틸클로라이드 기체를 고르게 분급하도록 하였다. 반응시 진동 장치(3)는 5 ∼ 10 m/sec의 진동수로 진동시켜 반응물을 유동화시킴으로써 메틸클로라이드 기체와 원활히 반응하도록 하였고, 또한 초음파 발진기(3)에 의해 원료간의 마찰이 잘 일어나도록 하였으며, 초음파탐침기(4-1)를 반응기 양쪽에 배치시켜 반응중에 형성되는 미세 덩어리를 분쇄하도록 하였다. 반응 생성물 출구(1-5)를 통해 배출되는 반응생성물은 냉각기(5)에 집하되고, 냉각은 -30℃에서 이루어지도록 한다. 또한 생성물의 조성은 온-라인(on-line)으로 연결된 기체 크로마토그래피(6)에 의해 분석하였다.The above prepared contact agent was cooled to 250 ° C. or lower, the temperature controller 2 was adjusted to maintain the internal temperature of the reaction tube in the range of 250 to 340 ° C., and then a nitrogen gas (N 2 ) to the gas inlet (1-2). The inlet was stopped and the methyl chloride gas (CH 3 Cl) was introduced. The methyl chloride gas was preheated to about 250 ° C. in the preheating zone (1-3) prior to the inflow and introduced at a rate of 15 to 50 l / hour. In addition, the glass frit filter (1-4) is mounted inside the reaction tube (1) to evenly classify the methyl chloride gas. During the reaction, the vibration device 3 vibrates at a frequency of 5 to 10 m / sec to fluidize the reactants so as to react smoothly with the methyl chloride gas. Also, the ultrasonic oscillator 3 causes friction between materials to occur. Probes 4-1 were placed on both sides of the reactor to break up the fine mass formed during the reaction. The reaction product discharged through the reaction product outlet (1-5) is collected in the cooler (5), the cooling is to be carried out at -30 ℃. The composition of the product was also analyzed by gas chromatography (6) connected on-line.

상기에서 설명된 바와 같은 본 발명의 제조방법에서는 M1/M2의 무게비가 0.02 이하로서 부산물로 쉽게 생성될 수 있는 M1의 생성율을 크게 저하시켰고, M2의 선택율은 최고 90%, Si의 전환율은 최대 87%, 메틸클로로실란 생성율은 260 g/h/Si Kg 이었다. 이는 반응 중에서 메틸클로라이드와의 반응에 의해 생성될 수 있는 덩어리를 억제하고 새로운 표면을 제공하는데 있다.In the manufacturing method of the present invention as described above, the weight ratio of M1 / M2 is 0.02 or less, which greatly reduces the production rate of M1 which can be easily produced as a by-product, the selectivity of M2 is up to 90%, and the conversion rate of Si is up to 87. %, Methylchlorosilane production rate was 260 g / h / Si Kg. This is to suppress the agglomerates that can be produced by the reaction with methyl chloride in the reaction and to provide a new surface.

이하, 본 발명을 실시예에 의거하여 더욱 상세히 설명하면 다음과 같은 바, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples, but the present invention is not limited thereto.

실시예 1Example 1

CuCl(13.2 g), ZnCl2(1.57 g), CsCl(1.35 g), Al(0.3 g) 및 Sn(750 ppm)을혼합한 다음, 질소분위기의 밀폐상자에서 무게를 달고 이것을 병에 담은 후, 진동 믹서에서 균질 혼합하였다. 그리고 나서 여기에 금속규소(150g)를 혼합하고 다시 2시간동안 진동믹서에서 혼합하였다. 이 혼합물은 반응관(1)의 원료 투입구(1-1)에 투입하고, 기체 유입구(1-2)로 질소기체(N2)를 유입하면서 반응관은 5℃/1분씩 서서히 승온하여 310℃까지 승온시킨 다음, 3시간 유지시켜 접촉제(contact mass)를 만들었다.CuCl (13.2 g), ZnCl 2 (1.57 g), CsCl (1.35 g), Al (0.3 g), and Sn (750 ppm) are mixed, weighed in a sealed box in a nitrogen atmosphere, and bottled. Homogenously mixed in a vibrating mixer. Then, silicon silicon (150 g) was mixed thereto and then mixed in a vibration mixer for 2 hours. The mixture is introduced into the raw material inlet 1-1 of the reaction tube 1, the nitrogen gas (N 2) is introduced into the gas inlet 1-2, and the reaction tube is gradually heated to 5 ° C./1 min to 310 ° C. The temperature was raised and then maintained for 3 hours to form a contact mass.

상기에서 제조한 접촉제는 250℃ 이하로 냉각시키고, 온도조절기(2)를 조작하여 반응기 내부온도를 360℃ 범위로 유지시킨 다음, 기체 유입구(1-2)로의 질소 기체(N2) 유입을 중단하고 대신에 메틸클로라이드 기체(CH3Cl)를 유입하는데 메틸클로라이드 기체는 유입에 앞서 예열대(1-3)에서 미리 약 250℃로 예열하여 30 ℓ/시간의 속도로 유입하였다.The above prepared contact agent was cooled to 250 ° C. or lower, and the temperature controller 2 was operated to maintain the temperature inside the reactor in the range of 360 ° C., and then the inflow of nitrogen gas (N 2) into the gas inlet (1-2) was stopped. Instead, methyl chloride gas (CH 3 Cl) was introduced. The methyl chloride gas was preheated to about 250 ° C. in advance in the preheating zone (1-3) prior to the introduction, and introduced at a rate of 30 L / hour.

반응 중에는 진동장치(3)는 7 m/sec의 진동수로 진동시켜 반응물을 유동화시켜 메틸클로라이드 기체와 원활히 반응하도록 하였고, 또한 초음파발진기(4)를 이용하여 원료간의 마찰이 잘 일어나도록 하였다. 반응 생성물은 출구(1-5)를 통하여 배출되어 냉각기(5)에 집하되고, 냉각은 -30℃에서 이루어지도록 하였다. 또한 생성물의 조성은 온-라인(on-line)으로 연결된 기체 크로마토그래피(6)에 의해 분석하였으며, 그 결과는 다음 표 2에 나타내었다.During the reaction, the vibrator 3 vibrated at a frequency of 7 m / sec to fluidize the reactants to react smoothly with the methyl chloride gas, and also to facilitate friction between the raw materials using the ultrasonic oscillator 4. The reaction product was discharged through the outlet (1-5) and collected in the cooler (5), the cooling was to be carried out at -30 ℃. The composition of the product was also analyzed by gas chromatography (6) connected on-line, and the results are shown in Table 2 below.

실시예 2, 3 및 비교예 1 ∼ 4Examples 2 and 3 and Comparative Examples 1 to 4

상기 실시예 1과 동일한 방법으로 하되 다만 다음 표 1에 나타낸 바와 같이반응물의 조성, 반응온도 및 총반응시간을 달리 하였다. 또한 생성물의 조성은 다음 표 2에 나타내었다.The same method as in Example 1 except that the composition, the reaction temperature and the total reaction time of the reactants were different as shown in the following Table 1. In addition, the composition of the product is shown in Table 2 below.

도면은 본 발명에서 사용된 반응기의 개략도이다.The figure is a schematic of the reactor used in the present invention.

[도면의 주요부분에 대한 부호의 설명][Explanation of symbols on the main parts of the drawings]

1 : 반응관 1-1 : 원료투입구1: reaction tube 1-1: raw material inlet

1-2 : 기체유입구 1-3 : 예열대1-2: gas inlet 1-3: preheating zone

1-4 : 유리프릿필터(glass frit filter) 1-5 : 생성물출구1-4: glass frit filter 1-5: Product outlet

2 : 온도조절기 3 : 진동장치(vibration system)2: temperature controller 3: vibration system

4 : 초음파발진기 4-1 : 초음파탐침기4: ultrasonic oscillator 4-1: ultrasonic probe

5 : 냉각장치 6 : 기체크로마토그래피5: cooling device 6: gas chromatography

Claims (3)

금속규소(Si)와 메틸클로라이드(methylchloride)를 반응시켜 디메틸디클로로실란을 제조하는 방법에 있어서,In the method for producing dimethyl dichlorosilane by reacting metal silicon (Si) and methyl chloride (methylchloride), 상기 금속규소(Si)에 CuCl 0.78 ∼ 1.56 무게%, ZnCl20.63 ∼ 2.10 무게%, CsCl 0.63 ~ 2.1 무게%, Sn 50 ~ 3,000 ppm 및 Al 0.1 ~ 0.2 무게%를 혼합하여 용융한 합금형태의 접촉제 또는 금속규소(Si)에 이들이 침착되어 있는 형태의 접촉제를 사용하는 것을 특징으로 하는 디메틸디클로로실란의 제조방법.Cu8 0.78 to 1.56% by weight of CuCl, 0.63 to 2.10% by weight of ZnCl 2 , 0.63 to 2.1% by weight of CsCl, 50 to 3,000 ppm of Sn and 0.1 to 0.2% by weight of Al alloy Method for producing dimethyldichlorosilane, characterized in that using a contact agent of the form in which they are deposited on the agent or metal silicon (Si). 상기 제 1 항의 접촉제 조성물을 원료 투입구(1-1)에 투입하고, 기체 유입구(1-2)로 질소기체(N2)를 유입하면서 반응기의 내부온도를 350 ∼ 400℃까지 승온시켜 접촉제(contact mass)를 만든 후,The contact agent composition of claim 1 is introduced into the raw material inlet (1-1), the nitrogen gas (N 2 ) is introduced into the gas inlet (1-2) while raising the internal temperature of the reactor to 350 ~ 400 ℃ the contact agent after making contact mass, 상기 접촉제를 250℃ 이하로 냉각시키고 온도조절기(2)를 조절하여 반응관 내부온도를 250 ∼ 340℃ 범위로 유지시킨 다음, 기체 유입구(1-2)로의 질소 기체(N2) 유입을 중단하고 250℃로 예열된 메틸클로라이드 기체(CH3Cl)를 15 ∼ 50 ℓ/시간의 속도로 유입하여 반응시키되, 유리프릿필터(1-4)에 의해 메틸클로라이드 기체가 고르게 분급하도록 하고, 진동장치(3)에 의해 5 ∼ 10 m/sec의 진동수로 진동시켜 반응물을 유동화시키고, 초음파 발진기(3)에 의해 원료간의 마찰이 잘 일어나도록 하며, 초음파탐침기(4-1)를 반응기 양쪽에 배치시켜 반응중에 형성되는 미세 덩어리를 분쇄하며,The contactant was cooled to 250 ° C. or lower and the temperature controller 2 was adjusted to maintain the internal temperature of the reaction tube in the range of 250 to 340 ° C., and then the inflow of nitrogen gas (N 2 ) into the gas inlet (1-2) was stopped. And reacted with methyl chloride gas (CH 3 Cl) preheated to 250 ° C. at a rate of 15 to 50 l / hour, and evenly classifying methyl chloride gas by the glass frit filter (1-4). By vibrating at a frequency of 5 to 10 m / sec by (3), the reactant is fluidized, and the friction between the raw materials is caused by the ultrasonic oscillator 3 well, and the ultrasonic probe 4-1 is disposed on both sides of the reactor. To pulverize the fine mass formed during the reaction, 반응 생성물 출구(1-5)를 통해 배출되는 반응생성물은 -30℃로 고정되어 있는 냉각기(5)에 집하하는 것을 특징으로 하는 디메틸디클로로실란의 제조방법.The reaction product discharged through the reaction product outlet (1-5) is collected in a cooler (5) fixed at -30 ℃ a process for producing dimethyldichlorosilane. 내경 2.5 ∼ 5 cm인 스테인레스 스틸 재질로 이루어져 있고 길이가 45 ∼ 60 cm인 반응관(1), 전기열선에 의한 가열방식을 선택하되 3개구간으로 나누어 가열하여 위치에 따른 온도의 오차를 최소화하는 온도조절기(2), 반응관내의 반응물을 유동화하는 진동장치(3), 접촉제(contact mass) 덩어리 형성을 막아 주고 생성된 덩어리를 파쇄하는 초음파발진기(4), 반응생성물을 냉각하는 냉각장치(5), 그리고 생성물의 조성을 분석하는 기체크로마토그래피(6)로 이루어진 것을 특징으로 하는 디메틸디클로로실란의 제조장치.Reaction tube (1) made of stainless steel with internal diameter of 2.5 to 5 cm and length of 45 to 60 cm (1), heating method by electric heating wire is selected, and heating is divided into three sections to minimize the temperature error according to the location. A temperature controller 2, a vibrator 3 for fluidizing the reactants in the reaction tube, an ultrasonic oscillator 4 for preventing the formation of contact masses and crushing the formed masses, and a cooling device for cooling the reaction product ( 5) and a gas chromatography (6) for analyzing the composition of the product.
KR1019950066605A 1995-12-29 1995-12-29 Method for manufacturing dimethyldichlorosilane KR100407518B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950066605A KR100407518B1 (en) 1995-12-29 1995-12-29 Method for manufacturing dimethyldichlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950066605A KR100407518B1 (en) 1995-12-29 1995-12-29 Method for manufacturing dimethyldichlorosilane

Publications (2)

Publication Number Publication Date
KR970042570A KR970042570A (en) 1997-07-24
KR100407518B1 true KR100407518B1 (en) 2004-02-25

Family

ID=37422762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950066605A KR100407518B1 (en) 1995-12-29 1995-12-29 Method for manufacturing dimethyldichlorosilane

Country Status (1)

Country Link
KR (1) KR100407518B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500724A (en) * 1983-07-28 1985-02-19 General Electric Company Method for making alkylhalosilanes
US4656301A (en) * 1983-09-28 1987-04-07 Rhone-Poulenc Specialites Chimiques Direct catalytic synthesis of dimethyldichlorosilane from methyl chloride and silicon
US4661613A (en) * 1983-09-28 1987-04-28 Rhone-Poulenc Specialites Chimiques Direct catalytic synthesis of dimethyldichlorosilane from methyl chloride and silicon
US4684741A (en) * 1985-02-22 1987-08-04 Rhone-Poulenc Specialites Chimiques Selective production of dimethyldichlorosilane
KR900005184A (en) * 1988-09-13 1990-04-13 세끼모또 다다히로 Battery remaining capacity monitoring device and remaining charge value display method
US5117030A (en) * 1990-07-31 1992-05-26 Rhone-Poulenc Chimie Catalyst/promoter for direct synthesis of dimethyldichlorosilane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500724A (en) * 1983-07-28 1985-02-19 General Electric Company Method for making alkylhalosilanes
US4656301A (en) * 1983-09-28 1987-04-07 Rhone-Poulenc Specialites Chimiques Direct catalytic synthesis of dimethyldichlorosilane from methyl chloride and silicon
US4661613A (en) * 1983-09-28 1987-04-28 Rhone-Poulenc Specialites Chimiques Direct catalytic synthesis of dimethyldichlorosilane from methyl chloride and silicon
US4684741A (en) * 1985-02-22 1987-08-04 Rhone-Poulenc Specialites Chimiques Selective production of dimethyldichlorosilane
KR900005184A (en) * 1988-09-13 1990-04-13 세끼모또 다다히로 Battery remaining capacity monitoring device and remaining charge value display method
US5117030A (en) * 1990-07-31 1992-05-26 Rhone-Poulenc Chimie Catalyst/promoter for direct synthesis of dimethyldichlorosilane

Also Published As

Publication number Publication date
KR970042570A (en) 1997-07-24

Similar Documents

Publication Publication Date Title
US4500724A (en) Method for making alkylhalosilanes
US4661613A (en) Direct catalytic synthesis of dimethyldichlorosilane from methyl chloride and silicon
JPH0692421B2 (en) Method for producing alkylhalosilanes
USRE33452E (en) Method for making alkylhalosilanes
FI77040C (en) FOERFARANDE FOER DIREKT SYNTES AV DIMETYLDIKLORSILAN.
JP3812642B2 (en) Method for producing organohalosilane
EP0256876B1 (en) A process for preparing halosilanes
US5075477A (en) Direct synthesis of methylchlorosilaakanes
JP2744106B2 (en) Method for producing alkylhalogenosilane
KR101153590B1 (en) Method for preparation of phenyl chlorosilane method for preparation of phenyl chlorosilane
US4390510A (en) Process for treating spent silicon-containing reaction masses to produce halosilanes
JP4570731B2 (en) Method for producing alkylhalosilane
US6365766B1 (en) Metallic copper catalyst and process for the synthesis of organohalosilanes
US4487950A (en) Method for making methylchlorosilanes
KR100407518B1 (en) Method for manufacturing dimethyldichlorosilane
US7202192B2 (en) Composite catalysts for the direct synthesis of alkylhalosilanes
US7238638B2 (en) Composite copper/tin/alkali metal catalysts for the direct synthesis of alkylhalosilanes
JPH0259590A (en) Production of organic cholorosilane
KR19980042036A (en) Process for preparing halosilane alkyl
US5239102A (en) Method for making organohalosilanes
JP2001226382A (en) Method for producing organohalosilane
JPH035396B2 (en)
JPH0578374A (en) Process for preparing alkylated silane
JPH10279584A (en) Production of alkylhalosilane
AU703621B2 (en) Method of producing alkyl halogen silanes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120914

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131031

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151008

Year of fee payment: 13

EXPY Expiration of term