KR100406413B1 - Method of continuous casting weathering steel for cold rolling - Google Patents

Method of continuous casting weathering steel for cold rolling Download PDF

Info

Publication number
KR100406413B1
KR100406413B1 KR10-1999-0047907A KR19990047907A KR100406413B1 KR 100406413 B1 KR100406413 B1 KR 100406413B1 KR 19990047907 A KR19990047907 A KR 19990047907A KR 100406413 B1 KR100406413 B1 KR 100406413B1
Authority
KR
South Korea
Prior art keywords
steel
present
mold
casting
cast
Prior art date
Application number
KR10-1999-0047907A
Other languages
Korean (ko)
Other versions
KR20010044866A (en
Inventor
강석은
윤원규
백찬준
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0047907A priority Critical patent/KR100406413B1/en
Publication of KR20010044866A publication Critical patent/KR20010044866A/en
Application granted granted Critical
Publication of KR100406413B1 publication Critical patent/KR100406413B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명은 산업용 보일러 및 열교환기용 소재로 사용되는 내후성강의 제조방법에 관한 것으로, 그 목적은 기존의 후물재(열연재)를 박물화(냉연재)하는데 따른 표면결함의 발생을 해결할 수 있는 주조방법에 관한 것이다.The present invention relates to a manufacturing method of weathering steel used as a material for industrial boilers and heat exchangers, the object of the present invention is a casting method that can solve the occurrence of surface defects by thinning (cold rolled) the existing thick material (hot rolled material) It is about.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C:0.06∼0.08%, Mn:0.90∼1.0%, Si:0.17∼0.24%, P:0.02%이하, S:0.01%이하, Cu:0.2∼0.3%, Ni:0.2∼0.3% 및 나머지 Fe와 기타 불가피하게 함유되는 불순물로 이루어지는 용강을 턴디쉬에서의 과열도를 17∼23℃로 관리하는 단계;The present invention for achieving the above object, in the weight%, C: 0.06 to 0.08%, Mn: 0.90 to 1.0%, Si: 0.17 to 0.24%, P: 0.02% or less, S: 0.01% or less, Cu: 0.2 Managing the superheat degree in the tundish at 17 to 23 ° C. for molten steel composed of ˜0.3%, Ni: 0.2 to 0.3% and the remaining Fe and other inevitable impurities;

이 용강을 테이퍼가 1.00∼1.05%로 설정된 주형에 주입하여 1.12∼1.17m/min으로 속도로 주조하는 단계;Injecting the molten steel into a mold having a taper set at 1.00 to 1.05% and casting at a speed of 1.12 to 1.17 m / min;

주형을 통과하여 이송되는 주편을 2차냉각대에서 0.29∼0.35ℓ/kg의 비수량으로 냉각하는 단계;를 포함하여 이루어지는 냉연 내후성강의 주조방법에 관한 것을 그 기술적요지로 한다.The present invention relates to a method for casting cold-rolled weathering steel, comprising: cooling the cast steel passed through the mold to a non-aqueous quantity of 0.29 to 0.35 l / kg in a secondary cooling zone.

Description

냉연 내후성강의 주조방법{Method of continuous casting weathering steel for cold rolling}Method of continuous casting weathering steel for cold rolling

본 발명은 산업용 보일러 및 열교환기용 소재로 사용되는 내후성강의 제조방법에 관한 것으로, 보다 상세하게는 기존의 후물재(열연재)를 박물화(냉연재)하는데 따른 표면결함의 발생을 해결할 수 있는 주조방법에 관한 것이다.The present invention relates to a manufacturing method of weathering steel used as a material for industrial boilers and heat exchangers, and more particularly, casting which can solve the occurrence of surface defects due to thinning of a conventional thick material (hot rolled material) (cold rolled material). It is about a method.

내후성강은 대기에 노출된 초기기간은 보통강과 유사하게 녹이 발생하지만 기간이 경과함에 따라 그 녹의 일부가 서서히 모재에 밀착되어 치밀한 녹을 형성하고 그 녹층이 환경에 대한 보호막으로 작용하여 부식진행이 억제되어 보통강에 비해 대기부식 저항성이 월등히 우수하다. 대기부식 저항성은 미세조직이나 제조공정 보다는 화학조성에 거의 의존하며 화학조성에 따른 부식 저항성(C.I)은 ASTM G101에 하기 식 1과 같이 규정되어 있다.In the early period when weathering steel is exposed to the atmosphere, rust occurs similarly to ordinary steel, but with the passage of time, part of the rust gradually adheres to the base metal to form dense rust, and the rust layer acts as a protective film to the environment, thereby inhibiting corrosion progress. Compared to ordinary steel, the resistance to atmospheric corrosion is much better. Atmospheric corrosion resistance is almost dependent on chemical composition rather than microstructure or manufacturing process, and corrosion resistance (C.I) according to chemical composition is defined in Equation 1 below in ASTM G101.

[관계식][Relationship]

C.I=26.01(%Cu)+3.88(%Ni)+1.20(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu)2 CI = 26.01 (% Cu) + 3.88 (% Ni) + 1.20 (% Cr) + 1.49 (% Si) + 17.28 (% P) -7.29 (% Cu) (% Ni) -9.10 (% Ni) (% P ) -33.39 (% Cu) 2

산업용 보일러 또는 열교환기 소재에도 내후성강이 사용되고 있으며, 모두 후물재(열연재)가 사용되고 있다. 그 성분계는 C:0.09%, Mn:0.3-0.5%, Si:0.4-0.5%과 내후성향상원소인 P, Cu, Ni를 함유하는 강종이 대표적이다. 상기 Cu는 내후성측면에서 필수적인 첨가가 요구되나, 고온가열시 결정입계에 침윤되어 고온가공과정에서 균열발생의 원인으로 작용한다. 따라서, 적당량의 Ni을 첨가하여 고융점의 구리화합물을 생성시켜서 고온균열을 방지하고 있다.Weather-resistant steel is also used for industrial boilers and heat exchangers, and thick materials (hot rolled materials) are all used. The component type is typical of steel grades containing C: 0.09%, Mn: 0.3-0.5%, Si: 0.4-0.5%, and weathering enhancing elements P, Cu, and Ni. Cu is required to be added in terms of weather resistance, but it is infiltrated at the grain boundaries during high temperature heating and thus acts as a cause of cracking during high temperature processing. Therefore, an appropriate amount of Ni is added to produce a high melting point copper compound to prevent high temperature cracking.

최근, 산업용 보일러 나 열교환기용 소재에도 박물재(냉연재)가 요구되고 있으나, 후물재(열연재)를 냉간압연하여 박물재로 제조하는 경우에는 크랙 및 표면결함이 발생으로 실제 생산이 되지 못하고 있다. 이는 연속주조주편에서의 표면결함이 그 원인으로 지적되고 있다. 연속주조된 주편에는 표면결함이 존재하는데, 이 표면결함이 열연시 스캡 등의 흠발생으로 발생하는 것을 방지하기 위해 스카핑을 실시하고 있다. 스카핑하면 열연재상태에서는 흠발생과 같은 것이 크게 문제가 되지 않으나, 냉간압연하면는 그 양상은 달라진다. 현재로서는 주편상태의 표면결함지수(0.1-0.2정도임)를 근본적으로 낮추는 것이 그 해결책으로 생각되고 있다.Recently, a thin material (cold rolled material) is also required for an industrial boiler or a heat exchanger, but when a cold rolled thick material (hot rolled material) is manufactured as a thin material, cracks and surface defects occur, and thus, actual production is not possible. . This is pointed to because of the surface defects in the continuous casting cast. There are surface defects in the continuously cast slab, and the surface defects are scarfed in order to prevent the surface defects from occurring due to defects such as a cap during hot rolling. Scarping is not a problem in hot rolled materials, but cold rolling is different. At present, the solution is to fundamentally lower the surface defect index of cast steel (about 0.1-0.2).

상기 C:0.09%, Mn:0.3-0.5%, Si:0.4-0.5%과 P, Cu, Ni를 함유하는 내후성강의 연속주조방법은, 생산성을 고려하여 주조속도를 1.2(m/min)로 하고 있으며, 2차냉각대에서의 비수량도 이에 맞추어 0.47-2.49(ℓ/kg)으로 하여 조업하고 있다. 2차 냉각대는 몰드(1차냉각대)를 통과한 주편을 냉각시키기 위한 구간으로, 주편에 직접적인 살수를 통해서 주편을 냉각하는 구역이다.In the continuous casting method of weather resistant steel containing C: 0.09%, Mn: 0.3-0.5%, Si: 0.4-0.5%, and P, Cu, Ni, the casting speed is set to 1.2 (m / min) in consideration of productivity. In addition, the specific quantity in the secondary cooling stand is also adjusted to 0.47-2.49 (ℓ / kg). The secondary cooling zone is a section for cooling the slab that has passed through the mold (primary cooler), and is a zone for cooling the slab through direct spraying on the slab.

본 발명은 열교환기 또는 산업용보일러의 소재로 사용되는 내후성강의 주편상태에서 표면결함을 낮추어 이 강을 박물화할 수 있도록 하는데 그 목적이 있는 것으로, 이러한 본 발명은 강성분계의 설계와 함께 엄격한 주조조건의 도출로서 완성된 것이다.The present invention aims to reduce the surface defects in the cast steel of weathering steel used as a material for heat exchangers or industrial boilers, and to make the steel thinner. It was completed as a derivation.

도 1은 Fe-C계 평형상태도1 is a Fe-C system equilibrium diagram

도 2는 탄소농도와 오스테나이트 입자크기의 관계를 나타내는 그래프2 is a graph showing the relationship between carbon concentration and austenite particle size.

도 3은 연속주조 주형의 개략도3 is a schematic diagram of a continuous casting mold;

상기 목적을 달성하기 위한 본 발명의 주조방법은, 중량%로, C:0.06∼0.08%, Mn:0.90∼1.0%, Si:0.17∼0.24%, P:0.02%이하, S:0.01%이하, Cu:0.2∼0.3%, Ni:0.2∼0.3% 및 나머지 Fe와 기타 불가피하게 함유되는 불순물로 이루어지는 용강을 턴디쉬에서의 과열도를 17∼23℃로 관리하는 단계;Casting method of the present invention for achieving the above object, in weight%, C: 0.06 to 0.08%, Mn: 0.90 to 1.0%, Si: 0.17 to 0.24%, P: 0.02% or less, S: 0.01% or less, Managing the superheat degree in the tundish at 17 to 23 ° C. for molten steel comprising Cu: 0.2 to 0.3%, Ni: 0.2 to 0.3%, and remaining Fe and other inevitable impurities;

이 용강을 테이퍼가 1.00∼1.05%로 설정된 주형에 주입하여 1.12∼1.17m/min으로 속도로 주조하는 단계;Injecting the molten steel into a mold having a taper set at 1.00 to 1.05% and casting at a speed of 1.12 to 1.17 m / min;

주형을 통과하여 이송되는 주편을 2차냉각대(2차냉각구역)에서 0.29∼0.35ℓ/kg의 비수량으로 냉각하는 단계;를 포함하여 구성된다.And cooling the slab conveyed through the mold to a non-aqueous quantity of 0.29 to 0.35 l / kg in a secondary cooling zone (secondary cooling zone).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 내후성강을 박물화하기 위한 방법으로, 주편의 표면결함을 최소화하기 위한 주조조건의 도출에 가장 큰 특징이 있다. 이와 병행하여, 주편의 표면크랙의 유발을 억제할 수 있도록 강성분계에서, C, Mn, Si의 성분을 조절하는데, 이를 먼저 설명한다.The present invention is a method for thinning weathering steel, and has the greatest feature in deriving casting conditions for minimizing surface defects of cast steel. In parallel with this, the components of C, Mn, and Si are adjusted in the steel component system so as to suppress the occurrence of surface cracks of the cast steel, which will be described first.

본 발명에서 강은 기본적으로 대기 부식저항지수를 5.5이상 확보되도록 내후성확보원소인 Cu:0.20∼0.30%, Ni:0.20∼0.30%, P:0.020%이하로 한다. 또한, 크랙유발에 영향을 미치는 C, Si의 성분조정을 하면서 인장강도를 45kg/㎟으로 확보될 수 있도록 Mn의 성분을 상향조정하였다.In the present invention, the steel is basically made of weather resistance elements Cu: 0.20 to 0.30%, Ni: 0.20 to 0.30%, and P: 0.020% or less to ensure an atmospheric corrosion resistance index of 5.5 or more. In addition, while adjusting the components of C and Si affecting crack induction, the components of Mn were upwardly adjusted to secure a tensile strength of 45 kg / mm 2.

C는 소량 첨가하여도 높은 강도보상효과를 얻을 수 있기에 소재의 강도보상측면에서 필수적으로 요구된다. 그러나, 과다하게 첨가되면 연속주조시 주편크랙을 유발시키는 직접적인 원인이 되기 때문에 적정량을 첨가하는 것이 중요하다. 도 1의 Fe-C계 평형상태도에서 보는 바와 같이, 용강이 응고되면서 고온(1450℃)의 페라이트(δ)상으로부터 온도가 하강하면서 오스테나이트(γ)상으로 상변태를 하게 되는데, 이때 입자크기가 조대해지면 주편의 크랙을 유발시키게 된다. 도 2에는 탄소농도와 오스테나이트의 입자크기의 관계가 도시되어 있다. 따라서, 본 발명에서는 C가 강도와 표면크랙에 미치는 영향을 고려하여 0.06∼0.08%로 엄격히 관리한다.C is indispensable in terms of strength compensation of the material because high strength compensation effect can be obtained even by adding a small amount. However, it is important to add an appropriate amount because excessive addition is a direct cause of casting cracks during continuous casting. As shown in the Fe-C-based equilibrium diagram of FIG. 1, as the molten steel solidifies, the phase transformation is performed from the ferrite (δ) at high temperature (1450 ° C.) to the austenite (γ) phase while the particle size is reduced. Coarsening will cause cracks in the cast. 2 shows the relationship between the carbon concentration and the particle size of austenite. Therefore, in the present invention, in consideration of the effect of C on the strength and surface cracks, it is strictly managed at 0.06 to 0.08%.

본 발명에서는 상기와 같은 이유로 C를 하향화하였기 때문에 강도가 낮다. 이는 Mn성분의 상향조정으로 보정하는데, Mn은 또한, 담금질성, 용접성 등의 기계적성질향상에도 유효한 역할을 한다. 이러한 측면에서 Mn은 0.90∼1.00%로 한다.In the present invention, the strength is low because C is lowered for the same reason as described above. This is corrected by the upward adjustment of the Mn component, and Mn also plays an effective role in improving mechanical properties such as hardenability and weldability. In this respect, Mn is 0.90 to 1.00%.

다음으로, Si은 페라이트상에 고용하여 탄성계수, 인성 등을 증대시키고 용강상태에서 용강중의 산소를 제거하는 역할을 하지만, 과다 함유시 입자의 크기를 증대시켜 용접성을 저하시키기 때문에 탈산정도 및 소재특성을 고려하여 0.17∼0.24%로 한다.Next, Si dissolves in ferrite phase to increase elastic modulus, toughness, and remove oxygen in molten steel in molten steel, but when it contains excessively, it increases the size of particles and decreases weldability. Considering this, the ratio is 0.17 to 0.24%.

상기와 같이 조성되는 강은, 통상의 전로, 이차정련(탈가스처리)을 거쳐 턴디쉬에 수강되어 연속주조된다. 본 발명에서는 턴디쉬의 용강과열도를 17∼23℃로 관리한다. 용강과열도는 주편의 내부품질과 주조성확보를 위해 매우 중요한 것으로서, 용강과열도가 너무 높으면 주상정조직의 발달과 등축정조직의 감소로 인해 중심편석이 열위할 가능성이 높고 반대로 너무 낮으면 주조중 노즐막힘과 개재물 분리부상 미흡으로 강의 청정성이 악화될 수 있다. 특히, 본 발명은 γ상으로의 응고중 포정반응이 일어나는 성분계에 가깝기 때문에 응고중 입자의 조대화에 의한 크랙의 발생이 용이하게 된다. 따라서, 이러한 측면을 고려하여 저탄소강의 과열도대비 다소 낮은 17∼23℃로 관리하는 것이 바람직하다.The steel formed as described above is subjected to a normal converter, secondary refining (degassing), and received into a tundish and continuously cast. In the present invention, the molten steel superheat of the tundish is managed at 17 to 23 ° C. Molten steel superheat is very important for securing the internal quality and castability of cast steel. If the molten steel superheat is too high, the central segregation is likely to be inferior due to the development of columnar structure and the decrease of equiaxed crystal structure. The cleanliness of steel may be deteriorated due to heavy nozzle clogging and inclusion separation. In particular, since the present invention is close to the component system in which a positive reaction occurs during solidification to the γ phase, generation of cracks due to coarsening of particles during solidification becomes easy. Therefore, in consideration of this aspect, it is preferable to manage at 17 to 23 ° C., which is somewhat lower than the superheat degree of low carbon steel.

연속주조시 주형의 테이퍼(χ)는 도 3에서와 같이 주형최상단부 폭(A)과 주형최하단부폭(A1)에 의하여 결정된다. 보통 주형의 테이퍼는 아래의 식으로 결정하고 있다.The taper (χ) of the mold during continuous casting is determined by the mold top end width A and the mold bottom end width A1 as shown in FIG. The taper of a mold is usually determined by the following equation.

여기서, χ은 테이퍼, A:주형최상단부 폭, A1:주형최하단부 폭, B:테이퍼량Where χ is taper, A: mold top end width, A1: mold bottom end width, B: taper amount

본 발명에서는 응고팽창정도를 고려하여 테이퍼(χ)를 1.00∼1.05%로 한다. 일반 중탄소강의 경우에는 1.0% 정도로 행하고 있다. 또한, 주형하단폭은 통상의 경우와 마찬가지로 슬라브의 폭 보다 +8∼+10mm로 설정한다.In the present invention, the taper (χ) is set to 1.00 to 1.05% in consideration of the degree of solidification expansion. In the case of general medium carbon steel, it is about 1.0%. In addition, the lower end width of the mold is set to +8 to +10 mm than the width of the slab as in the usual case.

그리고, 주조속도는 양호한 내부품질의 확보를 위해 1.12∼1.17m/min으로 저속화한다. 저속주조를 하게 되면, 주형내 용강유동과 주편냉각을 균일하게 함으로써 충분한 응고쉘의 확보로 주형하부에서 팽창을 작게 하기 때문에 주편의 내부품질을 양호하게 할 수 있다.And, the casting speed is lowered to 1.12 ~ 1.17m / min to ensure good internal quality. When the low speed casting is performed, the internal quality of the cast can be improved because the expansion of the molten steel in the mold and the cooling of the cast are made uniform, thereby reducing the expansion at the bottom of the mold by securing sufficient solidification shell.

상기와 같은 조건으로 연속주조되어 주형을 통과하여 나오는 주편은, 2차냉각대(2차냉각구역)에 이르게 되면 0.29∼0.35ℓ/kg의 비수량으로 냉각한다.The castings continuously cast under the conditions described above and passed through the molds are cooled to a specific quantity of 0.29 to 0.35 l / kg when they reach the secondary cooling zone (secondary cooling zone).

본 발명에 따라 주편을 주조하더라도 주편표면은 부분적으로 표면결함이 잔존할 수 있고, 오실레이션마크(Osillation Mark)와 스케일로 덮혀 있다. 따라서, 열연시 표면결함에 의한 스캡 등의 흠발생방지를 위하여 주편상태에서 결함의 검사, 제거를 위해서는 전면 스카핑을 실시하는 것이 바람직하다.Even if the cast is cast in accordance with the present invention, the surface of the cast may have partial surface defects and is covered with an oscillation mark and scale. Therefore, in order to prevent flaws such as a cap due to surface defects during hot rolling, it is preferable to perform front scarfing to inspect and remove defects in a cast state.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

아래 표 1과 같은 조성의 내후성강을 전로취련, 2torr이하의 저진공에서 20분이상 탈가스처리하고 표 2의 조건으로 연속주조하여 폭 1300mm의 주편을 제조하였다. 이때 주형하단폭은 슬라브의 폭 보다 +8∼+10mm로 설정하였다. 이 주편의 표면검사를 실시하고 그 결과를 표 2에 나타내었다.The weatherproof steel of the composition as shown in Table 1 below was subjected to a converter blow, degassing for 20 minutes or more in a low vacuum of less than 2torr and continuously cast under the conditions of Table 2 to prepare a cast steel of 1300mm width. At this time, the bottom width of the mold was set to +8 ~ + 10mm than the width of the slab. The surface test of this cast was carried out and the results are shown in Table 2.

화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS AlAl CuCu NiNi CrCr 0.080.08 0.210.21 1.051.05 0.0160.016 0.0050.005 0.0190.019 0.270.27 0.270.27 --

구분division 주조속도(m/min)Casting speed (m / min) 비수량(ℓ/kg)Specific quantity (ℓ / kg) 과열도(℃)Superheat degree (℃) 스카핑Scarping 표면결함지수Surface Defect Index 열연스캡수(개/m)Hot rolled caps (pieces / m) 발명예1Inventive Example 1 1.121.12 0.290.29 1818 무 스카핑Muscarping 0.010.01 0.5∼10.5 to 1 발명예2Inventive Example 2 1.171.17 0.350.35 1919 전면Front 0.020.02 00 발명예3Inventive Example 3 1.151.15 0.320.32 2020 전면Front 0.020.02 00 비교예1Comparative Example 1 1.201.20 0.370.37 2020 전면Front 0.1∼0.20.1 to 0.2 2∼52 to 5 비교예2Comparative Example 2 1.181.18 0.350.35 2222 무스카핑Muscaping 0.1∼0.120.1 to 0.12 6∼96-9 비교예3Comparative Example 3 1.101.10 0.320.32 1919 전면Front 0.12∼0.150.12 to 0.15 4∼84 to 8

표 2에서 보는 바와 같이, 발명예(1)의 경우 표면결함지수는 양호하며, 무스카핑했을경우 열연후 표면에 결함이 잔존하였다. 전면 스카핑한 발명예(2,3)의 경우는 열연후 스캡이 없었으며, 이를 냉간압연하여 박물재로 하였는데 표면결함문제는 없었다.As shown in Table 2, in the case of the invention example (1), the surface defect index is good, and in the case of no scarfing, defects remained on the surface after hot rolling. In the case of the invention (2, 3), the entire surface was scarfed, there was no cap after hot rolling, which was cold-rolled to be a material but there was no surface defect problem.

구분division 인장강도(kg/㎟)Tensile Strength (kg / ㎡) 항복강도(kg/㎟)Yield strength (kg / ㎡) 연신율(%)Elongation (%) 대기부식저항지수Atmospheric Corrosion Resistance Index 제품표면Product surface 목표goal 45이상45 or more 32이상32 or more 22이상22 or more 5.5이상5.5 and above 품질검사 기준내 만족Satisfaction in Quality Inspection Standard 시편1Psalm 1 50.450.4 34.034.0 31.031.0 5.75.7 시편2Psalm 2 49.549.5 36.036.0 31.531.5 5.75.7 시편3Psalm 3 50.150.1 34.534.5 31.831.8 5.65.6

상술한 바와 같이, 본 발명은 열연제품상태에서의 표면결함이 없어서 박물재(냉연재)로 제조할 수 있는 주편을 제공하는 유용한 효과가 있다.As described above, the present invention has a useful effect of providing a cast steel that can be manufactured from a material (cold rolled material) because there is no surface defect in a hot rolled product state.

Claims (1)

중량%로, C:0.06∼0.08%, Mn:0.90∼1.0%, Si:0.17∼0.24%, P:0.02%이하, S:0.01%이하, Cu:0.2∼0.3%, Ni:0.2∼0.3% 및 나머지 Fe와 기타 불가피하게 함유되는 불순물로 이루어지는 용강을 턴디쉬에서의 과열도를 17∼23℃로 관리하는 단계;By weight%, C: 0.06 to 0.08%, Mn: 0.90 to 1.0%, Si: 0.17 to 0.24%, P: 0.02% or less, S: 0.01% or less, Cu: 0.2 to 0.3%, Ni: 0.2 to 0.3% And managing superheat at a tundish of 17 to 23 ° C. for molten steel composed of the remaining Fe and other inevitable impurities. 이 용강을 테이퍼가 1.00∼1.05%로 설정된 주형에 주입하여 1.12∼1.17m/min으로 속도로 주조하는 단계;Injecting the molten steel into a mold having a taper set at 1.00 to 1.05% and casting at a speed of 1.12 to 1.17 m / min; 주형을 통과하여 이송되는 주편을 2차냉각대(2차냉각구역)에서 0.29∼0.35ℓ/kg의 비수량으로 냉각하는 단계;를 포함하여 이루어지는 냉연 내후성강의 주조방법.A method of casting cold-rolled weathering steel, comprising: cooling a cast steel that is passed through a mold to a non-aqueous quantity of 0.29 to 0.35 l / kg in a secondary cooling zone (secondary cooling zone).
KR10-1999-0047907A 1999-11-01 1999-11-01 Method of continuous casting weathering steel for cold rolling KR100406413B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0047907A KR100406413B1 (en) 1999-11-01 1999-11-01 Method of continuous casting weathering steel for cold rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0047907A KR100406413B1 (en) 1999-11-01 1999-11-01 Method of continuous casting weathering steel for cold rolling

Publications (2)

Publication Number Publication Date
KR20010044866A KR20010044866A (en) 2001-06-05
KR100406413B1 true KR100406413B1 (en) 2003-11-19

Family

ID=19617976

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0047907A KR100406413B1 (en) 1999-11-01 1999-11-01 Method of continuous casting weathering steel for cold rolling

Country Status (1)

Country Link
KR (1) KR100406413B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101259223B1 (en) 2009-08-18 2013-04-29 주식회사 포스코 Manufacturing Method of Billet For Low Carbon Steel And Billet For Low Carbon Steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156647A (en) * 1979-05-28 1980-12-05 Nippon Steel Corp Continuous casting of slab for cold rolled steel plate
JPH0576993A (en) * 1991-09-18 1993-03-30 Nippon Steel Corp Method for continuously casting slab for cold rolling carbon steel plate
JP2000288700A (en) * 1999-03-31 2000-10-17 Kawasaki Steel Corp Mold flux for continuously casting atmosphere corrosion resistant steel and method for continuously casting atmosphere corrosion resistant steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156647A (en) * 1979-05-28 1980-12-05 Nippon Steel Corp Continuous casting of slab for cold rolled steel plate
JPH0576993A (en) * 1991-09-18 1993-03-30 Nippon Steel Corp Method for continuously casting slab for cold rolling carbon steel plate
JP2000288700A (en) * 1999-03-31 2000-10-17 Kawasaki Steel Corp Mold flux for continuously casting atmosphere corrosion resistant steel and method for continuously casting atmosphere corrosion resistant steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101259223B1 (en) 2009-08-18 2013-04-29 주식회사 포스코 Manufacturing Method of Billet For Low Carbon Steel And Billet For Low Carbon Steel

Also Published As

Publication number Publication date
KR20010044866A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
KR20210018414A (en) Seek hot-rolled H-beam having a yield strength of 500 megapascal and its manufacturing method
CN110295320B (en) Large-wall-thickness X52MS acid-resistant pipeline steel plate produced by LF-RH refining process and manufacturing method thereof
CN108642381B (en) Hot-rolled high-toughness low-temperature-resistant H-shaped steel with yield strength of 460MPa and preparation method thereof
CN110592478B (en) Weather-resistant steel for railway bogie and manufacturing method thereof
CN109402498B (en) High-temperature carburized gear steel and manufacturing method thereof
WO2018117712A1 (en) High manganese steel having superior low-temperature toughness and yield strength and manufacturing method
CN110629114A (en) Low-cost high-strength high-toughness bridge steel and preparation method thereof
CN112981232B (en) 12Cr2Mo1VR steel plate with low compression ratio and high flaw detection quality requirement for continuous casting billet finished product and production process thereof
CN114134406B (en) Spherical tank steel plate with thickness of 20-50mm and excellent low-temperature toughness of core and manufacturing method thereof
CN109837460B (en) Steel INC35E for railway passenger car and freight car axle and manufacturing method thereof
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
WO2023179058A1 (en) 7ni steel and production method therefor
KR100406413B1 (en) Method of continuous casting weathering steel for cold rolling
CN110724875A (en) Steel plate for railway and manufacturing method for improving yield strength of steel plate
CN110565024A (en) Niobium-titanium-containing 550 MPa-grade thick weathering resistant steel and production method thereof
CN109234632B (en) Easy-to-weld corrosion-resistant high-strength Q690E steel plate for deep sea submarine with thickness of 80-120mm and production method thereof
CN110616375A (en) Niobium-vanadium-containing 550 MPa-grade thick weathering steel and production method thereof
CN111254366A (en) Production method of steel for hot-rolled boron-containing steel pipe
KR20150077549A (en) Steel for cargo oil tank and method of manufacturing the same
KR101500048B1 (en) Method for manufacturing steel sheet having superior resistance to corrosion by sulfuric acid
CN114619007B (en) Production method of low-alloy high-nitrogen steel continuous casting blank
US20220340993A1 (en) Hot-rolled steel plate/strip for sulfuric acid dew point corrosion resistance and manufacturing method therefor
RU2798439C1 (en) LOW-TEMPERATURE RESISTANT HOT-ROLLED H-BEAM STEEL FOR SHIPBUILDING WITH A STRENGTH CLASS 355 MPa AND A METHOD FOR ITS MANUFACTURE
KR100368248B1 (en) Method for manufacturing hot rolled 304 stainless steel sheet having superior surface quality
JP2000034545A (en) Austenitic heat resistant steel with improved hot workability, and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121101

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131106

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141105

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee