KR100406366B1 - A method for manufacturing of high-temperature combustion catalyst of cation-substituted hexa-aluminate system - Google Patents

A method for manufacturing of high-temperature combustion catalyst of cation-substituted hexa-aluminate system Download PDF

Info

Publication number
KR100406366B1
KR100406366B1 KR10-1998-0056695A KR19980056695A KR100406366B1 KR 100406366 B1 KR100406366 B1 KR 100406366B1 KR 19980056695 A KR19980056695 A KR 19980056695A KR 100406366 B1 KR100406366 B1 KR 100406366B1
Authority
KR
South Korea
Prior art keywords
temperature combustion
hexaaluminate
high temperature
barium
substituted
Prior art date
Application number
KR10-1998-0056695A
Other languages
Korean (ko)
Other versions
KR20000040941A (en
Inventor
이현
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR10-1998-0056695A priority Critical patent/KR100406366B1/en
Publication of KR20000040941A publication Critical patent/KR20000040941A/en
Application granted granted Critical
Publication of KR100406366B1 publication Critical patent/KR100406366B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/25Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/31Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/67Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/70Constitutive chemical elements of heterogeneous catalysts of Group VII (VIIB) of the Periodic Table
    • B01J2523/72Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/845Cobalt

Abstract

본 발명은 양이온치환 헥사알루미네이트계 고온 연소용 촉매 제조방법에 관한 것이며, 그 목적하는 바는 비표면적이 큰 복합산화물중 바륨헥사알루미네이트에 양이온을 치환하여 치환고용체를 형성함으로서, 내열성이 우수한 헥사알루미네이트계 고온 연소용 촉매를 얻을 수 있는 방법을 제공하고자 하는데 있다.The present invention relates to a method for producing a cationic substituted hexaaluminate catalyst for high temperature combustion, and its purpose is to form a substituted solid solution by replacing a cation with barium hexaaluminate in a composite oxide having a large specific surface area, thereby providing excellent hexa-hexahexane. An object of the present invention is to provide a method for obtaining an aluminate-based high temperature combustion catalyst.

상기 목적을 달성하기 위한 본 발명은 헥사알루미네이트계 고온 연소용 촉매를 제조하는 방법에 있어서, 크롬염, 망간염, 코발트염 중에서 선택된 1종 또는 2종이상의 염을 수용액상태로 각각 준비하고, 바륨염 수용액 및 란타늄염 수용액을 준비하고, 감마알루미나를 준비한 후, 이들 수용액과 감마알루미나를 BaMAl11O19-α또는Ba1-xLaxMAl11O19-α(M은 Cr, Mn, Co 중에서 선택된 1종 또는 2종이상, X는 0.2-0.5)의 조성이 되도록 반응시켜 함침하고 건조한 다음, 1300℃이상에서 열처리하여 치환고용체를 얻은 것을 특징으로 하는 양이온 치환 바륨 헥사알루미네이트계 고온 연소용 촉매 제조방법에 관한 것을 그 요지로 한다.The present invention for achieving the above object in the method for producing a hexaaluminate-based high temperature combustion catalyst, one or two or more salts selected from chromium salts, manganese salts, cobalt salts are prepared in an aqueous solution, respectively, barium After preparing an aqueous salt solution and a lanthanum salt solution and preparing gamma alumina, the aqueous solution and gamma alumina were converted to BaMAl 11 O 19-α or Ba 1-x La x MAl 11 O 19-α (M is Cr, Mn, Co Cationic substituted barium hexaaluminate-based high temperature combustion catalyst, characterized in that the selected solid species or two or more, X is reacted to a composition of 0.2-0.5), impregnated and dried, and then heat treated at 1300 ° C. or more to obtain a substituted solid solution. The thing regarding a manufacturing method shall be the summary.

Description

양이온 치환 헥사알루미네이트계 고온 연소용 촉매 제조방법{A METHOD FOR MANUFACTURING OF HIGH-TEMPERATURE COMBUSTION CATALYST OF CATION-SUBSTITUTED HEXA-ALUMINATE SYSTEM}Catalytic substituted hexaaluminate-based catalyst for high temperature combustion {A METHOD FOR MANUFACTURING OF HIGH-TEMPERATURE COMBUSTION CATALYST OF CATION-SUBSTITUTED HEXA-ALUMINATE SYSTEM}

본 발명은 버너입구 등에서 촉매연소에 사용가능한 고온 연소용 촉매를 제조하는 방법에 관한 것으로, 보다 상세하게는 양이온을 치환하여 헥사알루미네이트계 치환고용체를 형성하므로서 열적으로 안정된 고온 연소용 촉매를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a catalyst for high temperature combustion that can be used for catalytic combustion at a burner inlet, and more particularly, to produce a thermally stable catalyst for high temperature combustion by substituting a cation to form a hexaaluminate-based solid solution. It is about a method.

고온연소용 촉매에 있어, 대표적인 종래의 기술로는 감마 알루미나에 귀금속을 활성성분으로 첨가하여 내열성을 개선하고자 하였으나, 어느 정도의 한계성을 가지고 있다. 이에 금속산화물 또는 복합산화물이 내열성에서 우수하기 때문에 고온연소용 촉매로 응용을 시도하고 있기도 하다.In the high temperature combustion catalyst, a typical conventional technique is to improve the heat resistance by adding a noble metal as an active ingredient to gamma alumina, but has some limitations. Therefore, metal oxides or composite oxides are excellent in heat resistance, so they are attempting to be applied as catalysts for high temperature combustion.

페로프스카이트형 산화물은 귀금속에 산재하는 산화촉매활성을 가지고 있는 것으로 알려지고 있으나 열안정성이 떨어지므로 내열성향상을 위한 관련기술 개발이 요구되고 있는 실정이다.Perovskite-type oxides are known to have an oxidation catalyst activity interspersed with precious metals, but due to their poor thermal stability, development of related technologies for improving heat resistance is required.

한편, 2족의 바륨, 칼슘, 마그네슘, 스트론튬 등과 4A족 타이타늄, 지르코늄 등을 포함한 금속이나 금속산화물의 복합물을 일차로 500℃에서 열처리하고 1200℃에서 열처리하여 비표면적을 20㎡/g으로 유지하는 것을 특징으로 하는 미국특허(US 3,966,790)가 제안되어 있다.Meanwhile, a complex of a metal or metal oxide including barium, calcium, magnesium and strontium of Group 2, and titanium and zirconium of Group 4A is primarily heat treated at 500 ° C. and heat treated at 1200 ° C. to maintain a specific surface area of 20 m 2 / g. A US patent (US 3,966,790) is proposed.

하지만, 이 발명은 1300℃이상의 고온에서는 적용할 수 없다는 문제가 있었다.However, this invention has a problem that it cannot be applied at a high temperature of more than 1300 ℃.

본 발명은 고온연소용 촉매재료로 사용할 때에는 1300℃이상의 고온 내열성이 요구된다는 점을 감안한 것으로, 그 목적하는 바는 촉매의 비표면적이 내열성에 직결되어 있으므로 비표면적이 큰 복합산화물중 바륨헥사알루미네이트에 양이온을 치환하여 치환고용체를 형성함으로서, 내열성이 우수한 헥사알루미네이트계 고온 연소용 촉매를 얻을 수 있는 방법을 제공하고자 하는데 있으며,The present invention takes into consideration that high temperature heat resistance of 1300 ° C. or higher is required when used as a catalyst material for high temperature combustion, and its purpose is barium hexaaluminate in a composite oxide having a large specific surface area because the specific surface area of the catalyst is directly connected to the heat resistance. It is to provide a method for obtaining a hexaaluminate-based high temperature combustion catalyst having excellent heat resistance by replacing a cation with a cation.

또한, 본 발명의 목적하는 바는 양이온 중 Cr, Mn, Co를 알루미늄 이온 대신 치환하여 바륨헥사알루미네이트의 결정구조를 유지하여 고온에서 큰 비표면적이 유지되도록 하며 또한 양이온 치환 바륨헥사알루미네이트에 바륨 대신에 일부를 란타늄으로 치환하여 란타늄 치환고용체를 형성함으로서, 내열성이 우수한 헥사알루미네이트계 고온 연소용 촉매를 얻을 수 있는 방법을 제공하고자 하는데 있다.In addition, it is an object of the present invention to maintain the crystal structure of barium hexaaluminate by replacing Cr, Mn, Co in the cation instead of aluminum ions so that a large specific surface area is maintained at high temperature, and also barium in the cation substituted barium hexaaluminate Instead, by forming a lanthanum-substituted solid solution by substituting a part with lanthanum, it is to provide a method for obtaining a hexaaluminate-based high temperature combustion catalyst having excellent heat resistance.

도 1은 본 발명의 고온 연소용 촉매제조의 공정을 개략적으로 보이는 순서도1 is a flow chart schematically showing the process of producing a catalyst for high temperature combustion of the present invention

도 2는 란타늄 치환량에 따른 헥사알루미네이트의 비표면적(㎡/g) 변화를 보이는 그래프2 is a graph showing the change in specific surface area (m 2 / g) of hexaaluminate according to the amount of lanthanum substitution

상기 목적을 달성하기 위한 본 발명은 헥사알루미네이트계 고온 연소용 촉매를 제조하는 방법에 있어서, 크롬염, 망간염, 코발트염 중에서 선택된 1종 또는 2종이상의 염을 수용액상태로 각각 준비하고, 바륨염 수용액을 준비하고, 감마알루미나를 준비한 후, 이들 수용액과 감마알루미나를 BaMAl11O19-α(M은 Cr, Mn, Co 중에서 선택된 1종 또는 2종이상)의 조성이 되도록 반응시켜 함침하고 건조한 다음, 1300℃이상에서 열처리하여 치환고용체를 얻은 것을 특징으로 하는 양이온 치환 바륨 헥사알루미네이트계 고온 연소용 촉매 제조방법에 관한 것이며,The present invention for achieving the above object in the method for producing a hexaaluminate-based high temperature combustion catalyst, one or two or more salts selected from chromium salts, manganese salts, cobalt salts are prepared in an aqueous solution, respectively, barium After preparing an aqueous salt solution and preparing gamma alumina, the aqueous solution and gamma alumina were impregnated by reacting to form a composition of BaMAl 11 O 19-α (M is one or more selected from Cr, Mn, and Co). Next, the present invention relates to a method for producing a cationic substituted barium hexaaluminate-based high temperature combustion catalyst, characterized in that a substituted solid is obtained by heat treatment at 1300 ° C. or higher.

또한, 본 발명은 헥사알루미네이트계 고온 연소용 촉매를 제조하는 방법에 있어서, 크롬염, 망간염, 코발트염 중에서 선택된 1종 또는 2종이상의 염을 수용액상태로 각각 준비하고, 바륨염 수용액 및 란타늄염 수용액을 준비하고, 감마알루미나를 준비한 후, 이들 수용액과 감마알루미나를, Ba1-xLaxMAl11O19-α(M은 Cr, Mn, Co 중에서 선택된 1종 또는 2종이상)이며 X가 0.2-0.5의 값을 갖는 조성이 되도록 반응시켜, 함침하고 건조한 다음, 1300℃이상에서 열처리하여 치환고용체를 얻은 것을 특징으로 하는 양이온 치환 바륨 헥사알루미네이트계 고온 연소용 촉매 제조방법에 관한 것이다.In addition, the present invention is a method for producing a hexaaluminate-based high-temperature combustion catalyst, one or two or more salts selected from chromium salts, manganese salts, cobalt salts are prepared in an aqueous solution, respectively, barium salt solution and lanthanum After preparing an aqueous salt solution and preparing gamma alumina, these aqueous solutions and gamma alumina are Ba 1-x La x MAl 11 O 19-α (M is one or two or more selected from Cr, Mn, and Co), and X Is reacted to a composition having a value of 0.2-0.5, impregnated and dried, and then heat-treated at 1300 ° C. or more to provide a cationic substituted barium hexaaluminate-based catalyst for high temperature combustion.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 출발물질로서, 크롬염수용액, 망간염수용액, 코발트염수용액, 바륨염 수용액, 및 감마알루미나를 사용하고, 란타늄 치환형인 경우는 란타늄염 수용액을 사용한다.In the present invention, a chromium salt solution, a manganese salt solution, a cobalt salt solution, a barium salt solution, and gamma alumina are used as starting materials, and a lanthanum salt solution is used in the case of the lanthanum substitution type.

상기 크롬염수용액, 망간염수용액, 코발트염수용액은 1종을 선택하여 사용할 수 있으며, 2종 이상을 선택하여 사용할 수 있는데, 2종 이상의 선택시는 그 비율은 크게 문제되지 않는다.The chromium saline solution, manganese saline solution, cobalt saline solution can be used to select one kind, and can be used to select two or more kinds, the ratio is not a big problem when selecting two or more kinds.

상기 바륨염수용액은 바륨이온을 공급하기 위한 것이며, 상기 란타늄염수용액은 바륨온 대신에 란타늄이온으로 치환하여 내열성을 개선하기 위해 사용되는데, 치환량의 조절로서 내열성을 제어할 수도 있다.The barium salt solution is for supplying barium ions, and the lanthanum salt solution is used to improve heat resistance by replacing with lanthanum ions instead of barium ions, and may control heat resistance by controlling the amount of substitution.

또한, 상기 염수용액들은 열분해를 통하여 고온연소용 촉매가 제조되기 때문에 통상의 염 형태를 취할 수 있는데, 바람직한 예를 들면 염산, 황산, 질산염의 형태를 들 수 있다.In addition, the brine solutions may take the usual salt form because the catalyst for high temperature combustion is prepared through pyrolysis, and examples thereof include hydrochloric acid, sulfuric acid, and nitrate.

상기 감마알루미나는 통상의 것으로 순도 99%이상인 것이 바람직하다.The gamma alumina is conventional and preferably 99% or more in purity.

본 발명에서는 BaMAl11O19-α의 조성이 되도록 반응시키거나 Ba1-xLaxMAl11O19-α의 조성이 되도록 반응시킨다.(여기서, M은 Cr, Mn, Co 중에서 선택된 1종 또는 2종이상)In the present invention, the reaction is carried out to the composition of BaMAl 11 O 19-α or to the composition of Ba 1-x La x MAl 11 O 19-α (wherein M is one selected from Cr, Mn, and Co, or 2 or more types)

상기 M은 전이금속으로 Cr, Mn, Co중에서 선택된 1종 또는 2종이상이다. 상기 Cr, Mn, Co가 치환된 바륨헥사알루미네이트는 고온에서 비표면적이 크고 열적으로 안정하다. 이는 바륨헥사알루미네이트(BaO·6Al2O3)의 알루미늄이온과 치환된 것으로 이온의 크기가 유사한 경우이고, Fe, Ni과 같은 원소가 치환될 때는 열적인 안정성이 떨어진다. 즉, 이온종류에 따라 치환된 헥사알루미네이트 결정구조의 내열성은 다르게 되는 것이다.M is a transition metal, and one or two or more selected from Cr, Mn, and Co. The barium hexaaluminate substituted with Cr, Mn, and Co has a large specific surface area and is thermally stable at high temperature. This is substituted with aluminum ions of barium hexaaluminate (BaO · 6Al 2 O 3 ), and the size of ions is similar, and thermal stability is poor when elements such as Fe and Ni are substituted. In other words, the heat resistance of the substituted hexaaluminate crystal structure varies depending on the type of ion.

상기 란타늄이 바륨자리에 치환된 경우에는 Ba1-xLaxMAl11O19-α의 조성이 되도록 하며, X는 0.2-0.5의 범위를 갖는다. 상기 X가 0.2미만이면 란타늄의 첨가효과가 미미하고, 0.5를 초과하면 비표면적이 감소하는 경향을 보이기 때문에 바람직하지 못하다.When the lanthanum is substituted in the barium site, the composition is Ba 1-x La x MAl 11 O 19-α , and X has a range of 0.2-0.5. If X is less than 0.2, the addition effect of lanthanum is insignificant, and if it exceeds 0.5, the specific surface area tends to decrease, which is not preferable.

본 발명에서는 함침하고 건조한 다음, 1300℃이상에서 열처리하여 치환고용체를 얻는다.In the present invention, impregnated and dried, and then heat treated at 1300 ° C. or higher to obtain a substituted solid solution.

상기 열처리온도가 1300℃미만이면 1300℃이상에서 연소용 촉매로 사용하기에 부적절하기 때문이다.If the heat treatment temperature is less than 1300 ℃ is not suitable for use as a catalyst for combustion above 1300 ℃.

본 발명은 양이온을 치환한 바륨 헥사알루미네이트계 고온 연소용 촉매의 제조방법에 관한 것으로, 그 제조방법의 공정을 도 1에 개략적으로 나타냈다.The present invention relates to a method for producing a barium hexaaluminate-based high temperature combustion catalyst substituted with a cation.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1Example 1

본 실시예에서는 감마알루미나와, 하기표 1에서와 같은 금속으로 된 수용성염을 준비하였다. 준비된 감마알루미나와 수용성염을 바륨헥사알루미네이트 조성에서 알루미늄이온이 양이온(M)으로 치환되도록, 즉, BaMAl11O19-α의 조성을 갖도록, 양이온의 종류에 따라 각각 본 발명의 제조방법인 도 1의 공정흐름으로 1300℃에서 2시간 열처리하여 시료를 제조하였다. 제조된 시료를 BET법으로 비표면적을 측정하여 하기표 1에 나타냈다. 또한, 같은 방법으로 제조된 바륨헥사알루미네이트와 비교하였다.In this example, gamma alumina and water-soluble salts of metals as shown in Table 1 were prepared. Prepared gamma alumina and a water-soluble salt in the barium hexaaluminate composition so that the aluminum ion is replaced with a cation (M), that is, to have a composition of BaMAl 11 O 19-α , respectively, according to the type of cation according to the method of the present invention Samples were prepared by heat treatment at 1300 ° C. for 2 hours. The specific surface area of the prepared sample was measured by the BET method and is shown in Table 1 below. It was also compared with barium hexaaluminate prepared by the same method.

구분division 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 발명예1Inventive Example 1 발명예2Inventive Example 2 발명예3Inventive Example 3 치환양이온 (M)Substituted Cation (M) AlAl NiNi FeFe CrCr CoCo MnMn 비표면적 (㎡/g)Specific surface area (㎡ / g) 16.216.2 12.212.2 13.213.2 17.317.3 15.115.1 14.814.8 비표면적의 비(%) (비교예1기준)% Of specific surface area (Comparative Example 1) 100100 8181 7575 107107 9393 9090

상기표 1에서 알 수 있는 바와같이, 비교예1은 바륨헥사알루미네이트로서 비표면적이 16.2㎡/g이고 보통 감마알루미나의 경우는 1㎡/g이하로 알려져 있다. 치환된 양이온이 Ni 와 Fe의 경우 비교예 2-3에서는 비교예 1의 기준대비 81%, 75%의 비표면적을 나타냈고, 발명예 1-3의 Cr, Co, Mn이 치환된 바륨헥사알루미네이트는 90%이상의 비표면적을 유지하였다. 따라서 본 발명에서는 바륨헥사알루미네이트를 포함하여 Cr, Co와 Mn이 치환된 BaMAl11O19-α(M=Cr, Mn or Co)의 조성이 되도록 치환고용체를 제조하는 것이 고온 내열성을 유지하는데 바람직한 것이다.As can be seen from Table 1, Comparative Example 1 is a barium hexaaluminate, the specific surface area is 16.2 m 2 / g, and in the case of gamma alumina, it is known to be 1 m 2 / g or less. In case of substituted cations with Ni and Fe, Comparative Example 2-3 showed specific surface areas of 81% and 75% compared to those of Comparative Example 1, and barium hexaalumina substituted with Cr, Co, and Mn of Inventive Examples 1-3. Nate maintained a specific surface area of at least 90%. Therefore, in the present invention, it is preferable to prepare a substituted solid solution such that the composition of BaMAl 11 O 19-α (M = Cr, Mn or Co) substituted with Cr, Co and Mn, including barium hexaaluminate, is preferred to maintain high temperature heat resistance. will be.

실시예 2Example 2

본 실시예에서는 감마알루미나에 수용성염을 바륨헥사알루미네이트 조성에서 알루미늄이온이 양이온(M)으로 치환 및 바륨이온의 일부를 란타늄으로 치환되도록 Ba1-xLaxMAl11O19-α성분을 조절함에 있어서, x=0.1에서 0.8까지를 변화시키고 본 발명의 제조방법인 도 1과 같은 공정으로 1300℃에서 2시간 열처리하여 제조된 시료를 BET법으로 비표면적을 측정하여 도 2에 나타냈다.In the present embodiment, the Ba 1-x La x MAl 11 O 19-α component is adjusted so that the aluminum ion is replaced with cation (M) and the part of barium ion is replaced by lanthanum in the barium hexaaluminate composition of gamma alumina. As shown in FIG. 2, the specific surface area of the sample prepared by changing the temperature from x = 0.1 to 0.8 and heat-treating at 1300 ° C. for 2 hours by the same process as that of FIG. 1 was measured.

도 2에 있어서, 란타늄 첨가량이 X=0.2미만에서는 란타늄 첨가의 효과를 그다지 보지 못하고 있으며 X=0.2-0.5에서는 비표면적이 현저하게 크게 나타냈다. 따라서 본 발명 실시예의 란타늄 함량이 중요하고 x=0.2-0.5에서 최대의 효과를 발휘함을 알 수 있다. 또한 x=0.6이상에서는 오히려 비표면적이 감소하는 경향을 나타낸다. 본 발명에 있어서 양이온 치환 바륨헥사알루미네이트의 결정구조에서 바륨이온대신에 란타늄이온을 첨가하여 치환고용체 제조시에 Ba1-xLaxMAl11O19-α(x=0.2-0.5)의 조성으로 고온 연소용 촉매를 제조하는 것이 바람직하다.In Fig. 2, when the amount of lanthanum addition is less than X = 0.2, the effect of the addition of lanthanum is not seen very much, and the specific surface area is remarkably large at X = 0.2-0.5. Therefore, it can be seen that the lanthanum content of the embodiment of the present invention is important and exerts the maximum effect at x = 0.2-0.5. Moreover, the specific surface area tends to decrease rather than x = 0.6. In the present invention, in the crystal structure of the cation-substituted barium hexaaluminate, lanthanum ions are added instead of barium ions to prepare Ba 1-x La x MAl 11 O 19-α (x = 0.2-0.5) in the preparation of the substituted solid solution. It is preferable to prepare a catalyst for high temperature combustion.

한편, 본 발명의 촉매연소용 재료에는 복합산화물의 헥사알루미네이트가 비표면적을 유지하는데 적합한 결정구조를 지닌 것으로, 층상구조를 지니고 육각판의 모양으로 되어 있음을 전자현미경으로 확인할 수 있다. 본 발명에서는 양이온을 치환한 고용체를 제조함에 의해서 금속성분을 포함시키기 때문에 촉매의 활성을 기대할 수 있으며, 헥사알루미네이트의 고유특성인 육각판상의 구조로 인하여 비표면적이 커서 내열성을 향상시킬 수 있음을 확인하였다.On the other hand, the catalytic combustion material of the present invention has a crystalline structure suitable for maintaining the specific surface area of the hexaaluminate of the composite oxide, it can be confirmed by electron microscopy having a layered structure in the form of a hexagonal plate. In the present invention, since the metal component is included by preparing a solid solution substituted with a cation, the activity of the catalyst can be expected, and due to the hexagonal plate structure, which is inherent in hexaaluminate, the specific surface area is large, and thus the heat resistance can be improved. Confirmed.

상술한 바와같이 본 발명에 의하면, 헥사알루미네이트 결정구조를 양이온으로 치환하여 치환고용체를 제조함으로서, 촉매의 내열성을 향상시키는 것이 가능하였고, 산업용 촉매연소기기의 고온 촉매연소에 사용함에 의해서 NOx의 발생량을 저감할 수 있고 열효율을 증대시킬 수 있다는 효과가 제공된다. 또한, 환경보전의 관점에서 촉매연소는 환경친화적 에너지 전환시스템으로 대기오염을 방지하는데 기여하는 효과가 있다.As described above, according to the present invention, by replacing the hexaaluminate crystal structure with a cation to prepare a substituted solid solution, it was possible to improve the heat resistance of the catalyst, and the amount of NOx generated by use in high temperature catalytic combustion of an industrial catalytic combustion device. The effect can be reduced and thermal efficiency can be increased. In addition, from the viewpoint of environmental conservation, catalytic combustion has an effect of preventing air pollution as an environmentally friendly energy conversion system.

Claims (4)

헥사알루미네이트계 고온 연소용 촉매를 제조하는 방법에 있어서,In the method for producing a hexaaluminate-based high temperature combustion catalyst, 크롬염을 수용액상태로 각각 준비하고, 바륨염 수용액을 준비하고, 감마알루미나를 준비한 후, 이들 수용액과 감마알루미나를 BaCrAl11O19-α의 조성이 되도록 반응시켜 함침하고 건조한 다음, 1300℃이상에서 열처리하여 치환고용체를 얻은 것을 특징으로 하는 양이온 치환 바륨 헥사알루미네이트계 고온 연소용 촉매 제조방법.After preparing chromium salt in aqueous solution, preparing barium salt aqueous solution, preparing gamma alumina, impregnating and drying these aqueous solution and gamma alumina to a composition of BaCrAl 11 O 19-α , and drying at 1300 ° C. or higher. A process for producing a cationic substituted barium hexaaluminate-based high temperature combustion catalyst, characterized in that a substituted solid solution is obtained by heat treatment. 제 1 항에 있어서,The method of claim 1, 상기 염은 염산염, 황산염, 질산염의 형태 중에서 선택된 것임을 특징으로 하는 양이온 치환 바륨 헥사알루미네이트계 고온 연소용 촉매 제조방법.The salt is a method for producing a cationic substituted barium hexaaluminate-based high-temperature combustion catalyst, characterized in that selected from the form of hydrochloride, sulfate, nitrate. 헥사알루미네이트계 고온 연소용 촉매를 제조하는 방법에 있어서,In the method for producing a hexaaluminate-based high temperature combustion catalyst, 크롬염을 수용액상태로 각각 준비하고, 바륨염 수용액 및 란타늄염 수용액을 준비하고, 감마알루미나를 준비한 후, 이들 수용액과 감마알루미나를, Ba1-xLaxCrAl11O19-α이며 X가 0.2-0.5의 값을 갖는 조성이 되도록 반응시켜, 함침하고 건조한 다음, 1300℃이상에서 열처리하여 치환고용체를 얻은 것을 특징으로 하는 양이온 치환 바륨 헥사알루미네이트계 고온 연소용 촉매 제조방법.After preparing the chromium salt in the aqueous solution, preparing the barium salt solution and the lanthanum salt solution, and preparing gamma alumina, the aqueous solution and gamma alumina were Ba 1-x La x CrAl 11 O 19-α and X is 0.2. A method for producing a cationic substituted barium hexaaluminate catalyst for high temperature combustion, comprising reacting to a composition having a value of -0.5, impregnating and drying, and then performing heat treatment at 1300 ° C. or higher. 제 3 항에 있어서,The method of claim 3, wherein 상기 염은 염산염, 황산염, 질산염의 형태 중에서 선택된 것임을 특징으로 하는 양이온 치환 바륨 헥사알루미네이트계 고온 연소용 촉매 제조방법.The salt is a method for producing a cationic substituted barium hexaaluminate-based high-temperature combustion catalyst, characterized in that selected from the form of hydrochloride, sulfate, nitrate.
KR10-1998-0056695A 1998-12-21 1998-12-21 A method for manufacturing of high-temperature combustion catalyst of cation-substituted hexa-aluminate system KR100406366B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0056695A KR100406366B1 (en) 1998-12-21 1998-12-21 A method for manufacturing of high-temperature combustion catalyst of cation-substituted hexa-aluminate system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0056695A KR100406366B1 (en) 1998-12-21 1998-12-21 A method for manufacturing of high-temperature combustion catalyst of cation-substituted hexa-aluminate system

Publications (2)

Publication Number Publication Date
KR20000040941A KR20000040941A (en) 2000-07-15
KR100406366B1 true KR100406366B1 (en) 2004-01-24

Family

ID=19564176

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0056695A KR100406366B1 (en) 1998-12-21 1998-12-21 A method for manufacturing of high-temperature combustion catalyst of cation-substituted hexa-aluminate system

Country Status (1)

Country Link
KR (1) KR100406366B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412647B1 (en) 2021-07-19 2022-06-24 주식회사 성광이엔텍 Method for manufacturing high-temperature combustion catalyst for burner using impregnation method and high-temperature combustion catalyst prepared thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518319B1 (en) * 2001-12-21 2005-10-04 주식회사 포스코 Preparing method of catalytic material for elemental sulfur

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305236A (en) * 1992-04-30 1993-11-19 Nissan Motor Co Ltd Exhaust gas purifying catalyst
JPH07243635A (en) * 1994-03-09 1995-09-19 Mitsui Toatsu Chem Inc Method of incinerating waste
JPH09206594A (en) * 1995-11-30 1997-08-12 Toyo C C I Kk Catalyst for purification of exhaust gas
JPH09248462A (en) * 1996-03-12 1997-09-22 Nissan Motor Co Ltd Exhaust gas-purifying catalyst
JPH09271672A (en) * 1996-04-05 1997-10-21 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
US5830822A (en) * 1994-07-01 1998-11-03 Institut Francais Du Petrole High temperature resistant oxidation catalyst, a process for its preparation and a combustion process using this catalyst
KR19990086620A (en) * 1998-05-29 1999-12-15 박호군 Combustion catalyst with excellent thermal stability and oxidation reaction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305236A (en) * 1992-04-30 1993-11-19 Nissan Motor Co Ltd Exhaust gas purifying catalyst
JPH07243635A (en) * 1994-03-09 1995-09-19 Mitsui Toatsu Chem Inc Method of incinerating waste
US5830822A (en) * 1994-07-01 1998-11-03 Institut Francais Du Petrole High temperature resistant oxidation catalyst, a process for its preparation and a combustion process using this catalyst
JPH09206594A (en) * 1995-11-30 1997-08-12 Toyo C C I Kk Catalyst for purification of exhaust gas
JPH09248462A (en) * 1996-03-12 1997-09-22 Nissan Motor Co Ltd Exhaust gas-purifying catalyst
JPH09271672A (en) * 1996-04-05 1997-10-21 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
KR19990086620A (en) * 1998-05-29 1999-12-15 박호군 Combustion catalyst with excellent thermal stability and oxidation reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412647B1 (en) 2021-07-19 2022-06-24 주식회사 성광이엔텍 Method for manufacturing high-temperature combustion catalyst for burner using impregnation method and high-temperature combustion catalyst prepared thereby

Also Published As

Publication number Publication date
KR20000040941A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
US4959339A (en) Heat-resistant noble metal catalyst and method of producing the same
JP5072136B2 (en) Method for producing porous spinel complex oxide
CN1046638C (en) Catalytic decomposition process of nitrous oxide pure or contained in gaseous mixtures
RU2201905C2 (en) Ceramic material based on lanthanide oxides and fuel unit
KR101511075B1 (en) Catalyst, production method therefor and use thereof for decomposing N2O
EP0686423A2 (en) Ammonia decomposition catalysts
US4110254A (en) Metal oxide catalytic compositions
BR9912426B1 (en) metal oxide synthesizing process having a crystalline structure similar to perovskite.
BRPI0619533A2 (en) exhaust gas purification catalyst and exhaust gas purification catalyst member
JP5293727B2 (en) Method for producing perovskite-type catalyst
JP2005501174A (en) Thermal insulation layer for high temperature based on La2Zr2O7
US4711872A (en) Catalyst for combustion and process for producing same
KR100911797B1 (en) Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides
Torrez-Herrera et al. Progress in the synthesis and applications of hexaaluminate-based catalysts
KR20110094040A (en) Copper catalyst for dehydrogenation application
CN103038158A (en) Redox material for thermochemical water decomposition and method for producing hydrogen
KR100406366B1 (en) A method for manufacturing of high-temperature combustion catalyst of cation-substituted hexa-aluminate system
US4110258A (en) Barium metal oxide catalytic compositions
WO2011004239A2 (en) Catalyst for high temperature decomposition of nitrous oxide
CN114011400A (en) Preparation method of acid system waste incineration SCR denitration catalyst and prepared denitration catalyst
FI119500B (en) Catalysts with extremely finely divided active components
KR100489676B1 (en) A method for preparing catalyst for high temperature combustion in strontium hexa-aluminate system
CN110215917B (en) Supported vanadium acid metal M salt SCR catalyst and preparation method thereof
CN104085925A (en) Preparation method of LATON perovskite-type oxynitride powder
US5128288A (en) Phosphate compounds, sintered bodies thereof and manufacture of the sintered bodies

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121107

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131105

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee