KR100392781B1 - Process for the production of chemical reaction block for chemical heat pump - Google Patents

Process for the production of chemical reaction block for chemical heat pump Download PDF

Info

Publication number
KR100392781B1
KR100392781B1 KR10-2000-0012004A KR20000012004A KR100392781B1 KR 100392781 B1 KR100392781 B1 KR 100392781B1 KR 20000012004 A KR20000012004 A KR 20000012004A KR 100392781 B1 KR100392781 B1 KR 100392781B1
Authority
KR
South Korea
Prior art keywords
reaction
block
expanded graphite
heat pump
igp
Prior art date
Application number
KR10-2000-0012004A
Other languages
Korean (ko)
Other versions
KR20010088029A (en
Inventor
황용준
김상욱
한종훈
이건홍
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR10-2000-0012004A priority Critical patent/KR100392781B1/en
Publication of KR20010088029A publication Critical patent/KR20010088029A/en
Application granted granted Critical
Publication of KR100392781B1 publication Critical patent/KR100392781B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 화학 열펌프에 사용되는 반응 블록을 제조하는 방법에 관한 것으로, 본 발명에 따르면, 팽창흑연과 반응염의 용액을 혼합하여 슬러리를 얻고, 이 슬러리를 건조하여 함침된 흑연 분말(Impregnated Graphite Powder, IGP)을 제조한 다음 이를 다시 팽창흑연과 혼합한 후 압축성형하여 원하는 반응블록을 제조함으로써, 기존 방법과 달리 압축성형 과정을 마지막에 수행하는 것에 의해 중간 과정에서 발생하는 블록의 파손을 막을 수 있으며, 밀도가 낮은 반응층을 구성하기가 유리하며, 반응층에 포함되는 반응염의 함량을 쉽게 조절할 수 있고, 또한 화학 열펌프에 사용시 반응층의 열전도도 및 기체투과도를 크게 향상시킬 수 있다.The present invention relates to a method for producing a reaction block used in a chemical heat pump, and according to the present invention, a mixture of expanded graphite and a reaction salt is obtained to obtain a slurry, and the slurry is dried to impregnate graphite powder (Impregnated Graphite Powder). , IGP), and then mixed with expanded graphite and compression molding to produce the desired reaction block, unlike the existing method by performing the compression molding process at the end to prevent the breakage of the block occurring in the intermediate process In addition, it is advantageous to construct a low-density reaction layer, it is possible to easily control the content of the reaction salt contained in the reaction layer, and also when used in a chemical heat pump can significantly improve the thermal conductivity and gas permeability of the reaction layer.

Description

화학 열펌프용 반응 블록의 제조방법{PROCESS FOR THE PRODUCTION OF CHEMICAL REACTION BLOCK FOR CHEMICAL HEAT PUMP}Process for manufacturing reaction block for chemical heat pump {PROCESS FOR THE PRODUCTION OF CHEMICAL REACTION BLOCK FOR CHEMICAL HEAT PUMP}

본 발명은 화학 열펌프에 사용되는 반응층(반응블록)을 제조하는 방법에 관한 것으로, 보다 상세하게는 팽창흑연과 반응염을 사용하여 높은 열전도도 및 기체 투과도를 갖는 화학열펌프용 반응 블록을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a reaction layer (reaction block) used in a chemical heat pump, and more particularly to a reaction block for a chemical heat pump having high thermal conductivity and gas permeability by using expanded graphite and a reaction salt. It relates to a manufacturing method.

화학 열펌프는 산업 폐열과 같은 저급의 에너지원을 직접 이용할 수 있고,에너지의 장기간 저장이 용이하기 때문에 앞으로 생길 수 있는 에너지 부족문제에 유연하게 대처할 수 있는 수단이다. 그러나, 화학반응을 이용한 화학 열펌프 시스템의 성능은 반응층의 열전달 및 물질전달 정도에 따라 큰 영향을 받으며, 일반적으로 사용되는 반응염은 열전도도가 낮고, 반응이 일어남에 따라 부피팽창이 일어나기 때문에 물질전달의 문제가 생겨 성능이 저하되는 문제점이 있었다. 따라서, 이 문제를 해결하기 위해 여러 가지 방법이 제안되었다.Chemical heat pumps are a means to flexibly cope with future energy shortages because they can directly use low-level energy sources such as industrial waste heat and can easily store energy for long periods of time. However, the performance of the chemical heat pump system using the chemical reaction is greatly influenced by the heat transfer and mass transfer of the reaction layer, and generally used reaction salts have low thermal conductivity and volume expansion occurs as a reaction occurs. There was a problem that the performance is degraded due to the problem of material transfer. Therefore, various methods have been proposed to solve this problem.

예를 들어, 미국 특허 제4,906,258호에는 팽창흑연과 분말 형태의 반응물질의 사용이 제안되어 있으며, 팽창흑연을 사용하여 전체 반응층의 공극율을 높이고, 반응물질의 전달이 쉽도록 하였다. 그러나, 이 방법에서와 같이 반응염 분말을 직접 팽창흑연과 혼합하는 경우는, 단순히 물리적인 혼합에 의한 것이므로 혼합이 균일하게 이루어지지 못한다는 단점이 있다.For example, US Pat. No. 4,906,258 proposes the use of expanded graphite and reactants in the form of powders. The expanded graphite is used to increase the porosity of the entire reaction layer and to facilitate the transfer of the reactants. However, when the reaction salt powder is directly mixed with the expanded graphite as in this method, since the mixing is simply performed by physical mixing, the mixing is not uniform.

또한, 국제 특허 WO 91/15292 및 미국 특허 제5,283,219호에서는 팽창흑연을 재압축하여 겉보기 밀도가 20 ~ 1500 kg/m3를 갖는 흑연 지지체를 구성한 다음, 반응물질과의 복합체를 형성하는 것을 제안하였다.In addition, International Patent WO 91/15292 and US Pat. No. 5,283,219 propose to recompress expanded graphite to form a graphite support having an apparent density of 20 to 1500 kg / m 3 , and then to form a composite with the reactant. .

미국 특허 제5,607,889호에서는 팽창흑연을 압축하여 원하는 겉보기 밀도를 갖는 지지체를 형성하고, 반응물질의 용액 속에 흑연 지지체를 함침한 후 건조시켜 팽창흑연 복합체로 이루어진 반응 블록을 구성하는 방법이 제시되었으며, 도 1에 이 공정을 나타내었다. 이 방법에 의해 제조된 반응 블록은 높은 열전도도를 갖고 공극률도 높기 때문에 화학 열펌프의 성능을 향상시킬 수 있으나, 흑연 지지체의밀도가 낮은 경우 함침 과정에서 블록이 파손되는 경우가 있으며, 밀도가 낮아질수록 이러한 경향이 더 크게 나타난다. 구체적으로, 지지체의 밀도가 100 kg/m3미만이 될 경우 제조되는 반응블록의 약 30 % 정도가 함침 중에 파손되며, 밀도가 80 kg/m3이하가 되면 약 50 %가 파손되고, 밀도 50 kg/m3이하의 경우는 블록의 제작이 거의 불가능하다. 또한, 이 방법은 블록에 포함되는 반응염의 양을 함침에 의해 조절할 수 없다는 큰 단점을 가지고 있다.In US Patent No. 5,607,889, a method of compressing expanded graphite to form a support having a desired apparent density, impregnating a graphite support in a solution of a reactant, and then drying to construct a reaction block composed of expanded graphite composite, 1 shows this process. The reaction block produced by this method can improve the performance of the chemical heat pump because it has high thermal conductivity and high porosity.However, when the density of the graphite support is low, the block may be broken during the impregnation process, and the density may become low. The more this tendency is greater. Specifically, when the density of the support is less than 100 kg / m 3 About 30% of the reaction block is broken during the impregnation, when the density is less than 80 kg / m 3 About 50% is broken, density 50 In the case of kg / m 3 or less, the production of blocks is almost impossible. In addition, this method has a big disadvantage that the amount of the reaction salt contained in the block cannot be controlled by impregnation.

미국 특허 제5,612,272호에서는 팽창흑연을 사용한 활성 복합체의 사용을 제안하였는데, 여기서는 함침 과정에서 반응 블록의 강도가 약해지는 것을 보완하고, 대형 시스템에 적용할 수 있는데 초점을 맞추었다. 이 방법은, 팽창흑연을 압축하여 원하는 모양을 형성하고, 지지체 (공동을 형성하기 위해 지지체는 둘 이상의 다공성 지지체로 이루어진다) 내부에 공동(cavity)을 형성한 다음, 공동내부에 반응물질을 주입하고, 고압증기를 넣어 주면서 반응 물질이 지지체의 곳곳에 잘 분산될 수 있도록 하고 나서, 이를 건조시켜 활성 복합체를 제조한다. 그러나, 이 방법은 고압의 증기를 사용해야 한다는 단점이 있다.U. S. Patent No. 5,612, 272 suggests the use of an active composite with expanded graphite, which focuses on compensating for the weakening of the reaction block during impregnation and applying it to large systems. This method compresses the expanded graphite to form the desired shape, forms a cavity inside the support (the support consists of two or more porous supports to form a cavity), and then introduces a reactant into the cavity. , Putting high-pressure steam so that the reaction material is well dispersed throughout the support, and then dried to prepare an active complex. However, this method has the disadvantage of using high pressure steam.

이상과 같이, 고압에서 운전되는 시스템의 경우는 상대적으로 흑연 지지체의 밀도가 높아도 반응 기체가 블록 내부까지 전달되는데 별 문제가 없으나, 저압에서 운전되는 시스템의 경우는 흑연 지지체의 밀도가 높은 경우 반응 블록 내부까지 기체가 전달되는데 어려움이 있으며 이는 전체 시스템의 효율성 및 성능을 떨어뜨리게 된다. 따라서, 저압에서 운전되는 시스템에서, 사용되는 흑연 지지체의 밀도를낮춰 블록 내부까지 기체가 잘 전달될 수 있도록 하는 것이 중요하다. 또한, 반응 블록의 밀도 및 반응염의 함량에 따라 반응 블록의 특성이 변하게 되는데, 기존의 방법은 밀도는 조절할 수 있지만 반응염의 함량을 조절하기 어려운 단점이 있으므로, 이를 개선할 여지가 있다.As described above, in the case of a system operated at a high pressure, even if the density of the graphite support is relatively high, there is no problem in that the reaction gas is transferred to the inside of the block. There is a difficulty in delivering gas to the interior, which reduces the efficiency and performance of the entire system. Therefore, in systems operating at low pressures, it is important to lower the density of the graphite support used so that gas can be delivered well into the block. In addition, the characteristics of the reaction block is changed according to the density of the reaction block and the content of the reaction salt, the conventional method can adjust the density, but it is difficult to control the content of the reaction salt, there is room for improvement.

본 발명은 상술한 종래 방법들의 문제점을 해결하기 위한 것으로, 열전도도 및 기체 투과도가 높으며, 특히 저압에서 운전되는 화학 열펌프에도 적합한 반응 블록을 제조하는 방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the conventional methods described above, and an object thereof is to provide a method for producing a reaction block having high thermal conductivity and gas permeability, and particularly suitable for a chemical heat pump operated at low pressure.

도 1은 종래의 반응블록 제조 방법을 나타낸 공정도이고,1 is a process chart showing a conventional reaction block manufacturing method,

도 2는 본 발명에 따른 반응블록 제조 방법을 나타낸 공정도이며,2 is a process chart showing a reaction block manufacturing method according to the present invention,

도 3은 본 발명에 따른 방법에서 얻은 IGP(impregnated graphite powder)의 사진이고,3 is a photograph of an impregnated graphite powder (IGP) obtained by the method according to the present invention,

도 4는 본 발명에 따른 방법으로 제조된 반응 블록의 사진이다.4 is a photograph of a reaction block produced by the method according to the invention.

본 발명에서는, 상기한 바와 같은 목적을 달성하기 위해, 팽창흑연을 반응염의 수용액과 혼합하여 슬러리를 만든 다음 이 슬러리를 건조시켜 반응염 함량이 5 내지 95 중량% 범위인 함침된 흑연 분말(Impregnated Graphite Powder, IGP)을 얻고, 이 IGP와 팽창흑연을 1:3 내지 25:1 범위의 중량비로 섞어 혼합물을 얻고, 이 혼합물을 압축성형하는 것을 포함하는, 화학 열펌프용 반응 블록의 제조방법을 제공한다.In the present invention, in order to achieve the object as described above, the expanded graphite is mixed with an aqueous solution of the reaction salt to make a slurry and then the slurry is dried to impregnated graphite powder (impregnated graphite) having a reaction salt content in the range of 5 to 95% by weight. Powder, IGP) to obtain a mixture by mixing the IGP and the expanded graphite in a weight ratio of 1: 3 to 25: 1, and compression molding the mixture to provide a method for producing a reaction block for a chemical heat pump do.

이하, 본 발명을 보다 상세히 기술한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따르면, 비표면적이 크고 화학적으로 안정한 팽창흑연을 사용하는데, 사용되는 흑연의 밀도는 사용 목적에 따라 10 ~ 500 kg/m3범위일 수 있다. 본 발명에 따른 제조공정을 도 2에 개략적으로 나타내었다.According to the present invention, the use of expanded graphite having a large specific surface area and chemically stable, the density of the graphite used may range from 10 to 500 kg / m 3 depending on the purpose of use. The manufacturing process according to the invention is shown schematically in FIG. 2.

도 2에서 보듯이, 우선 원하는 활성 반응염의 용액을 제조한다. 본 발명에 사용되는 반응염은 반응 매체(가스)의 종류에 따라 변경될 수 있으며, 사용 가능한 반응염과 반응 매체의 종류를 하기 표 1에 나타내었다. 표 1에는 반응염과 더불어 흡착제를 함께 나타내었다.As shown in Fig. 2, first, a solution of the desired active reaction salt is prepared. The reaction salt used in the present invention may be changed according to the type of reaction medium (gas), and the types of reaction salt and reaction medium which can be used are shown in Table 1 below. Table 1 shows the adsorbent together with the reaction salt.

반응염과 반응매체 쌍은 각각 화학반응열의 크기와 반응온도가 다르므로, 화학 열펌프의 적용온도나 환경에 따라 결정되어질 수 있다. 화학 열펌프에 사용되어지는 대부분의 반응쌍은 발열반응이고 반응염과 반응매체가 결합할 때 상당히 큰 열량을 배출한다. 이때 배출되는 열량을 난방등과 같이 열이 필요한 다양한 용도에 사용할 수 있고, 액체상의 반응매체가 증발할 때 외부로부터 빼앗는 잠열을 냉방 등에 이용할 수 있다.Since the reaction salt and the reaction medium pairs have different sizes and reaction temperatures of the heat of chemical reaction, they may be determined according to the application temperature or the environment of the chemical heat pump. Most reaction pairs used in chemical heat pumps are exothermic and produce significant heat when they react with the reaction salt. In this case, the amount of heat discharged may be used for various applications such as heating, and the latent heat taken from the outside when the liquid reaction medium evaporates may be used for cooling.

반응염과 반응매체의 종류Types of Reaction Salts and Reaction Media 반응염/반응매체 상호작용의 특성Characteristics of Reaction Salt / Reaction Media Interactions 활성 반응염 혹은 흡착제Active reaction salts or adsorbents 반응매체(가스)Reaction medium (gas) 가역적 고체/기체 반응Reversible Solid / Gas Reaction 할로겐화물Halide 수증기vapor 유사(pseudo) 할로겐화물탄산염황산염질산염Pseudo halide carbonate sulfate nitrate NH3및 그 유도체NH 3 and its derivatives 산화물oxide CO2, SO2, SO3 CO 2 , SO 2 , SO 3 금속metal O2 O 2 금속 합금Metal alloy H2, 탄화수소H 2 , hydrocarbon 금속 수소화물Metal hydride H2 H 2 가역적 액체/기체 흡수 및 가역적 포화-액체/기체 흡수Reversible Liquid / Gas Absorption and Reversible Saturation-Liquid / Gas Absorption 수용액할로겐화물유사 할로겐화물탄산염황산염질산염Aqueous Halide-Hide-like Halide Carbonate Sulfate Nitrate 수증기vapor 액상 용액NH3할로겐화물유사 할로겐화물탄산염황산염질산염Liquid solution NH 3 Halide-like halide carbonate Sulfate NH3및 그 유도체NH 3 and its derivatives 가역적 고체/기체 흡착Reversible Solid / Gas Adsorption 제올라이트활성탄실리카겔산화인Zeolite Activated Carbon Silica Gel Phosphorus Oxide 수증기메탄올 및 그 유도체Water vapor methanol and its derivatives

상기 표에서, 고체/기체 흡착형태의 경우, 반응염이 흡착제에 지지되는 것이 아니라 흡착제 자체에 반응가스가 흡탈착을 하면서 열출입이 있는 경우를 의미한다.In the above table, in the case of the solid / gas adsorption mode, the reaction salt is not supported by the adsorbent, but means a case in which heat and evaporation occurs while the reaction gas is adsorbed and desorbed on the adsorbent.

상기 반응염으로는 보통 금속 염화물, Na2S 등과 흡착제로 실리카겔, 활성탄, 제올라이트 등이 바람직하게 사용되며, 금속 염화물의 구체적인 예로는 CaCl2,MnCl2, BaCl2, NiCl2, CuCl2, CoCl2, SrCl2, NaCl2, FeCl2, NH4Cl 및 CdCl2등이 있다.As the reaction salt, silica chloride, activated carbon, zeolite, etc. are preferably used as the metal chloride, Na 2 S, and the like as an adsorbent. Specific examples of the metal chloride include CaCl 2 , MnCl 2 , BaCl 2 , NiCl 2 , CuCl 2 , and CoCl 2. , and the like SrCl 2, NaCl 2, FeCl 2 , NH 4 Cl , and CdCl 2.

상기 반응 매체로는 수증기, NH3, 메탄올, 수소, 메틸렌아민 등을 바람직하게 사용할 수 있다.As the reaction medium, steam, NH 3 , methanol, hydrogen, methyleneamine and the like can be preferably used.

이어서, 상기와 같이 제조된 반응염 수용액과 팽창흑연을 교반하에 혼합하여 슬러리 상태로 만든 다음, 얻어진 슬러리를 바람직하게는 진공 조건하에 건조하여 함침된 흑연 분말(IGP)을 수득한다. 건조시 반응염의 종류에 따라 적절한 온도로 가열을 수행할 수 있다. 상기 IGP는 팽창흑연의 함량과 사용된 반응염 수용액의 농도를 조절하여 반응염 함량이 0.1 내지 99 중량%, 바람직하게는 5 내지 95 중량%의 범위가 되도록 한다.Subsequently, the reaction salt aqueous solution prepared as described above and the expanded graphite are mixed under stirring to form a slurry, and the obtained slurry is preferably dried under vacuum conditions to obtain impregnated graphite powder (IGP). Upon drying, heating may be performed at an appropriate temperature depending on the type of reaction salt. The IGP adjusts the content of expanded graphite and the concentration of the reaction salt aqueous solution used so that the reaction salt content is in the range of 0.1 to 99% by weight, preferably 5 to 95% by weight.

수득된 IGP를 다시 팽창흑연과 섞어 혼합물을 만들게 되는데, 혼합비율은 IGP:팽창흑연 1:3 내지 25:1 범위이다. IGP와 팽창흑연의 비가 1:3 이하일 경우 반응블록에 포함된 반응염의 양이 충분치 못하여 충분한 반응열량을 얻기가 어려우며, 25:1 이상인 경우 IGP의 양에 비해 팽창흑연의 양이 너무 작아서 기체투과도 및 열전도도가 높은 반응블록을 이루기 힘들며, 특히 구조적 지지체로서의 역할을 제대로 행하지 못하게 된다. IGP에 포함된 반응염의 함량이 높을 경우, 건조 과정을 통해 얻어진 생성물은 분말 형태가 아닌 덩어리로 얻어질 수 있으며, 이 경우 분쇄 과정을 통해 원하는 크기의 입자를 갖는 분말로 구성하는 것이 바람직하다. IGP의 입자 크기가 작을수록 비표면적이 넓어지기 때문에 반응성이 증가하게 되며, IGP의 입경은 보통 10 내지 500 ㎛ 범위일 수 있다.The obtained IGP is again mixed with expanded graphite to make a mixture, wherein the mixing ratio is in the range of IGP: expanded graphite 1: 3 to 25: 1. If the ratio of IGP and expanded graphite is less than 1: 3, the amount of reaction salt contained in the reaction block is not sufficient, and it is difficult to obtain sufficient heat of reaction. It is difficult to achieve a high thermal conductivity reaction block, and in particular, does not function properly as a structural support. When the content of the reaction salt contained in the IGP is high, the product obtained through the drying process may be obtained in the form of agglomerates, not in powder form, in which case it is preferable to form a powder having particles of a desired size through the grinding process. The smaller the particle size of the IGP, the wider the specific surface area, the higher the reactivity, and the particle size of the IGP may usually be in the range of 10 to 500 μm.

이어서, IGP-팽창흑연 혼합물을 예를 들면 몰드(mold)에 넣고 압축성형하여 원하는 모양과 밀도를 갖는 반응블록으로 제조한다. 이때 몰드를 사용하지 않고 반응기 내부에서 직접 반응층을 형성할 수도 있다.The IGP-expanded graphite mixture is then placed, for example, in a mold and compression molded into a reaction block having the desired shape and density. In this case, the reaction layer may be directly formed inside the reactor without using a mold.

본 발명에 따른 상기 공정은, 공기 중에서 수분 등과 반응을 일으키기 때문에 미세한 분말을 형성하기 어려운 반응염에 대해 IGP를 이용함으로써 유리하게 수행되는 방법이다.The process according to the present invention is advantageously carried out by using IGP for reaction salts which are difficult to form fine powders because they react with water and the like in air.

또한, 반응염을 사용하는 경우 이외에도, 제올라이트, 활성탄, 실리카겔등의 흡착제를 사용하는 반응계에도 적용할 수 있으며 이때는 흡착제를 팽창흑연과 직접 혼합하여 반응 블록을 구성할 수 있다. 이때는 제올라이트, 활성탄, 실리카겔 등이 직접적으로 반응가스(수증기, 메탄올, 암모니아 등)를 흡착하므로 반응염이 따로 사용되지 않는다.In addition to the case of using the reaction salt, it can be applied to a reaction system using an adsorbent such as zeolite, activated carbon, silica gel, etc. In this case, the adsorbent can be directly mixed with the expanded graphite to form a reaction block. At this time, since zeolite, activated carbon, silica gel, etc. directly adsorb the reaction gas (steam, methanol, ammonia, etc.), the reaction salt is not used separately.

이하 본 발명을 실시예로써 설명하며, 이들이 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described by way of examples, which do not limit the present invention.

실시예Example

2 M 농도의 Na2S 수용액 1 L를 팽창흑연 6.09 g과 혼합하여 슬러리를 제조하였다. 이 수용액을 140 ℃에서 진공펌프를 사용하여 2일간 건조하여 팽창흑연-Na2S의 혼합물(IGP) 70.94 g을 제조하였다 (반응염의 함량 91.4 중량%). IGP는 건조 과정에서 반응염의 재결정화로 인해 입자가 덩어리 형태로 존재하였다. 이 IGP를 분쇄하고 표준 망체를 사용하여 크기가 420 ㎛ 이하를 갖는 IGP 분체를 제조하였다. IGP의 사진을 도 3에 나타내었으며, 이때 IGP가 함유하고 있는 반응염의 질량분율은 83.3 %였다.A slurry was prepared by mixing 1 L of a 2 M Na 2 S aqueous solution with 6.09 g of expanded graphite. This aqueous solution was dried at 140 ° C. for 2 days using a vacuum pump to prepare 70.94 g of a mixture of expanded graphite-Na 2 S (IGP) (content of 91.4% by weight of the reaction salt). IGP had particles in the form of agglomerates due to the recrystallization of the reaction salt during drying. This IGP was ground and an IGP powder having a size of 420 μm or less was prepared using standard meshes. A photo of IGP is shown in FIG. 3, wherein the mass fraction of the reaction salt contained in IGP was 83.3%.

도 3의 IGP를 팽창흑연의 중량 비가 1:1.35, 1.2:1, 25:1이 되도록 혼합하고, 몰드에서 압축성형하여 본 발명에 따른 열화학 펌프용 반응블록을 제조하였다.IGP of FIG. 3 was mixed so that the weight ratio of expanded graphite was 1: 1.35, 1.2: 1, 25: 1, and compression molded in a mold to prepare a reaction block for a thermochemical pump according to the present invention.

이와 같이 제조된 반응블록의 반응전후의 열전도도 및 기체투과도를 측정함으로써 반응블록의 전달 특성을 시험하였다. 반응블록의 열전도도 측정결과는 Na2S의 질량비율에 따라 하기 표 2 내지 4에, 또한 기체투과도 측정결과를 하기 표 5에 정리하였다.The transfer characteristics of the reaction block were tested by measuring the thermal conductivity and gas permeability of the reaction block prepared before and after the reaction. The thermal conductivity measurement result of the reaction block is summarized in Tables 2 to 4 below, and the results of gas permeability measurement in Table 5 according to the mass ratio of Na 2 S.

반응블록의 열전도도 (IGP:팽창흑연 = 1:1.35)Thermal conductivity of the reaction block (IGP: expanded graphite = 1: 1.35) ρ b(kg/m3) ρ b (kg / m 3 ) 열전도도 (W/m K)Thermal Conductivity (W / m K) 표준편차(W/m K)Standard deviation (W / m K) 축방향, 탈수된 상태Axial, Dehydrated 51.5251.52 19.219.2 0.4370.437 77.8477.84 20.320.3 0.4200.420 99.7199.71 21.521.5 0.4960.496 124.38124.38 19.319.3 0.8050.805 144.54144.54 18.118.1 0.5900.590 축방향, 수화된 상태Axial, hydrated 51.5251.52 20.920.9 0.5870.587 77.8477.84 22.722.7 0.3490.349 99.7199.71 24.224.2 0.6740.674 124.38124.38 23.923.9 0.6220.622 144.54144.54 22.122.1 0.3850.385 반지름 방향, 탈수된 상태Radial, dehydrated 51.8751.87 22.022.0 0.5050.505 80.3480.34 24.724.7 0.4010.401 110.61110.61 29.729.7 0.8920.892 130.82130.82 34.334.3 0.7980.798 162.99162.99 40.740.7 0.9930.993 반지름 방향, 수화된 상태Radial, hydrated 51.8751.87 22.622.6 0.7480.748 80.3480.34 27.527.5 1.1481.148 110.61110.61 35.335.3 0.4200.420 130.82130.82 42.342.3 1.8981.898 162.99162.99 47.347.3 2.7472.747

반응블록의 열전도도 (IGP:팽창흑연 = 1.2:1)Thermal conductivity of the reaction block (IGP: expanded graphite = 1.2: 1) ρb(kg/m3)ρ b (kg / m 3 ) 열전도도 (W/m K)Thermal Conductivity (W / m K) 표준 편차(W/m K)Standard deviation (W / m K) 축방향, 탈수된 상태Axial, Dehydrated 47.7847.78 15.715.7 0.2930.293 70.9770.97 16.516.5 0.2220.222 94.1494.14 18.418.4 0.3690.369 115.75115.75 16.916.9 0.2040.204 136.75136.75 15.615.6 0.2920.292 축방향, 수화된 상태Axial, hydrated 47.7847.78 17.517.5 0.2290.229 70.9770.97 20.520.5 0.1550.155 94.1494.14 23.323.3 0.2790.279 115.75115.75 21.321.3 0.4790.479 136.75136.75 20.420.4 0.6380.638 반지름 방향, 탈수된 상태Radial, dehydrated 58.2158.21 14.414.4 0.1700.170 78.4478.44 16.716.7 0.4860.486 109.61109.61 20.520.5 0.4080.408 132.47132.47 26.326.3 0.7070.707 165.20165.20 33.033.0 1.5131.513 반지름 방향, 수화된 상태Radial, hydrated 58.2158.21 15.315.3 0.4890.489 78.4478.44 21.021.0 0.5630.563 109.61109.61 26.426.4 1.2961.296 132.47132.47 33.933.9 1.1621.162 165.20165.20 38.538.5 2.0412.041

반응블록의 열전도도 (IGP:팽창흑연 = 25:1)Thermal conductivity of the reaction block (IGP: expanded graphite = 25: 1) ρ b(kg/m3) ρ b (kg / m 3 ) 열전도도 (W/m K)Thermal Conductivity (W / m K) 표준 편차(W/m K)Standard deviation (W / m K) 축방향, 탈수된 상태Axial, Dehydrated 50.1150.11 5.95.9 0.1690.169 71.8071.80 8.18.1 0.1430.143 95.8995.89 10.110.1 0.2230.223 121.84121.84 10.210.2 0.4020.402 138.44138.44 9.59.5 0.3710.371 축방향, 수화된 상태Axial, hydrated 50.1150.11 7.27.2 0.1940.194 71.8071.80 11.311.3 0.4420.442 95.8995.89 13.813.8 0.8470.847 121.84121.84 15.115.1 0.5040.504 138.44138.44 14.814.8 1.2161.216 반지름 방향, 탈수된 상태Radial, dehydrated 49.9249.92 8.18.1 0.5310.531 78.0078.00 9.89.8 0.3430.343 101.50101.50 11.911.9 0.4270.427 116.02116.02 14.614.6 0.5500.550 154.04154.04 18.418.4 1.2121.212 반지름 방향, 수화된 상태Radial, hydrated 49.9249.92 10.110.1 0.5180.518 78.0078.00 14.214.2 1.0271.027 101.50101.50 18.418.4 0.6130.613 116.02116.02 23.523.5 1.9281.928 154.04154.04 27.327.3 2.1802.180

반응블록의 기체투과도Gas Permeability of Reaction Block IGP:팽창흑연중량비IGP: Expansion graphite weight ratio ρ b(kg/m3) ρ b (kg / m 3 ) 탈수된 상태(×10-13m2)Dehydrated (× 10 -13 m 2 ) 수화된 상태(×10-13m2)Hydrated state (× 10 -13 m 2 ) 1:1.351: 1.35 47.8647.86 22.14022.140 10.81410.814 72.7272.72 9.46179.4617 7.55297.5529 97.8297.82 5.43125.4312 4.66734.6673 122.8122.8 2.75052.7505 1.86671.8667 146.4146.4 2.26242.2624 1.33471.3347 1.2:11.2: 1 48.3948.39 56.34656.346 38.15638.156 74.9074.90 19.21719.217 10.85710.857 96.1496.14 11.91111.911 7.90557.9055 121.3121.3 8.17668.1766 4.82084.8208 146.4146.4 7.07747.0774 3.84983.8498 25:125: 1 48.3848.38 102.48102.48 32.92732.927 73.9973.99 43.31043.310 10.34110.341 96.5396.53 23.15923.159 7.56927.5692 121.1121.1 9.33959.3395 3.66753.6675 145.6145.6 8.09038.0903 1.08931.0893

상기 표 2 내지 4로부터, 수화반응후에는 반응블록의 열전도도 값이 증가하는 경향을 볼 수 있다. 일반적인 반응염의 열전도도값이 0.1 ~ 1 W/m K 정도인 것을 감안한다면, 팽창흑연 지지체를 사용함으로써 높은 열전도도 값을 얻을 수 있음을 알 수 있다.From Tables 2 to 4, it can be seen that the thermal conductivity of the reaction block increases after the hydration reaction. Considering that the thermal conductivity of the general reaction salt is about 0.1 to 1 W / m K, it can be seen that a high thermal conductivity can be obtained by using the expanded graphite support.

또한, 표 5에서 알 수 있듯이, 반응블록의 밀도가 커질수록 그의 기체투과도의 값은 급격히 감소한다. 따라서 저압에서 운전되는 화학 열펌프의 경우, 반응블록의 밀도를 낮춰야 반응이 원활히 일어날 수 있다. 그러나 기존에 제시된 방법의 경우, 앞서 언급한 것처럼 100 kg/m3보다 낮은 겉보기밀도를 가지는 블록을 제조할 경우 함침 과정에서 흔히 블록의 파손이 일어난다. 그러나, 본 발명에 따르면 그 보다 낮은 밀도에서도 블록의 파손없이 전달 효과가 우수한 반응블록을 제조할 수있다.In addition, as can be seen in Table 5, as the density of the reaction block increases, the value of its gas permeability decreases rapidly. Therefore, in the case of a chemical heat pump operated at low pressure, the reaction block may occur smoothly by lowering the density of the reaction block. However, in the case of the existing method, as described above, when a block having an apparent density lower than 100 kg / m 3 is produced, breakage of the block often occurs during the impregnation process. However, according to the present invention, even at a lower density, a reaction block having excellent transfer effect can be produced without breaking the block.

도 4는 본 발명의 방법으로 제조된 반응 블록의 사진이다. 구체적으로, 도 4a는 IGP와 팽창흑연을 혼합하여 압축성형한 후 화학 축열 시스템에 적용하기 위한 반응 블록의 사진으로서 가운데에 구멍이 뚫린 원기둥형을 하고 있으며, 도 4b는 반응블럭의 기체투과도 측정을 위해 IGP와 팽창흑연의 혼합물을 직사각형으로 압축 성형한 블록의 사진으로서, 캘리퍼스로 반응 블록의 크기를 나타내고 있다. 도 4에 나타낸 블록은 밀도(ρb)(사용된 IGP와 팽창흑연의 중량의 합/압축 성형후의 반응블럭의 부피)를 측정한 결과 30 kg/m3으로, 기존의 방법으로는 제조가 불가능한 매우 낮은 밀도를 가짐을 알 수 있다.4 is a photograph of a reaction block made by the method of the present invention. Specifically, Figure 4a is a picture of the reaction block for applying to the chemical heat storage system after compression molding by mixing the IGP and expanded graphite, and has a cylinder with a hole in the center, Figure 4b is a measurement of gas permeability of the reaction block The photo is a block of a compression block formed of a mixture of IGP and expanded graphite in a rectangular shape, and the size of the reaction block is indicated by a caliper. The block shown in FIG. 4 is 30 kg / m 3 as a result of measuring the density ρ b (volume of the reaction block after compression / compression molding of the weight of the used IGP and expanded graphite), which cannot be manufactured by the conventional method. It can be seen that it has a very low density.

본 발명에 따라 화학 열펌프용 반응 블록을 제조할 경우, 함침 과정을 거친 후 반응 블록(반응층)을 구성하기 때문에 함침 및 기타 과정에서 생기는 블록의 파손을 막을 수 있으며, 또한 필요한 경우 반응기 내부에서 직접 반응층을 구성할 수도 있다. 따라서 기계적인 강도를 얻기 위해 높은 밀도를 갖는 반응층을 구성할 필요가 없으며, 상대적으로 낮은 밀도의 블록을 성형하는데 적합하다.When manufacturing a reaction block for a chemical heat pump according to the present invention, since the reaction block (reaction layer) is formed after the impregnation process, it is possible to prevent the breakage of blocks generated during impregnation and other processes, and also if necessary in the reactor It is also possible to construct the reaction layer directly. Therefore, it is not necessary to construct a reaction layer having a high density in order to obtain mechanical strength, and is suitable for forming blocks of relatively low density.

또한 IGP와 팽창흑연의 혼합비를 조절함으로써 반응블록의 밀도 뿐 아니라 반응염의 함량을 용이하게 조절할 수 있다.In addition, by controlling the mixing ratio of IGP and expanded graphite, it is possible to easily control the content of the reaction salt as well as the density of the reaction block.

Claims (6)

팽창흑연을 반응염의 수용액과 혼합하여 슬러리를 만든 다음 이 슬러리를 건조시켜 반응염 함량이 5 내지 95 중량% 범위인 함침된 흑연분말(Impregnated Graphite Powder)을 얻고, 이를 팽창흑연과 1:3 내지 25:1 범위의 중량비로 섞어 혼합물을 얻고, 이 혼합물을 압축성형하는 것을 포함하는, 화학 열펌프용 반응 블록의 제조 방법.The expanded graphite is mixed with an aqueous solution of the reaction salt to make a slurry, and then the slurry is dried to obtain an impregnated graphite powder having a reaction salt content in the range of 5 to 95% by weight, and 1: 3 to 25 with expanded graphite. A method for producing a reaction block for chemical heat pump, which comprises mixing in a weight ratio of: 1 to obtain a mixture and compression molding the mixture. 제 1 항에 있어서,The method of claim 1, 함침된 흑연분말의 입경이 10 내지 500 ㎛ 범위인 것을 특징으로 하는 방법.The particle size of the impregnated graphite powder is in the range of 10 to 500 ㎛. 제 1 항에 있어서,The method of claim 1, 흑연이 10 내지 500 kg/m3범위의 밀도를 가짐을 특징으로 하는 방법.Characterized in that the graphite has a density in the range from 10 to 500 kg / m 3 . 제 1 항에 있어서,The method of claim 1, 반응염이 금속 염화물 또는 Na2S임을 특징으로 하는 방법.The reaction salt is a metal chloride or Na 2 S. 제 4 항에 있어서,The method of claim 4, wherein 금속 염화물이 CaCl2, MnCl2, BaCl2, NiCl2, CuCl2, CoCl2, SrCl2, NaCl2, FeCl2, NH4Cl, 및 CdCl2로 이루어진 군 중에서 선택되는 것을 특징으로 하는 방법.The metal chloride is selected from the group consisting of CaCl 2 , MnCl 2 , BaCl 2 , NiCl 2 , CuCl 2 , CoCl 2 , SrCl 2 , NaCl 2 , FeCl 2 , NH 4 Cl, and CdCl 2 . 제 1 항에 있어서,The method of claim 1, 반응블록이 수증기, NH3, CH3OH, H2및 CH2NH2로 이루어진 군 중에서 선택된 반응매체와 함께 사용하기 위한 것임을 특징으로 하는 방법.The reaction block is characterized in that for use with the reaction medium selected from the group consisting of water vapor, NH 3 , CH 3 OH, H 2 and CH 2 NH 2 .
KR10-2000-0012004A 2000-03-10 2000-03-10 Process for the production of chemical reaction block for chemical heat pump KR100392781B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0012004A KR100392781B1 (en) 2000-03-10 2000-03-10 Process for the production of chemical reaction block for chemical heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0012004A KR100392781B1 (en) 2000-03-10 2000-03-10 Process for the production of chemical reaction block for chemical heat pump

Publications (2)

Publication Number Publication Date
KR20010088029A KR20010088029A (en) 2001-09-26
KR100392781B1 true KR100392781B1 (en) 2003-07-23

Family

ID=19653918

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0012004A KR100392781B1 (en) 2000-03-10 2000-03-10 Process for the production of chemical reaction block for chemical heat pump

Country Status (1)

Country Link
KR (1) KR100392781B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100760380B1 (en) * 2006-09-21 2007-09-19 한국에너지기술연구원 Thermally conductive unit reaction block for chemical heat pump for cooling and heating and manufacturing method thereof

Also Published As

Publication number Publication date
KR20010088029A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP4808353B2 (en) Composite material containing activated carbon and expanded graphite
JP2578545B2 (en) Active complex and use of the complex as reaction medium
JP2002020738A (en) Method for producing accumulator composite for accumulating heat or cold air
WO2004091774A1 (en) Material and apparatus for adsorbing and desorbing carbon dioxide
US20060101997A1 (en) Composite material and use thereof for controlling thermal effects in a physicochemical process
US7094276B2 (en) Hydrogen storage material and hydrogen storage apparatus
Kallenberger et al. Alginate‐Derived Salt/Polymer Composites for Thermochemical Heat Storage
Kallenberger et al. Magnesium sulfate/polymer composites for seasonal, thermochemical energy storage
US5607889A (en) Process for producing an active composite and active composite produced by this process
JP5749049B2 (en) Chemical regenerator and manufacturing method thereof
EP2644679B1 (en) Chemical heat accumulator and method for producing same
Jivrakh et al. Comparison of ammonia sorption properties and thermodynamic performance of adsorption‐based thermal energy storage system for MnCl2, CaCl2, and their composites
KR100392781B1 (en) Process for the production of chemical reaction block for chemical heat pump
US20230417458A1 (en) Improved reagent for thermal machine
US5569534A (en) Reactant in the form of granules for thermochemical systems
JP2013253212A (en) Molded article of chemical heat storage material and method for producing the same, and chemical heat storage apparatus
Xia et al. Synthesis of hollow spherical mesoporous N-doped carbon materials with graphitic framework
Wang et al. Property and Energy Conversion Technology of Solid Composite Sorbents
JPH08319108A (en) Active composite with laminated structure and its use as reaction medium
Salehzadeh et al. Porous potassium carbonate granules with enhanced diffusion kinetics for thermochemical heat storage
EP2686631A1 (en) Chemical heat accumulator and method for producing the same
US5861207A (en) Active composite with foliated structure and its use as reaction medium
EP4474444A1 (en) Calcium hydroxide slurry for chemical heat storage material, method for producing calcium hydroxide slurry for chemical heat storage material, chemical heat storage material, method for producing chemical heat storage material, and method for performing chemical heat storage
Clark et al. Salt hydrate-based composite materials for thermochemical energy storage
Wang et al. Properties of Solid Composite Sorbents

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20000310

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20020325

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20020913

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20030417

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20030714

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20030715

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee