KR100391303B1 - Epoxy Functional Silane Deposition Effect on Untreated Aluminum Bond Strength - Google Patents

Epoxy Functional Silane Deposition Effect on Untreated Aluminum Bond Strength Download PDF

Info

Publication number
KR100391303B1
KR100391303B1 KR10-2001-0041420A KR20010041420A KR100391303B1 KR 100391303 B1 KR100391303 B1 KR 100391303B1 KR 20010041420 A KR20010041420 A KR 20010041420A KR 100391303 B1 KR100391303 B1 KR 100391303B1
Authority
KR
South Korea
Prior art keywords
aluminum
bonding
functional silane
epoxy functional
silane compound
Prior art date
Application number
KR10-2001-0041420A
Other languages
Korean (ko)
Other versions
KR20030005928A (en
Inventor
우호광
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR10-2001-0041420A priority Critical patent/KR100391303B1/en
Publication of KR20030005928A publication Critical patent/KR20030005928A/en
Application granted granted Critical
Publication of KR100391303B1 publication Critical patent/KR100391303B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Abstract

본 발명은 에폭시 기능성 실란 화합물을 이용한 알루미늄의 접합방법에 관한 것으로서, 더욱 상세하게는 알루미늄 접합시 단순히 접합하고자 하는 알루미늄 표면을 에폭시 기능성 실란 용액에 담금처리함으로써, 알루미늄 표면과 고분자 접착제 계면과의 강한 화학결합을 유도하여 초기 접합강도를 향상시킴과 동시에 종래의 산화처리 방법에 비해 내구성이 우수하고 공정이 간단하고 안전한 에폭시 기능성 실란 화합물을 이용한 알루미늄의 접합방법에 관한 것이다.The present invention relates to a method of bonding aluminum using an epoxy functional silane compound, and more particularly, by immersing the aluminum surface to be bonded in an epoxy functional silane solution during aluminum bonding, a strong chemical between the aluminum surface and the polymer adhesive interface The present invention relates to a method of joining aluminum using an epoxy functional silane compound which induces bonding to improve initial bonding strength and has superior durability, simpler process, and safer than a conventional oxidation treatment method.

Description

에폭시 기능성 실란 화합물을 이용한 알루미늄의 접합방법{Epoxy Functional Silane Deposition Effect on Untreated Aluminum Bond Strength}Epoxy Functional Silane Deposition Effect on Untreated Aluminum Bond Strength}

본 발명은 에폭시 기능성 실란 화합물을 이용한 알루미늄의 접합방법에 관한 것으로서, 더욱 상세하게는 알루미늄 접합시 단순히 접합하고자 하는 알루미늄 표면을 에폭시 기능성 실란 용액에 담금처리함으로써, 알루미늄 표면과 고분자 접착제 계면과의 강한 화학결합을 유도하여 초기 접합강도를 향상시켜 종래의 산화처리 방법에 비해 내구성이 우수하고 공정이 간단하고 안전한 에폭시 기능성 실란 화합물을 이용한 알루미늄의 접합방법에 관한 것이다.The present invention relates to a method of bonding aluminum using an epoxy functional silane compound, and more particularly, by immersing the aluminum surface to be bonded in an epoxy functional silane solution during aluminum bonding, a strong chemical between the aluminum surface and the polymer adhesive interface The present invention relates to a method of joining aluminum using an epoxy functional silane compound which induces bonding to improve initial bonding strength and has superior durability, simpler process, and safer than a conventional oxidation treatment method.

현재 세계적인 자동차산업은 환경보호, 연비향상 및 대체 에너지원 자동차 개발 등을 목표로 차체를 중심으로 한 구조물 경량화를 추구하고 있다. 상기 자동차 차체 경량화를 위하여 사용 가능한 재료로는 알루미늄, 플라스틱, 그리고 복합재료 등이 있으며, 현재 알루미늄의 경우 이미 차량 차체의 전반에 걸쳐 적용되고 있다.Currently, the global automotive industry is seeking to reduce the weight of the structure around the car body with the aim of protecting the environment, improving fuel economy and developing alternative energy sources. The materials that can be used to reduce the weight of the vehicle body include aluminum, plastic, and composite materials, and at present, aluminum has already been applied to the entire body of the vehicle body.

이러한 강판을 포함하는 알루미늄 재질의 제조방법으로는 차체 조립을 위하여 일반적으로 용접 또는 리벳, 볼트/너트 등이 사용되어 왔다. 그러나, 최근 고분자 접착제를 이용한 접합기술이 개발되어 2차적 경량화 및 부식방지, 용접 후 도장공정 중 높은 오븐 온도에 노출시 발생 가능한 변형 방지, 및 용접시 발생되는 유해 가스의 작업환경 개선 등을 실현하고 있다.As a method of manufacturing an aluminum material including such a steel sheet, welding or rivets, bolts / nuts, etc. have been generally used for vehicle body assembly. However, recently, bonding technology using polymer adhesive has been developed to realize secondary weight reduction and corrosion prevention, prevention of deformation that may occur when exposed to high oven temperature during painting after welding, and improvement of working environment of harmful gas generated during welding. have.

상기 고분자 접착제를 이용한 차체 접합은 접합하고자 하는 면의 상태에 의해 결정적으로 좌우되므로 알루미늄의 경우에는 일반적으로 표면을 산화처리 한다. 이러한 처리방법은 알루미늄의 표면에 다공성 미세 산화물 층을 형성시켜 표면적, 즉 표면 조도(Roughness)를 증대시킴으로써 원하는 접착력을 얻을 수 있는 방법이다. 다음 표 1에 포레스트 프러덕트 래보래토리(Forest Products Laboratory, 이하, FPL라 함) 산화처리 방법을 나타내었다.Since the vehicle body bonding using the polymer adhesive depends critically on the state of the surface to be bonded, in the case of aluminum, the surface is generally oxidized. This treatment method is to form a porous fine oxide layer on the surface of aluminum to increase the surface area, that is, the surface roughness (Roughness) to obtain a desired adhesion. In Table 1, Forest Products Laboratory (hereinafter referred to as FPL) oxidation treatment method is described.

그러나, 상기 산화처리 방법은 높은 온도와 습한 지역에서 장기간 사용될 경우 접합 계면으로 확산되는 고온의 습기에 의해 산화물 층이 파괴되어 접합강도가 현저히 감소되는 문제점이 있다. 이와 같은 산화층 파괴에 의한 접합강도의 감소는 건조가 되어도 회복이 되지않아 구조물로서 계속 사용이 불가능하다.However, the oxidation treatment method has a problem in that the bonding strength is significantly reduced because the oxide layer is destroyed by high temperature moisture diffused to the bonding interface when it is used for a long time in a high temperature and a humid region. The decrease in the bonding strength due to the oxide layer breakdown is not recovered even when dried, and thus it is impossible to continue using the structure.

또한, 알루미늄의 산화처리법은 공정이 복잡하고, 산 용액을 이용하므로 작업 조건이나 환경에도 매우 좋지 않다.In addition, the oxidation treatment of aluminum has a complicated process and it is not very good for working conditions and environment because it uses an acid solution.

이에, 본 발명은 상기 종래와 같은 문제점을 해결하기 위하여, 알루미늄 접합시 종래의 산화처리 방법을 사용하지 않고 단순히 접합하고자 하는 알루미늄 표면을 유기기능성 실란 용액에 담금처리함으로써, 원하는 초기 접합강도와 내구성을 얻기에 효과적인 에폭시 기능성 실란 화합물을 이용한 알루미늄의 접합방법을 제공하는 것을 그 목적으로 한다.Thus, the present invention, in order to solve the problems as described above, by simply immersing the aluminum surface to be bonded to the organic functional silane solution without using a conventional oxidation treatment method, the desired initial bonding strength and durability It is an object of the present invention to provide a method for joining aluminum using an epoxy functional silane compound effective for obtaining.

도 1은 본 발명에 따른 알루미늄 접합방법에 대하여 물성을 시험하기 위한 ASTM D 1002-72 표준시험 시편 및 방법을 나타낸 것이고,Figure 1 shows the ASTM D 1002-72 standard test specimens and methods for testing the properties of the aluminum bonding method according to the invention,

도 2는 본 발명에 따른 알루미늄 접합방법에 대하여 물성 시험 기기를 나타낸 것이다.Figure 2 shows the physical property test apparatus for the aluminum bonding method according to the present invention.

본 발명은 다음 화학식 1로 표시되는 유기 기능성 실란 화합물 용액에 알루미늄 접합모재를 15분 동안 담금처리한 후, 세척하고 에폭시계 접착제와 접합을 수행하는 에폭시 기능성 실란 화합물을 이용한 알루미늄의 접합방법을 그 특징으로 한다:The present invention is characterized in that the aluminum bonding method using an epoxy functional silane compound to immerse the aluminum bonding base material for 15 minutes in an organic functional silane compound solution represented by the following formula (1), and then washing and bonding with an epoxy-based adhesive Shall be:

상기 화학식 1에서, X는 OH 그룹이고, R은 에폭시 기능성 그룹을 나타낸다.In Formula 1, X is an OH group, R represents an epoxy functional group.

이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 유기물질 (고분자 접착제, 페인트 등)과 무기물질 (금속 등)의 접합계면 강화방법에 대한 에폭시 기능성 실란 화합물을 이용한 알루미늄의 접합방법에 관한 것이다.The present invention relates to a method for joining aluminum using an epoxy functional silane compound for a method for strengthening the bonding interface between an organic material (polymer adhesive, paint, etc.) and an inorganic material (metal, etc.).

본 발명은 상기 무기물질인 알루미늄 접합모재와 유기물질인 고분자 접착제와의 접합초기강도 및 내구강도 향상을 위해 유기 기능성 실란 화합물로 전처리한 알루미늄을 사용하는 특징이 있다. 이렇게 유기 실란 화합물에 의해 표면이 활성화된 알루미늄은 에폭시계 접착제와 강한 화학결합을 이루게 된다.The present invention is characterized by using aluminum pretreated with an organic functional silane compound to improve the initial strength and oral resistance of the bonding between the aluminum bonding base material of the inorganic material and the polymer adhesive of the organic material. The surface activated aluminum by the organosilane compound thus forms a strong chemical bond with the epoxy adhesive.

본 발명에서 사용하는 유기 기능성 실란 화합물은 상기 화학식 1로 표시되는실란 화합물을 사용하며, 이는 무기물질 표면과 접착제 계면에서 강한 화학결합을 제공하는 물질이다.The organic functional silane compound used in the present invention uses the silane compound represented by Chemical Formula 1, which is a material that provides a strong chemical bond at the surface of the inorganic material and the adhesive.

상기 유기 실란 화합물의 무기물질 표면에서의 실란 반응은 다음 반응식 1 및 2에 나타낸 바와 같다. 반응식 1에서 보면, X 그룹은 물에 용해되어 (HO)3-Si-을 형성한 후 무기물질 표면의 OH 그룹 및 주위의 OH 그룹과 응축결합하고, 또한 R 그룹은 반응식 2에 나타낸 바와 같이 고분자 접착제와 화학결합을 형성한다. 따라서, 상기 R 그룹은 사용하고자 하는 접착제와의 화학적 반응성을 고려하여 선택하는 것이 바람직하다. 일례로, 무기물질 중 글래스(Glass)와 실란과 화학반응이 있으며, 이러한 반응은 금속(예를 들면, 강판)이나 알루미늄의 경우에도 동일하게 일어난다.The silane reaction on the surface of the inorganic material of the organosilane compound is shown in the following schemes 1 and 2. In Scheme 1, the X group is dissolved in water to form (HO) 3 -Si- and then condensed with the OH group and the surrounding OH group on the surface of the inorganic material, and the R group is a polymer as shown in Scheme 2. It forms a chemical bond with the adhesive. Therefore, the R group is preferably selected in consideration of chemical reactivity with the adhesive to be used. For example, there is a chemical reaction between glass and silane in the inorganic material, and the same reaction occurs in the case of metal (eg, steel sheet) or aluminum.

또한, 상기 유기 실란 화합물에 의한 알루미늄과 접착제의 화학결합은 다음 반응식 3에 나타낸 바와 같다. 반응식 3에서 보면, 접착제와 실란, 실란과 금속으로 이어지는 1차적 화학결합을 나타내고 있으며, 이러한 1차적 결합의 결합력은 2차적 결합보다 약 50 ∼ 250 배 가량 강하다.In addition, the chemical bonding of aluminum and the adhesive by the organosilane compound is as shown in the following Scheme 3. In Scheme 3, primary chemical bonds leading to adhesives, silanes, silanes, and metals are shown, and the binding force of these primary bonds is about 50 to 250 times stronger than the secondary bonds.

상기 반응식 3에서와 같이, 접착제-실란-금속 간 반응이 형성된 후 높은 온도와 습기에 장시간 노출될 경우 실란과 금속간 화학결합이 끊어질 수 있으나, 이 결합은 건조시 다음 반응식 4와 같은 가역반응에 의해 다시 회복된다.As in Scheme 3, after the adhesive-silane-metal reaction is formed, when exposed to high temperature and moisture for a long time, the silane and the metal bond may be broken, but the bond may be reversible as shown in Scheme 4 below. Is recovered again.

따라서, 본 발명은 알루미늄 금속을 상기 화학식 1로 표시되는 유기 기능성 실란 용액에 60 ℃의 온도에서 15분 동안 담금 처리한 후, 물로 세척하고 보관한다. 이때, 상기 실란 용액은 실란 화합물 : 메탄올 : 증류수의 혼합용액으로서, 그 혼합비는 1 : 25 : 74 (부피 %)인 것이 바람직하다.Therefore, the present invention, after immersing the aluminum metal in the organic functional silane solution represented by the formula (1) for 15 minutes at a temperature of 60 ℃, washed with water and stored. At this time, the silane solution is a mixed solution of silane compound: methanol: distilled water, and the mixing ratio is preferably 1:25:74 (vol%).

상기 과정 다음으로 유기 기능성 실란 화합물로 표면이 처리된 알루미늄을 에폭시계 접착제와 접합시킴으로써, 본 발명을 완성한다.After the above process, the present invention is completed by bonding aluminum treated with an organic functional silane compound with an epoxy adhesive.

이와 같이, 본 발명은 에폭시 접착제와 친화성이 있는 에폭시 기능성 실란 화합물을 사용하여 알루미늄 접합모재를 표면처리함으로써, 종래 산화처리에 의해 얻는 접착력보다 내구도 측면에서 더욱 바람직한 결과를 얻을 수 있다.As described above, the present invention can obtain a more preferable result in terms of durability than the adhesive strength obtained by the conventional oxidation treatment by surface-treating the aluminum bonding base material using an epoxy functional silane compound having affinity with an epoxy adhesive.

이하, 본 발명을 다음의 실시예에 의거하여 상세하게 설명하겠는바, 본 발명이 이들에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on the following examples, but the present invention is not limited thereto.

실시예 1: 실란 처리Example 1 Silane Treatment

알루미늄 시편과 에폭시 접착제를 이용하여 ASTM D 1002-72 표준 시험방법 (Single Lap Shear Test)에 따라 각 조건 당 5개의 시편을 준비하여 시험/평가 하였다.Five specimens for each condition were prepared and tested / evaluated according to ASTM D 1002-72 Single Lap Shear Test using aluminum specimens and epoxy adhesive.

[기본 실험조건][Basic Experimental Conditions]

① 접합모재 (Adherend): 알루미늄 2024-T3(실험 전 아세톤 용액으로 표면 불순물 제거함).① Bonding substrate (Adherend): Aluminum 2024-T3 (remove surface impurities with acetone solution before experiment).

② 접착제 (Adhesive): 상온 응고되는 3-성분 에폭시를 사용하였다(Epon 433, Miller-Stephenson 사 제조).② Adhesive (Adhesive): A three-component epoxy solidified at room temperature was used (Epon 433, manufactured by Miller-Stephenson).

③ 접합 가압력: 13.8 kPa③ Bonding force: 13.8 kPa

④ 시험편 제작 및 시험: ASTM D 1002-72④ Specimen Fabrication and Test: ASTM D 1002-72

⑤ 접합강도 측정: INSTRON 시험기 (Cross Head Speed 0.1 in/min)를 사용하여 측정하였다(도 2).⑤ Bond strength measurement: measured using an INSTRON tester (Cross Head Speed 0.1 in / min) (Fig. 2).

상기 조건에서와 같이 에폭시 접착제와 친화성이 있는 에폭시 기능성 실란((CH3O)3SiCH2CH2CH2OCH2CH-CH2)을 선택하여 사용하였다. 그리고, 1 vol.%의 실란을 25 vol.% 메탄올과 74 vol.% 증류수 용액에 섞은 후 약 1시간 동안 저어주었다. 접합모재의 접합될 부위를 본 용액에 약 15분 동안 담근 후 물로 세척하고 60 ℃에서 약 1시간 보관하였다. 이후 기본 실험조건에 따라 접합하여 접합 초기강도 및 내구강도를 측정하였다.As in the above conditions, an epoxy functional silane ((CH 3 O) 3 SiCH 2 CH 2 CH 2 OCH 2 CH-CH 2 ) having affinity with an epoxy adhesive was selected and used. Then, 1 vol.% Of the silane was mixed with 25 vol.% Methanol and 74 vol.% Distilled water solution and stirred for about 1 hour. The part to be bonded to the bonding base material was immersed in this solution for about 15 minutes, washed with water and stored at 60 ° C. for about 1 hour. Then, the initial strength and the oral cavity strength were measured by bonding according to the basic experimental conditions.

상기 재료와 시험 조건, 방법을 각 조건당 5회 시험 후 평균값을 취하여 그 결과를 다음 표 2에 나타내었다.The materials, test conditions and methods were averaged after five tests for each condition, and the results are shown in Table 2 below.

비교예 1Comparative Example 1

실란 처리 없이 접합 초기강도 및 내구강도 측정하였다.Bonding strength and internal oral cavity were also measured without silane treatment.

즉, 상기 실시예와 동일한 기본 실험조건에 따라 접합 후 상온에서 7일간 응고 (Curing)하였다. 응고 후 즉시 상기 측정기를 이용하여 초기강도를 측정하였다. 내구강도 측정을 위해 60 ℃, 95% 상대습도 하에서 30일 보관, 이후 상기 측정기를 이용하여 접합강도를 측정하였고 그 결과를 다음 표 2에 나타내었다.That is, it was solidified (Curing) for 7 days at room temperature after the bonding according to the same basic experimental conditions as the above embodiment. Immediately after solidification, the initial strength was measured using the measuring device. In order to measure the internal oral cavity, the storage strength was measured at 60 ° C. and 95% relative humidity for 30 days, and then the bond strength was measured using the measuring device. The results are shown in Table 2 below.

비교예 2Comparative Example 2

상기 비교예 1과 동일한 방법으로 실시하되, FPL 산화처리한 후 상기 측정기를 이용하여 접합강도를 측정하였고 그 결과를 다음 표 2에 나타내었다.The same method as in Comparative Example 1 was carried out, but after FPL oxidation treatment, the bond strength was measured using the measuring device, and the results are shown in Table 2 below.

상기 표 2에서 보면, 실란 처리가 알루미늄 초기 접합강도 및 내구강도의 향상에 매우 효과적임을 확인할 수 있었다.In Table 2, it was confirmed that the silane treatment is very effective in improving the initial bonding strength and oral strength of aluminum.

특히, 온도와 습도에 의해 감소되는 접합강도, 즉 계면에서 실란이 제공하는 화학결합의 분해반응은 건조시 회복되는 반응이므로 산화처리에 의한 경우보다 장기간 동안 실제 사용시 더욱 바람직함을 알 수 있다.In particular, it can be seen that the bonding strength reduced by temperature and humidity, that is, the decomposition reaction of the chemical bonds provided by the silane at the interface is more preferable in actual use for a long time than the case by the oxidation treatment because it is a reaction that is recovered during drying.

따라서, 본 발명은 생산성을 고려하여 적당한 접착제를 선정하고 차체 구조물 설계시 구조/응력해석과 병행된다면 승상용 차체 구조물(강판 및 알루미늄)에효과적으로 적용 가능하다. 더욱이, 유기물질 (고분자 접착제, 페인트 등)과 무기물질 (금속 등)의 접합계면 강화방법이므로 차체 도장이나 복합재료 제조에도 응용 가능하다.Therefore, the present invention can be effectively applied to the ascending body structure (steel plate and aluminum) if a suitable adhesive is selected in consideration of productivity and parallel to the structure / stress analysis when designing the body structure. Moreover, the method of strengthening the bonding interface between organic materials (polymer adhesives, paints, etc.) and inorganic materials (metals, etc.) is applicable to vehicle body coating and composite material manufacturing.

이상에서 설명한 바와 같이, 본 발명에 따르면 에폭시계 접착제와 친화성이 있는 에폭시 기능성 실란 화합물을 사용하여 담금처리로 알루미늄 접합모재를 표면처리하여 초기 접합강도 및 내구강도를 크게 향상시킴으로써, 생산성을 고려하여 적당한 접착제를 선정하고 차체 구조물 설계시 구조/응력해석과 병행된다면 승상용 차체 구조물(강판 및 알루미늄)에 효과적으로 적용 가능할 뿐만 아니라, 유기물질 (고분자 접착제, 페인트 등)과 무기물질 (금속 등)의 접합계면 강화방법이므로 차체 도장이나 복합재료 제조에도 응용 가능하다.As described above, according to the present invention, by using an epoxy functional silane compound having an affinity with an epoxy-based adhesive, surface treatment of the aluminum bonding base material by immersion treatment to greatly improve the initial bonding strength and oral resistance, Selecting an appropriate adhesive and designing the body structure in parallel with the structure / stress analysis can be effectively applied to the lifting body structure (steel plate and aluminum), as well as bonding organic materials (polymer adhesive, paint, etc.) and inorganic materials (metals, etc.). As it is an interfacial strengthening method, it can be applied to body coating or composite material manufacturing.

Claims (2)

다음 화학식 1로 표시되는 유기 기능성 실란 화합물 용액에 알루미늄 접합모재를 15분 동안 담금처리한 후, 세척하고 에폭시계 접착제와 접합을 수행하는 것을 특징으로 하는 에폭시 기능성 실란 화합물을 이용한 알루미늄의 접합방법:Bonding method of aluminum using an epoxy functional silane compound, characterized in that after immersing the aluminum bonding base material for 15 minutes in the organic functional silane compound solution represented by the following formula (1), washing and bonding with an epoxy-based adhesive: 화학식 1Formula 1 상기 화학식 1에서, X는 OH 그룹이고, R은 에폭시 기능성 그룹을 나타낸다.In Formula 1, X is an OH group, R represents an epoxy functional group. 제 1 항에 있어서, 상기 유기 기능성 실란 화합물 용액은 상기 화학식 1로 표시되는 유기 기능성 실란 화합물: 메탄올 : 증류수를 1 : 25 : 74의 부피비로 혼합하여 사용하는 것을 특징으로 하는 에폭시 기능성 실란 화합물을 이용한 알루미늄의 접합방법.According to claim 1, wherein the organic functional silane compound solution using an epoxy functional silane compound, characterized in that the organic functional silane compound represented by the formula (1): methanol: distilled water is mixed in a volume ratio of 1: 25: 74 Joining method of aluminum.
KR10-2001-0041420A 2001-07-11 2001-07-11 Epoxy Functional Silane Deposition Effect on Untreated Aluminum Bond Strength KR100391303B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0041420A KR100391303B1 (en) 2001-07-11 2001-07-11 Epoxy Functional Silane Deposition Effect on Untreated Aluminum Bond Strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0041420A KR100391303B1 (en) 2001-07-11 2001-07-11 Epoxy Functional Silane Deposition Effect on Untreated Aluminum Bond Strength

Publications (2)

Publication Number Publication Date
KR20030005928A KR20030005928A (en) 2003-01-23
KR100391303B1 true KR100391303B1 (en) 2003-07-12

Family

ID=27714380

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0041420A KR100391303B1 (en) 2001-07-11 2001-07-11 Epoxy Functional Silane Deposition Effect on Untreated Aluminum Bond Strength

Country Status (1)

Country Link
KR (1) KR100391303B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030038034A (en) * 2001-11-08 2003-05-16 현대자동차주식회사 Epoxy Functional Silane Effects on Durability of FPL Treated Aluminum Alloy Bond
KR20030097293A (en) * 2002-06-20 2003-12-31 현대자동차주식회사 Method for aluminum bonding using by organic functional silane
US8586187B2 (en) 2011-05-13 2013-11-19 Hyundai Motor Company Adhesives for bonding polyurethane and aluminum

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520768A (en) * 1994-10-21 1996-05-28 Thiokol Corporation Method of surface preparation of aluminum substrates
WO1998030735A2 (en) * 1997-01-09 1998-07-16 University Of Cincinnati Method of preventing corrosion of metals using silanes
KR20010023346A (en) * 1997-08-28 2001-03-26 빌프리더 하이더 Coating Compounds Based on Silanes Containing Epoxide Groups
KR20010023357A (en) * 1997-08-27 2001-03-26 빌프리더 하이더 Coating compositions with a base consisting of silanes containing epoxide groups
US6319351B1 (en) * 1998-11-05 2001-11-20 Bae Systems Plc Adhesive bonding process for aluminium and/or aluminium alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520768A (en) * 1994-10-21 1996-05-28 Thiokol Corporation Method of surface preparation of aluminum substrates
WO1998030735A2 (en) * 1997-01-09 1998-07-16 University Of Cincinnati Method of preventing corrosion of metals using silanes
KR20010023357A (en) * 1997-08-27 2001-03-26 빌프리더 하이더 Coating compositions with a base consisting of silanes containing epoxide groups
KR20010023346A (en) * 1997-08-28 2001-03-26 빌프리더 하이더 Coating Compounds Based on Silanes Containing Epoxide Groups
US6319351B1 (en) * 1998-11-05 2001-11-20 Bae Systems Plc Adhesive bonding process for aluminium and/or aluminium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030038034A (en) * 2001-11-08 2003-05-16 현대자동차주식회사 Epoxy Functional Silane Effects on Durability of FPL Treated Aluminum Alloy Bond
KR20030097293A (en) * 2002-06-20 2003-12-31 현대자동차주식회사 Method for aluminum bonding using by organic functional silane
US8586187B2 (en) 2011-05-13 2013-11-19 Hyundai Motor Company Adhesives for bonding polyurethane and aluminum

Also Published As

Publication number Publication date
KR20030005928A (en) 2003-01-23

Similar Documents

Publication Publication Date Title
AU726765B2 (en) Method of preventing corrosion of metals using silanes
EP1017880B1 (en) Method and compositions for preventing corrosion of metal substrates
Vreugdenhil et al. Nanostructured silicon sol-gel surface treatments for Al 2024-T3 protection
KR101641484B1 (en) Surface treatment agent for galvanized steel sheet, galvanized steel sheet and production method thereof
JP6440581B2 (en) Chrome-free chemical coating
CN1146217A (en) Metal pretreated with aqueous solution containing dissolved inorganic silicate or aluminate, organofunctional silane and non-functional silane for enhanced corrosion resistance
WO2000046310A1 (en) Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture
MX2007000237A (en) Composition for coating of aluminum.
WO2000046311A1 (en) Method of treating metals using ureido silanes and multi-silyl-functional silanes in admixture
US6319351B1 (en) Adhesive bonding process for aluminium and/or aluminium alloy
KR100391303B1 (en) Epoxy Functional Silane Deposition Effect on Untreated Aluminum Bond Strength
JPH0539461A (en) Primer composition, preparation of the composition and joining of a plural number of objects using the composition
CN108250950B (en) Hydrophilic high-corrosion-resistance steel surface silanization treating agent and synthetic method thereof
KR20030038034A (en) Epoxy Functional Silane Effects on Durability of FPL Treated Aluminum Alloy Bond
Puomi et al. Characterization of hot-dip galvanized (HDG) steel treated with bis-1, 2-(triethoxysilyl) ethane and γ-aminopropyltriethoxysilane
Nitowski Topographic and surface chemical aspects of the adhesion of structural epoxy resins to phosphorus oxo acid-treated aluminum adherends
KR100405532B1 (en) A method for bonding aluminum adherend using primary amine silane as a bonding promotor
KR20030097293A (en) Method for aluminum bonding using by organic functional silane
JP2005113129A (en) Wipe solvent composition and process without environmental disruption
AU621563B2 (en) Method for bonding joints with organic adhesive using a water soluble amorphous hydrated metal oxide primer
Guo et al. Application of bilayer silanisation treatment to improve corrosion resistance and bond durability of aluminium alloy
KR20020053175A (en) A method for boding aluminum adherend using secondary amine silane as a bonding promotor
Tilset et al. Amino-and bis-silane pre-treatments for adhesive bonding of aluminium
Zoriany et al. Anti-Corrosion Silica-Based Hybrid Coatings for the Protection of AA2024 Alloy
CN116716600A (en) Corrosion-resistant magnesium alloy chromium-free passivation solution and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee