KR100384375B1 - How to manufacture large diameter rubber latex - Google Patents

How to manufacture large diameter rubber latex Download PDF

Info

Publication number
KR100384375B1
KR100384375B1 KR10-1998-0033423A KR19980033423A KR100384375B1 KR 100384375 B1 KR100384375 B1 KR 100384375B1 KR 19980033423 A KR19980033423 A KR 19980033423A KR 100384375 B1 KR100384375 B1 KR 100384375B1
Authority
KR
South Korea
Prior art keywords
weight
parts
rubber latex
diameter rubber
large diameter
Prior art date
Application number
KR10-1998-0033423A
Other languages
Korean (ko)
Other versions
KR20000014168A (en
Inventor
이재호
김건수
유근훈
이찬홍
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR10-1998-0033423A priority Critical patent/KR100384375B1/en
Publication of KR20000014168A publication Critical patent/KR20000014168A/en
Application granted granted Critical
Publication of KR100384375B1 publication Critical patent/KR100384375B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 대구경 고무 라텍스를 제조하는 방법에 관한 것으로 구체적으로는 초기 75-95%의 높은 겔을 갖는 씨드용 소구경 공액 디엔 중합체 라텍스 입자 또는 공액 디엔 화합물과의 공중합체 라텍스 입자에 디엔계 단량체를 연속 또는 다단계로 나누어 투입함으로써 고무 라텍스를 대구경화하여 ABS 수지에 적용시 상온 및 저온 충격성이 우수한 대구경 고무 라텍스를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing large-diameter rubber latex, and specifically, a diene monomer is added to a small-diameter conjugated diene polymer latex particle for seed having a high gel of initial 75-95% or a copolymer latex particle with a conjugated diene compound. The present invention relates to a method for producing a large-diameter rubber latex having excellent room temperature and low temperature impact properties when applied to an ABS resin by large-diameter curing rubber latex by dividing into continuous or multi-step.

본 발명은 겔함량이 75 - 95%이고 입경 700 - 1200Å인 소구경 입자를 5 - 25 중량부, 디엔계 단량체 75 - 95 중량부를 포함하는 조성물 총량을 100부로 하고 이에 대하여, 혼합 유화액 1.5 - 3중량부를 3회이상의 횟수로 분할투여 혹은 연속 투여하여 입자경 2500 - 4000Å이고 겔 함량이 65 - 85%인 대구경 고무라텍스를 제조하는 방법을 그 특징으로 한다.In the present invention, the total amount of the composition including 5 to 25 parts by weight of the small-diameter particles having a gel content of 75 to 95% and a particle size of 700 to 1200 mm, and 75 to 95 parts by weight of the diene monomer is 100 parts. It is characterized by a method of producing a large-diameter rubber latex having a particle size of 2500-4000 mm and a gel content of 65-85% by divided dose or continuous administration of 3 parts by weight or more.

본 발명은 ABS 중합시 그라프트에 용이한 고무 라텍스의 구조를 생성하며, 산성 입자 투입이나 두 단계 중합 방법에 의해 입자 안정성이 떨어지지 않으며, 단량체가 중합되면서 발생되는 중합열을 효과적으로 분산시키어 낮은 냉동 능력으로도 높은 반응열을 제거할 수 있다.The present invention produces a structure of rubber latex that is easy to graft during ABS polymerization, particle stability is not degraded by acidic particle injection or two-step polymerization method, and the freezing ability is effectively dispersed by dispersing the heat of polymerization generated by monomer polymerization. High heat of reaction can also be removed.

Description

대구경 고무 라텍스 제조 방법How to manufacture large diameter rubber latex

본 발명은 ABS(Acrylonitrile-Butadiene-Styrene)수지 제조에 관한 것으로, 특히 대구경 고무 라텍스를 제조하여 ABS수지에 적용하는 방법에 관한 것이다.The present invention relates to the production of ABS (Acrylonitrile-Butadiene-Styrene) resin, and more particularly to a method for producing a large diameter rubber latex and applied to ABS resin.

구체적으로는 초기 75-95%의 높은 겔함량을 갖는 씨드용 소구경 공액 디엔 중합체 라텍스 입자 또는 공액 디엔 화합물과의 공중합체 라텍스 입자에 디엔계 단량체를 연속 또는 다단계로 나누어 투입함으로써 고무 라텍스를 대구경화하여 ABS 수지의 적용시 상온 및 저온 충격성이 우수한 대구경 고무 라텍스를 제조하는 방법에 관한 것이다.Specifically, the rubber latex is largely cured by injecting a diene monomer into a seed or a small diameter conjugated diene polymer latex particle having a high gel content of 75-95% or a copolymer latex particle with a conjugated diene compound in a continuous or multi-step. It relates to a method for producing a large diameter rubber latex having excellent impact at room temperature and low temperature when the ABS resin is applied.

일반적으로 ABS 수지 제조에 있어서 수지의 물성은 고무 라텍스의 입자 크기 및 구조 등에 크게 영향을 받는다. 따라서 내충격성, 백색도 및 가공성이 우수한 ABS 수지 제조를 위해서는 충격을 흡수할 수 있는 대구경 입자와 고무 라텍스에 스티렌-아크릴로니트릴 공중합체(SAN)을 그라프팅시키기에 용이한 구조를 가진 고무 라텍스를 제조하는 것이 중요하다.In general, in the production of ABS resin, the physical properties of the resin are greatly influenced by the particle size and structure of the rubber latex. Therefore, in order to manufacture ABS resin having excellent impact resistance, whiteness and processability, rubber latex having a structure capable of grafting styrene-acrylonitrile copolymer (SAN) to large diameter particles and rubber latex that can absorb shocks is manufactured. It is important to do.

기존의 대구경 고무 라텍스를 제조하는 방법으로서는As a conventional method for producing large diameter rubber latex

1) 소구경 라텍스를 제조하여 초산, 인산 등과 같은 산성 물질을 첨가해 pH를 낮게함으로써 입자를 융착시켜 대구경 고무 라텍스를 제조하는 방법 (일본 특허, 특개 소 63-132903 63-117005, 특공평 2-9601);1) A method for preparing large-diameter rubber latex by preparing small-diameter latex and adding acidic substances such as acetic acid and phosphoric acid to lower the pH to fusion particles (Japanese Patent, Japanese Patent Application Laid-Open No. 63-132903 63-117005 9601);

2) 아크릴레이트계 공중합체 라텍스를 중합 도중에 첨가하여 대구경 고무 라텍스를 제조하는 방법 (미국특허 5,294 ,659, 일본 특허 특개평 1-126301, 특개공 59-93701);2) a method for producing a large diameter rubber latex by adding an acrylate copolymer latex during polymerization (US Pat. No. 5,294,659, Japanese Patent Laid-Open No. 1-126301, Japanese Patent Laid-Open No. 59-93701);

3) 비중합성 유기 용매 및 유화제를 중합 도중에 사용하여 대구경 고무 라텍스를 제조하는 방법 (일본 특허, 특개평 8-27227, 특개평 8-27204);3) a method for producing a large diameter rubber latex using a non-polymerizable organic solvent and an emulsifier during polymerization (Japanese Patent, Laid-Open Nos. 8-27227, 8-27204);

4) 아크릴로니트릴 단량체를 공단량체로 소량 도입하여 대구경 고무 라텍스를 제조하는 방법( 일본 특허, 특개평 5-17506);4) a method of preparing a large diameter rubber latex by introducing a small amount of acrylonitrile monomer into a comonomer (Japanese Patent Laid-Open No. 5-17506);

5) 두 단계 중합 방법을 이용하여 대구경 고무 라텍스를 제조하는 방법 ( 미국 특허 4,226,752, 미국 특허 4,694,035); 및5) a process for producing large diameter rubber latexes using a two step polymerization method (US Pat. No. 4,226,752, US Pat. No. 4,694,035); And

6) 직접 중합법6) Direct polymerization method

등이 알려져 있다.Etc. are known.

그러나 1)의 방법은 짧은 시간내에 대구경 고무 라텍스 제조가 가능하나 산성 물질을 첨가시 비교적 균일한 대구경 고무 라텍스를 얻기가 힘들며 다량의 응고물이 발생되는 단점이 있고, 2)의 방법은 아크릴레이트계 공중합체 가격이 비싸고 대구경화 하는데 한계가 있으며, 3) 과 4)의 방법은 중합 후 잔류되는 단량체의 처리가 힘들며, 5)의 방법은 입자의 안정성 확보가 힘들며, 6)은 반응 시간이 오래 걸리고 중합시 반응열 제어가 힘들며 ABS 물성을 향상시킬 수 있는 구조를 확보하기가 어렵다.However, the method of 1) can produce a large diameter rubber latex within a short time, but it is difficult to obtain a relatively uniform large diameter rubber latex when an acidic substance is added, and a large amount of coagulant is generated. The copolymer price is expensive and there is a limit to large diameter, the method of 3) and 4) is difficult to process the monomer remaining after polymerization, the method of 5) is difficult to secure the stability of the particles, 6) takes a long reaction time It is difficult to control reaction heat during polymerization and it is difficult to secure a structure that can improve ABS properties.

본 발명은 소구경 입자를 씨이드(Seed)로 이용하여 단량체를 연속 또는 다단계로 연속 투여함으로써 고무 라텍스를 대구경하여 ABS 중합시 그라프트에 용이한 고무 라텍스의 구조를 생성시키는 방법, 산성 입자 투입이나 두 단계 중합 방법에 의해 입자 안정성이 떨어지는 문제점을 극복하는 방법, 단량체가 중합되면서 발생되는 중합열을 효과적으로 분산시키어 낮은 냉동 능력으로도 높은 반응열을 제거하는 방법을 그 특징으로 한다.The present invention is a method for producing a structure of rubber latex that is easy to graft during ABS polymerization by large-diameter rubber latex by continuously administering monomers in a continuous or multi-step by using small-diameter particles as a seed. The method of overcoming the problem of poor particle stability by the two-step polymerization method, and the method of effectively dispersing the heat of polymerization generated during the polymerization of the monomer to remove the high reaction heat even with a low freezing capacity.

본 발명은 대구경 고무 라텍스를 제조함에 있어서, 겔 함량이 75∼95 %이고 입자경이 700∼1200 Å인 소구경 고무 라텍스 5 - 25중량부와 35중량부 이하의 디엔계 단량체 또는 디엔계 단량체와 에틸렌계 불포화 단량체의 혼합물을 혼합하는 단계; 상기 단계에서 얻어진 혼합물에 혼합유화액 1.5 - 5.5중량부를 투여하는 단계; 그리고, 그라프트 고무 라텍스의 겔 함량이 30 % 내지 95 % 되는 시점에 디엔계 단량체 또는 디엔계 단량체와 에틸렌계 불포화 단량체의 혼합물 40 - 95중량부 및 혼합유화액 0.9 - 4.5중량부를 분할 투여(예로 3회 이상) 혹은 연속 투여하여, 최종적으로 입자경 2500 - 4000Å이고 겔 함량이 65 - 85%인 대구경 고무라텍스를 제조 하는 단계를 포함한다.In the present invention, in the preparation of large-diameter rubber latex, 5 to 25 parts by weight of small-diameter rubber latex having a gel content of 75 to 95% and a particle diameter of 700 to 1200 mm 3 and no more than 35 parts by weight of diene monomer or diene monomer and ethylene Mixing a mixture of systemically unsaturated monomers; Administering 1.5 to 5.5 parts by weight of the mixed emulsion to the mixture obtained in the step; When the gel content of the graft rubber latex is 30% to 95%, 40 to 95 parts by weight of the mixture of the diene monomer or the diene monomer and the ethylenically unsaturated monomer and 0.9 to 4.5 parts by weight of the mixed emulsion are dividedly administered (e.g., 3 At least), or continuously, to finally prepare a large diameter rubber latex having a particle size of 2500-4000 mm 3 and a gel content of 65-85%.

본 발명에 사용되어진 단량체로는 공액디엔 화합물이 단독으로 사용될 수 있으며 또한 이와 공중합 가능한 스티렌, α-메틸스티렌 등의 방향족 비닐화합물 및 아크릴로니트릴등과 같은 비닐시안 화합물과 혼합하여 사용할 수 있으나, 혼합 사용할 때는 총단량체 혼합물중 20중량부 이내에서 사용하는 것이 좋다. 공액디엔 화합물로는 1,3-부타디엔, 이소프렌, 클로로프렌, 시아노프렌, 2,3-디메틸 부타디엔이 있는데, 바람직하게는 부타디엔과 이소프렌을 사용한다. 유화제로는 알킬에스테르, 지방산의 비누, 로진산의 알칼리염 등이며 이들 단독 또는 2 종 이상의 혼합물로도 사용가능하다. 중합개시제로는 수용성 퍼설페이트나 퍼옥시 화합물을 이용할 수 있고 산화-환원계도 사용이 가능하다. 가장 적절한 수용성 설페이드로는 나트륨 및 칼륨퍼설페이드이고 지용성 중합개시제로는 큐멘하이드로 퍼옥사이드, 디이소프로필 벤젠 하이드로퍼옥사이드, 벤조일퍼옥사이드 등의 단독 또는 2 종 이상의 혼합물로도 사용 가능하고 수용성 라디칼개시제와 지용성 라디칼개시제의 혼합물로도 사용 가능하다 전해질로는 KCl, NaCl, KHCO3, NaHCO3, K2CO3, Na2CO3, KHSO3, NaHSO3, K4P2O7, K3PO4, Na3PO4, K2HPO4, Na2HPO4등의 단독 또는 2 종 이상의 혼합물로도 가능하다. 분자량 조절제로는 메르캅탄류가 주로 사용 가능하다. 중합온도는 고무라텍스의 겔 함량 및 팽윤도를 조정하기에 매우 중요하며 이때 개시제 선정도 같이 고려되어야 한다.As the monomer used in the present invention, a conjugated diene compound may be used alone, and may be mixed with an aromatic vinyl compound, such as styrene and α-methyl styrene, and a vinyl cyan compound, such as acrylonitrile, which may be copolymerized with the monomer. When used, it should be used within 20 parts by weight of the total monomer mixture. The conjugated diene compound includes 1,3-butadiene, isoprene, chloroprene, cyanoprene, and 2,3-dimethyl butadiene. Preferably, butadiene and isoprene are used. Examples of the emulsifiers include alkyl esters, soaps of fatty acids, alkali salts of rosin acids, and the like, and may be used alone or as a mixture of two or more thereof. As a polymerization initiator, a water-soluble persulfate or a peroxy compound can be used, and an oxidation-reduction system can also be used. The most suitable water-soluble sulfates are sodium and potassium persulfate, and the fat-soluble polymerization initiator can be used alone or as a mixture of two or more thereof, such as cumene hydroperoxide, diisopropyl benzene hydroperoxide, and benzoyl peroxide. It can also be used as a mixture of oil-soluble radical initiator and KCl, NaCl, KHCO 3 , NaHCO 3 , K 2 CO 3 , Na 2 CO 3 , KHSO 3 , NaHSO 3 , K 4 P 2 O 7 , K 3 PO 4 , Na 3 PO 4 , K 2 HPO 4 , Na 2 HPO 4 or the like, or a mixture of two or more thereof. Mercaptans can be mainly used as a molecular weight modifier. The polymerization temperature is very important for adjusting the gel content and the degree of swelling of the rubber latex, and the selection of the initiator should also be considered.

고무 라텍스의 분석 방법은 다음과 같다.The analysis method of rubber latex is as follows.

1) 겔함량 및 팽윤지수1) Gel content and swelling index

고무 라텍스를 묽은 산이나 금속염을 사용하여 응고한 후 세척하여 60 ℃ 의 진공오븐에서 24 시간 동안 건조한 다음 얻어진 고무덩어리를 가위로 잘게 자른 후 1g의 고무 절편을 톨루엔 100g 에 넣고 48 시간 동안 실온의 암실에서 보관 후 졸과 겔로 분리하고 다음식으로 겔 함량 및 팽윤지수를 측정한다.The rubber latex was coagulated with dilute acid or metal salt, washed and dried in a vacuum oven at 60 ° C. for 24 hours, and the resulting rubber mass was chopped with scissors, and then 1 g of rubber fragments was placed in 100 g of toluene, and the dark room at room temperature for 48 hours. After storage in sol and gel separated and the gel content and swelling index is measured by the following equation.

겔함량(%)= 불용분(겔)의 무게/ 시료의 무게*100Gel content (%) = weight of insoluble content (gel) / weight of sample * 100

팽윤지수= 팽윤된 겔의 무게/ 겔의 무게Swelling index = weight of swollen gel / weight of gel

그라프트된 고무의 겔 함량계산 = (전체 불용분의(겔)의 무게-씨드의 불용분의 무게)/(전체 시료의 무게-씨드 고무함량비*전체 시료의 무게)Calculation of gel content of grafted rubber = (weight of total insoluble (gel)-weight of insoluble in seed) / (weight of total sample-seed rubber content ratio * weight of total sample)

2) 입자경 및 입자경 분포2) Drop size and drop size distribution

다이나믹 레이져라이트 스케트링법으로 Nicomp 370HPL을 이용하여 측정하였다.It was measured using the Nicomp 370HPL by the dynamic laser light scattering method.

3) 생성 응고물 = 반응조안의 생성응고물 무게/ 투여된 총 단량체의 무게*1003) Product coagulant = product coagulant weight / total monomer weight administered * 100

4) 최대 발열 온도차 = 반응조내 온도와 항온조의 온도와의 차이4) Maximum exothermic temperature difference = difference between temperature in reactor and temperature of thermostat

5) 중합전환을 = 중합된 고분자 무게/ 투여된 총 단량체의 무게*1005) polymerization conversion = weight of polymerized polymer / weight of total monomer administered * 100

6) 충격강도6) impact strength

ASTM D256의 실험 방법에 따라 물성을 측정하였으며, 단위는 Kg.cm/cm이다.Physical properties were measured according to the experimental method of ASTM D256, and the unit is Kg.cm/cm.

7) 유동성7) Liquidity

ASTM D1238의 실험 방법에 따라 220℃, 10 kg에서 물성을 측정하였으며 단위는 g/min이다.According to the experimental method of ASTM D1238, physical properties were measured at 220 ° C and 10 kg, and the unit was g / min.

이하 실시예를 통해 고무라텍스 제조 방법에 관한 본 발명을 더욱 상세히 설명하겠다.Hereinafter, the present invention will be described in detail with reference to a rubber latex manufacturing method.

<실시예 1><Example 1>

씨드용 소구경 고무 라텍스 제조Small-diameter rubber latex for seeds

이온 교환수 150중량부, 유화제로 로진산 칼륨염 2.0중량부, 올레인산 칼륨 0.7중량부 전해질로탄산 나트륨 0.3중량부, 분자량 조절제로 3급 도데실 메르캅탄 0.2중량부, 개시제로 과황산칼륨 0.4중량부를 일괄 투여하였고 반응기의 잔존 산소를 없애기 위해 질소 또는 아르곤 가스로 깨끗이 한 다음 100중량부의 1,3-부타디엔을 반응기에 가한다. 상기 반응물을 분당 150회의 속도로 연속 교반하면서 반응온도 60℃에서 15시간 동안 반응시켰다. 전환율이 90%에 도달하면 중합정지제를 투입하고 냉각시켰다. 상기 방법에 의해서 80 - 95%의 겔 함량을 지닌 안정한 고무질 중합체 라텍스를 얻었다.150 parts by weight of ion-exchanged water, 2.0 parts by weight of potassium rosin salt as emulsifier, 0.7 parts by weight of potassium oleate, 0.3 parts by weight of sodium carbonate as electrolyte, 0.2 parts by weight of tertiary dodecyl mercaptan as molecular weight regulator, 0.4 parts of potassium persulfate as initiator Parts were dosed in a batch and purged with nitrogen or argon gas to remove residual oxygen from the reactor and then 100 parts by weight of 1,3-butadiene were added to the reactor. The reaction was reacted at a reaction temperature of 60 ° C. for 15 hours with continuous stirring at a rate of 150 times per minute. When the conversion reached 90%, a polymerization terminator was added and cooled. This method yielded a stable rubbery polymer latex with a gel content of 80-95%.

대구경 고무질 중합체 라텍스 제조Manufacture of large diameter rubbery polymer latex

상기 방법에 의해 얻어진 씨드 고무 라텍스 20중량부(고형분 기준), 이온 교환수 51중량부, 유화제로 로진산 칼륨 1.0중량부, 올레인산 포타슘염 0.3중량부, 전해질로 탄산나트륭 0.5중량부, 탄산수소칼륨 0.4 중량부, 분자량 조절제로 3급 도데실 메르캅탄 0.2중량부, 개시제로 과황산 칼륨 0.4중량부를 일괄 투여하였다. 반응기 및 반응물은 질소 또는 아르곤 기체를 이용하여 잔류 산소를 제거한 다음 1,3-부타디엔 20 중량부를 투입하였다. 반응온도 70℃에서 반응시키면서 그라프트 겔 함량이 40%에서 도달하는 순간에 1,3 부타디엔 20 중량부를 첨가하며 초기에 넣어준 유화제 및 전해질량의 20%를 함께 투입하였다. 이후 그라프트 겔 함량이 50%, 70%시점에 각각 1,3-부타디엔 20중량부, 초기에 넣어준 혼합유화액(유화제 및 전해질량)의 20%를 나누어 투입하였다. 이후 압력 강하가 일어나는 시점에서 온도를 75℃로 급격히 올렸다. 전환율 90% 도달시에 고형물 함량이 60%이고 이때 중합정지제를 투입하고 냉각시켰다. 라텍스의 상태 및 특징적인 결과를 표 1에 나타내었다.20 parts by weight of the seed rubber latex obtained by the above method (based on solids), 51 parts by weight of ion-exchanged water, 1.0 part by weight of potassium rosinate as emulsifier, 0.3 part by weight of potassium oleate salt, 0.5 part by weight of sodium carbonate as electrolyte, and hydrogen carbonate 0.4 parts by weight of potassium, 0.2 parts by weight of tertiary dodecyl mercaptan as the molecular weight regulator, and 0.4 parts by weight of potassium persulfate as the initiator were collectively administered. The reactor and the reactants were purged of residual oxygen using nitrogen or argon gas, and then 20 parts by weight of 1,3-butadiene was added thereto. When the graft gel content reached 40% while reacting at a reaction temperature of 70 ° C., 20 parts by weight of 1,3 butadiene was added, and 20% of the amount of the emulsifier and electrolyte initially added was added together. After the graft gel content was 50% and 70%, 20 parts by weight of 1,3-butadiene and 20% of the mixed emulsion (emulsifier and electrolyte amount) initially added were divided. The temperature was then raised rapidly to 75 ° C. at the time of the pressure drop. When the conversion reached 90%, the solids content was 60%, and the polymerization terminator was added and cooled. The condition and characteristic results of the latex are shown in Table 1.

<실시예 2><Example 2>

상기 실시예와 동일한 방법으로 얻어진 소구경 씨드 고무 라텍스 10중량부에 (고형분 기준) 이온 교환수 51중량부, 유화제로 로진산 칼륨 1.0중량부, 올레인산 포타슘염 0.3중량부, 전해질로 탄산나트륨 0.5중량부, 탄산수소칼륨 0.4중량부, 분자량 조절제로 3급 도데실 메르캅탄 0.2 중량부, 개시제로 과황산칼륨 0.4중량부를 일괄 투여하였다. 반응기 및 반응물은 질소 또는 아르곤 기체를 이용하여 잔류 산소를 제거한 다음, 1,3-부타디엔 30 중량부를 투입하였다 반응온도 70℃에서 반응시키면서 그라프트 겔 함량이 40%에서 도달하는 순간에 1,3-부타디엔 20중량부를 첨가하며 초기에 넣어준 유화제 및 전해질량의 20%를 함께 투여하였다. 이후 그라프트 겔 함량이 50%, 70%시점에 각각 1,3-부타디엔 20중량부, 초기에 넣어준 유화제 및 전해질량의 20%를 나누어 투입하였다. 이후 압력 강하가 일어나는 시점에서 온도를 75℃로 급격히 올렸다. 전환율 90% 도달시에 고형분 함량이 60%이고 이때 중합정지제를 투입하고 냉각시켰다. 라텍스의 상태 및 특징적인 결과를 표 1에 나타내었다.51 parts by weight of ion-exchanged water (based on solids), 1.0 parts by weight of potassium rosinate, 0.3 parts by weight of potassium oleate salt, and 0.5 parts by weight of sodium carbonate as electrolyte. 0.4 parts by weight of potassium hydrogencarbonate, 0.2 parts by weight of tertiary dodecyl mercaptan as a molecular weight regulator, and 0.4 parts by weight of potassium persulfate as an initiator were collectively administered. The reactor and the reactants were purged of residual oxygen using nitrogen or argon gas, and then 30 parts by weight of 1,3-butadiene was added. When the graft gel content reached 40% while reacting at a reaction temperature of 70 ° C, 1,3- 20 parts by weight of butadiene was added and 20% of the amount of the emulsifier and the electrolyte initially added was administered together. After the graft gel content was 50% and 70%, 20 parts by weight of 1,3-butadiene and 20% of the amount of the initially added emulsifier and electrolyte were divided. The temperature was then raised rapidly to 75 ° C. at the time of the pressure drop. When the conversion rate reached 90%, the solid content was 60%, at which time the polymerization terminator was added and cooled. The condition and characteristic results of the latex are shown in Table 1.

<실시예 3><Example 3>

상기 실시예1과 동일한 방법으로 얻어진 소구경 씨드 고무 라텍스 10중량부에(고형분 기준), 이온 교환수 51중량부, 유화제로 로진산 칼륨 1.0중량부, 올레인산 포탄슘염 0.3중량부, 전해질로 탄산나트륨 0.5중량부, 탄산수소칼륨 0.4중량부,분자량 조절제로 3급 도데실 메르캅탄 0.2중량부, 개시제로 과황산칼륨 0.4중량부를 일괄 투여하였다. 반응기 및 반응물은 질소 또는 아르곤 기체를 이용하여 잔류 산소를 제거한 다음, 1,3-부타디엔 30중량부를 투입하였다. 반응온도 70℃에서 반응시키면서 그라프트 겔 함량이 40%에서 도달하는 순간부터 1,3-부타디엔 60중량부와 초기에 넣어준 유화제 및 전해질량의 60%를 25 시간에 걸쳐 연속투여하였다. 이후 압력 강하가 일어나는 시점에서 온도를 75℃로 급격히 올렸다. 전환율 90% 도달시에 고형분 함량이 60%이고 이때 중합정지제를 투입하고 냉각시켰다. 라텍스의 상태 및 특정적인 결과를 표 1에 나타내었다.10 parts by weight of the small-diameter seed rubber latex obtained by the same method as in Example 1 (based on solids), 51 parts by weight of ion-exchanged water, 1.0 part by weight of potassium rosinate as emulsifier, 0.3 part by weight of potassium oleate salt, and sodium carbonate 0.5 by electrolyte. By weight, 0.4 parts by weight of potassium hydrogen carbonate, 0.2 parts by weight of tertiary dodecyl mercaptan as the molecular weight regulator, and 0.4 parts by weight of potassium persulfate as the initiator were collectively administered. The reactor and the reactant were purged of residual oxygen using nitrogen or argon gas, and then 30 parts by weight of 1,3-butadiene was added thereto. While reacting at a reaction temperature of 70 ° C., 60 parts by weight of 1,3-butadiene and 60% of the amount of the initially added emulsifier and electrolyte were continuously administered for 25 hours from the moment when the graft gel content reached 40%. The temperature was then raised rapidly to 75 ° C. at the time of the pressure drop. When the conversion rate reached 90%, the solid content was 60%, at which time the polymerization terminator was added and cooled. The condition and specific results of the latex are shown in Table 1.

<비교예 1>Comparative Example 1

씨드용 소구경 고무 라텍스 제조Small-diameter rubber latex for seeds

상기 실시예1과 동일한 방법에 의해 제조하였다.It prepared by the same method as in Example 1.

대구경 고무 라텍스 제조Large Diameter Rubber Latex Manufacturer

상기 방법에 의해 얻어진 고무 라텍스 20중량부(고형분 기준), 이온 교환수 51중량부, 유화제로 로진산 칼륨 1.6중량부, 올레인산 포타슘염 0.48 중량부, 전해질로 탄산타트륨 0.8중량부, 탄산수소칼륨 0.64 중량부, 분자량 조절제로 3급 도데실 메르캅탄 0.2중량부, 개시제로 과황산칼륨 0.4중량부를 일괄 투여하였다. 반응기 및 반응물은 질소 또는 아르곤 기체를 이용하여 잔류 산소를 제거한 다음, 1,3-부타디엔 80중량부를 투입하였다. 라텍스의 상태 및 특징적인 결과를 표 1에 나타내었다.20 parts by weight of the rubber latex obtained by the above method (based on solids), 51 parts by weight of ion-exchanged water, 1.6 parts by weight of potassium rosinate as emulsifier, 0.48 parts by weight of potassium oleate salt, 0.8 parts by weight of titanium carbonate as an electrolyte, potassium hydrogencarbonate 0.64 parts by weight, 0.2 parts by weight of tertiary dodecyl mercaptan as the molecular weight regulator, and 0.4 parts by weight of potassium persulfate as the initiator were collectively administered. The reactor and the reactant were removed residual oxygen using nitrogen or argon gas, and then 80 parts by weight of 1,3-butadiene was added thereto. The condition and characteristic results of the latex are shown in Table 1.

<비교예 2>Comparative Example 2

대구경 고무 라텍스 제조(직접 제조법)Large Diameter Rubber Latex Production (Direct Manufacturing Method)

이온 교환수 62 중량부, 유화제로 로진산 칼륨 1.8중량부, 올레인산 포타슘염 0.52중량부, 전해질로 탄산나트륨 0.9중량부, 탄산수소칼륨 0.68중량부, 분자량 조절제로 3급 도데실 메르캅탄 0.2중량부, 개시제로 과황산칼륨 0.4중량부를 일괄 투여하였다. 반응기 및 반응물은 질소 또는 아르곤 기체를 이용하여 잔류 산소를 제거한 단음, 1,3-부타디엔 100 중량부를 투입하였다. 라텍스의 상태 및 특징적인 결과를 표 1에 나타내었다.62 parts by weight of ion-exchanged water, 1.8 parts by weight of potassium rosinate as emulsifier, 0.52 parts by weight of potassium oleate salt, 0.9 parts by weight of sodium carbonate as electrolyte, 0.68 parts by weight of potassium hydrogen carbonate, 0.2 parts by weight of tertiary dodecyl mercaptan as molecular weight regulator, 0.4 parts by weight of potassium persulfate was administered as an initiator. The reactor and the reactant were charged with 100 parts by weight of a single, 1,3-butadiene, in which residual oxygen was removed using nitrogen or argon gas. The condition and characteristic results of the latex are shown in Table 1.

<비교예 3>Comparative Example 3

씨드용 소구경 고무 라텍스 제조Small-diameter rubber latex for seeds

이온 교환수 150 중량부, 유화제로 로진산 칼륨염 1.7중량부, 올레인산 칼륨 0.7중량부, 전해질로 탄산타트륨 0.35중량부, 분자량 조절제로 3급 도데실 메르캅탄 0.4중량부, 개시제로 과황산칼룸 0.3중량부를 일괄 투여하였고 반응기의 잔존 산소를 없애기 위해 질소 또는 아르곤 가스로 깨끗이 한 다음 100중량부의 1,3-부타디엔을 반응기에 가한다. 상기 반응물을 분당 150회의 속도로 연속 교반하면서 반응온도 60℃에서 15시간 동안 반응시켰다. 전환율이 90%에 도달하면 중합정지제를 투입하고 냉각시켰다. 상기 방법에 의해서 60 - 70%의 겔 함량을 지닌 안정한 고무 라텍스를 얻었다.150 parts by weight of ion-exchanged water, 1.7 parts by weight of rosin acid potassium salt as emulsifier, 0.7 parts by weight of potassium oleate, 0.35 part by weight of titanium carbonate as electrolyte, 0.4 part by weight of tertiary dodecyl mercaptan as molecular weight regulator, and columnar sulfate as initiator 0.3 parts by weight were dosed in a batch and purged with nitrogen or argon gas to remove residual oxygen from the reactor and then 100 parts by weight of 1,3-butadiene were added to the reactor. The reaction was reacted at a reaction temperature of 60 ° C. for 15 hours with continuous stirring at a rate of 150 times per minute. When the conversion reached 90%, a polymerization terminator was added and cooled. This method yielded a stable rubber latex with a gel content of 60-70%.

대구경 고무질 중합체 라텍스 제조Manufacture of large diameter rubbery polymer latex

상기 방법에 의해 얻어진 고무 라텍스 20중량부(고형분 기준), 이온 교환수 51중량부, 유화제로 로진산 칼륨 1.0중량부, 올레인산 포타슘염 0.3중량부, 전해질로 탄산나트륨 0.5중량부, 탄산수소칼륨 0.4중량부, 분자량 조절제로 3급 도데실 메르캅탄 0.2중량부, 개시제로 과황산칼륨 0.4중량부를 일괄 투여하였다. 반응기 및 반응물은 질소 또는 아르곤 기체를 이용하여 잔류 산소를 제거한 다음, 1,3-부타디엔 20중량부를 투입하였다. 반응온도 70℃에서 반응시키면서 그라프트 겔 함량이 40%에서 도달하는 순간에 1,3-부타디엔 20중량부를 첨가하며 초기에 넣어준 유화제 및 전해질량의 20%를 함께 투여하였다. 이후 그라프트 겔 함량이 50%, 70% 시점에 각각 1,3-부타디엔 20중량부, 초기에 넣어준 유화제 및 전해질량의 20%를 나누어 투입하였다. 이후 압력 강하가 일어나는 시점에서 온도를 75℃로 급격히 올렸다. 전환율 90% 도달시에 고형분 함량이 60%이고 이때 중합정지제를 투입하고 냉각시켰다. 라텍스의 상태 및 특징적인 결과를 표 1에 나타내었다.20 parts by weight (based on solids) of rubber latex obtained by the above method, 51 parts by weight of ion-exchanged water, 1.0 part by weight of potassium rosinate as emulsifier, 0.3 part by weight of potassium oleate salt, 0.5 part by weight of sodium carbonate as electrolyte and 0.4 weight of potassium hydrogencarbonate In addition, 0.2 weight part of tertiary dodecyl mercaptans as a molecular weight regulator, and 0.4 weight part of potassium persulfate as an initiator were collectively administered. The reactor and reactants were purged of residual oxygen using nitrogen or argon gas, and then 20 parts by weight of 1,3-butadiene was added thereto. When the graft gel content reached 40% while reacting at a reaction temperature of 70 ° C., 20 parts by weight of 1,3-butadiene was added, and 20% of the amount of the emulsifier and electrolyte initially added was administered together. After the graft gel content was 50%, 70%, 20 parts by weight of 1,3-butadiene, and 20% of the amount of the initially added emulsifier and electrolyte were divided. The temperature was then raised rapidly to 75 ° C. at the time of the pressure drop. When the conversion rate reached 90%, the solid content was 60%, at which time the polymerization terminator was added and cooled. The condition and characteristic results of the latex are shown in Table 1.

<사용예 1><Example 1>

질소치환된 중합 반응기에 실시예 1의 방법으로 제조된 고무 라텍스 50중량부와 이온교환수 65중량부, 소디움에틸렌디아민테트라아세테이트 0.1중량부, 황산제 1철 0.005중량부, 포름알데히드소디움슬폭실레이트 0.23중량부, 로진산칼륨0.35중량부를 반응조에 일괄 투여하고 온도를 70℃로 올렸다. 그리고 이온교환수 50중량부, 로진산칼륨 0.65중량부, 스티렌 3중량부, 아트릴로니트릴 15중량부, 3급 도데실메르캅탄 0.4중량부, 디이소프로필렌벤젠 하이드로퍼옥사이드 0.4중량부의 혼합 유화용액을 3시간 동안 연속 투입한 후 다시 중합 온도를 80℃로 승온한 후 1시간 동안 숙성시키고 반응을 종료시킨다. 그리고 이 라텍스를 황산수용액으로 응고시켜 세척한 다음 분말을 얻고 얻어진 분말 36중량부와 SAN(LG 화화제품, 제품명: 80HF) 64중량부를 혼합기에 넣고 혼합한 후 압출기를 이용하여 펠릿화한 다음 사출기를 이용하여 물성시편을 얻어 물성을 측정하였다.50 parts by weight of the rubber latex prepared by the method of Example 1, 65 parts by weight of ion-exchanged water, 0.1 part by weight of sodium ethylenediaminetetraacetate, 0.005 part by weight of ferrous sulfate, formaldehyde sodium sulfoxylate in a nitrogen-substituted polymerization reactor 0.23 part by weight and 0.35 part by weight of potassium rosinate were collectively administered to the reactor, and the temperature was raised to 70 ° C. 50 parts by weight of ion-exchanged water, 0.65 parts by weight of potassium rosinate, 3 parts by weight of styrene, 15 parts by weight of atrylonitrile, 0.4 part by weight of tertiary dodecyl mercaptan, 0.4 part by weight of diisopropylenebenzene hydroperoxide After continuously adding for 3 hours, the polymerization temperature was again raised to 80 ° C., and then aged for 1 hour to terminate the reaction. The latex was coagulated with an aqueous solution of sulfuric acid, washed, and then powder was obtained. Then, 36 parts by weight of the obtained powder and 64 parts by weight of SAN (LG Chemicals, product name: 80HF) were put into a mixer, mixed and pelletized by an extruder. The physical properties of the specimens were obtained, and the physical properties thereof were measured.

<사용예 2 - 6><Example 2-6>

사용예 1과 동일한 방법으로 실시 사용하되 고무 라텍스를 표 2의 실시예 1대신에 실시예 2 내지 비교예 3을 이용하였다.Example 2 to Comparative Example 3 was used in place of Example 1 in Table 2 except that rubber latex was used in the same manner as in Example 1.

본 발명 대구경 고무라텍스 제조방법은 ABS 중합시 그라프트에 용이한 고무라텍스의 구조를 생성하며, 산성 입자 투입이나 두 단계 중합 방법에 의해 입자 안정성이 떨어지지 않으며, 단량체가 중합되면서 발생되는 중합열을 효과적으로 분산시키어 낮은 냉동 능력으로도 높은 반응열을 제거할 수 있다.The large-diameter rubber latex manufacturing method of the present invention produces a structure of a rubber latex that is easy to graft during ABS polymerization, and does not degrade particle stability by acidic particle injection or two-step polymerization method, and effectively removes the heat of polymerization generated by monomer polymerization. By dispersing, high heat of reaction can be removed even with low freezing capacity.

Claims (5)

대구경 고무 라텍스를 제조함에 있어서,In preparing large diameter rubber latex, a) 겔 함량이 75∼95 %이고 입자경이 700∼1200 Å인 소구경 고무 라텍스 5 - 25중량부와 35중량부 이하의 디엔계 단량체 또는 디엔계 단량체와 에틸렌계 불포화 단량체의 혼합물을 혼합하는 단계;a) mixing 5-25 parts by weight of a small-diameter rubber latex having a gel content of 75-95% and a particle size of 700-1200 kPa with a diene monomer of 35 parts by weight or less, or a mixture of a diene monomer and an ethylenically unsaturated monomer; ; b) 혼합유화액 1.5 - 5.5중량부를 투여하는 단계;b) administering 1.5 to 5.5 parts by weight of the mixed emulsion; c) 그라프트 고무 라텍스의 겔 함량이 30 % 내지 95 % 되는 시점에 디엔계 단량체 또는 디엔계 단량체와 에틸렌계 불포화 단량체의 혼합물 40 - 95중량부 및 혼합유화액 0.9 - 4.5중량부를 분할 투여 혹은 연속 투여하는 단계를 포함하는 대구경 고무 라텍스의 제조 방법.c) 40 to 95 parts by weight of the diene monomer or the mixture of the diene monomer and the ethylenically unsaturated monomer and 0.9 to 4.5 parts by weight of the mixed emulsion at the time when the gel content of the graft rubber latex is 30% to 95%. Method for producing a large diameter rubber latex comprising the step of. 제 1항에 있어서,The method of claim 1, 상기 디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌, 시아노프렌, 2,3-디메칠 부타디엔 및 2,3-디에틸-1,3부타디엔으로 구성되어지는 군에서 선택되는 대구경 고무 라텍스의 제조 방법.The diene monomer is 1,3-butadiene, isoprene, chloroprene, cyanoprene, 2,3-dimethyl butadiene and 2,3-diethyl-1,3 butadiene selected from the group of large diameter rubber latex Manufacturing method. 제 1항에 있어서,The method of claim 1, 상기 에틸렌계 불포화 단량체가 방향족 비닐 화합물, 아크릴산에스테르, 메타크릴산에스테르, 비닐 시안화합물로 구성되어지는 군에서 선택되는 대구경 고무라텍스의 제조 방법.The said ethylenically unsaturated monomer is the manufacturing method of the large diameter rubber latex chosen from the group which consists of an aromatic vinyl compound, an acrylic acid ester, methacrylic acid ester, and a vinyl cyan compound. 제 1항에 있어서,The method of claim 1, 상기 대구경 고무 라텍스의 평균 입경이 2500 Å 내지 4500 Å인 대구경 고무 라텍스의 제조 방법.The large-diameter rubber latex has a mean particle size of 2500 kPa to 4500 kPa. 제 1항에 있어서,The method of claim 1, 상기 대구경 고무 라텍스의 고형분 함량이 55 % 내지 65 %인 대구경 고무 라텍스의 제조 방법.A method for producing large diameter rubber latex, the solid content of the large diameter rubber latex is 55% to 65%.
KR10-1998-0033423A 1998-08-18 1998-08-18 How to manufacture large diameter rubber latex KR100384375B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0033423A KR100384375B1 (en) 1998-08-18 1998-08-18 How to manufacture large diameter rubber latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0033423A KR100384375B1 (en) 1998-08-18 1998-08-18 How to manufacture large diameter rubber latex

Publications (2)

Publication Number Publication Date
KR20000014168A KR20000014168A (en) 2000-03-06
KR100384375B1 true KR100384375B1 (en) 2003-08-21

Family

ID=19547517

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0033423A KR100384375B1 (en) 1998-08-18 1998-08-18 How to manufacture large diameter rubber latex

Country Status (1)

Country Link
KR (1) KR100384375B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200005093A (en) 2018-07-05 2020-01-15 주식회사 엘지화학 Method for preparing large particle sized rubber latex, and method for preparing abs graft copolymer
KR20200011701A (en) 2018-07-25 2020-02-04 주식회사 엘지화학 Method for preparing large particle sized rubber latex, and method for preparing abs graft copolymer
KR20200037979A (en) 2018-10-02 2020-04-10 주식회사 엘지화학 Method for preparing graft copolymer and method for preparing thermoplastic resin composition containing thereof
WO2022059903A1 (en) 2020-09-18 2022-03-24 (주) 엘지화학 Method for preparing graft copolymer and method for preparing thermoplastic resin composition comprising graft copolymer
KR20220054176A (en) 2020-10-23 2022-05-02 주식회사 엘지화학 Method for preparing vinylcyan compound-conjugated dien rubber-aromatic vinyl compound graft copolymer and method for preparing thermoplastic resin composition containing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543690B2 (en) * 2000-12-04 2003-04-08 Schlumberger Malco, Inc. Method and apparatus for communicating with a host

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719232A (en) * 1994-04-22 1998-02-17 Bayer Aktiengesellschaft ABS type thermoplastic moulding compounds
US5750618A (en) * 1996-02-29 1998-05-12 Bayer Ag Process for the production of latices based on conjugated dienes by emulsion polymerisation
KR0146611B1 (en) * 1995-03-10 1998-08-17 박원배 Method for manufacturing polymers
KR19990075430A (en) * 1998-03-20 1999-10-15 성재갑 Method for manufacturing rubbery polymer latex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719232A (en) * 1994-04-22 1998-02-17 Bayer Aktiengesellschaft ABS type thermoplastic moulding compounds
KR0146611B1 (en) * 1995-03-10 1998-08-17 박원배 Method for manufacturing polymers
US5750618A (en) * 1996-02-29 1998-05-12 Bayer Ag Process for the production of latices based on conjugated dienes by emulsion polymerisation
KR19990075430A (en) * 1998-03-20 1999-10-15 성재갑 Method for manufacturing rubbery polymer latex

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200005093A (en) 2018-07-05 2020-01-15 주식회사 엘지화학 Method for preparing large particle sized rubber latex, and method for preparing abs graft copolymer
KR20200011701A (en) 2018-07-25 2020-02-04 주식회사 엘지화학 Method for preparing large particle sized rubber latex, and method for preparing abs graft copolymer
KR20200037979A (en) 2018-10-02 2020-04-10 주식회사 엘지화학 Method for preparing graft copolymer and method for preparing thermoplastic resin composition containing thereof
WO2022059903A1 (en) 2020-09-18 2022-03-24 (주) 엘지화학 Method for preparing graft copolymer and method for preparing thermoplastic resin composition comprising graft copolymer
KR20220037640A (en) 2020-09-18 2022-03-25 주식회사 엘지화학 Method for preparing graft copolymer and method for preparing thermoplastic resin composition containing thereof
KR20220054176A (en) 2020-10-23 2022-05-02 주식회사 엘지화학 Method for preparing vinylcyan compound-conjugated dien rubber-aromatic vinyl compound graft copolymer and method for preparing thermoplastic resin composition containing the same

Also Published As

Publication number Publication date
KR20000014168A (en) 2000-03-06

Similar Documents

Publication Publication Date Title
KR100923626B1 (en) Method for preparing thermoplastic resin having superior gloss, impact strength and whiteness
JP3777354B2 (en) Method for producing thermoplastic resin having excellent thermal stability
KR100708991B1 (en) Method for preparing of acrylonitrile butadiene styrene latex
KR100988962B1 (en) Method for preparing rubber latex of a small diameter with a high polymerization rate together with reduced coagulum contents
KR100835498B1 (en) Method for preparing of abs graft copolymer having good mechanical and coloring properties
KR101484357B1 (en) Methods for preparing abs graft copolymer
KR20100038700A (en) Method for preparing rubber polymer latex with high polmerization produtivity
KR100384375B1 (en) How to manufacture large diameter rubber latex
KR100409088B1 (en) Method for preparing latex having superior stability
KR20080070399A (en) Abs resin having good surface property, good colorability and heat resistance and a method for the preparation thereof
KR100409073B1 (en) Method for preparing latex having superior stability
WO2006038758A1 (en) Method for preparing rubber latex
KR100380014B1 (en) Method for preparing rubbery polymer latex
KR20000038612A (en) Process for producing heat-resistant thermoplastic resin with improve gloss properties
KR100756172B1 (en) Methods for preparing thermoplastic resin
KR20020021863A (en) Process for preparing heat resistant thermoplastic resin having superior weatherability and impact resistance
US4740560A (en) ABS resins and process for making them
KR100380016B1 (en) Process for Producing Rubber Latices
KR20040103307A (en) Thermoplastic Resin Composition Having Hot Plate Weldability, Colorability And Wettability
KR100657741B1 (en) Method for Preparing Rubber Latex
KR20020039854A (en) Method for preparing latex having superior stability
KR100694472B1 (en) Method for producing thermoplastic resin
KR20030022947A (en) Method for preparing thermoplastic resin having superior gloss and snow whiteness
KR100561339B1 (en) Abs thermoplastic resin composition
US4226955A (en) Polymerization process

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 16

EXPY Expiration of term