KR100382890B1 - Contact oxidation-type waste water disposal method for integrated septic tank - Google Patents

Contact oxidation-type waste water disposal method for integrated septic tank Download PDF

Info

Publication number
KR100382890B1
KR100382890B1 KR10-2000-0026170A KR20000026170A KR100382890B1 KR 100382890 B1 KR100382890 B1 KR 100382890B1 KR 20000026170 A KR20000026170 A KR 20000026170A KR 100382890 B1 KR100382890 B1 KR 100382890B1
Authority
KR
South Korea
Prior art keywords
tank
anaerobic
anaerobic tank
wastewater treatment
bod
Prior art date
Application number
KR10-2000-0026170A
Other languages
Korean (ko)
Other versions
KR20010105582A (en
Inventor
전안수
Original Assignee
삼안기업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼안기업 주식회사 filed Critical 삼안기업 주식회사
Priority to KR10-2000-0026170A priority Critical patent/KR100382890B1/en
Publication of KR20010105582A publication Critical patent/KR20010105582A/en
Application granted granted Critical
Publication of KR100382890B1 publication Critical patent/KR100382890B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/18Tanks for disinfecting, neutralising, or cooling sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 접촉산화식 폐수처리방법에 관한 것으로서, 유량조정조(10)와; 혐기성조(21), 무산소조(22) 및 포기조(30)로 이루어진 반응조와; 탈기조(40) 및 침전조(50)를 구비하고; 상기 혐기성조와 무산소조는 업플로우(upflow) 형태의 단일 조로 다공성 격판에 의해 상단이 무산소조가 구성되고, 하단이 혐기성조로 구성되며; 상기 유량조정조는 공급라인을 통해 혐기성조에 연결되고, 무산소조는 공급라인을 통해 포기조에 연결되며, 상기 포기조는 공급라인을 통해 침전조에 연결되고 반송라인을 통해 탈기조에 연결되며, 상기 탈기조는 반송라인을 통해 무산소조에 연결되고, 침전조의 하단은 슬러지 반송라인을 통해 혐기성조에 연결되는 합병정화조용 접촉산화식 폐수처리장치와 이를 이용한 폐수처리방법이 제공되며, 본 발명의 폐수처리장치 및 방법은 충격부하 완충능력이 우수하고 유기물 및 질산화, 탈질효율이 우수할 뿐만 아니라 발생슬러지의 양이 매우 적어 슬러지 처분의 문제가 없고 유지관리가 용이한 등의 장점이 있다.The present invention relates to a catalytic oxidation wastewater treatment method, the flow rate adjustment tank (10); A reaction tank composed of an anaerobic tank 21, an anaerobic tank 22, and aeration tank 30; A degassing tank 40 and a settling tank 50; The anaerobic tank and the anaerobic tank is composed of an upflow (upflow) type tank by the porous diaphragm at the top of the anaerobic tank, the bottom is composed of anaerobic tank; The flow adjusting tank is connected to the anaerobic tank through the supply line, the anaerobic tank is connected to the aeration tank through the supply line, the aeration tank is connected to the settling tank through the supply line and connected to the degassing tank through the return line, the degassing tank is returned Provided is a contact oxidation type wastewater treatment apparatus for a combined purification tank and a wastewater treatment method using the same, connected to an anaerobic tank through a line and connected to an anaerobic tank through a sludge conveying line, and the wastewater treatment apparatus and method of the present invention are impacted. Excellent load buffering capacity, excellent organic matter, nitrification and denitrification efficiency, and the amount of sludge generated is very small, so there is no problem of sludge disposal and easy maintenance.

Description

합병정화조용 접촉산화식 폐수처리방법{Contact oxidation-type waste water disposal method for integrated septic tank}Contact oxidation-type waste water disposal method for integrated septic tank

본 발명은 폐수처리방법에 관한 것으로서, 보다 구체적으로는 합병정화조를 위한 접촉산화식 폐수처리장치 및 방법에 관한 것이다.The present invention relates to a wastewater treatment method, and more particularly, to an apparatus and method for contact oxidation wastewater treatment for a combined purification tank.

우리 나라는 현재 물 수요(연간 약 301억 ㎥)가 계속 증가하고 있으나 주요 하천의 오염으로 하천수의 이용이 크게 줄어들고 있다.In our country, water demand (about 30 billion ㎥ per year) continues to increase, but the use of river water is greatly reduced due to pollution of major rivers.

이에, 정부에서는 전국 하천과 호수의 수질을 개선하기 위하여 수질환경기초시설을 확충하고 하수관거를 대폭 정비하여 실질적인 하수처리율 제고에 많은 노력을 기울이고 있다. 이와 같은 노력의 일환으로 농어촌지역에는 하수도 법령을 개정하여 소규모 마을하수도 설치를 촉진하고, 하수종말처리구역외의 지역에서 발생하는 생활하수의 처리를 위하여 합병정화조 설치를 의무화하고 있다. 합병정화조 제도는 1997년부터 하천, 호수 및 연안 인근지역의 식품접객업소, 숙박업소, 간이휴게소 및 목욕탕 등을 대상으로 수세식 변소의 배출수와 일반 잡배수를 합병하여 BOD 20mg/L 이하로 처리토록 하고 있다. 이 또한 점차 강화(BOD 20mg/L → BOD 10mg/L)되고 있으며 향후에는 질소, 인 등의 영양염류도 규제 대상에 포함될 것으로 예상된다.Therefore, the government is making a lot of efforts to increase the actual sewage treatment rate by expanding water quality environment facilities and greatly improving sewage pipes to improve the water quality of rivers and lakes nationwide. As part of this effort, the Sewerage Law has been amended to promote the installation of small-scale village sewerage systems, and mandatory installation of a merger and septic tank for treatment of domestic sewage generated outside the sewage terminal treatment area. Since 1997, the merger septic tank system has merged wastewater and general wastewater for food service businesses, lodgings, simple rest areas and bathhouses in rivers, lakes and coastal areas to treat BOD 20mg / L or less. . This is also being strengthened (BOD 20mg / L → BOD 10mg / L), and nutrients such as nitrogen and phosphorus are expected to be included in the future.

일반적으로 중소규모형 오수처리기술은 유기물 제거기술, 질소제거기술, 인제거기술 등이 있다.Generally, small and medium-sized sewage treatment technologies include organic material removal technology, nitrogen removal technology, and phosphorus removal technology.

여기서, 유기물 제거기술은 1차 물리적 처리와 2차 생물학적 처리 후에 접촉포기, 모래 여과, 응집분리, 활성탄 흡착 등을 추가함으로써 이루어지고 있다. 2차 처리수중에는 미생물 플록이 미세한 부유물질(SS)을 포함하고 있다. 이들 SS 성분은 직접적인 생물학적산소요구량(BOD)의 원인이 될 뿐만 아니라 SS 중에 다량으로 포함되어 있는 질산화미생물에 의해 BOD측정시의 질산화가 촉진되어 처리수의 BOD를 높게 하는 원인이 되기도 한다. 모래여과는 2차 처리수 중의 SS를 제거함으로써 유기물의 고도처리를 달성하게 하는 것이고, 접촉포기, 응집분리(침전 혹은 부상), 활성탄 흡착 등의 방법은 콜로이드상과 용해성 유기물질을 동시에 제거하는 것이다. 모래여과는 상향류 또는 하향류를 이용하며 여과속도는 4-6㎥/㎡·h가 표준이 되고 활성탄 흡착은 공간속도(SV)로서 4-6㎥/㎡·h가 표준이 되고 있다. 응집침전은 인 제거와 조합해 사용하는 경우가 많고 유기물질(BOD, COD)의 고도 처리만을 목적으로 중소규모 오수처리시설에서 이용되는 예는 적다.Here, the organic material removal technology is achieved by adding contact aeration, sand filtration, flocculation, adsorption of activated carbon after the first physical treatment and the second biological treatment. In the secondary treated water, microbial flocs contain fine suspended solids (SS). These SS components not only cause direct oxygen oxygen demand (BOD) but also promote nitrification during BOD measurement due to nitrifying microorganisms contained in a large amount in SS, thereby increasing the BOD of the treated water. Sand filtration is to achieve the advanced treatment of organic matter by removing SS in the secondary treatment water, and methods such as contact aeration, flocculation (sedimentation or flotation), and adsorption of activated carbon are to remove colloidal and soluble organic substances at the same time. . Sand filtration uses upflow or downflow, and the filtration rate is 4-6m 3 / m 2 · h as standard, and activated carbon adsorption is the space velocity (SV) as 4-6m 3 / m 2 · h. Coagulation sedimentation is often used in combination with phosphorus removal and is rarely used in small and medium-sized sewage treatment facilities for the purpose of advanced treatment of organic materials (BOD, COD).

그리고, 질소제거기술로는 생물학적 질산화, 탈질 및 암모니아 스트리핑 등의 방법이 있는데 중소규모형 오수처리시설의 경우, 생물학적 질산화와 탈 질이 주로 이용되고 있으며, 인제거기술로는 응집분리(침전, 부상), 정석탈인, 이온교환, 포스트립(Phostrip), 생물학적 인 제거 등이 있는데 , 소규모 오수처리시설에서는 대부분의 경우 응집침전이 이용되고 있다.In addition, as the nitrogen removal technology, there are methods such as biological nitrification, denitrification, and ammonia stripping. In the case of small and medium-sized sewage treatment facilities, biological nitrification and denitrification are mainly used, and coagulation separation (sedimentation and flotation) is used. ), Crystallization, ion exchange, postrip, and biological removal. Coagulation sedimentation is used in most small sewage treatment facilities.

본 발명은 앞서 설명한 바와 같은 추세에 부응하여 유기물은 물론 질소, 인 등의 제거효율이 높고 슬러지 발생량이 적으며, 충격부하 및 부하변동(수질 및 수량변동)에 강하고 유지관리가 용이한 합병정화조용 폐수처리장치 및 방법을 제공하는 것을 기술적 과제로 한다.In accordance with the above-described trend, the present invention has a high removal efficiency of nitrogen, phosphorus, etc., as well as a small amount of sludge generation, strong against impact loads and load fluctuations (water quality and quantity fluctuations), and easy maintenance. It is a technical problem to provide a wastewater treatment apparatus and method.

상기한 과제를 해결하기 위한 본 발명자의 연구에서, 충격부하 및 부하변동에 강한 합병정화조공정을 위하여 접촉산화공정을 채택하고, 발생원별 오수특성과 부착여재의 특성 비교실험 결과를 바탕으로 기존의 접촉산화공정을 개선하였으며, 반응조 공정자체를 개선하여 충격부하 완충능력을 개선하고 유기물 및 질산화, 탈질효율을 개선할 수 있었다.In the study of the present inventors to solve the above problems, the contact oxidation process is adopted for the merger purification tank process that is resistant to impact load and load fluctuation, and the existing contact based on the result of the comparison of the characteristics of the sewage characteristics and the adhesion media by the source The oxidation process was improved, and the reaction tank process itself was improved to improve shock load buffering capacity and to improve organic matter, nitrification and denitrification efficiency.

도 1은 본 발명의 바람직한 일 구현에 따르는1 illustrates a preferred embodiment of the present invention.

합병정화조용 접촉산화식 폐수처리장치를 개략적으로 도시한 장치도.Apparatus schematically showing a contact oxidation type wastewater treatment apparatus for a combined septic tank.

도 2는 도 1 장치의 폐수처리 계통도.2 is a wastewater treatment system diagram of the apparatus of FIG. 1;

도 3은 실시예의 실험에서3 shows the experiments of the examples

운전기간동안의 BOD 농도변화와 제거율을 플로트한 그래프.Plots of changes in BOD concentration and removal rates during operation.

도 4는 실시예의 실험에서 운전기간동안의 BOD4 is a BOD during the driving period in the experiment of the embodiment

농도변화와 유출수 BOD 농도를 플로트한 그래프.Graph of concentration change and runoff BOD concentration.

도 5는 실시예의 실험에서 BOD 용적부하에5 shows the BOD volume load in the experiments of the Examples.

따른 유출수 BOD 농도를 플로트한 그래프.A plot of the effluent BOD concentrations along.

도 6은 실시예의 실험에서6 shows the experiments of the examples

운전기간동안의 COD 농도변화와 제거율을 플로트한 그래프.A plot of the change in COD concentration and removal rate during the run.

도 7은 실시예의 실험에서 운전기간동안의7 is a diagram illustrating the operation period during the experiment of the embodiment.

COD 농도변화와 유출수 COD 농도를 플로트한 그래프.Graph of COD concentration change and effluent COD concentration.

도 8은 실시예의 실험에서 COD 용적부하에8 shows the COD volume load in the experiments of the Examples.

따른 유출수 COD 농도를 플로트한 그래프.A plot of effluent COD concentrations along the way.

도 9는 실시예의 실험에서 운전기간동안의9 is a diagram illustrating the operation period during the experiment of the embodiment.

SS 농도변화와 제거율을 플로트한 그래프.Graph of SS concentration change and removal rate.

도 10은 실시예의 실험에서 운전기간동안의Figure 10 shows the period of operation during the experiment of the embodiment

T-N 농도변화와 제거율을 플로트한 그래프.Plot of T-N concentration change and removal rate.

도 11은 실시예의 실험에서 운전기간동안의Figure 11 shows the periods of operation during the experiments of the examples.

BOD 농도변화와 유출수 T-N 농도를 플로트한 그래프.Graph of BOD concentration change and effluent T-N concentration.

도 12는 실시예의 실험에서 BOD 용적부하에12 shows the BOD volume load in the experiments of the Examples.

따른 유출수 T-N 농도를 플로트한 그래프.A plot of the effluent T-N concentration along.

도 13은 실시예의 실험에서 운전기간동안의Figure 13 shows the periods of operation during the experiments of the examples.

T-P 농도변화와 제거율을 플로트한 그래프.Plot of T-P concentration change and removal rate.

상기한 과제를 해결한 본 발명에 의하면, 접촉산화식 폐수처리 장치에 있어서, 유량조정조와; 혐기성조, 무산소조 및 포기조로 이루어진 반응조와; 탈기조 및 침전조를 구비하고; 상기 혐기성조와 무산소조는 업플로우(upflow) 형태의 단일 조로 다공성 격판에 의해 상단이 무산소조가 구성되고, 하단이 혐기성조로 구성되며; 상기 유량조정조는 공급라인을 통해 혐기성조에 연결되고, 무산소조는 공급라인을 통해 포기조에 연결되며, 상기 포기조는 공급라인을 통해 침전조에 연결되고 반송라인을 통해 탈기조에 연결되며, 상기 탈기조는 반송라인을 통해 무산소조에 연결되고, 침전조의 하단은 슬러지 반송라인을 통해 혐기성조에 연결되는 것을 특징으로 하는 합병정화조용 접촉산화식 폐수처리장치가 제공된다.According to the present invention to solve the above problems, the contact oxidation type wastewater treatment apparatus comprising: a flow rate adjusting tank; A reaction tank consisting of an anaerobic tank, an anaerobic tank and aeration tank; A degassing tank and a settling tank; The anaerobic tank and the anaerobic tank is composed of an upflow (upflow) type tank by the porous diaphragm at the top of the anaerobic tank, the bottom is composed of anaerobic tank; The flow adjusting tank is connected to the anaerobic tank through the supply line, the anaerobic tank is connected to the aeration tank through the supply line, the aeration tank is connected to the settling tank through the supply line and connected to the degassing tank through the return line, the degassing tank is returned It is connected to the anaerobic tank through the line, the lower end of the settling tank is provided with a contact oxidation type wastewater treatment apparatus for a combined purification tank, characterized in that connected to the anaerobic tank.

또한, 본 발명에 의하면 상기 포기조가 제1포기조와 제2포기조로 구성되고, 제1포기조 대 제2포기조의 용적비가 5:5∼7:3인 것을 특징으로 하는 합병정화조용 접촉산화식 폐수처리장치가 제공된다.According to the present invention, the aeration tank is composed of a first aeration tank and a second aeration tank, and the volume ratio of the first aeration tank to the second aeration tank is 5: 5 to 7: 3, the contact oxidation type wastewater treatment for the combined purification tank. An apparatus is provided.

또한, 본 발명에 의하면, 상기 포기조 내에 충전되는 여재의 충전율이 30∼45% 인 것을 특징으로 하는 합병정화조용 접촉산화식 폐수처리장치가 제공된다.In addition, according to the present invention, there is provided a contact oxidation type wastewater treatment apparatus for a combined septic tank, characterized in that the filling rate of the filter medium filled in the aeration tank is 30 to 45%.

또한, 본 발명에 의하면, 부가적으로 인 제거용 폐수처리수단이 장치된 것을 특징으로 하는 합병정화조용 접촉산화식 폐수처리 장치가 제공된다.Further, according to the present invention, there is provided a contact oxidation type wastewater treatment apparatus for a combined purification tank, characterized in that a wastewater treatment means for phosphorus removal is additionally provided.

또한, 본 발명에 의하면 상기한 폐수처리장치에서 폐수를 처리하는 것을 특징으로 하는 합병정화조용 접촉산화식 폐수처리방법이 제공된다.According to the present invention, there is provided a contact oxidation type wastewater treatment method for a combined purification tank, characterized in that the wastewater is treated in the wastewater treatment apparatus.

또한, 본 발명에 의하면, BOD 농도 10mg/L이하, COD 농도 40mg/L 이하, T-N 농도 20mg/L 이하의 유출수를 얻기 위하여, BOD 용적부하를 0.2㎏BOD/㎥/day 이하로 유지하고, COD 용적부하를 0.4㎏COD/㎥/day 이하로 유지하는 것을 특징으로 하는 합병정화조용 접촉산화식 폐수처리방법이 제공된다.In addition, according to the present invention, in order to obtain effluent water having a BOD concentration of 10 mg / L or less, a COD concentration of 40 mg / L or less, and a TN concentration of 20 mg / L or less, the BOD volume load is maintained at 0.2 kg BOD / m 3 / day or less, and the COD Provided is a contact oxidation type wastewater treatment method for a combined septic tank, characterized by maintaining a volume load of 0.4 kg COD / m 3 / day or less.

이하, 본 발명을 첨부도면을 참조하여 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1에는 본 발명에 바람직한 구현에 따르는 합병정화조용 접촉산화식 폐수처리장치가 도시된다. 도시되는 장치는 유량조정조(10), 혐기성조(21), 무산소조(22), 포기조(30), 탈기조(40) 및 침전조(50)를 구비한다.1 shows a contact oxidation type wastewater treatment apparatus for a combined purification tank according to a preferred embodiment of the present invention. The illustrated device includes a flow rate adjusting tank 10, an anaerobic tank 21, an oxygen-free tank 22, an aeration tank 30, a degassing tank 40, and a settling tank 50.

여기서, 혐기성조(21)와 무산소조(22)는 업플로우(upflow) 형태의 단일 조(20)로 다공성 격판(23)에 의해 분할되어 상단이 무산소조(22)가 구성되고, 하단이 혐기성조(21)로 구성된다. 혐기성조 및 무산소조는 공기공급을 차단하도록 설계하여야 한다. 또한 혐기성조와 무산소조에는 가온수단(도시안됨)이 장치된다.Here, the anaerobic tank 21 and the anaerobic tank 22 is divided into a single tank 20 in the form of upflow (upflow) by the porous diaphragm 23, the upper end is composed of an anaerobic tank 22, the lower end anaerobic tank ( 21). Anaerobic and anaerobic tanks should be designed to shut off the air supply. Anaerobic and anaerobic tanks are also equipped with warming means (not shown).

그리고, 포기조(30)는 한 조 또는 다수 조로 설치할 수 있으며, 바람직하기로는 도시되는 바와 같이 유체연통가능한 격벽(33)에 의해 제1포기조(31)와 제2포기조(32)로 분할하여 구성하는 것이다. 이때, 제1포기조(31)와 제2포기조(32)는 5:5∼7:3, 바람직하게 6:4의 비율로 분할하여 각각의 조에서 유기물제거와 질산화가 이루어지도록 하는 것이 바람직하다. 또한 포기조(30)의 여재충전율은 여재의 형태에 따라 다르지만, 대략 30∼45%, 보다 바람직하게 35∼45%가 적당하다. 여재충전율이 너무 낮으면 폐수처리효율이 불량하며, 여재충전율이 너무 높으면 폐수처리효율이 더 이상 높아지지 않고 설치비만 증가되고, 심지어는 폐수처리효율이 떨어지는 문제도 발생할 수 있다. 포기조에는 산기관(Air Blower)(34)가 설치된다.In addition, the aeration tank 30 may be installed in one or a plurality of tanks, and preferably, divided into a first aeration tank 31 and a second aeration tank 32 by a partition 33 capable of fluid communication, as shown. will be. At this time, it is preferable that the first aeration tank 31 and the second aeration tank 32 are divided into a ratio of 5: 5 to 7: 3, preferably 6: 4, so that organic matter removal and nitrification are performed in each tank. Moreover, although the filling factor of the aeration tank 30 changes with the form of a filtering medium, about 30 to 45%, More preferably, 35 to 45% is suitable. If the filter medium filling rate is too low, the wastewater treatment efficiency is poor, if the filter medium filling rate is too high, the wastewater treatment efficiency does not increase any more, the installation cost is increased, and even the wastewater treatment efficiency may be reduced. The air blower 34 is installed in the aeration tank.

상기 유량조정조(10)는 공급라인(L1)을 통해 혐기성조(21)에 연결되고, 무산소조(22)는 공급라인(L2)을 통해 포기조(30)에 연결되며, 포기조(30)는 공급라인(L3)을 통해 침전조(40)에 연결되고 반송라인(L4)을 통해 탈기조(50)에 연결되며, 탈기조(50)는 반송라인(L5)을 통해 무산소조에 연결되고, 침전조(40)의 하단은 슬러지 반송라인(L6)을 통해 혐기성조(21)에 연결된다.The flow rate adjustment tank 10 is connected to the anaerobic tank 21 through the supply line (L1), the anaerobic tank 22 is connected to the aeration tank 30 through the supply line (L2), the aeration tank 30 is the supply line It is connected to the settling tank 40 through (L3) and connected to the degassing tank 50 through the conveying line (L4), the degassing tank 50 is connected to the anaerobic tank through the conveying line (L5), the settling tank (40) The bottom of the is connected to the anaerobic tank 21 through the sludge conveying line (L6).

그리고, 유량조정조(10), 혐기성조(21), 무산소조(22) 및 탈기조(40)에는 각각 모터(M)에 의해 구동되는 교반기가 장치된다.The flow rate adjusting tank 10, the anaerobic tank 21, the anoxic tank 22, and the degassing tank 40 are each equipped with a stirrer driven by the motor M.

본 장치에는 부가적으로 인 제거용 폐수처리수단이 장치할 수 있다.The apparatus may additionally be equipped with wastewater treatment means for phosphorus removal.

이러한 수단의 예로는 응집분리(침전, 부상)수단, 정석탈인수단, 이온교환수단, 포스트립(Phostrip)수단, 생물학적 인제거수단 등이 있다.Examples of such means include agglomeration separation (sedimentation, flotation) means, crystallization dephosphorization means, ion exchange means, postrip (Phostrip) means, biological phosphorus removal means and the like.

도 2에는 도 1 장치에서의 처리 계통도가 제시된다. 도 2의 처리계통도를 참고하여 본 발명의 폐수처리방법에 대해서 설명하면, 우선 유입수는 스크린을 통해 부유쓰레기 등을 제거한 후 유량조정조에 공급된다. 유량조정조에 공급된 유입수는 혐기성조에 정량 공급되어 처리된 후 무산소조에서 처리된다. 무산소조에서 처리된 물은 제1포기조 및 제2포기조를 통과하면서 처리된 후, 일부는 침전조로 공급되고, 일부는 탈기조로 공급된다. 탈기조에 공급된 물은 탈기(air stripping)된 후 무산소로 재 공급되어 처리되고, 침전조에 공급된 물은 슬러지를 침전시킨 후 배출되고, 침전조에 침전된 슬러지는 다시 혐기성조로 재 공급되어 처리된다.2 shows a process flow diagram in the FIG. 1 apparatus. Referring to the wastewater treatment method of the present invention with reference to the treatment system diagram of Figure 2, first, the influent water is supplied to the flow rate adjustment tank after removing the floating garbage through the screen. The influent supplied to the flow control tank is fed to the anaerobic tank in a fixed quantity and treated in an anaerobic tank. The water treated in the anoxic tank is treated while passing through the first and second aeration tanks, and then some are supplied to the settling tank and some are supplied to the degassing tank. The water supplied to the degassing tank is degassed after being air stripped and retreated with anoxic acid, and the water supplied to the sedimentation tank is discharged after sedimenting the sludge, and the sludge deposited in the sedimentation tank is supplied again to the anaerobic tank for treatment. .

본 방법을 이용하여 유출수의 BOD 농도가 10mg/L 이하, COD 농도가 40mg/L 이하, T-N 농도가 20mg/L 이하가 되게 하기 위해서는 BOD용적부하를 0.2㎏BOD/㎥/day 이하로 유지하고, COD용적부하를 0.4㎏COD/㎥/day 이하로 유지하는 것이 바람직하다.By using this method, the BOD volume load is kept below 0.2 kgBOD / m 3 / day in order to achieve a BOD concentration of 10 mg / L or less, a COD concentration of 40 mg / L or less, and a TN concentration of 20 mg / L or less. It is desirable to maintain the COD volume load at 0.4 kg COD / m 3 / day or less.

이하, 본 발명에 따르는 생물막을 이용한 접촉산화조 공정의 유기물 부하(용적부하) 변화에 따른 처리 효율과 반응조내 수리학적 체류시간(HRT) 변화에 따른 처리효율을 검증하여 합병정화조로의 적용가능성을 위하여 수행된 실험에 기초하여 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the treatment efficiency according to the change of organic load (volume load) of the catalytic oxidation tank process using the biofilm according to the present invention and the treatment efficiency according to the change in the hydraulic residence time (HRT) in the reaction vessel are verified, and the applicability to the merger purification tank is as follows. The present invention will be described in more detail on the basis of the experiments performed for the purpose.

[실시예]EXAMPLE

1. 실험장치 및 운전1. Experiment apparatus and operation

(1) 실험장치(1) Experiment apparatus

실험실 규모의 반응조 1세트를 투명 아크릴로 제작하여 유기물 및 영양염류 제거특성을 파악하고자 하였다. 도 1에는 실험에 사용된 합병정화조 반응조가 예시된다. 이 반응조는 혐기조, 무산소조, 포기조로 구성되었고, 각 반응조별 유효용량은 4.17L, 2.08L, 16.67L로 총용량은 22.92L이다. 실험에 사용된 여재(Media)는 대호산기의 여재를 사용하였고, 여재충전율은 35%로 하였다.One set of laboratory scale reactors were made of transparent acrylic to determine the organic and nutrient removal characteristics. Figure 1 illustrates the combined purification tank reactor used in the experiment. The reactor consisted of anaerobic tank, anaerobic tank and aeration tank. The effective capacity of each reactor was 4.17L, 2.08L, 16.67L and the total capacity was 22.92L. The media used in the experiments were the media of Daehosan-si, and the median filling rate was 35%.

그리고, 혐기조와 무산소조는 업플로우(upflow) 형태의 단일 반응조로 상단을 무산소조로 하고, 하단을 혐기성조로 구성하였다. 또한, 포기조는 6:4의 비율로 구분하여 각각의 조에서 유기물제거와 질산화가 이루어지도록 하였다. 하수 주입과 내부 반송은 미량 정량펌프(Masterflex Tubing Pump)를 사용하여 일정하게 주입하였으며, 혐기조 및 무산소조는 공기공급을 차단하고 감속모터를 사용하여 완만히 혼합만 실시하였으며, 포기조는 산기관(Air Blower)을 설치하여 완전혼합 및 적정 DO농도를 유지하였다.In addition, the anaerobic tank and the anaerobic tank is an upflow type single reactor and the upper end is anoxic tank, and the lower end is composed of an anaerobic tank. In addition, the aeration tank was divided into 6: 4 ratios so that organic matter removal and nitrification were performed in each tank. Sewage injection and internal conveyance were continuously injected using a small amount of fixed amount (Masterflex Tubing Pump). The anaerobic and anaerobic tanks cut off the air supply and gently mixed by using a reduction motor, and the aeration tank was an air blower. Was installed to maintain complete mixing and proper DO concentration.

(2) 반응조 운전(2) reactor operation

표 1에 제시한 바와 같은 각 반응조의 사양 및 운전조건하에 수행하였다.반응조 용적은 각 4.17L, 2.08L, 16.67L로 고정하고, 유입유량을 50 L/day, 40 L/day, 33.3 L/day, 25L/day로 조절하여 수리학적 체류시간(HRT) 1시간, 13.75시간, 16.5시간, 22시간에서 운전기간동안 변화시켜 적정 HRT를 산정하고자 하였다. 탈질화를 위한 반송은 100%로 하였으며, 반응수중의 높은 DO농도에 의한 무산소조의 영향을 줄이기 위하여 탈기조를 별도로 설치하여 그 영향을 최소화할 수 있었다. 슬러지 반송은 사실상 발생되는 슬러지가 미미하여 반송을 실시하지 않았다. 운전기간동안의 온도는 13.6∼16.5℃의 범위였다.The reaction was carried out under the specifications and operating conditions of each reactor as shown in Table 1. The reactor volumes were fixed at 4.17 L, 2.08 L and 16.67 L, respectively, and the influent flow rates were 50 L / day, 40 L / day, 33.3 L /. The optimal HRT was calculated by changing the hydraulic residence time (HRT) at 1 hour, 13.75 hours, 16.5 hours, and 22 hours during the day and 25 L / day. The return for denitrification was 100%, and the degassing tank could be separately installed to reduce the effect of the oxygen free tank due to the high DO concentration in the reaction water. Sludge conveyance was not carried out because the sludge actually generated was insignificant. The temperature during the operation ranged from 13.6 to 16.5 ° C.

구분division 혐기조Anaerobic tank 무산소조Anaerobic 포기조Abandonment 반응조 용적(L)Reactor Volume (L) 4.174.17 2.082.08 16.6716.67 HRT(hr)HRT (hr) 1111 22 1One 88 13.7513.75 2.52.5 1.251.25 1010 16.516.5 33 1.51.5 1212 2222 44 22 1616 리사이클(%)Recycle (%) 100100 온도(℃)Temperature (℃) 13.6∼16.5℃13.6 ~ 16.5 ℃

(3) 유입오수 성상(3) Influent sewage

실험에 이용된 C 종합물류센터 오수의 성상을 표 2에 제시하였다. 유입시료는 C 종합물류센터의 간이 저류조에서 직접 채취하여 차량으로 운반후 저류조로 옮겨졌으며, 저류조에서는 침전에 의한 영향을 배제하기 위하여 교반장치를 설치하여 가동하였고, 원수 저류조에서 반응조로의 주입은 미량 정량펌프를 사용하였다. 유입시료의 성상을 살펴보면 SS의 경우 102.5∼305.2 mg/L, COD는 170.1∼409.2mg/L로 조사되었다. 이에 따른 BOD/T-N비는 2.3∼5.7의 범위였으며, BOD/T-P비는 16.4∼31.0으로 조사되었다.Table 2 shows the characteristics of the C Logistic Center wastewater used in the experiment. The inflow sample was collected directly from the simple storage tank of the C General Logistics Center and transported to the storage tank and then transferred to the storage tank.In the storage tank, the agitator was installed to eliminate the effects of sedimentation. A metering pump was used. In the case of SS, 102.5 ~ 305.2 mg / L and COD were 170.1 ~ 409.2mg / L. The BOD / T-N ratio was in the range of 2.3 to 5.7, and the BOD / T-P ratio was 16.4 to 31.0.

항목Item 농도 (mg/L)Concentration (mg / L) 범위range 평균Average pHpH 6.7-7.66.7-7.6 7.117.11 SSSS 102.5-305.2102.5-305.2 200.1200.1 VSSVSS 95.2-256.095.2-256.0 177.7177.7 TCODcrTCODcr 170.1-409.2170.1-409.2 282.0282.0 SCODcrSCODcr 69.5-137.569.5-137.5 107.6107.6 TBODTBOD 99.5-127.399.5-127.3 159.7159.7 SBODSBOD 47.5-116.547.5-116.5 80.180.1 T-NT-N 17.5-87.017.5-87.0 53.053.0 T-PT-P 4.2-11.54.2-11.5 6.46.4 알카리도(Alkalinity)Alkalinity 109.5-342.5109.5-342.5 226.5226.5 BOD/T-NBOD / T-N 2.3-5.72.3-5.7 3.03.0 BOD/T-PBOD / T-P 16.4-31.016.4-31.0 24.524.5

(4) 분석방법(4) Analysis method

본 실험에 이용한 수질분석법은 표준방법과 우리 나라 환경오염 공정 시험법에 의거하였으며, 각 항목별 분석방법은 표 3에 제시한 바와 같다. 시료의 분석은 유입수와 각 공정별 처리수 및 최종 유출수를 채취하여 1일 간격으로 분석하였으며, BOD 실험시에는 질산화에 의한 산소의 소모량을 배제하기 위하여 질산화 억제제(Nitrification Inhibitor)로 포뮬라(Formula) 2533(HACH 컴패니 제품)을 첨가하여 수행하였다.The water analysis method used in this experiment was based on the standard method and the test method for environmental pollution process in Korea, and the analysis method for each item is shown in Table 3. The sample was analyzed by inflow, treated water and final effluent at daily intervals.In the case of BOD experiment, Formula 2533 was used as Nitrification Inhibitor to exclude oxygen consumption by nitrification. (HACH Co., Ltd.) was added to carry out.

항 목Item 분석 방법 및 기기Analytical Methods and Instruments pHpH ORION 230A, pH 메터(Meter)ORION 230A, pH meter DODO YSI 모델 57 옥시겐 메터(Oxygen Meter)YSI Model 57 Oxygen Meter TBODTBOD 윙클러법(Winkler Method) 아지드 모디피케이션(Azide Modification)Winkler Method Azide Modification SBODSBOD 여과 및 윙클러법 아지드 모디피케이션Filtration and Winkler Method Azide Modification TCODcrTCODcr K2Cr2O7폐환류법(Closed Reflux Method)K 2 Cr 2 O 7 Closed Reflux Method SCODcrSCODcr 여과 및 K2Cr2O7폐환류법Filtration and K 2 Cr 2 O 7 Lung Reflux SSSS 중량측정법(Gravimetric Method), 전기 드라이 오븐 (105℃)Gravimetric Method, Electric Dry Oven (105 ° C) VSSVSS 중량측정법, 전기 머플 퍼니스(Electric Muffle Furnace) (550℃)Gravimetry, Electric Muffle Furnace (550 ° C) 알카리도Alkaline 적정법(Titration Method)Titration Method T-PT-P 과황산염 소화(Persulfate Digestion) 및 아스코르빈산 방법Persulfate Digestion and Ascorbic Acid Methods S-PS-P 여과, 과황산염 침지 및 아스코르빈산 방법Filtration, Persulfate Dipping and Ascorbic Acid Methods TKNTKN 마이크로 켈달법(Micro Kjeldahl Method)Micro Kjeldahl Method NO2-NNO 2 -N 디아조법(Diazo Method)Diazo Method NO3-NNO 3 -N 브루신법(Brucine Method)Brucine Method NH3-NNH 3 -N 피네이트법(Phenate Method)Phenate Method

2. 결과 및 고찰2. Results and Discussion

운전초기 여재에 미생물이 충분히 부착되어 환경에 적응하는데는 약 10일 정도가 소요되었으며 질산화가 일어나기까지는 약 14일 정도의 기간이 소요되었다. 이 기간까지는 전체 수리학적 체류시간(HRT)을 13.8hr로 고정하여 운전하였으며, 질산화가 충분히 일어난 26일째부터 HRT 11hr로 고정하여 운전하였다. 그러나, 높아진 유기물 부하로 질산화가 급격히 감소하여 다시 HRT를 16.5hr로 증가시켜 운전하였다. 그 결과 어느 정도 질산화는 일어났으나, 그 농도가 평균 4.66mg/L 정도에 그쳤다. 높은 질소제거율을 위하여 다시 HRT를 22hr로 증가시켜 운전하였으며 43일째부터 반송율 100%로 반송을 실시하였다.In the early stage of operation, it took about 10 days for the microorganisms to fully adhere to the media and adapt to the environment, and about 14 days for nitrification. Up to this period, the total hydraulic residence time (HRT) was fixed at 13.8 hr, and from 26 days when nitrification was sufficient, it was operated at 11 hr HRT. However, due to the high organic load, the nitrification rapidly decreased and the HRT was increased to 16.5hr. As a result, nitrification occurred to some extent, but the concentration was only about 4.66 mg / L. HRT was increased to 22 hr again for high nitrogen removal rate, and the return was carried out at the return rate of 100% from day 43.

그리고, 분석을 위한 시료는 자연유하에 의한 유출수를 채취하였는데 혐기조와 무산소조는 업플로우 형태의 단일 반응조로 구성되어 하단에 위치하는 혐기조는 시료채취로 인한 반응조내 미생물의 유실로 인하여 분석을 생략하였다. 또한 포기조는 유기물 제거와 질산화로 구분하기 위하여 반응조를 6:4 비율로 아래부분으로로 이동할 수 있도록 설계하였다. 그러나 포기에 의한 혼합으로 시료분석결과 앞단과 뒷단의 차이가 거의 없었다. 때문에 포기조 유출수를 채취하여 분석하였다.And, the sample for analysis was taken out of the natural runoff, anaerobic tank and anaerobic tank consists of a single reactor of the upflow type, the anaerobic tank located at the bottom omitted the analysis due to the loss of microorganisms in the reaction tank due to sampling. In addition, the aeration tank is designed to move the reactor to the lower part in the ratio of 6: 4 to separate organic matter and nitrification. However, due to the mixing caused by abandonment, there was almost no difference between the front and rear end of the sample analysis. Therefore, the aeration tank effluent was collected and analyzed.

(1) 유기물 제거 특성(1) organic matter removal characteristics

운전기간동안 유기물 농도변화 및 평균제거율을 표 4에 제시하였다. BOD의 경우 각 HRT별로 유출농도가 17.4 mg/L. 26.6 mg/L, 16.5 mg/L, 7.6 mg/L이고 그 때의 제거율은 84.8%, 88.5%, 91.9%, 94.7%로 나타났다. COD의 경우 유출농도 34.3mg/L, 57.1mg/L, 42.7mg/L, 40.0mg/L이고, 제거율은 84.8%, 85.0%, 87.1%, 85.2%로 나타났다. 그리고 SS의 경우 유출농도 6.7mg/L, 11.2mg/L, 11.7mg/L, 10.9mg/L이고, 제거율은 95.9%, 95.6% 95.0%, 94.1%로 높은 제거율을 나타냈다. 운전기간 동안의 BOD용적부하(BOD Volumetric Loading Rate)는 0.21, 0.51, 0.31, 0.20 kgBOD/㎥/day로 산출되었다.The organic concentration changes and average removal rates during the run are shown in Table 4. For BOD, the runoff concentration for each HRT was 17.4 mg / L. 26.6 mg / L, 16.5 mg / L, 7.6 mg / L and the removal rates at that time were 84.8%, 88.5%, 91.9%, 94.7%. For COD, the runoff concentrations were 34.3 mg / L, 57.1 mg / L, 42.7 mg / L, and 40.0 mg / L. The removal rates were 84.8%, 85.0%, 87.1%, and 85.2%. In the case of SS, the effluent concentrations were 6.7mg / L, 11.2mg / L, 11.7mg / L, and 10.9mg / L. The removal rate was 95.9%, 95.6%, 95.0%, and 94.1%. The BOD Volumetric Loading Rate was calculated as 0.21, 0.51, 0.31, 0.20 kgBOD / m3 / day during the operation period.

구분division BODBOD CODCOD SSSS VLR*(kgBOD/㎥/day)VLR * (kgBOD / ㎥ / day) 개시HRT: 13.8hrOnset HRT: 13.8hr 유입(mg/L)Inflow (mg / L) 121.9121.9 231.0231.0 168.6168.6 0.210.21 유출(mg/L)Runoff (mg / L) 17.417.4 34.334.3 6.76.7 제거율(%)% Removal 84.884.8 84.884.8 95.995.9 HRT: 11hrHRT: 11 hr 유입(mg/L)Inflow (mg / L) 234.7234.7 380.9380.9 262.9262.9 0.510.51 유출(mg/L)Runoff (mg / L) 26.626.6 57.157.1 11.211.2 제거율(%)% Removal 88.588.5 85.085.0 95.695.6 HRT: 16.5hrHRT: 16.5hr 유입(mg/L)Inflow (mg / L) 211.4211.4 337.6337.6 236.3236.3 0.310.31 유출(mg/L)Runoff (mg / L) 16.516.5 42.742.7 11.711.7 제거율(%)% Removal 91.991.9 87.187.1 95.095.0 HRT: 22hrHRT: 22 hr 유입(mg/L)Inflow (mg / L) 145.4145.4 271.4271.4 191.4191.4 0.20.2 유출(mg/L)Runoff (mg / L) 7.67.6 40.040.0 10.910.9 제거율(%)% Removal 94.794.7 85.285.2 94.194.1

* 전체 반응조 용적에 대한 부하량을 산출하였음.* The load for the total reactor volume was calculated.

가. BOD 제거특성end. BOD removal characteristic

도 3의 그래프는 운전기간 동안의 BOD 농도변화의 유기물 제거특성을 플로트한 것이다. 운전기간동안 체류시간 16.5hr부터 BOD 제거율이 90% 이상을 나타내고 있다. 또한 도 4의 그래프와 도5의 그래프를 살펴보면 유출수의 BOD농도를 10mg/ L 이하로 유지하기 위해서는 BOD 용적부하를 0.20 kgBOD/㎥/day 이하로 유지하여야 할 것으로 나타났다.The graph of FIG. 3 plots the organic matter removal characteristics of the BOD concentration change during the operation period. BOD removal rate was over 90% from 16.5hr residence time during the operation. In addition, looking at the graph of Figure 4 and the graph of Figure 5 in order to maintain the BOD concentration of the effluent to 10mg / L or less appeared to maintain the BOD volume load of 0.20 kgBOD / ㎥ / day or less.

나. COD 제거특성I. COD removal characteristics

도 6의 그래프는 반응조 운전기간 동안의 COD 농도 변화와 제거율을 플로트한 것이다. COD의 경우 BOD와 달리 체류시간에 따른 제거율의 차이는 나타나지 않았고 평균 85.5%의 제거율로 나타났다. 또한 도 7과 도 8의 그래프를 살펴보면 유출수 COD 농도를 40mg/L 이하로 유지하기 위해서는 COD 용적부하를 대략 0.4kgCOD/㎥/day 이하로 유지하여야 하는 것으로 나타났다.The graph of FIG. 6 plots the COD concentration change and removal rate during the reactor operation period. In the case of COD, there was no difference in removal rate according to residence time, unlike BOD, and the average removal rate was 85.5%. 7 and 8 show that the COD volume load should be maintained at about 0.4kgCOD / m 3 / day or less to maintain the effluent COD concentration below 40 mg / L.

다. SS 제거특성All. SS removal characteristic

도 9의 그래프는 운전기간 동안 SS농도 변화와 제거율을 플로트한 것이다. SS 제거율은 생물막 공정의 특성상 체류시간에 관계없이 평균 95.2%의 높은 제거율을 보였으며 유출수 농도는 4.3mg/L∼15.3mg/L 범위와 평균 9.4 mg/L로 낮게 나타났다.The graph of Figure 9 plots the SS concentration change and removal rate during the operation period. SS removal rate was 95.2% on average regardless of the retention time, and the effluent concentration ranged from 4.3 mg / L to 15.3 mg / L and 9.4 mg / L on average.

(2) 질소 제거특성(2) nitrogen removal characteristics

반응조 운전기간 동안의 T-N 농도 변화 및 제거율에 대하여 표 5에 나타내었다. 운전기간 동안의 체류시간별 평균 COD/T-N 비는 6.5, 5.8, 5.0, 5.4, 4.9로 나타났다. 초기체류시간 11hr와 16.5hr에서는 질소제거율이 25.0%, 26.1%, 35.3%로 낮았다. 이후 체류시간 22hr에서 55.4%로 증가하였고, 반송을 시작한 후부터 69.5%로 더욱 증가하였다. 반송을 하지 않은 상태에서도 55.4%로 높아진 이유는 포기조 내에서 NH3가 탈기되는 양과 생물막공법 특성상 포기조내의 두터워진 생물막내에서 탈질화가 이루어졌기 때문으로 판단된다.Table 5 shows the change in TN concentration and removal rate during the reactor operation. Mean COD / TN ratios by residence time during operation were 6.5, 5.8, 5.0, 5.4, and 4.9. Nitrogen removal rates were low at 25.0%, 26.1%, and 35.3% at 11hr and 16.5hr. After that, the residence time was increased to 55.4% at 22hr and further increased to 69.5% after the start of conveyance. The reason for the increase to 55.4% even without the return is due to the denitrification in the thickened biofilm in the aeration tank due to the amount of NH 3 degassed in the aeration tank and the characteristics of the biofilm method.

구분division T-NT-N 유입(mg/L)Inflow (mg / L) 유출(mg/L)Runoff (mg / L) 제거율(%)% Removal COD/T-NCOD / T-N 개시시 (HRT: 13.8hr)On start (HRT: 13.8hr) 41.641.6 31.2131.21 25.025.0 6.56.5 HRT : 11hrHRT: 11hr 67.267.2 49.749.7 26.126.1 5.85.8 HRT : 16.5hrHRT: 16.5hr 68.968.9 44.844.8 35.335.3 5.05.0 HRT : 22hrHRT: 22hr 무반송No return 49.849.8 22.322.3 55.455.4 5.45.4 반송(100%)Return (100%) 55.755.7 17.017.0 69.569.5 4.94.9

도 10은 반응조 운전기간 동안의 T-N 농도변화와 제거율을 플로트한 것이다. 운전기간동안 체류시간 16.5hr까지는 높은 유기물 부하로 인해 질산화율이 낮아 제거효율을 미미하였으며, 체류시간 22hr로 증가함으로써 T-N제거율이 무반송운전에서 50% 이상을 나타내고 있으며 반송을 시작한 후론 약 70%의 제거율로 조사되었다. 도 11과 도 12의 그래프에서 알 수 있는 바와 같이 유출수의 T-N 농도를 20mg/L 이하로 유지하기 위해서는 BOD 용적부하를 0.2kgBOD/㎥/day 이하로 유지하여야 하는 것을 알 수 있다.Figure 10 is a plot of the T-N concentration change and removal rate during the reactor operation period. During the operation period, the removal efficiency was insignificant due to the high organic load, and the removal efficiency was insignificant due to the high organic load, and the retention time was increased to 22hr, resulting in more than 50% of the TN removal rate in the non-conveying operation. Was investigated. As can be seen in the graphs of Figures 11 and 12 it can be seen that in order to maintain the T-N concentration of the effluent to 20mg / L or less, the BOD volume load should be maintained below 0.2kgBOD / ㎥ / day.

(3) 인 제거특성(3) Phosphorus Removal Characteristics

반응조 운전기간동안의 T-P와 S-P 농도변화와 제거율을 표 6과 도 12의 그래프에 나타내었다. T-P의 경우 각 체류시간별 유출수 농도는 5.6mg/L, 7.1mg/L, 8.3mg/L, 5.6mg/L, 5.1mg/L로 나타났고, 제거율은 6.6%, 8.5%, -6.6%, 6.4%, 14.8%로 제거율이 매우 낮았다. S-P의 경우 유출수 농도는 5.1mg/L, 6.7mg/L, 7.6mg/L, 5.2mg/L, 4.6mg/L로 나타났는데 무반송상태에서는 모두 유입농도에 비하여 증가하였다.T-P and S-P concentration changes and removal rates during the reactor operation are shown in Table 6 and the graphs of FIG. 12. In case of TP, effluent concentration by residence time was 5.6mg / L, 7.1mg / L, 8.3mg / L, 5.6mg / L, 5.1mg / L, and removal rate was 6.6%, 8.5%, -6.6%, 6.4 The removal rate was very low at 14.8%. In the case of S-P, the effluent concentrations were 5.1 mg / L, 6.7 mg / L, 7.6 mg / L, 5.2 mg / L, and 4.6 mg / L.

그리고, 무반송 상태의 경우 인 제거율이 매우 낮거나 오히려 유출수의 인 농도가 증가하는 현상을 나타내는 것은 혐기성조에서 인의 용출이 일어나고, 무산소조에서 인 축적 박테리아(PAO)가 이용 가능한 기질이 존재하여 부분적으로 다시 인의 용출이 발생되었으며, 호기성조에서 생물막 공정의 특성상 생물막표면의 호기성 층에서는 인의 섭취가 이루어지나, 생물막 내부의 혐기성 층에서 인의 용출이 일어나고, 호기성조건에서 미생물 생체 내 축적이 일어난다.In the case of no transport, the phosphorus removal rate is very low or the increase of the phosphorus concentration in the effluent is caused by the elution of phosphorus in the anaerobic tank and the presence of a substrate available for phosphorus accumulation bacteria (PAO) in the anaerobic tank. Phosphorus elution occurred again, due to the nature of the biofilm process in the aerobic tank, phosphorus intake takes place in the aerobic layer on the surface of the biofilm, but phosphorus elution occurs in the anaerobic layer inside the biofilm, and microbial accumulation occurs in aerobic conditions.

또한, 거버(Gerber)(1986) 등은 생물학적 영양소 제거공정에서 기질(organic substrate)과 질산성질소(nitrate) 및 인(phosphate)의 관계를 연구한 결과 무산소 조건에서 인 축적 박테리아가 이용 가능한 아세테이트가 존재하는 경우에는 인의 용출이 일러날 수 있으며, 호기성 조건에서도 환경조건에 따라 인의 용출이 일어날 수 있다고 하였다. 일반 생물학적 처리 시스템에서의 미생물의 인 함량은 건조무게로 1.5-2% 정도인 데, 본 반응조 포기조의 미생물을 일부 채취하여 실험한 결과 1.4%로 인의 섭취(Uptake)가 충분히 일어났다고 보기가 어려웠다.In addition, Gerber (1986) and others studied the relationship between organic substrates, nitrates, and phosphorus in biological nutrient removal processes. If present, phosphorus elution may be known and phosphorus elution may occur depending on environmental conditions even in aerobic conditions. Phosphorus content of microorganisms in the general biological treatment system is about 1.5-2% by dry weight, and it was difficult to see enough uptake of phosphorus to 1.4% when a part of the microorganisms in the aeration tank was collected and tested.

한편, 반송상태의 경우 T-P의 제거율이 14.8%로 증가하였고 유출수의 S-P 농도는 유입수에 비해 감소하였는데, 이는 포기조 유출수의 반송으로 인하여 무산소조내의 DO 농도와 질산성질소 농도의 증가로 이같은 현상이 일어난 것으로 판단된다. 케른-제스퍼슨 및 헨체(Kerrn-Jeepersen Henze)(1993) 또한 무산소 조건과 호기성 조건에서의 인의 섭취를 연구한 결과 무산소 조건에서도 산소나 질산성질소가 존재할 경우 이를 전자 공여체로 이용하여 인의 섭취가 발생할 수 있다고 발표한 바 있다. 생물학적 인 제거는 인의 실질적인 변환에 의한 제거라기 보다는 미생물 세포내에 에너지원으로 축적됨을 의미하는 것이며, 엄밀한 의미에서의 인의 제거는 잉여슬러지를 폐기함으로써 달성될 수 있다. 본 공정은 생물막공법으로 잉여슬러지의 제거와 인을 제거하기에는 발생되는 슬러지의 양이 매우 미미하다. 따라서 부과적 인 제거 프로세스가 필요하다.On the other hand, in the conveyed state, the removal rate of TP increased to 14.8% and the SP concentration of the effluent decreased compared to the influent, which was caused by the increase of DO concentration and nitrate nitrogen concentration in the anaerobic tank due to the return of the aeration tank effluent. Judging. Kern-Jeepersen Henze (1993) also studied phosphorus intake under anaerobic and aerobic conditions and found that oxygen or nitrate could be used as an electron donor in the presence of oxygen or nitrate in anoxic conditions. It has been announced. Biological removal means accumulation as an energy source in microbial cells rather than removal by substantial conversion of phosphorus, and in the exact sense phosphorus removal can be achieved by discarding excess sludge. In this process, the amount of sludge generated is very small to remove excess sludge and phosphorus by biofilm method. Therefore an impulsive removal process is required.

구분division T-PT-P S-PS-P 유입(mg/L)Inflow (mg / L) 유출(mg/L)Runoff (mg / L) 제거율(%)% Removal 유입(mg/L)Inflow (mg / L) 유출(mg/L)Runoff (mg / L) 제거율(%)% Removal 개시시 (HRT: 13.8hr)On start (HRT: 13.8hr) 6.06.0 5.65.6 6.66.6 4.94.9 5.15.1 -6.8-6.8 HRT : 11hrHRT: 11hr 8.18.1 7.17.1 8.58.5 6.96.9 6.76.7 -5.3-5.3 HRT : 16.5hrHRT: 16.5hr 7.87.8 8.38.3 8.38.3 7.27.2 7.67.6 -5.5-5.5 HRT : 22hrHRT: 22hr 무반송No return 5.95.9 5.65.6 5.65.6 4.74.7 5.25.2 -11.0-11.0 반송(100%)Return (100%) 6.16.1 5.15.1 5.15.1 5.25.2 4.64.6 10.210.2

이상 설명한 바와 같은 본 발명의 폐수처리장치 및 방법은 충격부하 완충능력이 우수하고 유기물 및 질산화, 탈질효율이 우수할 뿐만 아니라 발생슬러지의 양이 매우 적어 슬러지 처분의 문제가 없고 유지관리가 용이한 등의 장점이 있다.Waste water treatment apparatus and method of the present invention as described above is excellent in shock load buffering capacity, excellent in organic matter, nitrification, denitrification efficiency, and the amount of sludge generated is very small, there is no problem of sludge disposal and easy maintenance. Has the advantage.

Claims (6)

유량조정조(10)와; 혐기성조(21), 무산소조(22) 및 포기조(30)로 이루어진 반응조와; 탈기조(40) 및 침전조(40)를 구비하고; 상기 혐기성조와 무산소조는 업플로우(upflow) 형태의 단일 조(20)로 다공성 격판(23)에 의해 상단이 무산소조가 구성되고, 하단이 혐기성조로 구성되며; 상기 유량조정조는 공급라인을 통해 혐기성조에 연결되고, 무산소조는 공급라인을 통해 포기조에 연결되며, 상기 포기조는 공급라인을 통해 침전조에 연결되고 반송라인을 통해 탈기조에 연결되며, 상기 탈기조는 반송라인을 통해 무산소조에 연결되고, 침전조의 하단은 슬러지 반송라인을 통해 혐기성조에 연결되는 합병정화조용 접촉산화식 폐수처리장치에서A flow rate adjusting tank 10; A reaction tank composed of an anaerobic tank 21, an anaerobic tank 22, and aeration tank 30; A degassing tank 40 and a settling tank 40; The anaerobic tank and the anaerobic tank is composed of an upflow (upflow) single tank 20 by the porous diaphragm 23, the upper end is composed of an anaerobic tank, the lower end is composed of anaerobic tank; The flow adjusting tank is connected to the anaerobic tank through the supply line, the anaerobic tank is connected to the aeration tank through the supply line, the aeration tank is connected to the settling tank through the supply line and connected to the degassing tank through the return line, the degassing tank is returned In the contact oxidation type wastewater treatment system for the combined purification tank connected to the anaerobic tank through the line and the bottom of the settling tank connected to the anaerobic tank through the sludge return line. BOD 농도 10mg/L이하, COD 농도 40mg/L 이하, T-N 농도 20mg/L 이하의 유출수를 얻기 위하여, BOD용적부하를 0.2㎏BOD/㎥/day 이하로 유지하고, COD용적부하를 0.4㎏COD/㎥/day 이하로 유지하는 것을 특징으로 하는 합병정화조용 접촉산화식 폐수처리방법.In order to obtain effluents having a BOD concentration of 10 mg / L or less, a COD concentration of 40 mg / L or less, and a TN concentration of 20 mg / L or less, the BOD volume load is kept at 0.2 kg BOD / m 3 / day or less, and the COD volume load is 0.4 kg COD / Contact oxidation type wastewater treatment method for a combined septic tank, characterized in that it is maintained at ㎥ / day or less. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR10-2000-0026170A 2000-05-16 2000-05-16 Contact oxidation-type waste water disposal method for integrated septic tank KR100382890B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0026170A KR100382890B1 (en) 2000-05-16 2000-05-16 Contact oxidation-type waste water disposal method for integrated septic tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0026170A KR100382890B1 (en) 2000-05-16 2000-05-16 Contact oxidation-type waste water disposal method for integrated septic tank

Publications (2)

Publication Number Publication Date
KR20010105582A KR20010105582A (en) 2001-11-29
KR100382890B1 true KR100382890B1 (en) 2003-05-09

Family

ID=19668766

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0026170A KR100382890B1 (en) 2000-05-16 2000-05-16 Contact oxidation-type waste water disposal method for integrated septic tank

Country Status (1)

Country Link
KR (1) KR100382890B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031726A1 (en) * 2017-08-10 2019-02-14 정우이엔티㈜ Upflow-type mbr wastewater treatment system using stacked structure and cleaning ball

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020588B1 (en) * 2010-07-23 2011-03-09 주식회사 건양기술공사 건축사사무소 A sewage treatment system
CN105753264A (en) * 2016-04-29 2016-07-13 安徽欧鑫环保科技有限责任公司 Integrated treatment device for water circulation bio-toilet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235698A (en) * 1984-05-08 1985-11-22 Shoji Takeuchi Method and apparatus for treating sewage
JPH09168796A (en) * 1995-12-19 1997-06-30 Nippon Steel Corp Removal of nitrogen in waste water
KR19980050066A (en) * 1996-12-20 1998-09-15 김정국 Simultaneous Removal of Organics, Nitrogen and Phosphorus in Wastewater by Using Fixed Biofilm Process and Bypass Flow
KR19980068656A (en) * 1997-02-21 1998-10-26 한동준 Wastewater Treatment Using Biological Three-Phase Digestion Process in a Single Reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235698A (en) * 1984-05-08 1985-11-22 Shoji Takeuchi Method and apparatus for treating sewage
JPH09168796A (en) * 1995-12-19 1997-06-30 Nippon Steel Corp Removal of nitrogen in waste water
KR19980050066A (en) * 1996-12-20 1998-09-15 김정국 Simultaneous Removal of Organics, Nitrogen and Phosphorus in Wastewater by Using Fixed Biofilm Process and Bypass Flow
KR19980068656A (en) * 1997-02-21 1998-10-26 한동준 Wastewater Treatment Using Biological Three-Phase Digestion Process in a Single Reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031726A1 (en) * 2017-08-10 2019-02-14 정우이엔티㈜ Upflow-type mbr wastewater treatment system using stacked structure and cleaning ball

Also Published As

Publication number Publication date
KR20010105582A (en) 2001-11-29

Similar Documents

Publication Publication Date Title
CN102485668B (en) Wastewater pretreatment method and application thereof
EP1012121B1 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
WO2004002904A1 (en) Combined activated sludge-biofilm sequencing batch reactor and process
CN108409033A (en) FNA strengthens the apparatus and method of the segmental influent UCT advanced nitrogen dephosphorization of short distance nitration
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
CN107265791A (en) Kitchen garbage slurry fermentation waste water processing unit
Frijters et al. Treatment of municipal wastewater in a CIRCOX® airlift reactor with integrated denitrification
CN108191159B (en) Kitchen garbage waste water non-membrane method processing system
CN101269878A (en) Return sludge separation technique for improving dephosphorization removing nitric efficiency factor of wastewater treatment
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
CN107973406A (en) One kind realizes dirty Organic substance in water and the separated apparatus and method of ammonia nitrogen
KR100382890B1 (en) Contact oxidation-type waste water disposal method for integrated septic tank
Gonçalves et al. Biological phosphorus removal in fixed films reactors
Banas et al. SBR technology used for advanced combined municipal and tannery wastewater treatment with high receiving water standards
CN101402488B (en) CAST segmenting water feed reinforced denitrification control method
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
CN107311403A (en) Kitchen garbage fermentation waste water processing unit
CN211170319U (en) Coupling treatment system of iron-promoted magnetic loading anaerobic/anoxic activated sludge method and biofilm method
CN107337321A (en) Anaerobic digestion of kitchen wastes wastewater treatment equipment
KR20050014407A (en) Apparatus and Method of treating nitrogen and phosphorus of sewage and Operating Method of the apparatus
Do et al. Wastewater treatment by Sequencing Batch Reactor (SBR) without releasing excess sludge
KR20050029872A (en) Wastewater treatment apparatus and method
KR102607197B1 (en) High-concentration landfill leachate, livestock wastewater, manure, food wastewater, industrial wastewater and low-concentration wastewater treatment system using an upflow complex bioreactor
CN216890529U (en) Integrated sewage treatment equipment
KR100543770B1 (en) polluted water sewage disposal method and its apparatus

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071012

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee