KR100381563B1 - Process for preparing catalysts for liquid-phase degradation of waste polymer, and catalytic degradation process using the same - Google Patents
Process for preparing catalysts for liquid-phase degradation of waste polymer, and catalytic degradation process using the same Download PDFInfo
- Publication number
- KR100381563B1 KR100381563B1 KR10-2000-0075515A KR20000075515A KR100381563B1 KR 100381563 B1 KR100381563 B1 KR 100381563B1 KR 20000075515 A KR20000075515 A KR 20000075515A KR 100381563 B1 KR100381563 B1 KR 100381563B1
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- zeolite
- mfi
- decomposition
- mfi zeolite
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 154
- 239000002699 waste material Substances 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000007791 liquid phase Substances 0.000 title abstract description 37
- 229920000642 polymer Polymers 0.000 title description 21
- 230000003197 catalytic effect Effects 0.000 title description 18
- 238000006731 degradation reaction Methods 0.000 title description 11
- 230000015556 catabolic process Effects 0.000 title description 10
- 239000010457 zeolite Substances 0.000 claims abstract description 120
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 110
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 108
- 239000002861 polymer material Substances 0.000 claims abstract description 59
- 238000000034 method Methods 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000012452 mother liquor Substances 0.000 claims abstract description 20
- 238000003421 catalytic decomposition reaction Methods 0.000 claims abstract description 18
- 238000010306 acid treatment Methods 0.000 claims abstract description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001257 hydrogen Substances 0.000 claims abstract description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 13
- 229910000000 metal hydroxide Inorganic materials 0.000 claims abstract 2
- 150000004692 metal hydroxides Chemical class 0.000 claims abstract 2
- 238000000354 decomposition reaction Methods 0.000 claims description 66
- 239000012263 liquid product Substances 0.000 claims description 32
- 239000007788 liquid Substances 0.000 claims description 24
- 239000000047 product Substances 0.000 claims description 22
- 239000002253 acid Substances 0.000 claims description 20
- 239000000376 reactant Substances 0.000 claims description 20
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 19
- 239000004327 boric acid Substances 0.000 claims description 19
- -1 hydrogen ions Chemical class 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 238000003786 synthesis reaction Methods 0.000 claims description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 239000011574 phosphorus Substances 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 6
- 229920000098 polyolefin Polymers 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 150000001491 aromatic compounds Chemical class 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 150000001336 alkenes Chemical class 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- 238000002425 crystallisation Methods 0.000 claims description 2
- 230000008025 crystallization Effects 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims 1
- 229910052733 gallium Inorganic materials 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims 1
- 229930195733 hydrocarbon Natural products 0.000 abstract description 26
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 26
- 238000011282 treatment Methods 0.000 abstract description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 44
- 230000000694 effects Effects 0.000 description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 29
- 229910052799 carbon Inorganic materials 0.000 description 29
- 229920002554 vinyl polymer Polymers 0.000 description 28
- 229920001903 high density polyethylene Polymers 0.000 description 27
- 239000004700 high-density polyethylene Substances 0.000 description 27
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 27
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 24
- 230000008021 deposition Effects 0.000 description 21
- 239000002245 particle Substances 0.000 description 18
- 229920001684 low density polyethylene Polymers 0.000 description 16
- 239000004702 low-density polyethylene Substances 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 239000005038 ethylene vinyl acetate Substances 0.000 description 9
- 239000000446 fuel Substances 0.000 description 9
- 229920000573 polyethylene Polymers 0.000 description 9
- 238000004523 catalytic cracking Methods 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 7
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- 238000000197 pyrolysis Methods 0.000 description 6
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 4
- 239000008119 colloidal silica Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 229910001388 sodium aluminate Inorganic materials 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- BGQMOFGZRJUORO-UHFFFAOYSA-M tetrapropylammonium bromide Chemical compound [Br-].CCC[N+](CCC)(CCC)CCC BGQMOFGZRJUORO-UHFFFAOYSA-M 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 230000007847 structural defect Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000009313 farming Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 2
- 235000019799 monosodium phosphate Nutrition 0.000 description 2
- 150000002892 organic cations Chemical class 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000012667 polymer degradation Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 206010063659 Aversion Diseases 0.000 description 1
- 235000009091 Cordyline terminalis Nutrition 0.000 description 1
- 244000289527 Cordyline terminalis Species 0.000 description 1
- 229920006266 Vinyl film Polymers 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910001491 alkali aluminosilicate Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004434 industrial solvent Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000036619 pore blockages Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003900 soil pollution Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/30—Ion-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C4/00—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
본 발명은 폐고분자 물질의 액상 촉매분해공정에서 촉매로 사용하기 위해 유기 주형물질 없이 3∼16(K2O·Na2O)·0.25∼1.0Al2O3·50∼100SiO2·2150∼3000H2O 조성의 합성모액에 MFI 제올라이트를 핵심으로 합성모액 1 kg당 0.5∼4 g을 넣어 175∼205℃에서 1∼3일간 합성하고, 바로 이를 0.2∼3N 염산 수용액으로 산처리하거나; 0.2∼4N 금속 수산화물 수용액으로 처리한 후 산처리하여; 수소이온이 교환된 MFI 제올라이트 촉매를 제조하는 방법 및 이를 이용하여 액상 촉매 분해시킴을 특징으로 하는 폐고분자 물질을 저분자 탄화수소로 전환하는 방법을 제공한다.In the present invention, 3 to 16 (K 2 O · Na 2 O) · 0.25 to 1.0Al 2 O 3 · 50 to 100SiO 2 · 2150 to 3000H without organic template material for use as catalyst in liquid phase catalytic decomposition of waste polymer materials 0.5-4 g per kg of synthetic mother liquor was added to the synthetic mother liquor of 2 O composition as a core and synthesized at 175-205 ° C. for 1 to 3 days, followed by acid treatment with 0.2-3N aqueous hydrochloric acid solution; Treatment with 0.2-4N aqueous metal hydroxide solution followed by acid treatment; Provided are a method for preparing a hydrogen ion-exchanged MFI zeolite catalyst, and a method for converting waste polymer materials into low molecular hydrocarbons characterized by liquid phase catalytic decomposition.
Description
본 발명은 폐고분자 물질의 액상분해용 촉매의 제조방법 및 이를 이용한 분해방법 액상분해공정에 관한 것이다. 더 상세히는 본 발명은 폴리올레핀계 폐고분자 물질을 분해하여 액체연료나 석유화학공업 원료로 사용할 수 있는 저분자 탄화수소로 전환시키기 위한 촉매의 제조 방법 및 이러한 촉매를 이용하여 폐고분자 물질을 저분자 탄화수소로 분해시키는 방법을 제공하는 것이다.The present invention relates to a method for preparing a catalyst for the liquid phase decomposition of waste polymer materials and to a liquid phase decomposition process using the same. More specifically, the present invention provides a method for preparing a catalyst for decomposing polyolefin-based waste polymer materials and converting them into low-molecular hydrocarbons that can be used as raw materials for liquid fuel or petrochemical industry, and decomposing waste polymer materials into low-molecular hydrocarbons using such catalysts. To provide a way.
고분자물질의 종류가 다양해지고 용도가 넓어지면서 고분자물질의 사용량이 급격히 증가되고 있다. 반면 고분자물질은 값이 싸고 내구성이 약해 수명이 짧기 때문에 폐기되는 고분자물질도 많다. 1998년 우리 나라 고분자물질의 생산량은 750만톤에 이르며, 폐고분자 물질 발생량도 무척 많아져서 300만톤에 이른다. 폐기되는 고분자물질의 16% 정도는 물리적 재활용 조작을 거쳐 재생용기나 파이프 등을 제조하는데 사용되지만, 폐고분자 물질 대부분은 적절한 재활용 방법이 없어 그대로 폐기되고 있다. 소각하여 열을 회수하는 방안도 에너지 측면에서 매우 효율적이나, 소각과정에서 다이옥신 등 유해가스가 발생하여 규제되고 있다. 폐고분자 물질의 매립은 토양오염을 초래할 뿐 아니라, 적당한 매립지 확보도 혐오시설 거부 분위기 때문에 용이하지 않다. 이처럼 폐고분자 물질의 발생량은 급증하는데 비해 적절한 재활용 방안이나 폐기방법이 없어 폐고분자 물질의 폐기처리가 심각한 사회문제로 부각되고 있다.As the types of polymer materials are diversified and their applications are widespread, the amount of polymer materials used is rapidly increasing. On the other hand, many polymer materials are discarded because they are cheap and have low durability and short lifespan. In 1998, the production of high molecular materials in our country amounted to 7.5 million tons, and the amount of waste polymers generated was very high, reaching 3 million tons. About 16% of the discarded polymer is used to manufacture recycled containers or pipes through physical recycling, but most of the waste polymer is discarded as it is not properly recycled. The method of incineration to recover heat is also very efficient in terms of energy, but harmful gases such as dioxins are generated during incineration. Landfilling of waste polymers not only causes soil pollution, but it is also difficult to secure adequate landfill due to the aversion atmosphere. As the generation of waste polymer material increases rapidly, there is no proper recycling method or disposal method, which makes disposal of waste polymer material a serious social problem.
대부분의 고분자물질은 탄소와 수소로 이루어져 있기 때문에, 이를 저분자탄화수소로 분해시켜서 연료나 석유화학공업의 원료로 재활용하는 방안이 규모면이나 처리방법에서 가장 현실성이 있다. 열을 가하여 고온에서 고분자물질을 분해시키는열분해공정은 공정이 단순하고 조작이 용이하나 에너지 소요량은 많고, 생성된 액체 연료의 탄소수 분포가 넓어 연료로서 품질이 낮다. 이에 비해 촉매를 사용하면 분해온도를 낮출 수 있고 생성물의 탄소수 분포를 조절할 수 있어 유리하지만, 촉매 비용 때문에 수익성이 저하된다. 1차 열분해를 거쳐 기화된 고분자물질을 촉매와 반응시키는 기상촉매분해공정은 안정적인 조작이 가능하나, 소요되는 에너지와 촉매 비용이 모두 커서 수익성이 낮다. 이에 비해 용융된 폐고분자 물질에 촉매를 가하여 분해시키는 액상촉매분해공정은 낮은 온도에서 액체생성물을 많이 얻을 수 있어 매우 바람직하나, 고분자물질에 의한 탄소침적으로 촉매가 빠르게 활성 저하되어 촉매를 한번밖에 사용하지 못해 촉매 비용이 많이 소요된다. 따라서 액상촉매분해공정에서는 촉매 비용이 폐고분자 물질의 분해공정 수익성을 결정하는 중요한 인자이다.Since most high molecular materials are made of carbon and hydrogen, the most practical method is to decompose them into low molecular hydrocarbons and recycle them as raw materials for fuel or petrochemical industry. The pyrolysis process that decomposes a polymer material at high temperature by applying heat is simple and easy to operate, but requires a large amount of energy and has a low carbon quality due to the wide carbon number distribution of the produced liquid fuel. The use of catalysts is advantageous in that the decomposition temperature can be lowered and the carbon number distribution of the product can be controlled, but the profitability is lowered due to the catalyst cost. The gas phase catalytic cracking process that reacts vaporized polymer material with a catalyst through primary pyrolysis can be operated stably, but the profitability is low due to the high energy and catalyst costs. On the other hand, the liquid catalyst decomposition process of decomposing by adding a catalyst to the molten waste polymer material is very preferable because a large amount of liquid product can be obtained at a low temperature. However, the catalyst is rapidly deactivated by carbon deposition by a polymer material, so that the catalyst is used only once. The cost of the catalyst is high. Therefore, in the liquid catalyst decomposition process, the catalyst cost is an important factor that determines the profitability of the decomposition process of waste polymer materials.
폐고분자 물질의 액상촉매분해공정에 사용하는 촉매는 낮은 온도에서도 고분자물질을 분해시킬 수 있도록 활성이 높아야 하고, 액체생성물이 많이 생성되도록 분해정도를 조절할 수 있어야 한다. 특히 적은 양의 촉매로 많은 양의 폐고분자 물질을 처리할 수 있도록 탄소침적에 의한 활성저하가 느려야 경제성이 확보될 수 있다. 산세기가 강하면 고분자물질의 분해반응 활성은 높으나, 탄소침적이 심하다. 따라서 산성도가 강하면서 세공구조나 산점농도가 적절하여 고비점 화합물 생성이 억제되어야 탄소침적에 의한 활성저하가 느려서 촉매로서 가능성이 높다. 이와 함께 외표면적이 넓어 고분자물질과 접촉 가능성이 높으면 더욱 효과적이다. 이처럼 액상촉매분해공정에 사용할 수 있는 촉매는 요구되는 특성이 복잡하고 쉽지 않으면서도, 한번밖에 사용하지 못하므로 촉매가격이 아주 저렴해야 한다. 따라서 액상촉매분해공정용 촉매는 복합적인 요구 특성을 모두 만족시키면서도 저렴하게 제조되어야 하기 때문에 적절한 제조방법이 고안되지 못했다.The catalyst used in the liquid catalyst decomposition process of the waste polymer material should have high activity so as to decompose the polymer material even at low temperature, and control the decomposition degree so that a lot of liquid product is produced. In particular, economic activity can be secured only when the deterioration of activity due to carbon deposition is slow so that a large amount of waste polymer material can be treated with a small amount of catalyst. If the acid strength is high, the decomposition activity of the polymer is high, but the carbon deposition is severe. Therefore, when the acidity is strong and the pore structure and the acid concentration are appropriate, the formation of high-boiling compounds is suppressed, so that the degradation of activity due to carbon deposition is slow, which is likely to be a catalyst. In addition, it is more effective if the outer surface area is large and the possibility of contact with the polymer material is high. As such, the catalyst that can be used in the liquid catalytic cracking process is complex and not required, and can be used only once, so the catalyst price must be very cheap. Therefore, the catalyst for the liquid phase catalytic cracking process has to be prepared inexpensively while satisfying all of the complex properties, and thus, an appropriate manufacturing method has not been devised.
폐고분자 물질의 분해공정용 촉매로 제올라이트계 촉매가 많이 검토되었다(1). 세공이 구부러진 모양의 MFI나 BEA 제올라이트의 세공 내에서는 긴 탄화수소가 생성되거나 확산되기 어렵다. 이로 인해 탄소침적 전구체인 긴 탄화수소의 생성이 억제되므로 탄소침적에 의한 촉매의 활성저하가 느려서 고분자물질의 액상촉매분해반응에서 활성이 우수하다. 입자가 작으면 외표면적이 넓고 입자내 확산거리가 짧고 고분자물질과 접촉 가능성이 커져 분해활성은 더 높아진다. 실제로 입자가 작은 MFI나 BEA 제올라이트 촉매에서는 폴리에틸렌(PE) 왁스나 고밀도폴리에틸렌(HDPE) 등 고분자물질이 빠르게 분해되나, 같은 구조의 제올라이트라도 입자가 크면 분해 활성이 크게 낮아진다(2). 고분자물질은 분자가 크기 때문에 제올라이트 세공내 확산이 느려서 세공내보다는 외표면에서 고분자물질의 분해반응이 더 빠르다. 그러나 외표면에는 세공구조의 제한이 없어서, 탄소침적에 의한 활성저하는 빠르게 진행된다. 특히 외표면의 산점 농도가 지나치게 높으면 탄소침적이 심하여 세공입구까지 탄소로 덮여 활성 자체가 소실될 수도 있다. 이런 특성을 모두 종합하면 액상촉매분해반응에 사용할 수 있는 촉매는 입자가 작아서 외표면적은 넓어 활성이 우수하면서도, 강한 산점이 너무 많지 않아 탄소 침적속도가 느려야 바람직하다(3).Many zeolite catalysts have been studied as catalysts for the decomposition of waste polymer materials (1). In the pores of bent zeolite MFI or BEA zeolite, long hydrocarbons are less likely to be produced or diffused. As a result, the formation of long hydrocarbons, which are carbon deposition precursors, is inhibited, resulting in slow catalyst deactivation due to carbon deposition. The smaller the particles, the larger the outer surface area, the shorter the diffusion distance within the particles, and the greater the possibility of contact with the polymer material, resulting in higher decomposition activity. In fact, small particles of MFI and BEA zeolite catalysts rapidly decompose high molecular materials such as polyethylene (PE) wax and high density polyethylene (HDPE). However, even larger zeolites of the same structure have a significantly lower decomposition activity (2). Because of the large size of the molecules, the diffusion of the polymer material in the zeolite pores is slow, so that the decomposition reaction of the polymer material is faster in the outer surface than in the pores. However, since there is no restriction | limiting of a pore structure on an outer surface, the degradation of activity by carbon deposition advances rapidly. In particular, if the concentration of the acidic acid on the outer surface is too high, carbon deposition may be severe and the activity itself may be lost by covering the carbon to the pore inlet. Taken together, these catalysts, which can be used for liquid phase catalytic decomposition, have a small particle and have a large external surface area, which is excellent in activity, but do not have too many strong acid points, and thus, carbon deposition rate is desirable (3).
본 발명은 PE나 PP처럼 단일성분으로 이루어진 폴리올레핀계 폐고분자 물질과 폐농업용 비닐 필름처럼 저밀도 폴리에틸렌(LDPE)과 에틸렌비닐아세테이트(EVA) 등이 혼합되어 있는 폐고분자 물질을 저분자탄화수소로 액상분해시키는 공정용 촉매제조와 공정구성에 대한 것이다. 폐고분자 물질로부터 액체연료로 사용할 수 있는 저분자탄화수소 혼합물이나 석유화학공업의 원료로 사용될 수 있는 방향족화합물의 혼합물을 제조할 수 있는 공정에 적용할 수 있는 저렴하면서도 활성이 우수한 촉매의 제조방법과 이를 이용한 공정의 운영기술에 관한 발명이다. 액상촉매분해공정에 사용 가능한 촉매는 고분자의 1차분해를 촉진시킬 수 있도록 외표면이 넓어야 하면서도 동시에 활성이 높아 낮은 온도에서도 분해반응이 진행되어야 한다. 뿐만 아니라, 지나치게 활성이 높거나 활성점이 너무 많아서 탄소침적이 심하지 않아야 한다. 따라서, 본 발명에서는 저렴하게 제조한 MFI 제올라이트를 적절히 처리하여 표면적을 증대시켜 활성은 높으면서도 탄소침적은 느려 폐고분자 물질을 저분자탄화수소로 빠르게 분해시키고 동시에 액체생성물의 수율이 높은 촉매를 제조하였다.The present invention is a process for liquid-phase decomposition of waste polymer materials containing low density polyethylene (LDPE) and ethylene vinyl acetate (EVA) such as polyolefin-based waste polymer materials composed of a single component such as PE and PP and waste agricultural vinyl films. It is about the production of catalyst and process configuration. Inexpensive and highly active catalyst production method that can be applied to the process for producing low molecular hydrocarbon mixtures that can be used as liquid fuel from waste polymer materials or aromatic compounds that can be used as raw materials for petrochemical industry The invention relates to a process operating technology. The catalyst that can be used in the liquid catalyst decomposition process must have a wide outer surface and high activity to promote the primary decomposition of the polymer, and therefore the decomposition reaction must proceed even at a low temperature. In addition, the carbon deposition should not be too high or too many active sites. Therefore, in the present invention, a low-cost MFI zeolite is appropriately treated to increase the surface area, and the activity is high, but the carbon deposition is low, thereby rapidly decomposing the waste polymer material into low molecular hydrocarbons, and at the same time, preparing a catalyst having a high yield of liquid product.
폐고분자 물질의 액상촉매분해공정에 적용할 수 있는 MFI 제올라이트 촉매를 저렴하게 제조하기 위하여, 본 발명에서는 유기주형물질을 사용하지 않고 MFI 제올라이트를 제조하였다. 일반적으로 제올라이트는 주형물질이나 주형물질 응집체 주위에 형성된 핵심이 자라서 결정화되기 때문에, 무기 양이온이나 유기 양이온을 주형물질로 이용하여 합성한다. 최근에는 비이온성 유기물을 주형물질로 이용하는 합성 예도 보고되어 있으나, MFI 제올라이트는 보통 테트라프로필암모늄 브로마이드(tetrapropylammonium bromide : TPABr)라는 물질을 유기주형물질로 이용하여 합성한다. 유기 양이온 주위에 알루미노실리케이트 중합체가 배열되어 제올라이트가 형성된다. 유기주형물질 TPABr과 알카리성 알루미노실리케이트를 혼합한 10TPABr·16Na2O·Al2O3·50SiO2·3000H2O 조성의 합성모액을 175℃에서 3일간 수열반응시키면 MFI 제올라이트가 합성된다. 합성된 MFI 제올라이트의 SiO2/Al2O3몰비는 합성모액의 SiO2/Al2O3몰비에 따라 결정된다. 그러나 TPABr은 매우 비싸기 때문에, 이를 사용하면서 MFI 제올라이트를 저렴하게 합성할 수는 없다.In order to inexpensively prepare an MFI zeolite catalyst that can be applied to the liquid catalyst decomposition process of waste polymer materials, in the present invention, MFI zeolite was prepared without using an organic template material. In general, zeolites are synthesized by using inorganic cations or organic cations as template materials because the core formed around the template material or the aggregate of the template material is crystallized. Recently, a synthesis example using a nonionic organic material as a template has been reported, but MFI zeolite is generally synthesized using a material called tetrapropylammonium bromide (TPABr) as an organic template material. The aluminosilicate polymer is arranged around the organic cation to form a zeolite. The MFI zeolite is synthesized when the organic templating agent TPABr and alkali alumino silicate, a mixture of 10TPABr · 16Na 2 O · Al 2 O 3 · 50SiO 2 · 3 ilgan hydrothermal synthesis mother liquor in 3000H 2 O composition at 175 ℃. SiO 2 / Al 2 O 3 molar ratio of the synthesized MFI zeolite is determined by the SiO 2 / Al 2 O 3 molar ratio of synthetic mother liquor. However, TPABr is so expensive that it is not possible to inexpensively synthesize MFI zeolites using it.
유기물을 주형물질로 사용하여 제올라이트를 합성하면 이를 소성과정에서 연소시켜 제거하여야 반응물과 생성물이 흡착되어 촉매반응이 진행될 수 있는 제올라이트의 세공이 만들어진다. 또 산점이 폐고분자 물질 촉매분해반응의 활성점이 되기 때문에, 강한 산성이 얻어지도록 제올라이트에 들어 있는 나트륨이온을 수소이온으로 이온교환해야 한다. 통상적으로 질산암모늄으로 먼저 이온교환하여 암모늄이온을 도입하고, 이를 550℃에서 소성하여 암모니아를 제거함으로써 수소이온이 교환된 제올라이트 촉매를 제조한다. 그러나, 이처럼 산성 제올라이트를 제조하는 과정에서 2회 소성해야 하고, 또 질산암모늄으로 이온교환하여야 하므로, 처리비용이 많이 소요되어 MFI 제올라이트 촉매를 저렴하게 제조할 수 없다.When the zeolite is synthesized using the organic material as the template material, the pore of the zeolite can be formed by adsorbing the reactant and the product by burning it in the calcination process. In addition, since the acid point becomes the active point of the catalytic decomposition of the waste polymer, sodium ions contained in the zeolite must be ion exchanged with hydrogen ions so that strong acidity is obtained. Typically, ammonium nitrate is first ion-exchanged to introduce ammonium ions, which are then calcined at 550 ° C. to remove ammonia, thereby preparing a hydrogen ion-exchanged zeolite catalyst. However, since the acid zeolite needs to be calcined twice and ion-exchanged with ammonium nitrate in the process of producing the acidic zeolite, the treatment cost is high and the MFI zeolite catalyst cannot be manufactured at low cost.
수소이온으로 교환된 MFI 제올라이트를 제조하여도 입자가 크면 촉매 활성이 낮아 폐고분자 물질의 액상촉매분해반응에 활성이 낮다. 입자가 크면 고분자물질의 1차 분해에 참여할 수 있는 외표면이 작아서 활성이 낮고 표면의 탄소침적이 심하여 세공 막힘도 일어난다. 기계적으로 분쇄하여도 제올라이트 입자를 1 ㎛보다 작게 분쇄하기가 쉽지 않기 때문에, 아주 작은 제올라이트 입자가 생성되도록 합성 조건을 조절하거나 아니면 합성된 제올라이트의 표면을 적절하게 처리하여 외표면을 아주 넓게 만들어야 한다.Even when the MFI zeolite exchanged with hydrogen ions is prepared, if the particles are large, the catalytic activity is low and the activity is low in the liquid phase catalytic decomposition of the waste polymer material. If the particles are large, the outer surface that can participate in the primary decomposition of the polymer material is small, the activity is low, and the carbon deposition on the surface is severe, pore blockage occurs. Since it is not easy to grind the zeolite particles smaller than 1 μm even by mechanical grinding, it is necessary to adjust the synthesis conditions so that very small zeolite particles are produced or to make the outer surface of the synthesized zeolite appropriately.
본 발명은 폐고분자 물질을 저분자탄화수소 혼합물로 전환시키는 액상촉매 분해반응에 적용하는데 적절한 촉매를 제조하는 기술을 제공한다.The present invention provides a technique for preparing a catalyst suitable for application to a liquid catalyst decomposition reaction that converts waste polymer material into a low molecular hydrocarbon mixture.
즉, 저렴하게 MFI 제올라이트를 제조할 수 있어야 하고, 수소이온으로 교환조작이 단순하여야 하며, 외표면적이 매우 넓어 액상촉매분해반응에 촉매로서 사용 가능한 MFI 제올라이트의 제조방법을 제공한다. 본 발명에 따라 제조된 MFI 제올라이트 촉매를 이용하면 폐고분자 물질을 낮은 온도에서 액체 연료로 사용할 수 있는 저분자탄화수소로 분해시킬 수 있으며, 또는 2차반응기 촉매와 반응조건을 조절하여 폐고분자 물질 분해생성물을 방향족화합물로 전환시켜서 석유화학공업의 원료도 제조할 수도 있다.That is, the MFI zeolite should be prepared at low cost, the exchange operation should be simple with hydrogen ions, and the outer surface area will be very wide, thereby providing a method for producing MFI zeolite that can be used as a catalyst for liquid phase catalytic decomposition. By using the MFI zeolite catalyst prepared according to the present invention, it is possible to decompose waste polymer materials into low-molecular hydrocarbons which can be used as liquid fuels at low temperatures, or by controlling the reaction conditions with secondary reactor catalysts to decompose waste polymer material decomposition products. Raw materials of the petrochemical industry can also be prepared by converting them into aromatic compounds.
도 1은 실시예 1에서 합성한 MFI 제올라이트의 X-선 회절 패턴을 나타내는 도이다.1 is a diagram showing an X-ray diffraction pattern of the MFI zeolite synthesized in Example 1. FIG.
도 2는 합성한 MFI 제올라이트의 질소흡착등온선을 나타내는 도이다.2 is a diagram showing a nitrogen adsorption isotherm of the synthesized MFI zeolite.
도 3은 본 발명의 MFI 제올라이트를 이용하여 폐고분자 물질을 액상촉매분해반응시키는 소형 시험장치의 일례를 나타내는 도이다.3 is a view showing an example of a small test apparatus for liquid phase catalytic decomposition of waste polymer materials using MFI zeolite of the present invention.
도 4는 실시예 2에서 제조한 MFI 제올라이트를 이용한 고분자물질 분해반응의 액체생성물의 탄소수 분포를 나타내는 도이다.Figure 4 is a diagram showing the carbon number distribution of the liquid product of the decomposition reaction of the polymer material using the MFI zeolite prepared in Example 2.
도 5는 폐고분자 물질의 액상 촉매분해 과정의 연속운전식 중형반응기의 일예를 나타내는 개략도이다.Figure 5 is a schematic diagram showing an example of a continuous operation medium reactor of the liquid phase catalytic decomposition of waste polymer material.
도 6는 여러 방법으로 추가 처리한 MFI 촉매에서 430℃ HDPE 분해반응의 액체생성물 분포를 나타내는 도이다.6 is a view showing the distribution of the liquid product of the 430 ℃ HDPE decomposition reaction in the MFI catalyst further treated by various methods.
본 발명은 PE, PP, LDPE와, EVA 혼합물인 농업용 비닐 등 폴리올레핀계 폐고분자 물질을 액체연료로 사용할 수 있는 저분자탄화수소 혼합물로 전환시키는 공정에 사용될 수 있는 MFI 제올라이트 촉매의 제조방법과 이 촉매를 250∼450℃의 용융상태 고분자물질에 첨가하여 직접 접촉시켜 분해시키는 액상촉매분해공정으로 구성되어 있다. 발명의 내용을 MFI 제올라이트 촉매를 저렴하게 제조하는 방법과 액상촉매분해공정의 구성 부분으로 나누어 설명한다.The present invention provides a method for preparing an MFI zeolite catalyst which can be used in the process of converting polyolefin waste polymer materials such as PE, PP, LDPE, and polyvinyl waste polymers such as agricultural vinyl, which is an EVA mixture, into a liquid fuel, which can be used as a liquid fuel. It is composed of a liquid catalyst decomposition process that is added to a molten polymer material at -450 ° C to be directly contacted and decomposed. The content of the present invention will be described by dividing it into a method for producing an MFI zeolite catalyst at low cost and a liquid catalyst decomposition process.
본 발명에서는 MFI 제올라이트를 유기주형물질을 사용하지 않고 합성하였다.유기주형물질을 사용하면 저렴하게 MFI 제올라이트를 합성할 수 없다. 저렴하게 합성하여야 폐고분자 물질 분해용 촉매로서 수익성을 확보할 수 있으므로, 유기주형물질 대신 알카리 양이온이 주형물질로 작용할 수 있는 조건에서 MFI 제올라이트를 합성하였다. 합성모액의 대표적인 조성은 3K2O·Al2O3·50SiO2·2150H2O이다. 문헌에 보고된 조성(4)과 다르게 NaOH 대신 KOH만을, 또는 혼합하여 사용하였으며, 물 첨가량을 최대한 줄였다. 조성 범위는 SiO2/Al2O3몰비는 50∼100, K2O/Al2O3몰비는 3∼16, H2O/Al2O3몰비는 2000∼2200으로 조정하였다. NaOH를 넣어 합성할 때는 Na2O/Al2O3몰비를 4∼20 범위로 조절하였다.In the present invention, MFI zeolite was synthesized without using an organic template material. Using an organic template material, it is not possible to synthesize MFI zeolite at low cost. MFI zeolite was synthesized under the condition that alkaline cation could act as template material instead of organic template material because it could be secured as a catalyst for decomposition of waste polymer material at low cost. Typical composition of the synthetic mother liquor is 3K 2 O · Al 2 O 3 · 50SiO 2 · 2150H 2 O. Unlike composition (4) reported in the literature, only KOH was used or mixed instead of NaOH, and the amount of water added was minimized. In the composition range, the molar ratio of SiO 2 / Al 2 O 3 was 50 to 100, the molar ratio of K 2 O / Al 2 O 3 was 3 to 16, and the molar ratio of H 2 O / Al 2 O 3 was adjusted to 2000 to 2200. When the NaOH was added to synthesize the Na 2 O / Al 2 O 3 molar ratio was adjusted to 4 ~ 20 range.
유기주형물질을 사용하면 MFI 제올라이트가 합성되는 조건이 매우 넓어져 합성이 용이하다. 그러나 유기주형물질을 사용하지 않으면 합성조성과 합성온도 조건이 매우 좁아져서 이들 인자의 조절이 매우 중요하다. 본 발명에서는 160∼200℃ 범위에서 1∼3일간 수열반응으로 유기주형물질을 사용하지 않고 결정성이 우수한 MFI 제올라이트를 합성할 수 있었으나, 조성이 조금만 달라지면 MFI 제올라이트가 생성되지 않거나 석영 등 불순물이 같이 얻어졌다. 합성조작이 용이하고 결정화 시간을 줄이기 위해 합성모액을 숙성처리하거나, MFI 제올라이트의 핵심을 넣었다. 높은 온도에서, 합성모액의 물 함량을 줄이고, 핵심을 공급하여 숙성하므로서, 유기주형물질을 사용하지 않고도 짧은 시간에 높은 수율의 MFI 제올라이트를 합성할 수 있어서 촉매 제조비용을 크게 낮출 수 있었다.The use of an organic template material facilitates the synthesis of MFI zeolites due to the wide range of conditions. However, without the use of organic template materials, the synthesis composition and synthesis temperature conditions are very narrow, so the control of these factors is very important. In the present invention, MFI zeolite having excellent crystallinity could be synthesized without using an organic template material by hydrothermal reaction in the range of 160 to 200 ° C. for 1 to 3 days. However, if the composition is slightly changed, MFI zeolite is not produced or impurities such as quartz are present. Obtained. The synthetic mother liquor was aged or the core of MFI zeolite was added to facilitate the synthesis and reduce the crystallization time. At high temperatures, by reducing the water content of the synthetic mother liquor and feeding and aging the core, it was possible to synthesize high yields of MFI zeolite in a short time without using an organic template material, thereby significantly lowering the cost of producing the catalyst.
유기주형물질을 사용하여 제올라이트를 합성하면 유기주형물질을 550℃ 이상에서 연소시켜 제거한 후, 질산암모늄으로 이온교환하고 다시 소성하여 양이온을 수소이온으로 교환시켜야 폐고분자 물질의 액상촉매분해반응에 쓸 수 있는 촉매가 만들어진다. 본 발명에서는 유기주형물질을 사용하지 않고 MFI 제올라이트를 합성하였으므로 소성조작이 필요하지 않다. 그러나 합성모액에 나트륨이나 칼륨양이온이 들어 있기 때문에, 이들을 수소이온으로 교환하는 조작이 필요하다. 유기주형물질을 태워서 제거하기 위해서는 서서히 승온하여야 하고, 고온에서 장기간 처리해야하기 때문에 에너지가 많이 필요하다. 또 양이온 교환을 위해 질산암모늄으로 이온 교환하여야 하고, 이를 다시 소성하여 암모니아를 제거하는 데도 역시 에너지비용이 많이 소요된다. 조작을 단순하게 하고 비용도 줄이기 위해 본 발명에서는 합성한 MFI 제올라이트를 0.2∼3N 염산 수용액으로 40∼80℃ 범위에서 처리하여 합성한 제올라이트에 들어 있는 나트륨이온을 수소이온으로 교환하였다. 염소이온은 세척과정에서 제거된다. 이로 인해 2차례의 소성과정이 절약된다. 높은 온도에서 소성하지 않고도 세공에 들어있는 물이나 합성과정이나 후처리과정에서 흡착된 물질을 200∼300℃에서 건조하여 제거하므로 사용 가능한 촉매를 제조할 수 있다. 따라서 질산암모늄을 이용한 이온교환을 한 번의 염산용액 처리로, 2회의 고온소성처리를 1회의 저온건조로 대체할 수 있어 촉매제조 비용이 크게 절감된다.When the zeolite is synthesized using the organic template material, the organic template material must be burned and removed at 550 ° C or higher, and then ion exchanged with ammonium nitrate and calcined to exchange cations with hydrogen ions. Catalyst is made. In the present invention, since the MFI zeolite is synthesized without using the organic template material, no plastic operation is required. However, since the synthetic mother liquor contains sodium or potassium cations, an operation of exchanging them with hydrogen ions is necessary. In order to burn and remove the organic template material, it needs to be gradually heated up and processed at a high temperature for a long time. In addition, it is necessary to ion exchange with ammonium nitrate for cation exchange, and it is also expensive to remove ammonia by calcining it again. In order to simplify the operation and reduce the cost, the present invention treated the synthesized MFI zeolite in an aqueous solution of 0.2-3N hydrochloric acid at 40-80 ° C. to exchange sodium ions in the synthesized zeolite with hydrogen ions. Chlorine ions are removed during washing. This saves two firing processes. It is possible to prepare a catalyst that can be used because it removes the water adsorbed in the pores or the adsorbed material in the synthesis or post-treatment at 200 ~ 300 ℃ without firing at a high temperature. Therefore, the ion exchange using ammonium nitrate can be replaced by one hydrochloric acid solution treatment, and two high-temperature firing treatments can be replaced by one low-temperature drying, thereby greatly reducing the cost of producing the catalyst.
유기주형물질을 사용하지 않고 제올라이트를 합성하면 일반적으로 입자가 큰 제올라이트가 얻어진다. 유기주형물질이 없어서 제올라이트의 기본구조와 2차 단위구조의 형성이 어렵기 때문에 핵심농도가 낮아 큰 결정이 될 때까지 오랫동안 성장하기 때문이다. 핵심이 적어 생성속도는 느리지만 각 핵심 주위에 반응물이 많아큰 입자로 성장하는 것이다. 그러나 폐고분자 물질의 액상분해반응에 활성이 높은 촉매는 입자가 작아서 외표면이 넓어야 한다. 따라서 유기주형물질을 사용하지 않고 합성한 MFI 제올라이트는 입자가 크고 활성은 낮아서 그대로는 폐고분자 물질의 분해반응에 쓸모가 없다. 본 발명에서는 유기주형물질을 사용하지 않고 합성한 MFI 제올라이트를 알카리 용액으로 처리하여 표면을 부분적으로 용해시켜 입자 크기는 그대로이나 외표면적은 매우 넓은 촉매를 제조할 수 있었다. MFI 제올라이트 20 g에 0.05∼4.0N의 수산화나트륨이나 수산화칼륨 수용액 100 ㎖를 가하여 60∼80℃에서 0.5∼8시간 처리하면 제올라이트 표면이 부분적으로 용해되어 외표면적이 크게 넓어진다. 알카리수용액 처리 MFI 제올라이트는 액상촉매분해반응의 활성도 매우 높았다.Synthesis of zeolites without the use of organic template materials generally results in zeolites with large particles. This is because the absence of organic template material makes it difficult to form the basic structure and the secondary unit structure of the zeolite, so the core concentration is low and grows for a long time until a large crystal is obtained. Although the core is small, the production rate is slow, but there is a lot of reactants around each core to grow into large particles. However, catalysts with high activity in the liquid phase decomposition of waste polymer materials should have large outer surfaces due to their small particles. Therefore, MFI zeolite synthesized without the use of organic template material has large particles and low activity, and thus is not useful for decomposition of waste polymer materials. In the present invention, the MFI zeolite synthesized without using an organic template material was treated with an alkaline solution to partially dissolve the surface to prepare a catalyst having a very large particle size but a large external surface area. To 20 g of MFI zeolite, 100 ml of 0.05-4.0 N sodium hydroxide or potassium hydroxide aqueous solution is added and treated at 60-80 ° C. for 0.5-8 hours to partially dissolve the zeolite surface and greatly increase the external surface area. Alkaline aqueous solution treated MFI zeolite was also very active in the catalytic cracking reaction.
폐고분자 물질의 액상촉매분해반응에서는 용융된 고분자물질과 촉매입자가 직접 접촉하므로 탄소침적에 의한 활성저하 가능성이 매우 높다. 특히 촉매 표면에 지나치게 강한 산점이나 구조적 결함이 많으면 폐고분자 물질의 분해과정에서 생성된 올레핀이 강하게 흡착되어 활성화되고, 이들이 촉매표면에서 서로 중합하여 쉽게 탈착되지 않으므로 끓는점이 높은 중합체가 형성된다. 이들이 촉매 표면에 오래 흡착되어 있으면 중합과 탈수소과정을 거쳐 탄소로 침적되어 촉매 활성점을 차폐시켜 활성을 저하시킨다. 본 발명에서는 탄소침적을 최소화하기 위해 수소이온으로 교환된 MFI 제올라이트를 2N 붕산 수용액으로 60∼80℃에서 가열 환류하였다. 붕산은 세기는 약하지만 산이나 염기로도 작용할 수 있어, 올레핀과 지나치게 강하게 상호작용하는 강한 산점이나 구조적 결함 또는 염기점을 중화시켜서 촉매의 탄소침적에 의한 활성저하를 크게 저하시킬 수 있다. 붕산처리는 탄소침적을 줄여서 촉매 수명이 연장되므로 폐고분자 물질의 분해 전환율을 크게 높이는데 효과적이었다. 필요에 따라, 강한 산점을 중화하기 위해 인을 담지시키기도 하였다. 적정량의 인산2수소나트륨 수용액을 건조한 촉매에 가한 후, 소성하여 산점을 중화시켜 탄소침적을 억제할 수 있어 액상촉매분해반응의 전환율을 높이는데 가장 바람직하였다.In the liquid phase catalytic decomposition of the waste polymer material, the molten polymer material and the catalytic particles are in direct contact with each other. In particular, if the acid surface or structural defects are excessively strong on the surface of the catalyst, olefins generated during the decomposition of the waste polymer materials are strongly adsorbed and activated, and they polymerize with each other on the surface of the catalyst, so that polymers having a high boiling point are formed. If they are adsorbed on the surface of the catalyst for a long time, they are deposited with carbon through polymerization and dehydrogenation to shield the catalytic active site and lower the activity. In the present invention, in order to minimize carbon deposition, MFI zeolite exchanged with hydrogen ions was heated to reflux at 60 to 80 ° C. with a 2N boric acid aqueous solution. Although boric acid is weak in strength, it can also act as an acid or a base, and can neutralize strong acid sites, structural defects or base points that interact excessively with olefins, thereby greatly reducing the deterioration of activity due to carbon deposition of the catalyst. The boric acid treatment was effective in greatly increasing the decomposition conversion rate of the waste polymer material by reducing the carbon deposition and extending the catalyst life. If necessary, phosphorus was also supported to neutralize strong acid sites. After adding an appropriate amount of aqueous sodium dihydrogen phosphate solution to the dry catalyst, it was calcined to neutralize the acid point to suppress carbon deposition, which is most preferable for increasing the conversion rate of the liquid catalyst decomposition reaction.
(실시예)(Example)
이하, 실시예를 들어 본 발명을 더 구체적으로 설명한다.Hereinafter, an Example is given and this invention is demonstrated further more concretely.
실시예 1Example 1
폐고분자 물질의 액상촉매분해공정에 사용할 촉매를 수열합성 방법으로 제조하였다. 콜로이드실리카(SiO2함량 30wt%) 2555 g, 알루민산나트륨 113 g, 수산화칼륨 95 g, 물 8000 g을 섞어 합성모액을 제조한다. 350rpm으로 교반하면서 MFI 제올라이트 20 g을 핵심으로 첨가하여 24시간 상온에서 교반한다. 이 합성모액을 고압 반응기에 넣고 350rpm으로 교반하면서 7시간에 걸쳐 190℃까지 승온시키고 이 온도에서 36시간 동안 수열합성한다. 반응 후, 냉각하여 여과하고, 세척하여 SiO2/Al2O3몰비가 50인 MFI 제올라이트를 제조하였다. 건조 후, 합성된 제올라이트는 680 g으로 실리카 기준 수율은 85%이었다. 도 1에 나타낸 합성제올라이트의 X선 회절피크 위치나 세기가 문헌(5)에 보고된 X-선 회절패턴과 회절피크의 위치나 세기와 잘 일치하여 MFI 제올라이트가 생성되었음을 보여준다. 주사현미경으로 조사한 합성 MFI 제올라이트의 평균 입자크기는 약 5 ㎛이었다.The catalyst to be used in the liquid phase catalytic decomposition of the waste polymer material was prepared by hydrothermal synthesis. A synthetic mother liquor was prepared by mixing 2555 g of colloidal silica (30 wt% of SiO 2 ), 113 g of sodium aluminate, 95 g of potassium hydroxide, and 8000 g of water. While stirring at 350 rpm, 20 g of MFI zeolite was added as a core and stirred at room temperature for 24 hours. The synthetic mother liquor was put in a high pressure reactor and heated to 190 ° C. over 7 hours with stirring at 350 rpm, and hydrothermally synthesized at this temperature for 36 hours. After the reaction, the mixture was cooled, filtered and washed to prepare an MFI zeolite having a SiO 2 / Al 2 O 3 molar ratio of 50. After drying, the synthesized zeolite was 680 g and the silica standard yield was 85%. The X-ray diffraction peak position or intensity of the synthetic zeolite shown in FIG. 1 is well matched with the X-ray diffraction pattern and the position or intensity of the diffraction peak reported in the literature (5) to show that the MFI zeolite was produced. The average particle size of the synthetic MFI zeolite irradiated with a scanning microscope was about 5 μm.
실시예 2Example 2
실시예 1과 실리카 함량이 다른 콜로이드실리카(SiO2함량 40wt%) 1920 g, 알루민산나트륨 113 g, 수산화칼륨/나트륨 95 g, 물 9000 g 등을 섞어 합성모액을 제조하였다. MFI 제올라이트 20 g을 핵심으로 첨가하여 24시간 상온에서 교반한다. 이 합성모액을 고압반응기에 넣고 교반하지 않으면서 10시간동안에 걸쳐 190℃까지 승온시키고 이 온도에서 36시간동안 수열합성한다. 반응 후 냉각하여 여과하고 세척하여 MFI 제올라이트를 제조하였다. 합성된 제올라이트는 720 g으로 실리카 기준 수율은 94%이었다. SiO2/Al2O3몰비는 50이었고, 주사현미경으로 조사한 합성 제올라이트의 입자크기는 대략 5 ㎛이었으며, X-선 회절패턴으로부터 MFI 제올라이트임을 확인하였다. 그 결과를 표 1에 나타낸다.Synthetic mother liquor was prepared by mixing colloidal silica (SiO 2 content 40 wt%) 1920 g, sodium aluminate 113 g, potassium hydroxide / sodium 95 g, and 9000 g of water. 20 g of MFI zeolite is added as a core and stirred at room temperature for 24 hours. The synthetic mother liquor was placed in a high pressure reactor and heated to 190 ° C. over 10 hours without stirring and hydrothermally synthesized at this temperature for 36 hours. After the reaction was cooled, filtered and washed to prepare an MFI zeolite. The synthesized zeolite had 720 g of silica based yield of 94%. The molar ratio of SiO 2 / Al 2 O 3 was 50, the particle size of the synthetic zeolite irradiated with a scanning microscope was approximately 5 ㎛, it was confirmed that the MFI zeolite from the X-ray diffraction pattern. The results are shown in Table 1.
실시예 3Example 3
실시예 2 방법으로 MFI 제올라이트를 합성하고, 제올라이트를 여과, 회수하여 얻어진 여액을 사용하여 제올라이트를 다시 합성하였다. 전 합성과정에서 모은 상층액을 넣어 실시예 2에서 설명한 제조한 합성모액을 24시간동안 교반한다. 상층액은 알카리성이고 MFI 제올라이트 핵심을 포함하고 있어 폐수를 재활용할 수 있고, 여액에 들어있는 미세 제올라이트를 핵심으로 사용하므로 제올라이트를 절약할 수 있어 효과적이다. 이 합성모액을 고압반응기에 넣고 10시간동안 190℃까지 승온시켜 이 온도에서 36시간동안 수열합성하였다. 반응 후 냉각하여 여과하고 세척하여 MFI 제올라이트를 제조하였다. 합성된 제올라이트는 700 g으로 실리카 기준 수율은 91%이었다. 주사현미경으로 조사한 합성 제올라이트의 입자크기는 대략 5∼10 ㎛였고, X-선 회절패턴으로부터 MFI 제올라이트임을 확인하였다. 그 결과를 표 2에 나타낸다.Example 2 The MFI zeolite was synthesized by the method, and the zeolite was synthesized again using the filtrate obtained by filtering and recovering the zeolite. Put the supernatant collected in the entire synthesis process and stirred for 24 hours the synthetic mother liquor prepared in Example 2. The supernatant is alkaline and contains the core of MFI zeolite, which can be used to recycle the wastewater, and the zeolite can be saved by using the fine zeolite in the filtrate as the core. The synthetic mother liquor was put in a high pressure reactor and heated to 190 ° C. for 10 hours, and hydrothermally synthesized at this temperature for 36 hours. After the reaction was cooled, filtered and washed to prepare an MFI zeolite. The synthesized zeolite was 700 g with a silica reference yield of 91%. The particle size of the synthetic zeolite irradiated with a scanning microscope was approximately 5 to 10 μm, and the MFI zeolite was confirmed from the X-ray diffraction pattern. The results are shown in Table 2.
실시예 4Example 4
콜로이드실리카(SiO2함량 40wt%) 1920 g, 알루민산나트륨 93 g, 수산화칼륨/나트륨 95 g, 물 9000 g을 섞어 제조한 합성모액으로부터 MFI 제올라이트를 합성하였다. MFI 제올라이트 20 g을 핵심으로 첨가하여 24시간동안 상온에서 교반한다. 이 합성모액을 고압반응기에 넣고 10시간동안 190℃까지 승온시키고, 이 온도에서 36시간동안 수열합성한다. 반응 후 여과하고 세척하여 MFI 제올라이트를 제조하였다. 합성된 제올라이트는 700 g이었으며, 실리카 기준 수율은 91%이었다. 주사현미경으로 조사한 합성 제올라이트의 입자크기는 대략 1∼2 ㎛였고, X-선 회절패턴으로부터 MFI 제올라이트임을 확인하였다. 그 결과를 표 3에 나타낸다.MFI zeolite was synthesized from a synthetic mother liquor prepared by mixing 1920 g of colloidal silica (40 wt% of SiO 2 ), 93 g of sodium aluminate, 95 g of potassium hydroxide / sodium, and 9000 g of water. 20 g of MFI zeolite is added as a core and stirred at room temperature for 24 hours. The synthetic mother liquor is placed in a high pressure reactor and heated to 190 ° C. for 10 hours, and hydrothermally synthesized at this temperature for 36 hours. After the reaction was filtered and washed to prepare an MFI zeolite. The synthesized zeolite was 700 g and the silica reference yield was 91%. The particle size of the synthetic zeolite irradiated with a scanning microscope was approximately 1 to 2 μm, and it was confirmed that it was an MFI zeolite from an X-ray diffraction pattern. The results are shown in Table 3.
실시예 5Example 5
알루민산나트륨 대신에 수산화알루미늄을 사용하여 MFI 제올라이트를 합성하였다. 콜로이드실리카(SiO2함량 40wt%) 1994 g, 수산화알루미늄 43 g, 수산화칼륨/나트륨 264 g, 물 9000 g을 섞어 합성모액을 제조하였다. MFI 제올라이트 20 g을 핵심으로 첨가하여 24시간동안 상온에서 교반하였다. 이 합성모액을 고압반응기에 넣고 10시간동안 190℃까지 승온시키고 이 온도에서 36시간동안 수열합성하였다. 반응 후 여과하고 세척하여 MFI 제올라이트를 제조하였다. 합성된 제올라이트는 550 g으로 실리카 기준 수율은 69%이었다. 주사현미경으로 조사한 합성 제올라이트의 입자크기는 대략 0.5∼1.0 ㎛이었고, X-선 회절패턴으로부터 MFI 제올라이트임을 확인하였다. 그 결과를 표 4에 나타낸다.MFI zeolite was synthesized using aluminum hydroxide instead of sodium aluminate. Colloidal silica (SiO 2 content 40wt%) 1994 g, aluminum hydroxide 43 g, potassium hydroxide / sodium 264 g, 9000 g of water was mixed to prepare a synthetic mother liquor. 20 g of MFI zeolite was added as a core and stirred at room temperature for 24 hours. The synthetic mother liquor was placed in a high pressure reactor and heated to 190 ° C. for 10 hours, and hydrothermally synthesized at this temperature for 36 hours. After the reaction was filtered and washed to prepare an MFI zeolite. The synthesized zeolite had 550 g of silica based yield of 69%. The particle size of the synthetic zeolite irradiated with a scanning microscope was approximately 0.5 to 1.0 μm, and it was confirmed that it was MFI zeolite from an X-ray diffraction pattern. The results are shown in Table 4.
합성한 MFI 제올라이트의 질소흡착등온선을 도 2에 나타냈다. 합성 제올라이트의 질소흡착등온선들 모두 완벽한 랭그무어(Langmuir) 형으로, 미세세공이 균일하게 발달되어 있다. 메조세공이나 거대세공은 관찰되지 않았다. BET식을 이용하여 질소흡착등온선에서 계산한 표면적은 200∼350 m2/g으로, 이는 일반적인 제올라이트 표면적값 범주내이다.The nitrogen adsorption isotherm of the synthesized MFI zeolite is shown in FIG. 2. Nitrogen adsorption isotherms of synthetic zeolites are all perfectly Langmuir type, with uniform micropore development. No mesoporous or macropores were observed. The surface area calculated from the nitrogen adsorption isotherm using the BET equation is 200-350 m 2 / g, which is within the range of general zeolite surface area values.
실시예 6Example 6
폐고분자 물질의 액상촉매분해공정을 도 3에 나타낸 장치를 이용하여 조사하였다. 반응기 용량은 100 ㎖이며, 고분자물질과 촉매를 넣어 반응시켰다. 반응기는가열맨틀로 가열하였으며 PID 조절기로 반응기 온도를 조절하였다. 반응기 온도가 300℃ 근처에 이르면 기체가 생성된다. 반응기 온도가 380℃가 되면 액체생성물이 얻어진다. 생성물은 -4℃로 유지되는 응축기에서 액화시켜 수집하였다. 운반기체로 질소가스를 흘려주어서 공기와 접촉을 방지하고, 생성물 흐름을 원활하게 유지하였다.Liquid catalyst decomposition process of the waste polymer material was investigated using the apparatus shown in FIG. The reactor capacity was 100 ml and reacted with a polymer and a catalyst. The reactor was heated with a heating mantle and the reactor temperature was controlled with a PID controller. Gas is generated when the reactor temperature reaches around 300 ° C. When the reactor temperature reaches 380 ° C., a liquid product is obtained. The product was collected by liquefying in a condenser maintained at -4 ° C. Nitrogen gas was flowed into the carrier gas to prevent contact with air and the product flow was maintained smoothly.
실시예 2에서 제조한 MFI 제올라이트를 산처리하여 양이온을 수소이온으로 교환한 촉매에서 (주)호남석유화학에서 제조한 고밀도폴리에틸렌(HDPE)과, 저밀도폴리에틸렌(LDPE), 담양자원재생공사에서 폐비닐을 1차 처리후 입상형으로 제조한 폐비닐(DamP)의 액상촉매분해반응을 조사하였다. 아래 표 5에 이들 고분자물질의 액상촉매분해반응 결과를 정리하였다.The high-density polyethylene (HDPE), low-density polyethylene (LDPE) produced by Honam Petrochemical Co., Ltd. in the catalyst which acid-treated the MFI zeolite prepared in Example 2 and exchanged cations with hydrogen ions, and waste vinyl at Damyang Resources Reclamation Corporation After the first treatment, the liquid catalyst decomposition reaction of waste vinyl (DamP) prepared in granular form was investigated. Table 5 summarizes the results of liquid phase catalytic decomposition of these polymer materials.
반응물/촉매 : 10 g/0.3 gReactant / catalyst: 10 g / 0.3 g
HDPE와 LDPE 및 PE왁스는 60분내에 모두 분해되어 액체나 기체생성물로 전환되었다. 전환율이 100%에 약간 못 미치는 경우는 기상 잔유물이 반응 종료 후 냉각과정에서 촉매와 반응기에 응축되었기 때문으로, 전환율이 95% 이상이면 완전 분해된 상태를 나타낸다. 반면 폐농업용 비닐과 PP는 같은 조건에서 전환율이 20% 보다낮았으며, 액체생성물 수율도 1∼4% 정도로 매우 낮았다. 산처리하여 제조한 MFI 제올라이트 촉매는 HDPE와 LDPE의 분해반응에 적절하나, 폐농업용 비닐과 PP의 액상분해반응에는 적절하지 않았다.HDPE, LDPE, and PE waxes were all broken down in 60 minutes and converted to liquid or gaseous products. If the conversion is less than 100%, the gaseous residue is condensed in the catalyst and the reactor during the cooling process after the completion of the reaction. On the other hand, waste agricultural vinyl and PP had lower conversions than 20% and liquid product yields of 1-4% under the same conditions. The acid-treated MFI zeolite catalyst was suitable for the decomposition of HDPE and LDPE, but not for the liquid phase decomposition of waste agricultural vinyl and PP.
HDPE와 LDPE에서 얻어진 생성물을 가스크로마토그래프로 분석하여 조성을 탄수소별로 도 4에 나타냈다. 생성물 분포는 HDPE나 LDPE에 관계없이 비슷하였다. 기체생성물은 탄소수가 2에서 5인 탄화수소였으며, 이중 C4탄화수소가 가장 많았다. 액체생성물도 C5∼C12탄화수소가 대부분이었으며, C12이상인 탄화수소는 많지 않았다. 이들은 그대로 연료로 사용할 수도 있고, 탈색처리후, 정제하여 나프타나 공업용 용제로 사용할 수 있다.The product obtained from HDPE and LDPE was analyzed by gas chromatography, and the composition is shown in FIG. 4 for each carbohydrate. The product distribution was similar regardless of HDPE or LDPE. The gaseous products were hydrocarbons with 2 to 5 carbon atoms, of which C 4 was the most common. Most liquid products were C 5 -C 12 hydrocarbons, but there were not many hydrocarbons above C 12 . These may be used as fuels, or may be purified after decoloring and used as naphtha or industrial solvents.
실시예 7Example 7
실시예 2에 설명된 방법으로 제조한 촉매를 인 담지, 붕산처리, 알카리처리하여 HDPE나 LDPE에 비해 잘 분해되지 않는 담양자원재생공사에서 제조한 입상형 폐농업용 비닐의 액상분해반응에 적용하였다. 2수소인산나트륨 수용액 100 ㎖를 MFI 제올라이트 10 g에 가하고 건조한 후, 550℃에서 소성하여 제올라이트에 인을 담지시켰다. 붕산처리는 2N 붕산수용액을 실시하였다. MFI 제올라이트 10 g에 붕산 수용액 100 ㎖를 가하여 4시간동안 환류 가열한 후, 여과하여 건조하고 이어 550℃에서 소성하여 붕산처리 촉매를 제조하였다. 알카리처리 MFI 제올라이트는 수산화나트륨이나 수산화칼륨 수용액으로 제올라이트를 처리하여 제조하였다. MFI 제올라이트 20 g에 0.5N 수산화나트륨이나 수산화칼륨 수용액 200 ㎖를 가하여 60℃에서5시간동안 가열 환류하였다. 탈이온수로 세척한 후 0.5N 염산 수용액을 가하여 60℃에서 4시간동안 가열 환류하여 나트륨이온을 수소이온으로 교환하였다. 탈이온수로 여과 세척한 후, 200℃에서 5시간 건조하여 촉매로 사용하였다.The catalyst prepared by the method described in Example 2 was subjected to phosphorus loading, boric acid treatment, and alkali treatment to be applied to the liquid phase decomposition of granular waste agricultural vinyl produced by Damyang Resource Regeneration Corporation, which is less decomposed than HDPE or LDPE. 100 ml of aqueous sodium dihydrogen phosphate solution was added to 10 g of MFI zeolite, dried and calcined at 550 ° C. to carry phosphorus on the zeolite. Boric acid treatment was performed with 2N aqueous boric acid solution. 100 ml of aqueous boric acid solution was added to 10 g of MFI zeolite, heated to reflux for 4 hours, filtered and dried, and then calcined at 550 ° C. to prepare a boric acid treatment catalyst. Alkaline treated MFI zeolites were prepared by treating zeolites with sodium hydroxide or potassium hydroxide aqueous solution. To 20 g of MFI zeolite, 200 ml of 0.5 N sodium hydroxide or potassium hydroxide aqueous solution was added, and the mixture was heated to reflux at 60 ° C. for 5 hours. After washing with deionized water, 0.5N hydrochloric acid aqueous solution was added, and the mixture was heated to reflux at 60 ° C. for 4 hours to exchange sodium ions with hydrogen ions. After filtration and washing with deionized water, it was dried for 5 hours at 200 ℃ was used as a catalyst.
입상 폐비닐 10 g에 촉매 0.3 g을 가하고, 도 3의 소형반응기에서 액상분해반응을 조사하였다. 반응 결과는 표 6에 정리하였다. 반응 결과로부터 MFI 제올라이트에 인을 담지하거나 붕산처리하면, 폐농업용 비닐의 분해효율은 2배정도 증가하였다. 특히, 액체생성물 수율은 크게 증가하여 10% 이상 얻어졌다. 알카리처리는 더욱 효과가 커서 알카리처리 제올라이트 촉매에서 전환율이 97% 이상으로 현저히 증가되었다. 액체생성물 조성은 산처리한 촉매의 결과와 비슷하였으며, 수율은 60% 수준으로 다른 촉매에 비해 크게 높아졌다. 촉매활성이 이처럼 크게 높아진 결과는 알카리처리로 표면이 부분적으로 용해되어 외표면이 넓어지고 강한 산점이 부분적으로 중화되어 탄소침적이 억제되어 촉매수명이 길어진 데 기인하는 것으로 유추된다.0.3 g of a catalyst was added to 10 g of granular waste vinyl, and the liquid phase decomposition reaction was investigated in the small reactor of FIG. The reaction results are summarized in Table 6. From the reaction results, the decomposition efficiency of waste agricultural vinyl increased by about two times when phosphorus was supported or treated with boric acid in MFI zeolite. In particular, the yield of the liquid product was greatly increased to obtain 10% or more. Alkaline treatment was more effective, resulting in a marked increase in conversion of more than 97% in alkaline zeolite catalysts. The liquid product composition was similar to that of the acid treated catalyst, and the yield was 60%, which is much higher than that of other catalysts. The result of this large increase in catalytic activity is due to the partial dissolution of the surface by alkaline treatment, the outer surface being widened, and the strong acid point partially neutralized, and the carbon deposition is suppressed and the catalyst life is long.
인 담지 촉매와 붕산처리 촉매는 폐농업용 비닐의 액화반응에서는 활성이 낮았으나, HDPE와 LDPE 액상분해반응에는 분해활성이 높았다. 산처리한 제올라이트 촉매에 비해 인담지 촉매와 붕산처리 촉매의 활성은 상당히 높아서, 두 번 정도 반복 사용할 수 있을 정도로 촉매당 처리 가능한 고분자물질량이 많아졌다. 폐농업용 비닐의 액상촉매분해 생성물에는 농업용 비닐 제조할 때 광택유지, 수명연장, 물방울 형성 방지를 위해 첨가되는 에틸렌비닐아세테이트(EVA)의 분해 생성물인 아세트산이 물과 함께 소량 얻어진다. 탄화수소와 확연하게 구분되므로 생성물 분리에는어려움이 없으나, 생성된 아세트산이 촉매표면에 흡착되어 탄소침적을 촉진하므로 촉매 수명이 단축된다. 그러나 알카리처리 제올라이트 촉매는 외표면이 넓고 탄소침적이 시작되는 강한 산점이나 구조적 결함이 제거되어 분해과정에서 생성된 유기산에 대한 내구성이 높아져 촉매활성과 수명이 놀랄 만큼 향상되었다.Phosphorus-supported catalysts and boric acid-treated catalysts showed low activity in the liquefaction of waste agricultural vinyl, but high decomposition activity in HDPE and LDPE liquid phase decomposition reactions. Compared to the acid-treated zeolite catalysts, the activity of the catalyst and boric acid treatment catalyst was considerably higher, resulting in an increase in the amount of polymer material that can be treated per catalyst so that it can be used twice. A small amount of acetic acid, which is a decomposition product of ethylene vinyl acetate (EVA), is added to the liquid catalytic decomposition product of waste agricultural vinyl to maintain gloss, to extend the life, and to prevent the formation of water droplets. There is no difficulty in product separation because it is clearly distinguished from hydrocarbons, but the resulting acetic acid is adsorbed on the catalyst surface to promote carbon deposition, which shortens the catalyst life. Alkaline treated zeolite catalysts, however, have a wide outer surface, remove strong acidic points or structural defects that initiate carbon deposition, and thus increase durability to organic acids generated during decomposition, resulting in remarkably improved catalytic activity and lifetime.
반응물/촉매: 10 g/0.3 gReactant / Catalyst: 10 g / 0.3 g
실시예 8Example 8
폐고분자 물질 액상촉매분해과정을 연속 운전식 중형반응기에서 조사하였다.Liquid catalyst decomposition of waste polymer was investigated in a continuous operation medium reactor.
도 5에 이 장치의 개략도를 나타내었다. (도 5중, 각 부호는 다음과 같다.5 shows a schematic diagram of this device. (In FIG. 5, each code | symbol is as follows.
1. 질소 실린더, 2. 니들 밸브, 3. 유량계, 4. 반응물 투입기, 5. 글로브 밸브, 6. 촉매 투입기, 7. 자석교반기, 8. 반응기(2.5 L), 9. 덮개형 가열기, 10. 재켓형 가열기, 11. 온도조절기, 12. 2차 반응기, 13. 1차 수집기, 14. 냉각수, 15. 항온순환조, 16. 응축기, 17. 2차 수집기, 18. 볼형 가스 저장탱크)1. Nitrogen cylinder, 2. Needle valve, 3. Flow meter, 4. Reactant injector, 5. Globe valve, 6. Catalyst injector, 7. Magnetic stirrer, 8. Reactor (2.5 L), 9. Shrouded heater, 10. Jacketed heater, 11. thermostat, 12. secondary reactor, 13. primary collector, 14. cooling water, 15. constant temperature circulation tank, 16. condenser, 17. secondary collector, 18. ball type gas storage tank)
반응물 호퍼에 충진된 폐고분자 물질은 내부가열기에 의해 200∼400℃에서 녹아서 글로브 밸브를 열어주면 일정한 속도로 반응기에 넣어준다. 상부는 고형상태로 유지하고 하부는 충분히 녹아 유동화될 수 있도록 히터 온도를 조절한다. 촉매는 30분마다 촉매 투입구를 거쳐 반응기에 공급한다. 반응기는 하단의 맨틀, 중단의 가열기, 상단의 보온을 위한 가열밴드 등으로 가열되며 부위별로 온도조절기를 설치하여 독립적으로 온도를 조절한다. 반응기와 시료 투입구 등 5곳 온도를 동시에 측정할 수 있도록 온도감지센서가 부착되어 있다. 반응기에 공급된 폐고분자 물질은 200∼900rpm으로 교반되는 반응기 내에서 공급된 촉매에 의해 분해되어 저분자탄화수소로 전환된다. 반응기 내부는 질소기체를 5∼60 ㎖/min로 흘려 공기 특히 산소를 차단하였다. 생성된 저분자탄화수소는 자체 압력과 운반기체에 밀려 2차 반응기로 보내진다. 1차 생성물은 2차 반응기에 충진된 촉매와 접촉하면서 추가 반응하여 방향족 화합물로 전환되거나 경유, 등유 등 연료로 사용할 수 있는 탄화수소 혼합물로 전환된다. 2차 반응기를 거친 탄화수소 혼합물은 2단 응축기로 보내어진다. 100∼160℃로 유지되는 1차 응축기에서 고비점 탄화수소와 착색물질 등이 분리되고, -3∼-8℃로 유지되는 2차 응축기에서 액체 생성물이 수집된다. 기체는 유량계를 거쳐 냉각된 기체탱크에 보내어지며, 탄화수소는 응축되어 보관되고 질소기체는 대기중으로 배출된다.Waste polymer material filled in the reactant hopper is melted at 200 ~ 400 ℃ by the internal heater to open the globe valve is put into the reactor at a constant speed. The top is kept solid and the bottom is adjusted to allow the fluid to melt and fluidize. The catalyst is fed to the reactor every 30 minutes via a catalyst inlet. The reactor is heated by a mantle at the bottom, a heater at the middle, a heating band for keeping warm at the top, and a temperature controller is installed for each part to independently control the temperature. Temperature sensor is attached to measure the temperature of five places including reactor and sample inlet at the same time. The waste polymer material supplied to the reactor is decomposed by the catalyst supplied in the reactor which is stirred at 200 to 900 rpm and converted into low molecular hydrocarbons. Inside the reactor, nitrogen gas was flowed at 5 to 60 ml / min to block air, especially oxygen. The produced low molecular hydrocarbons are pushed to the secondary reactor by their own pressure and carrier gas. The primary product is further reacted in contact with the catalyst charged in the secondary reactor to convert it into an aromatic compound or into a hydrocarbon mixture that can be used as a fuel such as diesel, kerosene and the like. The hydrocarbon mixture via the secondary reactor is sent to a two stage condenser. The high boiling point hydrocarbon and the coloring matter are separated in the primary condenser maintained at 100 to 160 ° C., and the liquid product is collected in the secondary condenser maintained at −3 to −8 ° C. The gas is sent to a cooled gas tank via a flow meter, hydrocarbons are condensed and stored, and nitrogen gas is released into the atmosphere.
실시예 2에 설명한 방법으로 제조한 MFI 제올라이트를 실시예 7에서 설명한 방법으로 염산처리, 인담지, 붕산처리, 알카리처리하여 연속운전식 중형반응기의 촉매로 사용하였다. 중형반응기에서 촉매기능 조절효과를 보다 명확히 비교하기 위해 HDPE의 회분식 반응 결과를 표 7에 정리하였다. 반응물 200 g에 촉매를 6 g 가하였으며, 반응기 외부온도를 430℃까지 22분만에 승온시켜 유지하였다. 반응기 내부온도가 350℃에 이르러 고분자물질이 용융되었을 때 교반기를 동작시켰다. 반응기 내부온도가 350℃에 이르는 대개 50분 후부터 액체 생성물이 수집기에 응축되기시작하였으며, 120분 내에 분해반응이 완결되었다.The MFI zeolite prepared by the method described in Example 2 was subjected to hydrochloric acid treatment, impregnated paper, boric acid treatment, and alkali treatment by the method described in Example 7, and used as a catalyst for a continuous operation medium reactor. Table 7 summarizes the results of the batch reaction of HDPE in order to compare the catalytic function control effect in the medium reactor. 6 g of catalyst was added to 200 g of the reaction, and the reactor external temperature was maintained at 430 ° C. in 22 minutes. The agitator was operated when the internal temperature of the reactor reached 350 ° C. and the polymer material was melted. The liquid product began to condense into the collector, usually after 50 minutes of reaching the reactor internal temperature of 350 ° C., and the decomposition reaction was completed within 120 minutes.
반응물/촉매 : 200 g/6 g.Reactant / catalyst: 200 g / 6 g.
산처리, 붕산처리, 인 담지, 알카리처리한 MFI 촉매에서 반응기 내부가 350℃가 되면 분해반응이 시작되어 50분 이내에 대부분 분해되었다. 전환율은 모든 촉매에서 100%로 동일하였다. 액체생성물의 수율은 산처리한 촉매에서 80%로 가장 좋았고, 알카리처리한 촉매에서 73%로 가장 낮았다. 대신 반응에 필요한 시간은 알카리처리한 촉매에서 85분(350℃가 된 때로부터는 35분)으로 분해속도가 가장 빨랐다. 알카리처리하면 MFI 촉매의 세공이 확대되어 고분자물질의 확산 속도가 빨라지고, 외표면적이 증가하여 고분자물질과 접촉기회가 많아져 분해활성이 향상되는 것으로 생각된다. 그러나, 추가 분해반응이 진행되어 기체생성물이 많아져서 액체생성물이 많이 얻어지도록 촉매량을 줄이거나 반응온도를 낮출 필요가 있다.Acid treatment, boric acid treatment, phosphorus supported, and alkali treated MFI catalysts started decomposition at the temperature of 350 ° C. in the reactor, and most of them were decomposed within 50 minutes. The conversion was the same at 100% for all catalysts. The yield of the liquid product was the best at 80% for the acid treated catalyst and the lowest at 73% for the alkaline treated catalyst. Instead, the time required for the reaction was 85 minutes (35 minutes from 350 ° C.) on the alkaline catalyst, which was the fastest decomposition rate. Alkaline treatment is thought to increase the porosity of the MFI catalyst to increase the diffusion rate of the polymer material, increase the outer surface area and increase the contact opportunities with the polymer material, thereby improving the decomposition activity. However, it is necessary to reduce the amount of catalyst or lower the reaction temperature so that the further decomposition reaction proceeds to increase the number of gaseous products to obtain a lot of liquid products.
2차 수집기에 모아진 액체생성물을 가스크로마토그래프로 분석하였다. 생성물은 도 6에 보인 것처럼 촉매에 관계없이 C5∼C12탄화수소 혼합물이며, C13이상의 탄화수소는 2% 이하로 많지 않았다. 산처리한 MFI 제올라이트도 HDPE 분해반응에 활성이 높았으나, 붕산처리와 인 담지한 촉매에서 C5∼C7탄화수소 분율이 많아진다는 점에서 촉매 수명이 더 길어지는 것으로 유추된다. 반응물의 종류와 상태, 반응조건과 촉매량을 연계지어 적정한 촉매를 선택해야겠지만, HDPE 분해반응에서는 붕산처리한 촉매의 활성도 알카리처리한 촉매 못지않게 우수하였다.The liquid product collected in the secondary collector was analyzed by gas chromatography. The product is a mixture of C 5 to C 12 hydrocarbons, regardless of catalyst, as shown in FIG. 6, with less than 2% of C 13 or more hydrocarbons. Acid-treated MFI zeolites also have high activity in HDPE decomposition reactions, but are inferred to have a longer catalyst life in terms of higher C 5 to C 7 hydrocarbon fractions in boric acid and phosphorus supported catalysts. Although the appropriate catalyst should be selected in connection with the type and state of the reactants, the reaction conditions and the amount of the catalyst, the activity of the boric acid-treated catalyst was as good as the alkaline catalyst in the HDPE decomposition reaction.
실시예 9Example 9
중형반응기를 이용한 HDPE 분해반응에서(실시예 8) 분해활성이 가장 좋았던 알카리처리 MFI 촉매에서 HDPE, LDPE, PP, DamP(한국자원재생공사 담양지소에서 제조한 입상 폐농업용 비닐), AndP(한국자원재생공사 안동지소에서 제조한 입상 폐농업용 비닐)의 액상촉매분해반응을 조사하였다. 반응조건은 실시예 8과 같으며, 표 8에 이들의 액상촉매분해반응 결과를 정리하였다.HDPE, LDPE, PP, DamP (Granular Waste Agricultural Vinyl Manufactured by Damyang Branch, Korea Resources Recycling Corporation), AndP (Korea Resources) Liquid catalysis of granular waste agricultural vinyl produced in Andong branch of regeneration was investigated. The reaction conditions are the same as in Example 8, Table 8 summarizes the results of the liquid phase catalytic decomposition reaction.
반응물/촉매: 200 g/6 gReactant / Catalyst: 200 g / 6 g
HDPE, LDPE, PP, 폐농업용 비닐 모두 이 반응조건에서 잘 분해되었다. 액체생성물 수율은 폐농업용 비닐 제품인 DamP와 AndP에서 약간 낮았다. 폐농업용 비닐에는 EVA가 들어있어 액상촉매분해반응중 MFI 촉매와 상호작용이 강해 촉매에 오래 머무르게 되어 축차반응 진행으로 작은 물질로 분해되므로 응축되지 않는 기체생성물이 많이 생성되었기 때문으로 생각된다.HDPE, LDPE, PP and waste agricultural vinyl all decomposed well under these reaction conditions. The yield of the liquid product was slightly lower in DamP and AndP, a vinyl product for waste farming. The waste agricultural vinyl contains EVA, which has a strong interaction with the MFI catalyst during the liquid phase catalytic cracking reaction, and thus stays in the catalyst for a long time.
DamP와 AndP의 분해반응 속도는 HDPE와 LDPE에 비해 느려서 분해가 완결되는데 소요되는 시간이 길다. 폐농업용 비닐에 들어있는 EVA가 분해되어 생성된 아세트산이 촉매에 흡착되어 탄소침적을 촉진하여 촉매활성을 저하시키기 때문에 활성점 수가 줄어들어 반응이 느려서 소요되는 시간이 길어진다.The degradation rate of DamP and AndP is slower than that of HDPE and LDPE, which takes longer to complete the decomposition. Since acetic acid produced by decomposition of EVA contained in waste agricultural vinyl is adsorbed on the catalyst to promote carbon deposition, thereby degrading catalytic activity, the number of active points decreases and the reaction time is slowed.
실시예 10Example 10
고분자물질 분해활성이 우수한 알카리처리 MFI 촉매에서 폐농업용 비닐 DamP의 분해반응을 반응온도를 바꾸어가며 중형반응기로 조사하였다. 촉매 효과를 명확하게 비교하기 위해 촉매반응 결과와 열분해반응 결과를 같이 표 9에 정리하였다. 촉매를 사용하지 않으면 400℃에서는 210분 동안에 24% 정도 분해되지만, 알카리처리 MFI 촉매를 넣어주면 폐농업용 비닐은 완전히 분해된다. 액체생성물 수율도 65%로 상당히 높다. 반응온도가 430℃, 475℃로 높아지면 열분해반응의 수율도 높아져, 475℃에서는 전환율이 59%에 이른다. 그러나 긴 탄화수소가 생성되어 액체생성물 대부분이 1차 수집기에 포집된다. 이에 비해 알카리처리 MFI 촉매를 사용하면 380∼430℃ 범위에서 모두 분해되고 액체생성물 수율은 65% 정도로 전환율과 생성물 수율이 일정하여 반응기 조작이 매우 용이하다. 반응온도가 475℃로 높아지면 분해반응이 더 많이 진행되어 액체생성물은 줄어들고 기체생성물 수율이 약간 증가한다.Decomposition reaction of waste Damping vinyl DamP on alkaline MFI catalysts with excellent polymer decomposition activity was investigated by changing the reaction temperature. In order to clearly compare the catalytic effect, the results of the catalytic reaction and the pyrolysis reaction are summarized in Table 9. If the catalyst is not used, it decomposes about 24% in 210 minutes at 400 ° C. However, the addition of an alkaline MFI catalyst completely decomposes the agricultural vinyl. The yield of the liquid product is also quite high, at 65%. When the reaction temperature is increased to 430 ° C and 475 ° C, the yield of pyrolysis reaction also increases, and the conversion rate reaches 59% at 475 ° C. However, long hydrocarbons are produced and most of the liquid product is collected in the primary collector. In contrast, the use of an alkaline MFI catalyst decomposes all in the range of 380-430 ° C., and the yield of the liquid product is about 65%. When the reaction temperature rises to 475 ° C., the decomposition reaction proceeds more and the liquid product decreases and the gas product yield slightly increases.
반응물/촉매: 200 g/6 g.Reactant / catalyst: 200 g / 6 g.
실시예 11Example 11
알카리처리 MFI 촉매를 사용하는 HDPE와 DamP의 액상촉매분해반응에서 1회 사용한 촉매의 재사용 가능성을 조사하였다. 실시예 8에서 설명된 방법으로 200 g의 고분자물질과 6 g의 촉매를 가하여 고분자물질을 완전히 분해시킨 후, 촉매는 넣지 않고 고분자물질만 200 g 추가로 공급하여 한번 사용한 촉매의 잔류 분해활성을 조사하였다. 반응조건은 실시예 8과 같으며, 표 10에 1차 반응 결과와 재사용했을 때 반응 결과를 정리하였다.The possibility of reusing the catalyst used once in the liquid phase catalytic decomposition of HDPE and DamP using alkaline MFI catalyst was investigated. 200 g of polymer and 6 g of catalyst were added to the method described in Example 8 to completely decompose the polymer, and then 200 g of only the polymer was added without a catalyst to investigate the residual decomposition activity of the used catalyst. It was. The reaction conditions are the same as in Example 8, Table 10 summarizes the reaction results when the primary reaction results and reuse.
반응물/촉매: 200 g/6 gReactant / Catalyst: 200 g / 6 g
알카리처리 MFI 촉매에서 HDPE의 분해반응은 1차나 재사용에서나 모두 분해되었고, 액체생성물 수율도 71%와 74%로 거의 비슷하였다. 반면, EVA가 들어있는 폐농업용 비닐인 DamP의 분해반응에서는 촉매를 재사용하면 전환율이 98%에서 73%로 낮아졌다. 액체 생성물 수율은 비슷하였으나, 1차 수집기 포집양이 많아진 점으로 미루어 촉매활성이 상당히 저하되었다고 추정된다. EVA가 들어있지 않은 PE나 PP 고분자물질의 액상촉매분해반응에서는 알카리처리 MFI 촉매의 활성이 오랫동안 지속되나, EVA가 들어 있는 폐농업용 비닐의 액상촉매분해반응에서는 촉매활성 저하가 더 빨랐다.In the alkaline MFI catalysts, the decomposition of HDPE was decomposed in both primary and reuse, and the liquid product yields were almost the same at 71% and 74%. On the other hand, in the decomposition of DamP, a waste agricultural vinyl containing EVA, the conversion rate was lowered from 98% to 73% when the catalyst was reused. The liquid product yields were similar, but due to the increased amount of primary collector capture, the catalytic activity was estimated to be significantly reduced. Alkaline-treated MFI catalysts lasted for a long time in the liquid phase catalytic cracking of PE or PP polymers without EVA, but the catalytic activity decreased more rapidly in the liquid phase catalytic cracking of waste vinyl containing EVA.
실시예 12Example 12
실시예 9에서 설명한 EVA가 들어있는 폐농업용 비닐 DamP와 AndP의 액상분해반응에 사용한 알카리처리 MFI 촉매를 550℃에서 3시간동안 소성하여 재생하였다. 사용한 촉매의 색깔은 약간 짙은 회색이나 밤색이나 소성하면 탄소가 대부분 제거되어 옅은 회색이 된다. 소성한 촉매의 재생 가능성을 도 3에 보인 소형반응기에서 수행한 폐농업용 비닐의 액상분해반응 결과로부터 조사하였다. 표 11에 액상촉매분해반응의 결과를 정리하였다.The alkaline MFI catalyst used for the liquid phase decomposition of waste agricultural vinyl DamP and AndP containing EVA described in Example 9 was calcined and regenerated at 550 ° C. for 3 hours. The color of the catalyst used is slightly dark gray or brown, but when calcined, most of the carbon is removed and becomes pale gray. The reproducibility of the calcined catalyst was investigated from the results of liquid phase decomposition of waste agricultural vinyl in a small reactor shown in FIG. 3. Table 11 summarizes the results of the liquid phase catalytic decomposition reaction.
폐농업용 비닐인 DamP나 AndP의 액상촉매분해반응에 사용한 알카리처리 MFI 촉매를 공기중에서 소성하면 촉매활성이 상당히 회복되어 추가 사용이 가능하였다. 1차 분해반응실험의 반응물인 폐농업용 비닐의 종류에 무관하게 2차에 공급된 HDPE는 모두 분해되었다. 그러나, 2차 분해반응의 반응물이 폐농업용 비닐이면 전환율이 80% 정도로 낮아져서 분해활성이 약간 저하되었음을 보여준다. 1차 사용한 촉매를 공기중에서 소성하여 재생하면 초기 활성을 100% 회복하지는 못하지만, 잔류 촉매활성이 상당히 높아 새로운 촉매를 조금만 보충하여 폐고분자 물질의 액상촉매분해반응에 다시 사용할 수 있다.When the alkaline MFI catalyst used for the liquid phase catalytic cracking of waste agricultural vinyl DamP and AndP was calcined in air, the catalytic activity was significantly recovered, allowing further use. All of the HDPE supplied to the secondary were decomposed, irrespective of the type of waste agricultural vinyl, which was the reactant of the first decomposition reaction. However, if the reaction product of the secondary decomposition reaction was waste agricultural vinyl, the conversion was lowered to about 80%, indicating that the degradation activity was slightly decreased. When the first used catalyst is calcined and regenerated in air, the initial activity cannot be recovered 100%, but the residual catalyst activity is so high that a small amount of new catalyst can be replenished to be used for liquid phase catalytic decomposition of waste polymer materials.
반응물/촉매: 10 g/0.3 g.Reactant / catalyst: 10 g / 0.3 g.
상술한 바와 같이, 본 발명은 제올라이트를 적절히 처리하여 표면적을 증대시켜 활성은 높으면서도 탄소침적은 느려 폐고분자 물질을 저분자탄화수소로 빠르게 분해시킴과 동시에 액체생성물의 수율이 높은 MFI 촉매를 저렴하게 제공한다. 이 촉매를 이용하면 저렴하게 폴리올레핀계 폐고분자 물질을 저분자탄화수소로 효율적으로 전환시킬 수 있다.As described above, the present invention treats zeolites appropriately to increase the surface area and thus has high activity but slow carbon deposition to rapidly decompose waste polymer materials into low-molecular hydrocarbons and at the same time provide an MFI catalyst with high yield of liquid product at low cost. . By using this catalyst, polyolefin waste polymers can be efficiently converted to low molecular hydrocarbons at low cost.
(참고문헌)(references)
(1) J.-S. Shim, Y.S. You, J.-H. Kim and G. Seo: Studies Surface Science and Catalysis,82, 465(1998).(1) J.-S. Shim, YS You, J.-H. Kim and G. Seo: Studies Surface Science and Catalysis, 82 , 465 (1998).
(2) Y.S. You, J.-H. Kim and G. Seo.:"Liquid-Phase catalytic degradation of polyethylene wax over MFI zeolite with different particle sizes", Polymer Degradation Stability. in press(2000).(2) YS You, J.-H. Kim and G. Seo .: "Liquid-Phase catalytic degradation of polyethylene wax over MFI zeolite with different particle sizes", Polymer Degradation Stability . in press (2000).
(3) Y.S. You, J.-H. Kim and G. Seo.:"Liquid-Phase catalytic degradation of polyethylene wax over silica-modified zeolite catalysts", Polymer Degradation Stability. accepted(2000).(3) YS You, J.-H. Kim and G. Seo .: "Liquid-Phase catalytic degradation of polyethylene wax over silica-modified zeolite catalysts", Polymer Degradation Stability . accepted (2000).
(4) F.J. Machado, C.M. Lopez, Maria A. Centeno and C. Urbina.: "Template-free synthesis and catalytic behaviour of aluminium-rich MFI-type zeolites",Applied Catalysis General A,181, 1 (1999).(4) FJ Machado, CM Lopez, Maria A. Centeno and C. Urbina .: " Template-free synthesis and catalytic behavior of aluminum-rich MFI-type zeolites ", Applied Catalysis General A , 181 , 1 (1999).
(5) M.M.J. Treacy, J.B. Higgins and R.V. Ballmoons.:"Collection of simulated XRD powder patterns for zeolites",Elsevier, 3rd., p.522∼525(1996).(5) MMJ Treacy, JB Higgins and RV Ballmoons .: "Collection of simulated XRD powder patterns for zeolites" , Elsevie r, 3rd., P. 522-525 (1996).
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0075515A KR100381563B1 (en) | 2000-12-12 | 2000-12-12 | Process for preparing catalysts for liquid-phase degradation of waste polymer, and catalytic degradation process using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0075515A KR100381563B1 (en) | 2000-12-12 | 2000-12-12 | Process for preparing catalysts for liquid-phase degradation of waste polymer, and catalytic degradation process using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020046027A KR20020046027A (en) | 2002-06-20 |
KR100381563B1 true KR100381563B1 (en) | 2003-05-12 |
Family
ID=27681124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0075515A KR100381563B1 (en) | 2000-12-12 | 2000-12-12 | Process for preparing catalysts for liquid-phase degradation of waste polymer, and catalytic degradation process using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100381563B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5254327A (en) * | 1992-04-03 | 1993-10-19 | Intevep, S.A. | Zeolitic catalyst of MFI type, its preparation and use |
JPH08183611A (en) * | 1994-12-28 | 1996-07-16 | Tosoh Corp | Production of mfi type zeolite |
-
2000
- 2000-12-12 KR KR10-2000-0075515A patent/KR100381563B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5254327A (en) * | 1992-04-03 | 1993-10-19 | Intevep, S.A. | Zeolitic catalyst of MFI type, its preparation and use |
JPH08183611A (en) * | 1994-12-28 | 1996-07-16 | Tosoh Corp | Production of mfi type zeolite |
Also Published As
Publication number | Publication date |
---|---|
KR20020046027A (en) | 2002-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101310994B1 (en) | Molecular sieve ssz-56 composition of matter and synthesis thereof | |
KR101352250B1 (en) | Molecular sieve ssz-74 composition of matter and synthesis thereof | |
KR101385396B1 (en) | Molecular sieve ssz-75 composition of matter and synthesis thereof | |
Vichaphund et al. | Effect of CV-ZSM-5, Ni-ZSM-5 and FA-ZSM-5 catalysts for selective aromatic formation from pyrolytic vapors of rubber wastes | |
Yu et al. | Synthesis of micro–mesoporous ZSM-5 zeolite with microcrystalline cellulose as co-template and catalytic cracking of polyolefin plastics | |
JPH0448499B2 (en) | ||
Oliveira et al. | Preparation of mesoporous Fe2O3-supported ZSM-5 zeolites by carbon-templating and their evaluation as photo-Fenton catalysts to degrade organic pollutant | |
Fujiwara et al. | Mesoporous MFI zeolite material from silica–alumina/epoxy-resin composite material and its catalytic activity | |
EA007767B1 (en) | Production of olefins | |
CN114656318B (en) | Method for preparing low-carbon olefin catalyst by catalytic pyrolysis of waste plastics | |
CN111375442A (en) | Hierarchical pore HZSM-5 zeolite molecular sieve | |
Wen et al. | Organosilane-assisted synthesis of hierarchical porous ZSM-5 zeolite as a durable catalyst for light-olefins production from chloromethane | |
Wu et al. | Catalytic pyrolysis of poplar sawdust: excellent hydrocarbon selectivity and activity of hollow zeolites | |
JP5475289B2 (en) | Molecular sieve SSZ-74 composition and synthesis thereof | |
CN111717925A (en) | Zeolite material having outstanding macroporosity in single crystal and method for producing same | |
Gaca et al. | Catalytic Degradation of Polyethylene over Mesoporous Molecular Sieve MCM-41 Modified with Heteropoly Compounds. | |
CN1923965A (en) | Method of preparing ethylene, propylene and aromatic hydrocarbons by catalytic cracking gasoline | |
KR20100025428A (en) | Long-time catalyst for mto reaction and preparing method thereof | |
KR100381563B1 (en) | Process for preparing catalysts for liquid-phase degradation of waste polymer, and catalytic degradation process using the same | |
Gu et al. | Self-assembly kieselguhr-based ZSM-5 for catalytic pyrolysis of mask waste to produce high value-added aromatics | |
Feng et al. | Functional Catalyst Molecular Sieves in Green Chemical Applications | |
KR102441784B1 (en) | Method for Depolymerization of Polyethylene terephthalate Using Zeolite Based Catalyst | |
KR100473986B1 (en) | Preparation of catalysts from used fcc catalysts for the liquid-phase degradation of waste polymer, and catalytic degradation process using the same | |
CN111377461B (en) | Multi-stage hole HZSM-5 zeolite molecular sieve | |
Xiong et al. | Aerosol Assisted Synthesis of Y/ZSM‐5 Composite Zeolite and Its Application in Cracking Reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130411 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20140411 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20161110 Year of fee payment: 14 |
|
R401 | Registration of restoration | ||
FPAY | Annual fee payment |
Payment date: 20170213 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20180406 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20190219 Year of fee payment: 17 |