KR100380926B1 - A method for production of polymeric aluminum coagulant using wasted aluminum chloride solution - Google Patents

A method for production of polymeric aluminum coagulant using wasted aluminum chloride solution Download PDF

Info

Publication number
KR100380926B1
KR100380926B1 KR10-2000-0055387A KR20000055387A KR100380926B1 KR 100380926 B1 KR100380926 B1 KR 100380926B1 KR 20000055387 A KR20000055387 A KR 20000055387A KR 100380926 B1 KR100380926 B1 KR 100380926B1
Authority
KR
South Korea
Prior art keywords
chloride solution
aluminum chloride
aluminum
iii
species
Prior art date
Application number
KR10-2000-0055387A
Other languages
Korean (ko)
Other versions
KR20010086169A (en
Inventor
정승현
정용현
한승우
강임석
정병곤
Original Assignee
(주)이앤텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이앤텍 filed Critical (주)이앤텍
Priority to KR10-2000-0055387A priority Critical patent/KR100380926B1/en
Publication of KR20010086169A publication Critical patent/KR20010086169A/en
Application granted granted Critical
Publication of KR100380926B1 publication Critical patent/KR100380926B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds

Abstract

본 발명은 폐염화알루미늄 용액을 이용하여 고분자 알루미늄 응집제를 제조하는 방법에 관한 것으로서, 보다 상세하게는 a) 구리 함유 폐염화알루미늄 용액 내로 폐알루미늄 조각을 투입하여 폐염화알루미늄 용액으로부터 구리를 석출 및 제거시키는 단계; 및 b) 상기 단계 a)에서 생성된 구리가 제거된 폐염화알루미늄 용액에 염기를 첨가하여 고분자 알루미늄 착화합물을 생성하는 단계를 포함하는 고분자 알루미늄 응집제의 제조방법에 관한 것이다.The present invention relates to a method for producing a polymer aluminum flocculant using a waste aluminum chloride solution, and more particularly, a) by depositing waste aluminum pieces into a copper containing waste aluminum chloride solution to precipitate and remove copper from the waste aluminum chloride solution. Making a step; And b) adding a base to the waste aluminum chloride solution from which the copper produced in step a) is removed to produce a polymer aluminum complex compound.

본 발명의 방법에 의하면, 폐염화알루미늄 용액 내의 구리를 제거하여 폐염화알루미늄 용액을 고기능성 폐수처리용 응집제로서 재활용할 수 있다.According to the method of the present invention, the copper in the waste aluminum chloride solution can be removed to recycle the waste aluminum chloride solution as a flocculant for high functional wastewater treatment.

Description

폐염화알루미늄 용액을 이용하여 고분자 알루미늄 응집제를 제조하는 방법{A METHOD FOR PRODUCTION OF POLYMERIC ALUMINUM COAGULANT USING WASTED ALUMINUM CHLORIDE SOLUTION}A method for producing a polymer aluminum flocculant using a waste aluminum chloride solution {A METHOD FOR PRODUCTION OF POLYMERIC ALUMINUM COAGULANT USING WASTED ALUMINUM CHLORIDE SOLUTION}

본 발명은 폐염화알루미늄 용액을 이용하여 고분자 알루미늄 응집제를 제조하는 방법에 관한 것이다. 보다 상세하게는, 본 발명은 폐염화알루미늄 용액 내에함유되어 있는 구리를 제거한 후 이를 이용하여 폴리머 형태의 알루미늄 착화합물을 다량 함유하는 고기능성 폐수처리용 응집제를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a polymer aluminum flocculant using waste aluminum chloride solution. More specifically, the present invention relates to a method for preparing a high-functional wastewater treatment flocculant containing a large amount of aluminum complex compound in the form of polymer after removing the copper contained in the waste aluminum chloride solution.

폐염화알루미늄 용액은 구리-프탈로시안(Cu-Phthalocyanine)계 안료 제조 공정에서 폐수로서 배출된다. 이러한 폐염화알루미늄 용액은 pH 1 이하의 폐산으로 폐기물 분류 상 지정 폐기물에 속하며 다량의 구리가 함유되어 있어 그 처리에 상당한 비용과 어려움이 따른다.The waste aluminum chloride solution is discharged as wastewater in a Cu-Phthalocyanine pigment production process. This waste aluminum chloride solution is a waste acid with a pH of 1 or less, which is a designated waste in the waste classification, and contains a large amount of copper, which causes considerable cost and difficulty in its treatment.

폐염화알루미늄 용액 내에 함유되어 있는 구리를 제거하기 위한 방안으로는 수산화물 처리에 따른 중화처리, 황화물 처리, 석출법 및 흡착과 이온교환법에 의한 처리방안 등이 있다. 그러나, 수산화나트륨(NaOH)에 의하여 수산화물을 형성시키는 중화 처리를 행할 경우 폐염화알루미늄 용액과 반응하여 슬러리 상태가 형성되어 그 처리 비용이 급상승하게 되며, 황화나트륨(NaSH)을 이용한 황화물 처리의 경우 황화수소(H2S) 가스가 발생하면서 반응기 내 압력이 상승하여 폭발의 위험성이 있다. 한편, 지정 폐기물 중 폐산류는 폐황산 및 폐염산으로 분류되는데, 폐염화알루미늄 용액은 폐산 중 폐염산으로 분류되며 폐황산과 폐염산은 중화제로서 재활용되고 있으나, 폐염화알루미늄 용액에 대한 재활용에 대해서는 현재까지 보고된 바가 없다.The methods for removing copper contained in the waste aluminum chloride solution include neutralization treatment according to hydroxide treatment, sulfide treatment, precipitation, and treatment by adsorption and ion exchange. However, the neutralization treatment of forming hydroxide with sodium hydroxide (NaOH) reacts with the waste aluminum chloride solution to form a slurry state, and the treatment cost increases rapidly. In the case of sulfide treatment using sodium sulfide (NaSH), hydrogen sulfide is used. (H 2 S) As the gas is generated, the pressure in the reactor increases, which may cause an explosion. Meanwhile, waste acids among designated wastes are classified as waste sulfuric acid and waste hydrochloric acid. Waste aluminum chloride is classified as waste hydrochloric acid in waste acid, and waste sulfuric acid and waste hydrochloric acid are recycled as neutralizing agents. None reported.

또한, 현재 각종 수처리에서 사용되고 있는 응집제로서 황산알루미늄(Alum)과 폴리염화알루미늄(PAC)이 있으며, 이 중 PAC이 Alum에 비하여 폴리머 종을 많이 함유하고 있어 응집효율이 뛰어나므로 수처리에서 PAC의 사용이 증가되고 있다.PAC은 원료로서 수산화알루미늄(Al(OH)3)에 염산(HCl)을 가하고 촉매제로서 황산 (H2SO4)을 첨가하여 제조되며, PAC 내에는 폴리머 형태의 알루미늄 착화합물이 유지된다. 그러나, 이와 같이 제조된 PAC의 폴리머 함유량은 20 내지 30%에 불과하다.In addition, as flocculants currently used in various water treatments, aluminum sulfate (Alum) and polyaluminum chloride (PAC) are used. Among them, PAC contains more polymer species than Alum, so the use of PAC in water treatment is excellent. PAC is prepared by adding hydrochloric acid (HCl) to aluminum hydroxide (Al (OH) 3 ) as a raw material and sulfuric acid (H 2 SO 4 ) as a catalyst, and the aluminum complex in polymer form is maintained in the PAC. . However, the polymer content of the PAC thus prepared is only 20 to 30%.

따라서, 폐염화알루미늄 내에 함유된 구리를 제거하고 이를 재활용할 수 있는 방안이 요구되고 있으며, 동시에 폴리머 형태의 알루미늄을 다량 함유한 응집제를 제조하는 방법이 요구되고 있는 실정이다.Therefore, there is a need for a method for removing copper contained in the waste aluminum chloride and recycling the same, and at the same time, a method for preparing a flocculant containing a large amount of aluminum in a polymer form is required.

본 발명은 상기 문제점을 해결하고자 안출된 것으로서, 본 발명자들은 폐염화알루미늄 용액 내에 이온화 경향이 비교적 강하며 양쪽성 원소로 산 및 알칼리에 모두 녹는 성질을 갖고 있는 폐알루미늄 조각을 투입함으로써 구리를 석출 및 제거시킴과 동시에 용액 내 알루미늄의 함량을 높이고, 이 용액에 염기를 주입하여 가수분해에 의하여 폴리머 형태의 알루미늄 착화합물을 다량 함유하는 응집제를 제조할 수 있음을 발견하고, 본 발명을 완성하기에 이르렀다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the present inventors have deposited copper by injecting a waste aluminum piece having a relatively strong ionization tendency in the waste aluminum chloride solution and having a property of being dissolved in both acid and alkali as an amphoteric element. The present invention has been accomplished by increasing the content of aluminum in the solution and injecting a base into the solution to produce a flocculant containing a large amount of the aluminum complex in the form of a polymer by hydrolysis.

따라서, 본 발명은 폐염화알루미늄 내에 함유된 구리를 제거하고 이를 이용하여 폴리머 형태의 알루미늄을 다량 함유한 응집제를 제조하는 방법을 제공함을 그 목적으로 한다.Accordingly, an object of the present invention is to provide a method of removing a copper contained in waste aluminum chloride and using it to prepare a flocculant containing a large amount of aluminum in the form of a polymer.

도 1은 본 발명의 고분자 알루미늄 응집제의 제조방법을 도시하는 생산 공정도이다.1 is a production process chart showing a method for producing a polymer aluminum flocculant of the present invention.

도 2는 염기의 첨가에 따른 pH 변화 및 염기도 (OH첨가/Al)의 변화를 도시하는 곡선이다.2 is a curve showing the change of pH and the change of basicity (OH addition / Al) with addition of a base.

도 3은 염기도에 따른 응집제 내 Al(III)종의 함량 분포를 도시하는 그래프이다.3 is a graph showing the content distribution of Al (III) species in the flocculant according to basicity.

도 4는 염기도에 따른 응집제의27Al NMR 스펙트럼을 도시한다.4 shows 27 Al NMR spectra of flocculants according to basicity.

도 5는 응집제의 FT-IR 분석 결과를 도시한다.Figure 5 shows the results of the FT-IR analysis of the flocculant.

상기 목적을 달성하기 위하여, 본 발명은 a) 구리 함유 폐염화알루미늄 용액 내로 폐알루미늄 조각을 투입하여 상기 폐염화알루미늄 용액으로부터 구리를 석출 및 제거시키는 단계; 및 b) 상기 단계 a)에서 생성된 구리가 제거된 폐염화알루미늄 용액에 염기를 첨가하여 고분자 알루미늄 착화합물을 생성하는 단계를 포함하는 고분자 알루미늄 응집제의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of a) depositing and removing copper from the waste aluminum chloride solution by injecting a waste aluminum piece into a copper-containing waste aluminum chloride solution; And b) adding a base to the waste aluminum chloride solution from which the copper produced in step a) is removed to produce a polymer aluminum complex compound.

상기 단계 a)에서, 폐염화알루미늄 용액 1 리터 당 50 내지 80 g의 폐알루미늄을 투입하는 것이 바람직하다.In step a), it is preferable to add 50 to 80 g of waste aluminum per liter of waste aluminum chloride solution.

상기 단계 b)에서 사용되는 염기는 강염기인 수산화나트륨(NaOH)인 것이 바람직하다.The base used in step b) is preferably sodium hydroxide (NaOH) which is a strong base.

또한, 상기 단계 b)에서, 염기도, 즉 Al에 대한 OH의 몰비는 바람직하게 0.4 내지 2.3, 가장 바람직하게는 2.2이다.Also in step b), the basicity, ie the molar ratio of OH to Al, is preferably between 0.4 and 2.3, most preferably 2.2.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

(1) 구리 석출 및 제거 단계(1) copper precipitation and removal step

단계 a)는 폐염화알루미늄 용액 내로 폐알루미늄 조각을 투입하여 폐염화알루미늄 용액으로부터 구리를 석출 및 제거시키는 단계이다.Step a) is a step of depositing and removing copper from the waste aluminum chloride solution by injecting waste aluminum pieces into the waste aluminum chloride solution.

폐염화알루미늄 용액 1 리터 당 폐알루미늄 50 내지 80 g을 첨가하는 것이 바람직하다.Preference is given to adding 50 to 80 g of waste aluminum per liter of waste aluminum chloride solution.

금속 원자는 전자를 내놓고 안정한 양이온으로 되려는 성질이 있으며, 이를 금속의 이온화경향이라 하며 이는 다음과 같이 금속의 종류에 따르다.The metal atom has a property of giving out electrons and becoming a stable cation, which is called the ionization tendency of the metal, depending on the type of metal as follows.

(강) Li > Cs > K > Ba > Sr > Ca > Na > Mg > Be > Al > Mn > Zn > Cr > Fe > Cd > Co > Ni > Sn > Pb > (H) > Sb > Cu > Hg > Ag > Pt > Au (약)Li> Cs> K> Ba> Sr> Ca> Na> Mg> Be> Al> Mn> Zn> Cr> Fe> Cd> Co> Ni> Sn> Pb> (H)> Sb> Cu> Hg > Ag> Pt> Au (about)

이온화 경향이 큰 금속은 산화되어 화합물이나 이온의 상태로 되기 쉽다.따라서, 본 발명의 단계 a)에서, 하기 반응식 1에 의하여 구리가 다량 함유되어 있는 페염화알루미늄 용액과 폐알루미늄 조각을 반응시켜 폐염화알루미늄 용액 내 함유된 구리를 석출 및 제거할 수 있으며, 동시에 알루미늄 이온의 농도를 증가시킬 수 있다.Metals with a high tendency to ionize are easily oxidized to form compounds or ions. Therefore, in step a) of the present invention, waste aluminum salts are reacted by reacting aluminum chloride solution containing a large amount of copper with a large amount of copper according to Scheme 1 below. The copper contained in the aluminum sulfide solution can be precipitated and removed, and at the same time, the concentration of aluminum ions can be increased.

[반응식 1]Scheme 1

2Al + 3Cu2+→ 2Al3++ 3Cu2Al + 3Cu 2+ → 2Al 3+ + 3Cu

(2) 고분자성 알루미늄 착화합물의 제조 단계(2) Preparation Step of Polymeric Aluminum Complex

단계 b)는 상기 단계 a)에서 생성된 구리가 제거된 폐염화알루미늄 용액에 염기를 첨가하여 고분자성 알루미늄 착화합물을 생성하는 단계이다.Step b) is a step of adding a base to the waste aluminum chloride solution from which the copper produced in step a) is removed to produce a polymeric aluminum complex.

상기 단계 b)에서 염기로서 NaOH, Ca(OH)2, Mg(OH)2, Na2CO3, NaHCO3등을 사용할 수 있으며, NaOH를 사용하는 것이 바람직하다.In step b), NaOH, Ca (OH) 2 , Mg (OH) 2 , Na 2 CO 3 , NaHCO 3, etc. may be used as the base, and NaOH is preferably used.

염화알루미늄을 이용한 폴리염화알루미늄(PAC)의 제조에 과정에 있어서, 염기 첨가율 즉 r (OH첨가/Al) 값의 변화에 따른 pH의 변화를 도 2에 도시하였다.In the process of preparing polyaluminum chloride (PAC) using aluminum chloride, the pH change according to the change of base addition rate, that is, r (OH addition / Al) value is shown in FIG. 2.

염기의 주입 초기인 I 구간은 0 ≤r ≤0.3 의 범위로 r 값의 증가에 따라 급격한 pH 변화와 가수분해가 시작되는 구간으로서, 이 구간에서 형성되는 Al(III) 가수분해종은 Al3+와 AlOH2+등의 모노머 Al(III) 종이다.Section I, which is the base of the base injection, is a range of 0 ≤ r ≤ 0.3 where the rapid pH change and hydrolysis begin as the value of r increases, and the Al (III) hydrolyzed species formed in this section is Al 3+ And monomeric Al (III) species such as AlOH 2+ .

II 구간은 0.4 ≤r ≤2.3의 범위로 OH-이온의 주입에 따라 폴리머 Al(III)종을 생성하기에 적당한 pH 범위이며, 첨가되는 OH-이온은 Al(III)과의 착화합물형성에 의한 폴리머 Al(III) 성분으로 전이됨에 따라 OH-이온의 첨가에 따른 pH의 증가폭은 매우 작게 나타난다.Section II is in the range of 0.4 ≤ r ≤ 2.3 and pH range suitable for generating polymer Al (III) species upon injection of OH - ions, and the added OH - ions are polymers formed by complexation with Al (III). As the transition to the Al (III) component, the increase in pH due to the addition of OH - ions appears very small.

III 구간은 r이 2.35 이상인 범위로 첨가되는 OH-이온의 증가에 따라 Al(III)과 더 이상 결합할 수 없을 정도로 폴리머 Al(III) 종이 진행되고, 염기 주입에 따른 pH가 급격히 증가함에 따라 형성된 폴리머 Al(III) 종이 침전 Al(III) 종으로 전이되어 가는 구간이다.Section III is formed by polymer Al (III) species that can no longer be bonded to Al (III) with the increase of OH - ions added in the range of r is 2.35 or more, and is formed as the pH is rapidly increased by base injection. This is the section in which polymer Al (III) species are transferred to precipitated Al (III) species.

이와 같이 염기의 첨가율에 따라 응집제 내의 Al(III) 종은 다양하게 나타나며, 또한 응집제 내에 함유되어 있는 Al(III) 종에 따라 응집 효율의 차이가 나타나게 된다.As described above, the Al (III) species in the coagulant are varied depending on the addition rate of the base, and the difference in the coagulation efficiency is shown depending on the Al (III) species contained in the coagulant.

따라서, 상기 단계 b)에서는, 폴리머 Al(III) 종을 많이 함유하도록 응집제를 제조함으로써 현탁성 물질 및 유기물의 처리에 대한 처리효율을 높일 수 있다.Therefore, in the step b), by producing a flocculant to contain a large amount of polymer Al (III) species, it is possible to increase the treatment efficiency for the treatment of suspended materials and organic matter.

본 발명의 방법에 따라 제조된 응집제에 함유되어 있는 Al(III) 종들을 Ferron 방법을 이용하여 분석하였다.Al (III) species contained in the flocculant prepared according to the method of the present invention were analyzed using the Ferron method.

이는 Smith, R.M., 1971, Relation among equilbrium and nonequilibrium aqueous species of aluminum hydroxy complexes,Nonequilibrium systems in natural water chemistry(Gould, R.F. eds.), A.C.S. Advances in Chemistry Sereis No. 106, Washington, D.C., 250-279 및 Smith, R.W. and Hem, J.D., 1972, Effects of aging on aluminum hydroxide complexes in dilute aqueous solutions, U.S.G.S.Water-Supply Paper1827-D에서 제시된 바와 같이, 모노머 Al(III) 종과Ferron 시약이 즉시 반응한다는 가정 하에 흡광도 370 nm에서 Al(III)-Ferron의 반응시간에 따라 나타나는 흡광도 수치로서 모노머 Al(III) 종과 폴리머 Al(III) 종을 구분하는 것이다. 30 초 반응시간에서의 흡광도 값을 모노머 Al(III) 종으로서, 120 분까지의 반응에 관여된 흡광도 값을 폴리머 Al(III) 종으로, 그 이후의 매우 느린 반응이 나타나는 경우의 화학종을 침전 Al(III) 종으로 나타내었다. 따라서, 폴리머 Al(III) 종은 30초 내지 120분까지의 반응에서의 흡광도 차이를 이용하여 구할 수 있다.This is described in Smith, RM, 1971, Relation among equilbrium and nonequilibrium aqueous species of aluminum hydroxy complexes, Nonequilibrium systems in natural water chemistry (Gould, RF eds.), ACS Advances in Chemistry Sereis No. Monomer Al (III), as shown in 106, Washington, DC, 250-279 and Smith, RW and Hem, JD, 1972, Effects of aging on aluminum hydroxide complexes in dilute aqueous solutions, USGS Water-Supply Paper 1827-D. Under the assumption that the species reacts immediately with the Ferron reagent, the absorbance values of the Al (III) -Ferron reaction time at 370 nm are used to distinguish between the monomeric Al (III) species and the polymer Al (III) species. The absorbance value at the reaction time of 30 seconds is the monomeric Al (III) species, the absorbance value involved in the reaction up to 120 minutes is the polymer Al (III) species, and the chemical species in the case of the subsequent very slow reaction appear. Shown as Al (III) species. Therefore, the polymer Al (III) species can be obtained using the absorbance difference in the reaction from 30 seconds to 120 minutes.

Al-Ferron 반응에 따른 흡광도의 변화에 대한 Al(III) 종 분석의 결과 각 응집제가 함유하고 있는 Al(III) 종의 함량을 도 3에 나타내었다. 도 3에 도시하는 바와 같이, r 값의 증가에 따라 모노머 Al(III) 종이 감소하고 폴리머 Al(III) 종이 증가하는 것으로 나타났다. 또한, r이 2.2인 경우에 폴리머 Al(III) 종이 85%로 가장 많이 함유하는 것으로 나타났으며, R이 2.35에서 폴리머 Al(III) 종이 감소하고 침전 Al(III) 종이 증가하는 것으로 나타났다.As a result of Al (III) species analysis on the change of absorbance according to Al-Ferron reaction, the content of Al (III) species contained in each flocculant is shown in FIG. 3. As shown in FIG. 3, the monomer Al (III) species decreased and the polymer Al (III) species increased with increasing r value. In addition, when r is 2.2, the polymer Al (III) species was found to contain the highest amount of 85%, and the polymer Al (III) species decreased and the precipitated Al (III) species increased at 2.35.

이와 같이 염기의 첨가율에 따른 응집제의 제조 결과, 폴리머 Al(III) 종을 가장 많이 함유하고 있는 응집제로서 r이 2.2인 PACl 응집제를 도출할 수 있다.As a result of the preparation of the flocculant according to the addition rate of the base as described above, a PACl flocculant having r of 2.2 can be derived as the flocculent containing the most polymer Al (III) species.

또한, 본 발명의 응집제에 대하여27Al-NMR과 FT-IR 방법을 이용하여 그 특성을 살펴보았다.In addition, the characteristics of the flocculant of the present invention were examined using 27 Al-NMR and FT-IR methods.

도 4는 r 값을 달리하여 제조한 응집제에 대하여 1.0 M AlCl3·6H2O를 외부 기준액으로 하여 측정한27Al-NMR의 결과이다. 제조 조건은 50 ℃에서 제조한 것으로 r 값에 따라 피크의 양상이 다르게 나타남을 알 수 있다.4 is a result of 27 Al-NMR measured with 1.0 M AlCl 3 .6H 2 O as an external reference solution for the flocculant prepared by varying r value. The manufacturing conditions are prepared at 50 ℃, it can be seen that the appearance of the peak is different according to the r value.

도 4에서와 같이, 피크는 3개의 영역에서 나타남을 확인할 수 있는데, 0 ppm에서 나타나는 피크는 모노머 Al(III) 종으로서 주로 Al(H2O)63+, Al(OH)(H2O)52+및 Al(OH)2(H2O)P으로 존재하고 있으며, 4 ppm 구간에서 나타나는 피크는 침전물 형태의 Al(OH)3로 존재하며, 63.4 ppm 구간에서의 피크는 폴리머 Al(III) 종으로 이 때 나타나는 Al(III) 종의 형태는 [Al13O4(OH)24(H2O)12]7+의 폴리머 형태로 존재한다. 이러한 결과는, Bottero, J.Y., Cases, J.M., Fiessinger, F., and Poirer, J.E., 1980, Studies of hydrolyzed aluminum chloride solutions. I. Nature of aluminum species and composition of aqueous solution,J. of Phys. Chem., 84; 2933-2939; Akitt, J.W. and Farthing, A., 1978, New Al NMR studies of the hydrolysis of aluminum ions,J. Mag. Reson., 32,345 등에서 실시된 Al-NMR에 따른 62.5 ppm과 유사한 진동수에서 폴리머 Al(III) 종에 대한 피크가 나타나므로, Al(III) 무기고분자 응집제의 제조에 따른 폴리머 Al(III)종의 함유 정도를 확인할 수 있다. 그러나, r이 2.35인 경우 모노머 Al(III) 종을 나타내는 0 ppm에서의 피크는 나타나지 않았으나 작은 피크가 0 ∼ 85 ppm까지 유지되고 있음은 침전 Al(III) 종으로의 전이가 이루어짐에 의한 것으로 믿어진다.As shown in Figure 4, it can be seen that the peak appears in three areas, the peak appearing at 0 ppm are mainly Al (III) species Al (H 2 O) 6 3 + , Al (OH) (H 2 O ) 5 2+ and Al (OH) 2 (H 2 O) P, the peak appearing in the 4 ppm section is present as Al (OH) 3 in the form of precipitate, and the peak in the 63.4 ppm section is the polymer Al ( III) Species The form of the Al (III) species present here is in the form of a polymer of [Al 13 O 4 (OH) 24 (H 2 O) 12 ] 7+ . These results, Bottero, JY, Cases, JM, Fiessinger, F., and Poirer, JE, 1980, Studies of hydrolyzed aluminum chloride solutions. I. Nature of aluminum species and composition of aqueous solution, J. of Phys. Chem ., 84; 2933-2939; Akitt, JW and Farthing, A., 1978, New Al NMR studies of the hydrolysis of aluminum ions, J. Mag. Since the peaks for polymer Al (III) species appear at frequencies similar to 62.5 ppm according to Al-NMR conducted in Reson ., 32,345, etc., the inclusion of polymer Al (III) species according to the preparation of Al (III) inorganic polymer flocculants You can check the degree. However, if r is 2.35, the peak at 0 ppm, which represents the monomeric Al (III) species, was not observed, but the small peak was maintained at 0 to 85 ppm, believed to be due to the transition to the precipitated Al (III) species. Lose.

본 발명의 응집제 내에 형성된 Al(III) 종에 대한 결정체의 형태를 파악하기 위하여 FT-IR을 이용하여 분석한 결과를 도 5에 나타내었다. r 값에 따른 응집제에 대한 FT-IR의 변화를 살펴보면, 600, 800, 1200 및 1600 cm-1의 영역에서 흡수 밴드가 형성되었으며, r 값의 증가에 따라 600과 800cm-1에서의 흡수 밴드가 약해지는 것으로 나타났으며, 1200 cm-1에서의 흡수 밴드는 주변의 폭 넓은 밴드에 의해 가려져 사라지는 것으로 나타났다. 이 때, 600, 800 및 1200 cm-1에 형성된 밴드는 Al(III) 원자에 배위하는 물분자에 의한 것을 나타내며, 1600 cm-1에서 나타나는 흡수 밴드는 물분자의 존재를 나타낸 것이다. r 값의 증가에 따라 600, 800 및 1200 cm-1에서의 흡수 밴드가 약하게 나타나는 것은 모노머 Al(III) 종이 폴리머 Al(III) 종의 구조로 변함에 따라 Al(III) 원자에 배위하는 물분자가 감소한 결과로 믿어진다.5 shows the results of analysis using FT-IR to determine the form of crystals for the Al (III) species formed in the flocculant of the present invention. Looking at the variation in the FT-IR of the flocculant according to the value of r, the absorption band was formed in the region of 600, 800, 1200 and 1600 cm -1, with an increase in the r value, the absorption bands at 600 and 800cm -1 It appears to weaken and the absorption band at 1200 cm −1 appears to be obscured by the surrounding wide band. At this time, the bands formed at 600, 800 and 1200 cm -1 indicate water molecules coordinated to Al (III) atoms, and the absorption bands appearing at 1600 cm -1 indicate the presence of water molecules. Weak absorption bands at 600, 800, and 1200 cm −1 with increasing r value are water molecules that coordinate to Al (III) atoms as the monomer Al (III) species changes to the structure of the polymer Al (III) species. Is believed to be the result of the decrease.

또한, r 값의 증가에 따라 r이 0.0 인 경우에 나타나지 않은 흡수 밴드가 1000 cm-1에서의 생성되는 것을 볼 수 있는데 이는 연속적인 Al-OH의 결합이 이루어져 생성되는 것으로 염기의 첨가에 따라 폴리머 Al(III) 종이 생성됨을 예측할 수 있다.In addition, as the value of r increases, an absorption band that does not appear when r is 0.0 is generated at 1000 cm −1 , which is formed by the continuous Al-OH bonding. It can be predicted that Al (III) species are produced.

이하, 본 발명을 하기 실시예를 참조로 하여 보다 상세히 설명한다. 그러나, 이는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, this is only to illustrate the present invention, the present invention is not limited thereto.

[실시예]EXAMPLE

알루미늄 샷시 제조공장에서 제품 출하시 절단하고 남은 폐알루미늄 조각을 수집하여 절단기로 2.0 ×1.0 ×0.5 cm의 크기로 절단하였다. 알루미늄 조각의 비중은 20 ℃에서 2.73이었다. 표 1은 한국공업표준협회(KS)에 제시되어 있는 알루미늄 샷시 조각의 조성을 나타낸 것이다.The aluminum sash was cut at the time of product shipment at the factory and the remaining aluminum scrap was collected and cut into a size of 2.0 × 1.0 × 0.5 cm with a cutter. The specific gravity of the aluminum pieces was 2.73 at 20 ° C. Table 1 shows the composition of the aluminum sash pieces presented to the Korea Industrial Standards Association (KS).

중금속heavy metal 농도(%)density(%) 중금속heavy metal 농도(%)density(%) CuCu < 0.04<0.04 MgMg < 0.03<0.03 SiSi < 0.20<0.20 ZnZn < 0.04<0.04 FeFe < 0.25<0.25 TiTi < 0.03<0.03 MnMn < 0.03<0.03 AlAl < 99.70<99.70

분석항목Analysis item ZnZn MnMn FeFe CuCu AlAl *Al2O3 * Al 2 O 3 단위unit mg/lmg / l %% 함량content 16.016.0 19.419.4 1,2601,260 1,8831,883 34,41234,412 6.56.5

표 2와 같은 조성의 폐염화알루미늄 용액 1 m3에 대하여 표 1과 같은 조성의 알루미늄 샷시 조각 60 kg을 넣고 약 120 rpm으로 5 시간 교반하면서 반응시켰다. 반응 후, 용액 내에 석출된 구리 및 기타 중금속을 여과포(1 ㎛)로 여과하여 제거시켰다. 이 용액 1 m3을 50 ℃ 항온 반응조에 넣고 250 rpm의 교반 속도 하에서 10 M의 NaOH 용액을 200 L/hr로 약 2시간 동안 주입하여 고분자 알루미늄을 제조하였다. 이와 같은 공정에 의해 응집제 1.4 m3을 제조하였으며, 그 성상은 하기 표 3과 같다.60 kg of aluminum sash pieces having the composition shown in Table 1 were added to 1 m 3 of the waste aluminum chloride solution having the composition shown in Table 2, and reacted with stirring at about 120 rpm for 5 hours. After the reaction, copper and other heavy metals deposited in the solution were removed by filtration with a filter cloth (1 mu m). 1 m 3 of this solution was placed in a 50 ° C. constant temperature reactor, and a 10 M NaOH solution was injected at 200 L / hr for about 2 hours under a stirring speed of 250 rpm to prepare polymer aluminum. A flocculant 1.4 m 3 was prepared by this process, and the properties thereof are shown in Table 3 below.

항목Item ZnZn MnMn FeFe CuCu AlAl Al2O3 Al 2 O 3 비중importance pHpH 염기도(r=OH첨가/Al)Basicity (r = OH addition / Al) Al(III) 종 함량(%)Al (III) species content (%) (mg/l)(mg / l) (%)(%) 모노머Monomer 폴리머Polymer 침전Sedimentation 함량content 66 10.110.1 512.8512.8 0.930.93 34.02034.020 6.956.95 1.241.24 3.353.35 2.22.2 2.32.3 8585 12.712.7

상기 제조된 본 발명의 응집제와 타 알루미늄계 응집제인 PAC 및 Alum의 염색, 피혁 및 화학폐수에 대한 응집효율을 비교실험하였다. 그 결과를 하기 표 4에 나타내었다.The flocculation efficiency of the coagulant of the present invention and the other aluminum-based flocculant PAC and Alum dyeing, leather and chemical wastewater was compared. The results are shown in Table 4 below.

실험폐수Experimental wastewater 염색 공장 폐수Dyeing Plant Wastewater 피혁 제조 공장 폐수Leather manufacturing plant wastewater 화학 공장 폐수Chemical plant wastewater 응집제Flocculant 본발명Invention PACPAC AlumAlum 본발명Invention PACPAC AlumAlum 본발명Invention PACPAC AlumAlum 주입량(ppm)Injection amount (ppm) 500500 800800 1,0001,000 700700 1,0001,000 1,5001,500 700700 1,0001,000 1,5001,500 조절 pHAdjustable pH 8.08.0 8.08.0 8.08.0 7.07.0 7.07.0 7.07.0 6.06.0 6.06.0 5.05.0 COD제거율(%)COD removal rate (%) 37.237.2 33.933.9 35.535.5 55.755.7 55.055.0 53.353.3 26.226.2 21.921.9 23.823.8 SS제거율(%)SS removal rate (%) 80.680.6 77.877.8 66.766.7 99.399.3 99.399.3 98.898.8 98.598.5 97.997.9 98.898.8 색도제거율(%)Color removal rate (%) 97.697.6 74.374.3 65.965.9 -- -- -- -- -- --

상기 표로부터 알 수 있는 바와 같이, 염색폐수의 경우, 본 발명의 응집제 최적 주입량 500 ppm 및 최적 pH 8에서 COD 및 SS 제거효율은 각각 37.2 및 80.6%로 PAC 및 Alum 보다 다소 높게 나타났다. 피혁폐수의 경우에도 세가지 응집제 모두 적정 응집제 주입량 및 pH 조건을 비슷하였으나 본 발명의 응집제를 사용하였을 때 다소 높은 COD 제거효율을 얻을 수 있었다. SS 제거 효율은 세 가지 응집제 모두 약 99%의 제거효율을 나타내었다. 화학폐수의 경우에서도 유사한 결과를 보였다.As can be seen from the table, in the case of the dye wastewater, the COD and SS removal efficiencies at the optimum injection amount of 500 ppm and the optimum pH 8 of the present invention were 37.2 and 80.6%, respectively, slightly higher than PAC and Alum. In the case of leather wastewater, all three flocculants were similar in the appropriate flocculant injection amount and pH conditions, but when using the flocculant of the present invention, a rather high COD removal efficiency was obtained. SS removal efficiency of all three flocculants was about 99%. Similar results were found for chemical wastewater.

이상의 결과로부터, 응집 효율면에서 본 발명의 응집제가 여러 가지 폐수에 대하여 타 알루미늄계 응집제보다 다소 높게 나타났음을 알 수 있다.From the above results, it can be seen that the flocculant of the present invention is somewhat higher than other aluminum flocculant in terms of flocculation efficiency.

이상에서 설명한 바와 같이, 본 발명은 폐염화알루미늄 내에 함유된 구리를 제거하여 이의 응집제로서의 재활용을 가능케 하며, 본 발명에 따라 제조된 응집제는 폴리머 형태의 알루미늄을 다량 함유하므로 응집 효율 면에서 뛰어나다.As described above, the present invention removes the copper contained in the waste aluminum chloride to enable its recycling as a flocculant, and the flocculant prepared according to the present invention contains a large amount of aluminum in a polymer form, and thus has excellent coagulation efficiency.

Claims (5)

a) 구리 함유 폐염화알루미늄 용액 내로 폐알루미늄 조각을 투입하여 상기 폐염화알루미늄 용액으로부터 구리를 석출 및 제거시키는 단계; 및a) depositing and removing copper from the waste aluminum chloride solution by introducing waste aluminum pieces into a copper-containing waste aluminum chloride solution; And b) 상기 단계 a)에서 생성된 구리가 제거된 폐염화알루미늄 용액에 염기를 첨가하여 고분자 알루미늄 착화합물을 생성하는 단계b) adding a base to the waste aluminum chloride solution from which the copper produced in step a) is removed to produce a polymer aluminum complex 를 포함하는 고분자 알루미늄 응집제의 제조방법.Method for producing a polymer aluminum flocculant comprising a. 제 1항에 있어서, 상기 단계 b)에서 사용되는 염기가 수산화나트륨(NaOH)인 것을 특징으로 하는 방법.The method of claim 1 wherein the base used in step b) is sodium hydroxide (NaOH). 제 1항 또는 제 2항에 있어서, 상기 단계 b)에서, Al에 대한 OH의 몰비가 0.4 내지 2.3이 되도록 염기를 첨가하는 것을 특징으로 하는 방법.The method of claim 1 or 2, wherein in step b), a base is added so that the molar ratio of OH to Al is between 0.4 and 2.3. 제 1항 또는 제 2항에 있어서, 상기 단계 b)에서, Al에 대한 OH의 몰비가 2.2이 되도록 염기를 첨가하는 것을 특징으로 하는 방법.The process according to claim 1 or 2, wherein in step b), a base is added so that the molar ratio of OH to Al is 2.2. 제 1항 또는 제 2항에 있어서, 상기 단계 a)에서, 상기 구리 함유 폐염화알루미늄 용액 1 리터 당 상기 폐알루미늄 조각 50 내지 80 g을 투입하는 것을 특징으로 하는 방법.The method according to claim 1 or 2, wherein in step a) 50 to 80 g of the waste aluminum pieces are added per liter of the copper-containing waste aluminum chloride solution.
KR10-2000-0055387A 2000-09-21 2000-09-21 A method for production of polymeric aluminum coagulant using wasted aluminum chloride solution KR100380926B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0055387A KR100380926B1 (en) 2000-09-21 2000-09-21 A method for production of polymeric aluminum coagulant using wasted aluminum chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0055387A KR100380926B1 (en) 2000-09-21 2000-09-21 A method for production of polymeric aluminum coagulant using wasted aluminum chloride solution

Publications (2)

Publication Number Publication Date
KR20010086169A KR20010086169A (en) 2001-09-10
KR100380926B1 true KR100380926B1 (en) 2003-04-26

Family

ID=19689676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0055387A KR100380926B1 (en) 2000-09-21 2000-09-21 A method for production of polymeric aluminum coagulant using wasted aluminum chloride solution

Country Status (1)

Country Link
KR (1) KR100380926B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348510C (en) * 2005-06-06 2007-11-14 山东大学 Preparation of polyaluminum chloride coagulant with high Alb content by solid-solid compounding process
KR100813111B1 (en) * 2006-10-23 2008-03-17 (주) 에코솔루텍 The preparation method of poly aluminium chloride from waste acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114126A (en) * 1984-06-27 1986-01-22 Honshu Paper Co Ltd Manufacture of high concentration solution of polyaluminum chloride having high basicity
KR970009648A (en) * 1995-08-21 1997-03-27 이재명 Shoe Vent
KR970009648B1 (en) * 1994-09-10 1997-06-17 박균영 Polyaluminumchloride manufacturing method
KR0150232B1 (en) * 1995-03-30 1998-08-17 권석명 Method for the treatment of fluorine waste water using aluminum sludge
KR20010078498A (en) * 1999-12-09 2001-08-21 김동윤 Manufacturing method for a cohesive material of Poly aluminum Chloride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114126A (en) * 1984-06-27 1986-01-22 Honshu Paper Co Ltd Manufacture of high concentration solution of polyaluminum chloride having high basicity
KR970009648B1 (en) * 1994-09-10 1997-06-17 박균영 Polyaluminumchloride manufacturing method
KR0150232B1 (en) * 1995-03-30 1998-08-17 권석명 Method for the treatment of fluorine waste water using aluminum sludge
KR970009648A (en) * 1995-08-21 1997-03-27 이재명 Shoe Vent
KR20010078498A (en) * 1999-12-09 2001-08-21 김동윤 Manufacturing method for a cohesive material of Poly aluminum Chloride

Also Published As

Publication number Publication date
KR20010086169A (en) 2001-09-10

Similar Documents

Publication Publication Date Title
US20080131354A1 (en) Polyaluminum calcium hydroxychlorides and methods of making the same
KR960009172B1 (en) Method for concurrent production of copper powder and a metal chloride
US3497459A (en) Process for producing water soluble basic salts of aluminum and/or iron
CN103395815B (en) Preparation method for preparing high-purity calcium chloride from industrial calcium chloride
US20030006195A1 (en) Method of treating flourine compound
CN1190380A (en) Process for manufacuture of hypochlorite bleaching compositions
KR19990077084A (en) Flocculant composition and water treatment method using the same
KR100380926B1 (en) A method for production of polymeric aluminum coagulant using wasted aluminum chloride solution
CA1314688C (en) Stripping and recovery of dichromate in electrolytic chlorate systems
KR100348771B1 (en) Method of producing an active inorganic material liquid from granite
WO1992000917A1 (en) Composition and process for treating water containing metal ions and organic and/or inorganic impurities
US4066542A (en) Method of purification of waste water by treatment with zirconium salt
CA2038886A1 (en) Chelate compositions and their production
CN1087389A (en) Handle acid copper chloride waste fluid to reclaim copper and derived polybasic aluminum chloride method
JPH07196323A (en) Production of cobalt oxide of low sodium content
JP2002079003A (en) Inorganic flocculant using highly purified ferric salt and manufacturing method thereof and processing apparatus in water-purification processing
KR100961928B1 (en) Manufacturing methods of basic copper carbonate used waste solutions copper chloride
CN1032150A (en) Process for producing flocculant of polymeric aluminium chloride
KR100434637B1 (en) Process for preparing cuprous cynide from cupric chloride waste
KR20080018302A (en) Process for preparing cuprous chloride with high quality from cupric chloride containing waste
US6572834B2 (en) Aqueous zinc nitrite solution and method for preparing the same
EP0737167B1 (en) Process for the preparation of a sulfate- and hydroxide-based ferric compound
KR0137378B1 (en) Process for recycling saline solution
ITMI990573A1 (en) ALUMINUM POLYCHLOROSULPHATES THEIR PREPARATION PROCESS AND THEIR APPLICATIONS
KR100380031B1 (en) Process for preparing cuprous chloride from cupric chloride waste

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
G15R Request for early opening
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee