KR100373788B1 - Method for providing a etch stop layer in a multilayer interconnection structure - Google Patents

Method for providing a etch stop layer in a multilayer interconnection structure Download PDF

Info

Publication number
KR100373788B1
KR100373788B1 KR10-2000-0020324A KR20000020324A KR100373788B1 KR 100373788 B1 KR100373788 B1 KR 100373788B1 KR 20000020324 A KR20000020324 A KR 20000020324A KR 100373788 B1 KR100373788 B1 KR 100373788B1
Authority
KR
South Korea
Prior art keywords
stop layer
etch stop
forming
insulating film
gas
Prior art date
Application number
KR10-2000-0020324A
Other languages
Korean (ko)
Other versions
KR20010096277A (en
Inventor
김인수
Original Assignee
동부전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부전자 주식회사 filed Critical 동부전자 주식회사
Priority to KR10-2000-0020324A priority Critical patent/KR100373788B1/en
Publication of KR20010096277A publication Critical patent/KR20010096277A/en
Application granted granted Critical
Publication of KR100373788B1 publication Critical patent/KR100373788B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 반도체 다층 배선 구조의 식각 저지층 형성 방법에 관한 것이다.The present invention relates to a method for forming an etch stop layer of a semiconductor multilayer wiring structure.

본 발명은 반도체 기판상에 제 1 절연막을 형성하는 단계와; ALD(Atomic Layer Deposition) 기법을 기설정 회수 반복 수행하여 제 1 절연막상에 기설정 두께의 식각 저지층을 형성하는 단계와; 식각 저지층상에 제 2 절연막을 형성하는 단계와; 포토레지스트 패턴을 형성하고 비아 홀(via hole)을 식각하는 단계와; 포토레지스트로 트렌치 패턴(trench pattern)을 형성하는 단계와; 트렌치 패턴으로 식각 저지층을 사용하여 트렌치 구조를 형성하는 단계로 이루어진다. 따라서, 본 발명은 원자 단위의 두께 조절이 가능하고 불순물을 줄이므로써 우수한 막질을 형성할 수 있으며, 저온 공정이 가능하므로 열 공정에 대한 문제점을 해결할 수 있다. 클러스터 시스템(cluster system)의 경우, ALD 시스템에 인-라인으로 층간 절연막을 형성하므로써 대기에 노출되어 생기는 문제점을 최소화 할 수 있다. 또한, 저 유전율의 식각 저지층을 형성하게 되므로 전체적인 유전율 상승을 방지할 수 있는 효과가 있다.The present invention includes forming a first insulating film on a semiconductor substrate; Performing an ALD (Atomic Layer Deposition) method repeatedly to form an etch stop layer having a predetermined thickness on the first insulating film; Forming a second insulating film on the etch stop layer; Forming a photoresist pattern and etching via holes; Forming a trench pattern with the photoresist; Forming a trench structure by using an etch stop layer in the trench pattern. Therefore, the present invention can control the thickness of the atomic unit and can form an excellent film quality by reducing impurities, and can solve the problem of the thermal process because the low temperature process is possible. In the case of a cluster system, a problem caused by exposure to the atmosphere can be minimized by forming an interlayer insulating film in-line in the ALD system. In addition, since the etch stop layer of the low dielectric constant is formed, there is an effect of preventing the overall dielectric constant increase.

Description

반도체 다층 배선 구조의 식각 저지층 형성 방법{METHOD FOR PROVIDING A ETCH STOP LAYER IN A MULTILAYER INTERCONNECTION STRUCTURE}Method for forming an etch stop layer of a semiconductor multilayer wiring structure {METHOD FOR PROVIDING A ETCH STOP LAYER IN A MULTILAYER INTERCONNECTION STRUCTURE}

본 발명은 반도체 다층 배선 구조의 제조 방법에 관한 것으로, 특히, 반도체다층 배선 구조의 식각 저지층 형성 방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor multilayer wiring structure, and more particularly, to a method for forming an etch stop layer of a semiconductor multilayer wiring structure.

최근, 전자 통신 분야에서 급격한 발전을 거듭함에 따라 반도체 소자의 미세화 및 고집적화 현상이 극명하게 드러나고 있으며, 이러한 반도체 소자의 미세화에 따른 여러 가지 문제점들도 함께 수반되고 있는 추세다.Recently, with the rapid development in the field of electronic communication, the miniaturization and high integration of semiconductor devices are clearly revealed, and various problems caused by the miniaturization of such semiconductor devices are also accompanied.

이러한 문제점들 중 신호 지연 문제는 반도체 소자 특성을 좌우할 수 있는 문제로서, 특히, 다층 배선 구조에서는 배선과 배선간의 거리 감소로 인해 같은 층 배선끼리의 정전 용량이 증가하여 신호 지연 문제가 더욱 심화되는 경향이 있다. 즉, 선폭이 작아질수록 배선에 의한 신호 지연이 소자의 동작 특성을 크게 좌우하게 되며, 따라서, 층내 배선 사이의 정전 용량을 줄이기 위해서 배선의 두께를 줄이고 층간 절연막의 두께를 늘여야만 하는 필요성이 대두되었다.Among these problems, the signal delay problem is a problem that can influence the characteristics of semiconductor devices. In particular, in a multilayer wiring structure, the capacitance of the same layer wiring increases due to the reduction in the distance between the wiring and the wiring, and thus the signal delay problem is intensified. There is this. In other words, the smaller the line width, the greater the signal delay caused by the wiring, and thus the greater the operating characteristics of the device. Therefore, the need to reduce the thickness of the wiring and increase the thickness of the interlayer insulating film in order to reduce the capacitance between the interlayer wirings has arisen. It became.

이와 같은 문제를 해결하기 위해서는 낮은 비저항을 갖는 배선 재료와 낮은 비유전율을 갖는 층간 절연막이 필요하다. 배선 재료로는 구리(Cu)가 사용되고 있고 층간 절연막은 다양한 물질이 제안되고 있다.In order to solve such a problem, a wiring material having a low specific resistance and an interlayer insulating film having a low dielectric constant are required. Copper (Cu) is used as the wiring material, and various materials have been proposed for the interlayer insulating film.

그러나, 구리는 식각 부산물의 낮은 증기압으로 인해 건식 식각의 어려움이 있으므로, 다층 배선 구조를 형성하기 위해서 홀을 형성하고 채우는 다마신(damascene) 공정을 사용하여 구리를 패터닝한다. 이러한 다마신 공정을 수행하기 위해서는 식각 저지층을 만들어야 하지만, 식각 저지층의 유전율이 커질 경우, 층간 절연막의 유전율을 감쇄시키는 결과를 초래하기 때문에, 얇은 막의 저 유전율을 갖는 물질, 예컨대, 실리콘 질화물을 사용해야 한다.However, copper suffers from dry etching due to the low vapor pressure of etch byproducts, so copper is patterned using a damascene process to form and fill holes to form a multi-layered interconnect structure. In order to perform the damascene process, an etch stop layer must be formed. However, when the dielectric constant of the etch stop layer is increased, the dielectric constant of the interlayer insulating film is attenuated. Should be used.

이와 같이, 층간 절연막의 유전율을 높이기 위해 얇은 막의 저 유전율을 갖는 물질을 사용해야 할 필요가 있는 바, 종래의 증착 방법에서는 불순물이 유입될 가능성이 많다는 문제가 있었다.As described above, in order to increase the dielectric constant of the interlayer insulating film, it is necessary to use a material having a low dielectric constant of a thin film, and there is a problem that impurities are likely to flow in the conventional deposition method.

또한, 기존의 증착 방법은 CVD(Chemical Vapor Deposition) 기법을 사용하고 있는데, 이 CVD 기법에서는 플라즈마를 이용할 뿐만 아니라 고온 공정이 수반되므로 후속 공정에서의 열적 예산(thermal budget)과 원자 단위의 두께 조절이 어렵다는 문제가 제기되었다.In addition, the conventional deposition method uses CVD (Chemical Vapor Deposition) technique, which not only uses a plasma but also involves a high temperature process, so that thermal budget and atomic thickness control in a subsequent process are controlled. The problem was raised.

따라서, 본 발명은 상술한 문제를 해결하기 위해 안출한 것으로, 가스를 순차적으로 용기 내부에 유입하는 ALD(Atomic Layer Deposition) 기법을 사용하므로써, 원하는 두께의 식각 저지층 및 저 유전율의 물질 형성이 가능하도록 한 반도체 다층 배선 구조의 식각 저지층 형성 방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above-described problem, by using the ALD (Atomic Layer Deposition) technique to sequentially introduce the gas into the container, it is possible to form an etch stop layer and a low dielectric constant material of the desired thickness It is an object of the present invention to provide a method for forming an etch stop layer of a semiconductor multilayer wiring structure.

이러한 목적을 달성하기 위하여 본 발명은, 반도체 기판상에 제 1 절연막을 형성하는 단계와; ALD 기법을 기설정 회수 반복 수행하여 제 1 절연막 상에 기설정 두께의 식각 저지층을 형성하는 단계와; 식각 저지층상에 제 2 절연막을 형성하는 단계와; 포토레지스트 패턴을 형성하고 비아 홀(via hole)을 식각하는 단계와; 포토레지스트로 트렌치 패턴(trench pattern)을 형성하는 단계와; 트렌치 패턴으로 식각 저지층을 사용하여 트렌치 구조를 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 다층 배선 구조를 제공한다.In order to achieve this object, the present invention comprises the steps of forming a first insulating film on a semiconductor substrate; Repeating the ALD technique a predetermined number of times to form an etch stop layer having a predetermined thickness on the first insulating film; Forming a second insulating film on the etch stop layer; Forming a photoresist pattern and etching via holes; Forming a trench pattern with the photoresist; It provides a semiconductor multilayer wiring structure comprising the step of forming a trench structure using an etch stop layer in a trench pattern.

도 1 내지 도 3은 본 발명의 바람직한 실시예에 따른 반도체 다층 배선 구조의 식각 저지층이 형성되기까지의 단계별 단면도,1 to 3 are step-by-step cross-sectional views of forming an etch stop layer of a semiconductor multilayer wiring structure according to a preferred embodiment of the present invention;

도 4는 본 발명에 따른 방법에 의해 식각 저지층과 반도체 다층 배선 구조를 형성하는 과정의 흐름도.4 is a flowchart of a process of forming an etch stop layer and a semiconductor multilayer interconnection structure by a method according to the present invention;

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100 : 반도체 기판100: semiconductor substrate

102 : SiN층102: SiN layer

104 : 제 1 절연막104: the first insulating film

106 : 식각 저지층106: etching stop layer

108 : 제 2 절연막108: second insulating film

110 : 포토레지스트110: photoresist

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

도 1은 본 발명의 바람직한 실시예에 따른 식각 저지층이 형성된 반도체 다층 배선 구조의 개략 단면도로서, 반도체 기판(100), SiN층(102), 제 1 절연막(104), 식각 저지층(106), 제 2 절연막(108) 및 산화물(110)로 형성되어 있다.1 is a schematic cross-sectional view of a semiconductor multilayer wiring structure in which an etch stop layer is formed in accordance with a preferred embodiment of the present invention, wherein the semiconductor substrate 100, the SiN layer 102, the first insulating film 104, and the etch stop layer 106 are formed. And the second insulating film 108 and the oxide 110.

도시한 바와 같이, 식각 저지층(106)은 바람직하게는 SiN, WN, TaN 등이 사용될 수 있으며, 더욱 바람직하게는 Si3N4가 사용될 수 있다.As shown, the etch stop layer 106 may be preferably SiN, WN, TaN and the like, more preferably Si 3 N 4 may be used.

제 1 및 제 2 절연막(104),(108)은 저 유전율 물질로 형성되어 있는데, 이러한 저 유전율 물질은 유기물과 무기물로 나뉠 수 있으며, 바람직하게는 SiOF, HSQ, MSQ, HOSP, 폴리머 등이 사용될 수 있다.The first and second insulating films 104 and 108 are formed of a low dielectric constant material, and the low dielectric constant material may be divided into organic and inorganic materials. Preferably, SiOF, HSQ, MSQ, HOSP, polymer, or the like may be used. Can be.

이하에서는, 도 1 내지 도 3의 단계별 단면도와 도 4의 흐름도를 참조하여 상술한 식각 저지층(106) 형성 과정을 보다 상세히 기술한다.Hereinafter, the process of forming the etch stop layer 106 described above will be described in detail with reference to the cross-sectional views of FIGS. 1 to 3 and the flowchart of FIG. 4.

즉, 도 4는 본 발명에 따른 방법에 의해 식각 저지층(106)과 반도체 다층 배선 구조를 형성하는 과정의 흐름도로서, 먼저, 도 1에 도시한 바와 같이, 반도체 기판상(100)에 제 1 절연막(104)을 형성한다(S200). 이러한 제 1 절연막(104)은 상술한 바와 같이 저 유전율 물질로 이루어진다.4 is a flowchart of a process of forming the etch stop layer 106 and the semiconductor multilayer wiring structure by the method according to the present invention. First, as shown in FIG. An insulating film 104 is formed (S200). The first insulating layer 104 is made of a low dielectric constant material as described above.

단계(S202)에서는 단계(S200)에서 형성된 제 1 절연막(104)상에 식각 저지층(106)을 형성한다. 이러한 식각 저지층(106) 형성 단계는 ALD(Atomic Layer Deposition) 기법을 사용하여 구현될 수 있다. ALD 기법이란 가스를 순차적으로 용기 내부에 유입하므로써 원하는 만큼의 두께로 증착이 가능하고 저 유전율의 물질 형성이 용이한 기법을 말하며, 이러한 ALD 기법을 이용한 식각 저지층(106) 형성 과정을 보다 상세히 기술한다.In step S202, an etch stop layer 106 is formed on the first insulating layer 104 formed in step S200. The etching stop layer 106 may be formed using an atomic layer deposition (ALD) technique. The ALD technique refers to a technique capable of depositing a desired thickness and easily forming a material having a low dielectric constant by introducing a gas into the container sequentially, and describes in detail the process of forming the etch stop layer 106 using the ALD technique. do.

먼저, 제 1 가스, 예컨대, SiCl4를 도시 생략된 챔버내로 유입시켜 화학 흡착시킨 후, 제 2 가스, 예컨대, N2를 챔버내로 1차 유입시켜 잔류물을 제거한다.First, a first gas, such as SiCl 4, is introduced into a chamber (not shown) for chemisorption, and then a second gas, such as N 2, is first introduced into the chamber to remove residues.

이후, 제 3 가스, 예컨대, NH3를 챔버내로 유입하여 화학 흡착시키고, 상술한 제 2 가스, 즉, N2를 챔버내로 2차 유입시켜 잔류물을 제거하는 과정으로 이루어진다.Thereafter, a third gas, for example, NH 3, is introduced into the chamber and chemisorbed, and the above-described second gas, that is, N 2 , is introduced into the chamber to remove the residue.

본 발명에서는 식각 저지층(106) 형성을 위한 이러한 ALD 기법을 순차적으로 반복 수행하므로써 원하는 두께의 막을 구현할 수 있도록 하였다. 즉, 본 발명에 따른 반도체 다층 배선 구조의 식각 저지층(106) 형성을 위해서 이러한 ALD 기법을 이용한 식각 저지층 형성 과정을 기설정 회수만큼 반복하도록 한 것이다.In the present invention, by repeatedly performing such an ALD technique for forming the etch stop layer 106, a film having a desired thickness can be realized. That is, in order to form the etch stop layer 106 of the semiconductor multilayer wiring structure according to the present invention, the etch stop layer formation process using the ALD technique is repeated by a predetermined number of times.

이때, 기설정 회수는 기설정 온도 영역에서 식각 저지층(106)이 기설정 두께로 형성될 때까지의 회수이며, 기설정 온도 영역은 바람직하게는 250℃ 내지 350℃로 설정될 수 있다(S204)(S206).In this case, the predetermined number of times is the number of times until the etch stop layer 106 is formed to a predetermined thickness in the predetermined temperature region, and the predetermined temperature region may be preferably set to 250 ° C. to 350 ° C. (S204). (S206).

한편, 상술한 공정들을 반복 수행하므로써 원하는 두께의 막이 형성되면, 단계(S208)로 진행한다.On the other hand, if the film of the desired thickness is formed by repeating the above-described process, the process proceeds to step S208.

단계(S208)에서는 이러한 식각 저지층(106)상에 저 유전율 물질인 제 2 절연막(108)을 형성한다.In operation S208, the second insulating layer 108, which is a low dielectric constant material, is formed on the etch stop layer 106.

또한, 단계(S210)에서는 제 2 절연막(108)상에 산화물(110)을 형성한다.In operation S210, the oxide 110 is formed on the second insulating layer 108.

이후, 단계(S212)에서는 도 2에 도시한 바와 같이, 포토레지스트 패턴을 형성하고 비아 홀(via hole)을 식각하며, 포토레지스트로 트렌치 패턴을 형성한다.Subsequently, in step S212, as shown in FIG. 2, a photoresist pattern is formed, via holes are etched, and a trench pattern is formed of the photoresist.

끝으로, 트렌치 패턴으로 식각 저지층(106)을 사용하여 트렌치 구조를 형성하므로써, 도 3과 같은 반도체 다층 배선 구조가 형성된다.Finally, by forming the trench structure using the etch stop layer 106 in the trench pattern, the semiconductor multilayer wiring structure as shown in FIG. 3 is formed.

이상 설명한 바와 같이, 본 발명은 반도체 다층 배선 구조 형성 과정에서의 식각 저지층 형성을 ALD 기법으로 순차 반복 수행하도록 구현하였다.As described above, the present invention was implemented to sequentially perform the etching stop layer formation in the process of forming the semiconductor multilayer interconnection structure by the ALD technique.

따라서, 본 발명은 원자 단위의 두께 조절이 가능하고 불순물을 줄이므로써 우수한 막질을 형성할 수 있으며, 저온 공정이 가능하므로 열 공정에 대한 문제점을 해결할 수 있다. 클러스터 시스템(cluster system)의 경우, ALD 시스템에 인-라인으로 층간 절연막을 형성하므로써 대기에 노출되어 생기는 문제점을 최소화 할 수 있다. 또한, 저 유전율의 식각 저지층을 형성하게 되므로 전체적인 유전율 상승을 방지할 수 있다.Therefore, the present invention can control the thickness of the atomic unit and can form an excellent film quality by reducing impurities, and can solve the problem of the thermal process because the low temperature process is possible. In the case of a cluster system, a problem caused by exposure to the atmosphere can be minimized by forming an interlayer insulating film in-line in the ALD system. In addition, since the low dielectric constant etch stop layer is formed, it is possible to prevent the overall dielectric constant increase.

Claims (8)

반도체 기판상에 제 1 절연막을 형성하는 단계와;Forming a first insulating film on the semiconductor substrate; ALD(Atomic Layer Deposition) 기법을 기설정 회수 반복 수행하여 상기 제 1 절연막상에 기설정 두께의 식각 저지층을 형성하는 단계와;Performing an ALD (Atomic Layer Deposition) method repeatedly to form an etch stop layer having a predetermined thickness on the first insulating film; 상기 식각 저지층상에 제 2 절연막을 형성하는 단계와;Forming a second insulating film on the etch stop layer; 포토레지스트 패턴을 형성하고 비아 홀(via hole)을 식각하는 단계와;Forming a photoresist pattern and etching via holes; 포토레지스트로 트렌치 패턴(trench pattern)을 형성하는 단계와;Forming a trench pattern with the photoresist; 상기 트렌치 패턴으로 상기 식각 저지층을 사용하여 트렌치 구조를 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 다층 배선 구조의 식각 저지층 형성 방법.And forming a trench structure using the etch stop layer as the trench pattern. 제 1 항에 있어서,The method of claim 1, 상기 식각 저지층 형성 단계는,The etching stop layer forming step, 제 1 가스를 챔버내로 유입시켜 화학 흡착시키는 단계와;Introducing a first gas into the chamber to chemisorb; 제 2 가스를 상기 챔버내로 1차 유입시켜 잔류물을 제거하는 단계와;Firstly introducing a second gas into the chamber to remove residue; 제 3 가스를 상기 챔버내로 유입하여 화학 흡착시키는 단계와;Introducing a third gas into the chamber to chemisorb; 상기 제 2 가스를 상기 챔버내로 2차 유입시켜 잔류물을 제거하는 단계로 이루어지는 것을 특징으로 하는 반도체 다층 배선 구조의 식각 저지층 형성 방법.And secondly introducing the second gas into the chamber to remove residues. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 반도체 다층 배선 구조의 식각 저지층 형성 방법은 상기 식각 저지층 형성 단계를 기설정 온도 영역에서 상기 식각 저지층이 상기 기설정 두께로 형성될 때까지 상기 기설정 회수 반복하므로써 구현되는 것을 특징으로 하는 반도체 다층 배선 구조의 식각 저지층 형성 방법.The method of forming an etch stop layer of the semiconductor multilayer interconnection structure may be implemented by repeating the etch stop layer forming step until the etch stop layer is formed at the preset thickness in a preset temperature region. A method of forming an etch stop layer of a semiconductor multilayer wiring structure. 제 3 항에 있어서,The method of claim 3, wherein 상기 기설정 온도 영역은 250℃ 내지 350℃인 것을 특징으로 하는 반도체 다층 배선 구조의 식각 저지층 형성 방법.And the predetermined temperature range is 250 ° C to 350 ° C. 제 1 항에 있어서,The method of claim 1, 상기 식각 저지층은 Si3N4로 이루어지는 것을 특징으로 하는 반도체 다층 배선 구조의 식각 저지층 형성 방법.And the etch stop layer is formed of Si 3 N 4 . 제 2 항에 있어서,The method of claim 2, 상기 제 1 가스는 SiCl4이며, 상기 제 2 가스는 N2이며, 상기 제 3 가스는 NH3로 이루어지는 것을 특징으로 하는 반도체 다층 배선 구조의 식각 저지층 형성 방법.Wherein the first gas is SiCl 4 , the second gas is N 2 , and the third gas is NH 3 . 제 1 항에 있어서,The method of claim 1, 상기 제 1 및 제 2 절연막은 저유전율 물질로 이루어지는 것을 특징으로 하는 반도체 다층 배선 구조의 식각 저지층 형성 방법.And the first and second insulating layers are formed of a low dielectric constant material. 삭제delete
KR10-2000-0020324A 2000-04-18 2000-04-18 Method for providing a etch stop layer in a multilayer interconnection structure KR100373788B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0020324A KR100373788B1 (en) 2000-04-18 2000-04-18 Method for providing a etch stop layer in a multilayer interconnection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0020324A KR100373788B1 (en) 2000-04-18 2000-04-18 Method for providing a etch stop layer in a multilayer interconnection structure

Publications (2)

Publication Number Publication Date
KR20010096277A KR20010096277A (en) 2001-11-07
KR100373788B1 true KR100373788B1 (en) 2003-02-26

Family

ID=19665133

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0020324A KR100373788B1 (en) 2000-04-18 2000-04-18 Method for providing a etch stop layer in a multilayer interconnection structure

Country Status (1)

Country Link
KR (1) KR100373788B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9711716B2 (en) 2015-09-25 2017-07-18 Samsung Electronics Co., Ltd. Magnetic memory device and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469126B1 (en) * 2002-06-05 2005-01-29 삼성전자주식회사 Method of forming a thin film with a low hydrogen contents

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9711716B2 (en) 2015-09-25 2017-07-18 Samsung Electronics Co., Ltd. Magnetic memory device and method for manufacturing the same

Also Published As

Publication number Publication date
KR20010096277A (en) 2001-11-07

Similar Documents

Publication Publication Date Title
JP4425432B2 (en) Manufacturing method of semiconductor device
US6893969B2 (en) Use of ammonia for etching organic low-k dielectrics
US6197681B1 (en) Forming copper interconnects in dielectric materials with low constant dielectrics
JP2006352124A (en) Method of manufacturing semiconductor device and structure thereof
EP1432023A1 (en) Semiconductor device and production method therefor
US20020094695A1 (en) Method of dry etching organic SOG film
US6313025B1 (en) Process for manufacturing an integrated circuit including a dual-damascene structure and an integrated circuit
US6150232A (en) Formation of low k dielectric
KR100614782B1 (en) A process for manufacturing an integrated circuit including a dual- damascene structure and an integrated circuit
KR100596794B1 (en) Method for forming metal line in semiconductor device
US6803314B2 (en) Double-layered low dielectric constant dielectric dual damascene method
KR20030004010A (en) Semiconductor device and manufacturing method therefor
KR100373788B1 (en) Method for providing a etch stop layer in a multilayer interconnection structure
US6554002B2 (en) Method for removing etching residues
JP2000091308A (en) Manufacture of semiconductor device
US6417090B1 (en) Damascene arrangement for metal interconnection using low k dielectric constant materials for etch stop layer
KR20040101008A (en) Manufacturing method for semiconductor apparatus
US7825019B2 (en) Structures and methods for reduction of parasitic capacitances in semiconductor integrated circuits
KR20030077455A (en) Method for manufacturing semiconductor device using dual-damascene techniques
JP2005005697A (en) Manufacturing method of semiconductor device
KR101081853B1 (en) Method for manufacturing semiconductor device
KR100713900B1 (en) Method for manufacturing metal line in semiconductor device
US20230420267A1 (en) Oxygen-free etching of non-volatile metals
KR100247643B1 (en) A reaction chamber for forming metal layer and method for forming metal layer in semiconductor device using the same
KR100552836B1 (en) Semiconductor device and formation method of metal line in the semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120119

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee