KR100373104B1 - Coating method of microbe by microbial polysaccharide - Google Patents

Coating method of microbe by microbial polysaccharide Download PDF

Info

Publication number
KR100373104B1
KR100373104B1 KR1020000017801A KR20000017801A KR100373104B1 KR 100373104 B1 KR100373104 B1 KR 100373104B1 KR 1020000017801 A KR1020000017801 A KR 1020000017801A KR 20000017801 A KR20000017801 A KR 20000017801A KR 100373104 B1 KR100373104 B1 KR 100373104B1
Authority
KR
South Korea
Prior art keywords
weight
microbial
microorganism
microorganisms
derived
Prior art date
Application number
KR1020000017801A
Other languages
Korean (ko)
Other versions
KR20000037040A (en
Inventor
윤병대
서동진
박찬선
김희식
문성훈
박용일
이석준
Original Assignee
주식회사 바이오알앤즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오알앤즈 filed Critical 주식회사 바이오알앤즈
Priority to KR1020000017801A priority Critical patent/KR100373104B1/en
Publication of KR20000037040A publication Critical patent/KR20000037040A/en
Application granted granted Critical
Publication of KR100373104B1 publication Critical patent/KR100373104B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은 미생물 유래 다당류를 이용한 미생물 코팅방법에 관한 것으로서, 더욱 상세하게는 미생물 유래 다당류를 이용하여 내열성 및 내산성을 갖도록 미생물을 코팅하는 방법에 관한 것이다. 미생물 균체 20~80중량%와 미생물 유래 다당류 20~80중량%를 혼합한 후 수분함량이 7~20중량%가 되도록 10~70℃에서 건조하는것으로 이루어진 미생물 코팅방법을 제공하는 것이다. 또한 본 발명은 간단하고 경제적인 미생물 코팅을 용이하게 대량으로 제조할 수 있는 미생물 코팅방법을 제공하는 것이다.The present invention relates to a method for coating a microorganism using a microorganism-derived polysaccharide, and more particularly, to a method for coating a microorganism to have heat resistance and acid resistance using a microorganism-derived polysaccharide. 20 to 80% by weight of microbial cells and 20 to 80% by weight of microbial derived polysaccharides is to provide a microbial coating method consisting of drying at 10 ~ 70 ℃ so that the moisture content is 7 to 20% by weight. In another aspect, the present invention is to provide a microbial coating method that can be produced in a large amount easily and economical microbial coating.

Description

미생물 유래 다당류를 이용한 미생물 코팅방법{COATING METHOD OF MICROBE BY MICROBIAL POLYSACCHARIDE}COATING METHOD OF MICROBE BY MICROBIAL POLYSACCHARIDE}

본 발명은 미생물 유래 다당류를 이용한 미생물 코팅방법에 관한 것이다. 더욱 상세하게는 미생물 유래 다당류를 이용하여 내열성 및 내산성을 갖도록 미생물을 코팅하는 방법에 관한 것이다.The present invention relates to a microbial coating method using a microorganism-derived polysaccharide. More particularly, the present invention relates to a method of coating a microorganism with heat and acid resistance using microorganism-derived polysaccharide.

미생물 코팅 기술은 유산균이 위산에서 사멸되는 것을 억제하기위해 유산균 정장제에 내산성 및 열안정성을 부여하는 코팅방법이 시도되었으며, 효소, 생물학적 방제인자 및 세포의 고정화를 위한 코팅방법이 발달되어왔다.Microbial coating technology has been tried to give acid resistance and thermal stability to the lactic acid bacteria suit to inhibit the lactic acid bacteria are killed in gastric acid, coating methods for immobilizing enzymes, biological control factors and cells has been developed.

유럽 특허 제0,320,483호에서 베이커(Baker)등은 바실러스 터링지엔시스(Bacillus thuringiensis), 알터나리아 카씨애(Alternaria cassiae), 슈도모나스 플루오레센스(Pseudomonas fluorescens)와 같은 미생물을 캡슐화 하기위한 폴리비닐 알콜 및 폴리비닐피롤리돈과 같은 화학 합성 고분자의 용도를 개시하고 있는데, 상기 기술은 화학 합성 고분자에 의한 환경 오염문제 및 높은 생산비로 인해 실용적이지 못하다.In EP 0,320,483, Baker et al. Describe polyvinyl alcohols for encapsulating microorganisms such as Bacillus thuringiensis, Alternaria cassiae, Pseudomonas fluorescens and The use of chemical synthetic polymers, such as polyvinylpyrrolidone, is disclosed, which is not practical due to environmental pollution problems and high production costs by chemical synthetic polymers.

한편, 생물학적 방제 인자를 캡슐화하기 위해 천연 고분자 매트릭스를 사용하는 바이오캡슐화 기술이 시도된 바 있다. 미국특허 제4,647,537호에서 시게미쯔(H. Shigemitsu)는 카라지난(carrageenan) 고분자 매트릭스내에 식물병 억제 미생물을 바이오캡슐화하는 시도를 개시하고 있으나, 이 기술은 고분자 물질의 비싼 가격으로 인해 실용적이지 못하다. 미국특허 제4,724,147호에서 모리스(J.J.Moris) 및 미국특허 제4,668,512호에서 루이스(J.A. Lewis)는 진균제초제로서 사용될 진균을 캡슐화하기 위한 알긴산염 펠릿의 사용을 개시하고 있으나 실용화하기엔 너무 비용이 많이 들 뿐만 아니라 수분 보유능이 낮은 단점이 있다.On the other hand, bioencapsulation techniques using natural polymer matrices have been attempted to encapsulate biological control factors. In US Pat. No. 4,647,537, H. Shigemitsu discloses an attempt to bioencapsulate phytopathogenic microorganisms in a carrageenan polymer matrix, but this technique is not practical due to the high cost of the polymer material. In US Pat. No. 4,724,147, JJMoris and US Pat. No. 4,668,512 disclose the use of alginate pellets to encapsulate fungi to be used as fungal herbicides, but are too expensive to be practical. But it has the disadvantage of low water retention.

유사한 기술로, 알긴산 칼슘이 선충류를 캡슐화하기 위한 시도(H.K. Kaya et al., Environ. Entomol. 14, 572-574(1985))가 있었으나 효용은 그리 크지 않았다.Similarly, attempts have been made to encapsulate nematodes with calcium alginate (H.K. Kaya et al., Environ. Entomol. 14, 572-574 (1985)), but their utility is not so great.

프랑스 특허 제2,501,229호에서 정(Jung)등은 생존가능한 저장을 위해 균근(mycorrhizas)을 천연 고분자내에 포함시키는 것을 개시하고 있다. 천연 고분자 겔은 크산토모나스(Xanthomonas)에 의한 탄수화물의 발효에 의해 생산된 고분자량의 헤테로 다당류로 만들어진다. 그렇지만, 상기 기술은 사용된 천연 고분자의 높은 생산비로 인해 널리 사용되기에는 비용이 많이 든다.Jung et al. In French Patent No. 2,501,229 disclose the inclusion of mycorrhizas in natural polymers for viable storage. Natural polymer gels are made of high molecular weight heteropolysaccharides produced by fermentation of carbohydrates by Xanthomonas. However, the technique is expensive to be widely used due to the high production cost of the natural polymers used.

한편, 유산균 정장제 분야에서, 유산균은 내산성이 약하여 위에서 거의 사멸되어 극소수만이 장에 도달하여 이 문제를 해결하고자 pH가 낮은 위산에서 용해되지 않는 캡슐제를 사용하는 장용코팅제가 발명되었다. 또한 구슬과 같은 작은 알갱이내에 유산균을 넣는 방법으로서 젤라틴, 설탕 및 껌류등을 이용하는 마이크로캡슐 공법 및 단백질 코팅방법이 있으나 이러한 코팅방법은 코팅재료를 수입하여야하므로 비용이 많이 들며 여러차례의 냉동 건조단계를 거치는 문제가 있다. 따라서미생물 코팅을 위하여 보다 경제적이며 간단한 미생물 코팅 방법이 요구된다.On the other hand, in the field of lactic acid bacteria enteric acid, enteric coating agent using a capsule which does not dissolve in gastric acid with a low pH to solve this problem because only a few reaches the intestinal acid is weak acid resistance to the intestines. In addition, there are microcapsule methods and protein coating methods using gelatin, sugar, and gums as a method of putting lactic acid bacteria into small grains such as beads. However, these coating methods are expensive because they require the import of coating materials and undergo several freeze-drying steps. there is a problem. Therefore, a more economical and simple microbial coating method is required for microbial coating.

본 발명의 목적은 미생물 유래 다당류를 이용하여 열안정성 및 내산성이 우수한 미생물 코팅방법을 제공하는 것이다.It is an object of the present invention to provide a microbial coating method having excellent thermal stability and acid resistance using microbial-derived polysaccharides.

본 발명의 또 다른 목적은 미생물 유래 다당류를 이용함으로써 간단하고 경제적으로 미생물을 코팅하는 방법을 제공하는 것이다.Yet another object of the present invention is to provide a method for coating microorganisms simply and economically by using microbial-derived polysaccharides.

본 발명에 의하면,According to the invention,

미생물 균체 20~80중량%와 미생물 유래 다당류 20~80중량%를 혼합한 후 수분함량이 7~20중량%가 되도록 10~70℃에서 건조하는 것으로 이루어진 미생물 코팅방법이 제공된다.Microbial coating method is provided consisting of 20 to 80% by weight of microbial cells and 20 to 80% by weight of a microorganism-derived polysaccharide and then dried at 10 ~ 70 ℃ so that the moisture content is 7 to 20% by weight.

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

일반적으로 다당류로 코팅된 미생물은 코팅막으로인해 산과 같은 외부환경으로부터 강한 생존율을 나타내며, 특히 미생물 유래 다당류는 미생물에 의해 생성된 다당류로서 자체적으로 열안정성을 가지고 있어 이를 미생물 코팅재료로 사용할 경우 균주의 생존률을 향상시킬 수 있다. 이에 본 발명자들은 미생물 유래 다당류를 이용하여 미생물을 코팅함으로써 미생물이 내산성을 가지며 또한 장기간 열안정성을 유지할 수 있는 코팅방법을 발견하였다.In general, microsaccharides coated with polysaccharides show a strong survival rate from the external environment such as acid due to the coating film. In particular, microsaccharides derived from microorganisms are polysaccharides produced by microorganisms and have thermal stability of their own. Can improve. Accordingly, the present inventors have found a coating method in which microorganisms have acid resistance and maintain thermal stability for a long time by coating microorganisms using microsaccharides derived from microorganisms.

또한 본 발명에서 미생물이 미생물 유래 다당류로 코팅되고 따라서 미생물은 생존에 필요한 일정한 수분을 유지함으로써 균주의 생존율 향상을 도모하는 것이다.In addition, in the present invention, the microorganism is coated with a microorganism-derived polysaccharide, and thus, the microorganism is intended to improve the survival rate of the strain by maintaining a constant moisture necessary for survival.

나아가, 미생물을 코팅하는 경우 통상 여러번의 코팅을 반복적으로 행하여야 하지만, 본 발명에서 미생물을 코팅하기 위해 사용되는 미생물 유래 다당류는 그 열안정성이 우수한 것으로 통상 미생물 코팅에 비하여 미생물에 대한 코팅 횟수가 감소되는 것이다.In addition, when coating the microorganisms usually have to be repeatedly performed several times, the microorganism-derived polysaccharides used to coat the microorganisms in the present invention is excellent in thermal stability and the number of coatings on the microorganisms is reduced compared to the conventional microbial coatings Will be.

미생물은 이를 미생물 유래 다당류와 혼합한 후 건조시킴으로써 미생물 유래 다당류로 코팅된다.The microorganism is coated with the microsaccharide derived polysaccharide by mixing it with the microsaccharide derived polysaccharide and then drying.

미생물 균체가 미생물 유래 다당류에 의해 충분히 보호될 수 있도록 미생물 균체 20~80중량%와 미생물 유래 다당류 20~80중량%로 혼합하는 것이 바람직하다. 미생물 유래 다당류가 20중량%이하로 함유된 경우, 미생물을 코팅하기에 충분하지 못해 충분한 코팅효과를 기대할 수 없으며, 80중량%이상인 경우에는 혼합할때 상대적으로 수분함유량이 적어지게되어 혼합이 어려워진다.It is preferable to mix 20-80% by weight of the microbial cells and 20-80% by weight of the microbial-derived polysaccharides so that the microbial cells can be sufficiently protected by the microbial-derived polysaccharides. When the microorganism-derived polysaccharide is contained below 20% by weight, it is not enough to coat the microorganisms, so that sufficient coating effect cannot be expected.When it is 80% by weight or more, the water content is relatively low when mixing, making it difficult to mix. .

코팅하고자 하는 미생물과 미생물 유래 다당류를 혼합한 후, 혼합물을 수분함량이 7∼20중량%가 되도록 10∼70℃에서 건조시킨다. 10℃이하의 저온 혹은 70℃이상의 고온에서 건조하면, 혼합물내의 미생물이 손상되어 사멸될 수 있으므로 미생물과 미생물 유래 다당류 혼합물을 10~70℃온도로, 바람직하게는 45~60℃온도로 건조시키는 것이 바람직하다.After mixing the microorganisms to be coated with the microsaccharides derived from the microorganisms, the mixture is dried at 10 to 70 DEG C so that the water content is 7 to 20% by weight. Drying at low temperature below 10 ° C or high temperature above 70 ° C may damage and kill the microorganisms in the mixture. Therefore, drying the mixture of microorganisms and microorganisms derived from microorganisms at 10-70 ° C, preferably 45-60 ° C desirable.

한편 건조는 미생물 유래 다량류로 코팅된 미생물이 7~20중량%의 수분을 함유하는 정도로 건조시키는것이 바람직하다. 만일 수분함량이 20중량%이상이면 특히 여름철에 다른 균이 자랄 수 있는 오염가능성이 있으며, 7중량%이하이면 미생물 균체의 수분도 함께 배출되어 균체의 생존율이 급격히 감소되기 때문이다.On the other hand, the drying is preferably dried to such an extent that the microorganisms coated with a microorganism-derived macromolecule contain 7 to 20% by weight of water. If the water content is more than 20% by weight, there is a possibility that other bacteria can grow, especially in summer. If the content is less than 7% by weight, the microbial cells are also discharged together, and the survival rate of the cells is drastically reduced.

나아가, 상기 미생물은 미생물 유래 다당류를 혼합하기전에 전처리할 수 있다. 전처리는 미생물과 다공성 미립담체를 혼합, 교반함으로써 미립담체에 미생물을 흡착, 고정화하는 것이다.Furthermore, the microorganism may be pretreated before mixing the microorganism-derived polysaccharide. The pretreatment is to adsorb and immobilize the microorganisms to the microcarriers by mixing and stirring the microorganisms and the porous microcarriers.

미립담체는 다공성 과립상으로 미생물의 고정화에 우수하며, 따라서 미생물을 미립담체와 혼합하여 미생물 유래 다당류로 코팅하기전에 다공성 미립담체에 미리 고정(흡착), 지지되어 미생물은 미생물 유래 다당류에 의해 코팅되기전의 손실이 방지되고 또한 미생물이 미립담체에 고르게 분산되어 코팅성이 개선된다.The microcarriers are excellent in immobilization of microorganisms in the form of porous granules, and thus the microorganisms are pre-fixed (adsorbed) and supported on the porous microcarriers before they are mixed with the microcarriers and coated with the microorganism-derived polysaccharides. Loss of electricity is prevented and microorganisms are evenly dispersed in the particulate carrier to improve coating properties.

미생물과 미립담체는 미생물 균체 20~80중량%와 미립담체 20~80중량%의 비율로 혼합하는 것이 바람직하다. 미생물 균체가 80중량%이상이면 미생물 함유량이 너무 많아져 미립담체의 효과가 낮아지고, 미생물 균체가 20중량%이하이면 미립담체의 양에 비하여 상대적으로 미생물의 양이 너무 적어 비효율적이다.The microorganism and the microcarrier are preferably mixed at a ratio of 20 to 80% by weight of the microbial cells and 20 to 80% by weight of the microcarrier. When the microbial cells are 80% by weight or more, the microbial content is too high, and the effect of the microcarriers is lowered. When the microbial cells are 20% by weight or less, the amount of the microorganisms is relatively inefficient because the amount of the microorganisms is too small.

또한 미생물 다당류로 코팅하기전에, 미생물 균체를 보호하고 오염을 방지하기위해 상기 미생물과 미립담체 혼합물을 적절하게 건조시키는 것이 바람직하다. 바람직하게는 상기 미생물과 미생물 유래 다당류 혼합물의 건조 조건과 같은 이유로 수분함량이 7~20중량%가 되도록 10~70℃에서 건조시키는 것이 좋다.In addition, prior to coating with microbial polysaccharides, it is desirable to properly dry the microbial and particulate carrier mixture to protect the microbial cells and prevent contamination. Preferably, it is preferable to dry at 10 to 70 ℃ so that the moisture content is 7 to 20% by weight for the same reasons as the drying conditions of the microorganism and the microsaccharide-derived polysaccharide mixture.

미립담체로는 규조토, 활성탄, 제올라이트 및 이들의 혼합물이 사용된다.As the microcarrier, diatomaceous earth, activated carbon, zeolite and mixtures thereof are used.

본 발명의 미생물 유래 다당류를 이용한 미생물 코팅방법이 적용될 수 있는 미생물로는 세균, 균류, 조류 및 바이러스와 같은 어떠한 종류의 미생물을 포함하며, 미생물 유래 다당류로는 미생물에 의해 생성되는 어떠한 다당류가 사용될 수 있으며, 이로써 한정하는 것으로 아니지만, 미생물 유래 다당류의 예로는 베타-글루칸(β-glucan), 레반(levan), 잔탄검(Xanthan gum), 풀루란(pullullan), 폴리사카라이드-7(Polysaccharide-7), 셀룰로오즈, 주글란(zooglan), 젤란(gellan) 및 커드란(curdlan)을 들 수 있다.Microorganisms to which the microbial coating method using the microorganism-derived polysaccharide of the present invention may be applied include any kind of microorganisms such as bacteria, fungi, algae, and viruses, and any polysaccharide produced by the microorganism may be used as the microorganism-derived polysaccharide. Examples of microbial-derived polysaccharides include, but are not limited to, beta-glucan, β-glucan, levan, Xanthan gum, pullullan, and polysaccharide-7. ), Cellulose, zuglan, gellan and curdlan.

베타-글루칸은 대장균등에 의해 일반적으로 생산되며 또한 밀, 보리등의 곡류와 미생물등의 세포벽에 존재하는 물질로서 글루코스가 β-1,4와 β-1,3의 글루코시드 결합으로 연결된 고분자 탄수화물로서 높은 점성도를 갖는다.Beta-glucan is generally produced by E. coli and is a substance present in the cell walls of grains and microorganisms such as wheat and barley. It is a high-molecular carbohydrate in which glucose is connected by the glucosidic bond of β-1,4 and β-1,3. Has a high viscosity.

레반은 지모모나스 모빌리스(Zymomonas mobilis)로 부터 생성되며, 유전자 재조합된 레반슈크라제를 이용하여 설탕으로부터 레반을 제조할 수 있다(특1995-015293).Levan is produced from Zymomonas mobilis , and can be prepared from sugar using genetically recombined levanschkrases (especially 1995-955293).

잔탄검은 잔도모나스 캄페스트리스(Xanthomonas compestris)에 의해 생성되며 페인트, 섬유가공, 제지, 사진, 요업, 화장품등 각종 산업용 용도와 식품 가공및 제약용으로 널리 이용되고 있다.Xanthan gum is produced by Xanthomonas compestris and is widely used for various industrial uses such as paint, textile processing, papermaking, photography, ceramics, cosmetics, food processing and pharmaceuticals.

풀루란은 오우레오바시디움 풀루란스(Aureobasidium pullullans)로 부터 생성되는 천연 다당류로서 공업적 생산방법이 공지되어 있으며 식품, 의약품, 화장품, 페인트, 필름등에 생분해가 가능한 무공해성 품질 개량 소재로 이용되고 있다. 이와 같은 미생물 다당류는 일반적으로 자체적으로 열안정성을 나타내며 또한 독성이 없고 생분해가능하여 미생물 코팅하기에 적합하다.Pullulan is a natural polysaccharide produced from Aureobasidium pullullans , and its industrial production method is known. It is used as a pollution-free quality improvement material that can be biodegradable in food, medicine, cosmetics, paint, and film. . Such microbial polysaccharides are generally thermally stable on their own and are also nontoxic and biodegradable and are suitable for microbial coating.

이하, 실시예를 통하여 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예 1 - 미생물 유래 다당류 직접 코팅방법Example 1-Microbial derived polysaccharide direct coating method

미생물과 미립담체를 혼합하는 전처리 단계없이 배양된 유산균 균체(Lactobacillus casei) 50중량%와 미생물 유래 다당류(베타-글루칸) 50중량%를 혼합하여 잘 섞이도록 교반하고 30℃에서 수분함량이 8.0중량%로 건조한 후 균질화시켜 미생물 유래 다당류로 코팅된 유산균을 제조하였다.50% by weight of cultured lactic acid bacteria ( Lactobacillus casei ) and 50% by weight of microorganism-derived polysaccharides (beta-glucan) were mixed to stir well and the water content was 8.0% by weight at 30 ° C. After drying with homogenized to prepare a lactic acid bacteria coated with microorganism-derived polysaccharides.

코팅된 미생물을 50℃에서 20일간 방치하고 일정 시간마다 균체를 증류수에 101~107배수로 희석하여 페트리디쉬에 도말하여 30℃에서 3일간 배양하여 나타난 균체수를 측정함으로써 열안정성에 대하여 평가하였다.The coated microorganisms were allowed to stand at 50 ° C. for 20 days, and the cells were diluted in distilled water at 10 1 to 10 7 times at regular intervals and plated in Petri dishes and cultured at 30 ° C. for 3 days. .

실시예 2 - 미립담체에 고정화된 미생물의 코팅방법Example 2-Coating method of microorganisms immobilized on particulate carrier

배양된 유산균 균체(Lactobacillus casei) 70중량%와 미립담체(규조토, 활성탄, 순정화학) 30중량%를 혼합한후 교반하여 흡착시켰다. 만일 수분이 과량으로 포함된 경우, 여과지가 포함된 균체 여과기를 통하여 30℃에서 수분함량이 8중량%가 되도록 건조하였다. 건조후, 상기 균체와 미립담체의 혼합물 50중량%와 미생물 유래 다당류(베타-글루칸) 50중량%를 혼합하여 잘 섞이도록 저어주고 30℃에서 수분함량이 8중량%가 되도록 건조한 후 균질화시켜 미생물을 코팅하였다. 제조된 코팅물은 50℃에서 20일간 방치하여 생존 세포수를 검사함으로써 열안정성에 대해 평가하였다.70% by weight of the cultured lactic acid bacteria ( Lactobacillus casei ) and 30% by weight of particulate carriers (diatomaceous earth, activated carbon, pure chemistry) were mixed and adsorbed by stirring. If the excess water is included, the water content was dried to 8% by weight at 30 ℃ through a cell filter containing a filter paper. After drying, 50% by weight of the mixture of the cells and the particulate carrier and 50% by weight of the microorganism-derived polysaccharide (beta-glucan) are mixed to stir well and dried at a temperature of 30 ° C. to have a water content of 8% by weight, followed by homogenization. Coated. The prepared coatings were evaluated for thermal stability by standing at 50 ° C. for 20 days and checking the viable cell numbers.

비교예 1Comparative Example 1

비코팅 유산균을 50℃에서 20일간 방치하였으며, 그 결과는 하기표 1에 실시예 1 및 실시예 2와 함께 나타내었다.The uncoated lactic acid bacteria were left at 50 ° C. for 20 days, and the results are shown in Table 1 together with Example 1 and Example 2.

미생물 유래 다당류로 코팅된 유산균(Lactobacillus casei)의 열안정성 실험(50℃)Thermal Stability Test of Lactobacillus casei Coated with Microorganism-Derived Polysaccharide (50 ℃) 시간(일)Hours 비교예 1(세포수)Comparative Example 1 (cell count) 실시예 1(세포수)Example 1 (cell count) 실시예 2(세포수)Example 2 (cell count) 00 6.18×104 6.18 × 10 4 3.1×105 3.1 × 10 5 4.14×106 4.14 × 10 6 55 1.2×102 1.2 × 10 2 4.96×104 4.96 × 10 4 2.93×106 2.93 × 10 6 1515 00 1.23×104 1.23 × 10 4 2.99×105 2.99 × 10 5 2020 00 2.9×103 2.9 × 10 3 1.20×105 1.20 × 10 5

실험 결과, 비코팅 유산균은 5일후에 생존율이 급격히 감소하였으나, 미생물 다당류를 이용하여 직접 코팅한 경우, 20일후에도 상당히 많은 세포가 생존하였으며, 미립담체를 사용한 미생물 코팅이 가장 우수한 생존율을 나타냈다.As a result, the survival rate of the uncoated lactic acid bacteria rapidly decreased after 5 days, but when directly coated with microbial polysaccharides, a considerable number of cells survived even after 20 days, and the microbial coating using the microcarrier showed the best survival rate.

본 발명에 의한 미생물 다당류를 이용한 미생물 코팅방법은 미생물 유래 다당류 자체가 열안정성을 가지고 있어 코팅된 미생물은 내산성을 가질 뿐만아니라 장기간동안 열에 안정성을 유지할 수 있다. 또한 열안정성이 우수함으로 통상 미생물에 대한 코팅횟수가 감소되고 따라서 보다 경제적으로 미생물을 코팅할 수 있는 것이다.In the microbial coating method using the microbial polysaccharide according to the present invention, the microorganism-derived polysaccharide itself has thermal stability, so that the coated microorganism may not only have acid resistance but also maintain stability to heat for a long time. In addition, because of excellent thermal stability, the number of coatings on microorganisms is usually reduced, and thus microorganisms can be coated more economically.

Claims (4)

삭제delete 미생물 균체 20~80 중량%와 미립담체 20~80 중량%를 혼합하고 교반하여 미립담체에 미생물 균체가 흡착고정되도록 전처리한 다음, 전처리된 미생물 균체 20~80 중량%와 미생물 유래 다당류 20~80 중량%를 혼합한 후, 수분함량이 7~20 중량%가 되도록 10~70 ℃에서 건조하는 것으로 이루어진, 미생물 균체의 코팅방법.20 to 80% by weight of the microbial cells and 20 to 80% by weight of the microcarrier are mixed and stirred to pretreatment to adsorb and fix the microbial cells to the microcarriers, and then 20 to 80% by weight of the pretreated microbial cells and 20 to 80% of the polysaccharide derived from the microorganisms. After mixing the%, it is dried at 10 ~ 70 ℃ so that the moisture content is 7 to 20% by weight, the coating method of microbial cells. 제2항에 있어서, 미립담체는 규조토, 활성탄, 제올라이트 및 이들의 혼The method of claim 2, wherein the particulate carrier is diatomaceous earth, activated carbon, zeolites and mixtures thereof 합물로부터 선택된 것을 특징으로 하는 미생물 균체의 코팅방법.Coating method of microbial cells, characterized in that selected from the combination. 제2항에 있어서, 미생물 유래 다당류는 페스탄(pestan), 베타-글루칸(β-glucan), 레반(levan), 잔탄검(Xanthan gum) 및 풀루란(pullullan), 폴리사카라이드-7(Polysaccharide-7), 셀룰로오즈, 주글란(zooglan), 젤란(gellan) 및 커드란(curdlan)으로부터 선택된 1종 이상을 포함함을 특징으로 하는 미생물 균체의 코팅방법.The method of claim 2, wherein the microorganism-derived polysaccharides are pestan, beta-glucan, levan, Xanthan gum and pullullan, polysaccharide-7 (Polysaccharide). -7), the coating method of microbial cells, characterized in that it comprises at least one selected from cellulose, zooglan, gellan and curdlan.
KR1020000017801A 2000-04-06 2000-04-06 Coating method of microbe by microbial polysaccharide KR100373104B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000017801A KR100373104B1 (en) 2000-04-06 2000-04-06 Coating method of microbe by microbial polysaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000017801A KR100373104B1 (en) 2000-04-06 2000-04-06 Coating method of microbe by microbial polysaccharide

Publications (2)

Publication Number Publication Date
KR20000037040A KR20000037040A (en) 2000-07-05
KR100373104B1 true KR100373104B1 (en) 2003-02-25

Family

ID=19661984

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000017801A KR100373104B1 (en) 2000-04-06 2000-04-06 Coating method of microbe by microbial polysaccharide

Country Status (1)

Country Link
KR (1) KR100373104B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180129168A (en) 2017-05-25 2018-12-05 (주)엠앤씨생명과학 Natural liposome comprising lactic acid bacteria, process for the preparation thereof and food or pharmaceutical composition comprising the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100493354B1 (en) * 2002-08-26 2005-06-07 한국생명공학연구원 Powder of lactic acid bacteria coated with levan and alginate bead having improved survival ability and method of preparing the same
JP5693849B2 (en) * 2007-12-17 2015-04-01 株式会社明治 Microbial complex
KR101420133B1 (en) * 2012-07-11 2014-07-17 문철종 Loess-charcoal board and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856654A (en) * 1994-08-23 1996-03-05 Res Dev Corp Of Japan Stabilization of protoplast and artificial cell wall-coated protoplast

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856654A (en) * 1994-08-23 1996-03-05 Res Dev Corp Of Japan Stabilization of protoplast and artificial cell wall-coated protoplast

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180129168A (en) 2017-05-25 2018-12-05 (주)엠앤씨생명과학 Natural liposome comprising lactic acid bacteria, process for the preparation thereof and food or pharmaceutical composition comprising the same

Also Published As

Publication number Publication date
KR20000037040A (en) 2000-07-05

Similar Documents

Publication Publication Date Title
Simó et al. Research progress in coating techniques of alginate gel polymer for cell encapsulation
US4755468A (en) Inocula of low water activity with improved resistance to temperature and rehydration, and preparation thereof
Nunes et al. Immobilization of naringinase in PVA–alginate matrix using an innovative technique
Schoebitz et al. Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review
Elçin Encapsulation of urease enzyme in xanthan-alginate spheres
Strand et al. Alginate as immobilization matrix for cells
CN110452887B (en) Phage protective agent and application thereof
Grotenhuis et al. Localization and quantification of extracellular polymers in methanogenic granular sludge
CN108676177B (en) Intelligent hydrogel processing method with nano starch particles as framework
US20080187981A1 (en) Thermo-stable bio-matrix
Humbert et al. Calcium gluconate as cross-linker improves survival and shelf life of encapsulated and dried Metarhizium brunneum and Saccharomyces cerevisiae for the application as biological control agents
He et al. Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels
CN110643593A (en) Preparation method of modified corn straw material immobilized agricultural microbial agent
Zohar‐Perez et al. Preservation of chitinolytic Pantoae agglomerans in a viable form by cellular dried alginate‐based carriers
Liouni et al. Studies of the mechanical properties and the fermentation behavior of double layer alginate–chitosan beads, using Saccharomyces cerevisiae entrapped cells
JPH0716409B2 (en) Method of immobilizing enzyme
Mulchandani et al. Biosynthesis of pullulan using immobilized Aureobasidium pullulans cells
KR100373104B1 (en) Coating method of microbe by microbial polysaccharide
Ali et al. Application of polysaccharides for the encapsulation of beneficial microorganisms for agricultural purposes: A review
Chauhan et al. Immobilization of lipase on hydrogels: structural aspects of polymeric matrices as determinants of enzyme activity in different physical environments
KR100864399B1 (en) A method for capsulating useful agricultural culture using alginate shell bead having improved drought resistance viability of useful agricultural culture
KR100734959B1 (en) Encapsulation of Agro-Probiotics for Promoting Viable Cell Activity
Başak et al. Immobilization of catalase on chitosan and amino acid-modified chitosan beads
BR102017020884A2 (en) FORMULATIONS OF MICROBIAN INOCULANT BASED ON POLYMERIC MIXTURES CONTAINING BIOPOLYMERS, USE OF INOCULANT FORMULATION, SEEDS OR PARTS OF PLANTS TREATED WITH INOCULATING COMPOSITION
CN110777133B (en) Co-crosslinking immobilization method of lysozyme

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071224

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee