KR100370052B1 - Micro light source device using optical fiber - Google Patents

Micro light source device using optical fiber Download PDF

Info

Publication number
KR100370052B1
KR100370052B1 KR1019960000085A KR19960000085A KR100370052B1 KR 100370052 B1 KR100370052 B1 KR 100370052B1 KR 1019960000085 A KR1019960000085 A KR 1019960000085A KR 19960000085 A KR19960000085 A KR 19960000085A KR 100370052 B1 KR100370052 B1 KR 100370052B1
Authority
KR
South Korea
Prior art keywords
laser diode
optical fiber
qpm
shg
light source
Prior art date
Application number
KR1019960000085A
Other languages
Korean (ko)
Other versions
KR970060537A (en
Inventor
윤두협
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1019960000085A priority Critical patent/KR100370052B1/en
Publication of KR970060537A publication Critical patent/KR970060537A/en
Application granted granted Critical
Publication of KR100370052B1 publication Critical patent/KR100370052B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Abstract

PURPOSE: A micro light source device is provided to be capable of improving coupling efficiency by directly connecting a laser diode to an SHG(Second Harmonic Generation) device using an optical fiber. CONSTITUTION: A micro light source device comprises a laser diode, an QPM-SHG(Quasi Phase Matched-SHG) device(36), and an optical fiber(34) for inputting light outputted from the laser diode into the QPM-SHG device. The optical fiber(34) is directly connected to the laser diode through a V-shaped groove formed in the laser diode. Also, the laser diode coupled with the optical fiber(34) is directly coupled to the QPM-SHG device(36) on a peltier plate(35).

Description

광 파이버(Optical Fiber)를 이용한 초소형 광원소자Ultra-compact light source device using optical fiber

본 발명은 LD-QPM-SHG소자에 관한 것으로, 특히 고출력 반도체 레이저의 광을 직접 반파장의 청색광으로 변환하는 소자를 초소형화하는데 적당하도록 한 광파이버를 이용한 초소형 광원소자에 관한 것이다.TECHNICAL FIELD The present invention relates to an LD-QPM-SHG device, and more particularly, to a micro light source device using an optical fiber that is suitable for miniaturizing a device for directly converting light of a high power semiconductor laser into half-wave blue light.

일반적으로 광정보처리기기의 고성능화를 위해 필요한 소형 단파장 코히런트 (Coherent)광원을 실현하려는 많은 방식중에서 도파형광 제2고조파 발생(SHG)소자는 현재 기술의 조합과 연장에 의해 비교적 단기간에 필요로 하는 요구를 거의 만족하는 소자(Device)가 개발 가능한 것으로 기대되어 활발한 연구가 진행되고 있다.In general, waveguided second harmonic generation (SHG) devices are required in a relatively short period of time due to the combination and extension of current technology, among many methods for realizing a small short wavelength coherent light source required for high performance of optical information processing equipment. It is expected that a device that almost meets the requirements can be developed, and active research is being conducted.

특히, LiTaO3결정은 프로톤(Proton)교환으로 손실이 적은 도파로 (Waveguide)가 제작 가능하고 또 프로톤교한 열처리에 의해 고효율화에 적당한 분극반전 구조를 얻을 수 있으므로 고성능의 QPM-SHG(Quasi Phase Matched-Second Harmonic Generation)디바이스가 제작되고 있다.Particularly, LiTaO 3 crystals can be manufactured with low loss waveguide by proton exchange, and a polarization inversion structure suitable for high efficiency can be obtained by proton bridge heat treatment. Second Harmonic Generation) devices are being manufactured.

이하, 첨부된 도면을 참고하여 종래의 LD-QPM-SHG소자에 대하여 설명하면 다음과 같다.Hereinafter, a conventional LD-QPM-SHG device will be described with reference to the accompanying drawings.

제1도 (a)는 일반적인 LD-QPM-SHG소자의 구성도이고, (b)는 QPM-SHG소자의 구성도 이다.FIG. 1 (a) is a block diagram of a general LD-QPM-SHG device, and (b) is a block diagram of a QPM-SHG device.

제1도 (a)는 QPM-SHG소자를 사용한 청색(Blue)광원소자의 구성도로써, 파장 870nm, 광출력 20mW 이상인 고출력 레이저 다이오드(1)와, 상기 고출력 레이저 다이오드(1)에서 출력되는 870nm의 광원을 SHG(Second Harmonic Generation)현상을 이용하여 430nm(Blue)로 파장 변한시키는 QPM-SHG소자(2)로 이루어진다.FIG. 1 (a) is a block diagram of a blue light source device using a QPM-SHG element. The high power laser diode 1 having a wavelength of 870 nm and an optical output of 20 mW or more and the 870 nm output from the high output laser diode 1 are illustrated in FIG. The light source is composed of a QPM-SHG element 2 which changes wavelength to 430 nm (Blue) using SHG (Second Harmonic Generation) phenomenon.

그리고 광원인 고출력 레이저 다이오드(1)와 QPM-SHG소자(2)간의 결합을 지원하는 렌즈(Lens)(3), 하프 웨이브 플레이트(Half Wave Plate)(4), 다이크로익 미러(Dichroic Mirror)(5), 회절격자(Grating)(6)등으로 이루어진 광학계(Optical Components)가 사용된다.And a lens (3), a half wave plate (4), and a dichroic mirror that support coupling between the high power laser diode (1), which is a light source, and the QPM-SHG element (2). (5), Optical Components consisting of a grating 6 and the like are used.

상기의 QPM-SHG소자(2)의 구조는 제1도 (b)에서와 같다.The structure of the QPM-SHG element 2 is the same as in FIG.

QPM-SHG소자(2)를 통하여 출력되는 청색(Blue)광원의 광출력을 높이기 위해서는 우선 고출력 레이저 다이오드(1)의 광이 QPM-SHG소자(2)의 웨이브가이드내로 입력되는 커플링(Coupling)효율을 높이는것이 선결과제라 할 수 있다.In order to increase the light output of the blue light source output through the QPM-SHG element 2, first, the coupling of the light of the high power laser diode 1 is input into the waveguide of the QPM-SHG element 2 Increasing efficiency is a priority.

QPM-SHG소자의 청색광 변한효율(SHG)값은 QPM-SHG소자의 웨이브 가이드내로 입력되는 입력광의 광출력 제곱에 비례한다.Blue Light Variation Efficiency of QPM-SHG Device ( SHG) is proportional to the square of the light output of the input light input into the waveguide of the QPM-SHG element.

그러나 상기와 같은 종래의 LD-QPM-SHG소자에 있어서는 다음과 같은 문제점이 있다.However, the above conventional LD-QPM-SHG device has the following problems.

즉, 고출력 레이저 다이오드의 발광단면을 통하여 나오는 광은 제2도에서와 같이, 레이저 다이오드(LD)단면으로 부터 멀어짐에 따라 크게 퍼지는 분산프로파일을 가지게 된다.That is, the light emitted through the light emitting cross section of the high power laser diode has a dispersion profile that spreads greatly as it moves away from the laser diode LD cross section as shown in FIG.

그리고 프로파일 자체도 θ11값과 θ2값이 크게 다른 비대칭 특성을 갖는다.The profile itself also has asymmetrical characteristics that differ greatly from θ 11 and θ 2 .

그러므로 LD와 QPM-SHG소자를 결합시킬 경우 레이저 다이오드에서 나온 광이 QPM소자의 웨이브 가이드내로 들어가는 광결합효율을 크게 저하시키게 되는 문제점이 있었다.Therefore, when LD and QPM-SHG device are combined, there is a problem that the light coupling efficiency of light emitted from the laser diode into the wave guide of the QPM device is greatly reduced.

또한 LD-QPM-SHG소자의 패키지화에는 LD와 QPM-SHG소자이외에 여러가지의 광학계(렌즈, 회절격자등의)를 필요로 하기 때문에 레이저 다이오드(LD)로 부터 회절격자(Grating)까지의 전체 길이를 3cm내외로 하는 정도의 초소형의 패키지 유닛의 구성이 어려운 문제점이 있었다.In addition, the LD-QPM-SHG device requires various optical systems (lenses, diffraction gratings, etc.) in addition to the LD and QPM-SHG elements, so the total length from the laser diode (LD) to the diffraction grating is There was a problem that the configuration of the ultra-compact package unit of about 3cm is difficult.

본 발명은 상기와 같은 종래의 LD-QPM-SHG소자의 문제점을 해결하기 위하여 안출한 것으로, 광 파이버(Optical Fiber)를 이용하여 레이저 다이오드와 SHG소자를 직접 연결하여 소자를 초소형화 하는데 적당하도록 한 광파이버를 이용한 초소형 광원소자를 제공하는데 그 목적이 있다.The present invention has been made to solve the problems of the conventional LD-QPM-SHG device as described above, by connecting the laser diode and the SHG device directly using an optical fiber to make it suitable for miniaturization of the device It is an object of the present invention to provide a compact light source device using an optical fiber.

상기의 목적을 달성하기 위한 본 발명의 광파이버를 이용한 초소형 광원소자는 특정파장의 광을 출력하는 레이저 다이오드와, 상기 레이저 다이오드에서 출력되는 광의 파장을 변화시키는 QPM-SHG소자와, 상기 레이저 다이오드에 직접 결합되어, 레이저 다이오드에서 출력되는 광을 상기 QPM-SHG소자에 입력시키는 광파이버를 포함하여 구성됨을 특징으로 한다.The ultra-compact light source device using the optical fiber of the present invention for achieving the above object is a laser diode for outputting light of a specific wavelength, a QPM-SHG device for changing the wavelength of the light output from the laser diode, and directly to the laser diode Coupled, characterized in that it comprises an optical fiber for inputting the light output from the laser diode to the QPM-SHG element.

이하, 첨부된 도면을 참고하여 본 발명과 광파이버를 이용한 초소형 광원소자에 대하여 상세히 설명하면 다음과 같다.Hereinafter, a micro light source device using the present invention and an optical fiber will be described in detail with reference to the accompanying drawings.

제3도 (a)내지 (d)는 본 발명의 초소형 광원소자의 공정 순서도이다.3 (a) to 3 (d) are process flowcharts of the ultra-light source device of the present invention.

먼저, 제3도 (a)에서와 같이, GaAs기판(30)상에 AlCaAs/GaAs DH층(Double Hetero)(31)를 성장시켜 파장 780nm, 광출력 20mW급 이상인 고출력 레이저 다이오드(LD)를 형성한다.First, as shown in FIG. 3 (a), an AlCaAs / GaAs DH layer (Double Hetero) 31 is grown on the GaAs substrate 30 to form a high power laser diode LD having a wavelength of 780 nm and an optical output of 20 mW or more. do.

이어, 레이저 다이오드(LD)단면으로 부터 일정영역(길이 : L)을 반응성 이온 에칭(RIE)으로 GaAs기판(30)표면이 드러날때까지 건식 식각을 한다.Subsequently, dry etching is performed from the laser diode LD cross-section until a surface of the GaAs substrate 30 is exposed by reactive ion etching (RIE).

그리고 제3도 (b)에서와 같이, 상기 AlGaAs/GaAs DH층(31)상에 SiO2(32) 또는 포토 레지스트층을 형성한다.As shown in FIG. 3B, an SiO 2 32 or a photoresist layer is formed on the AlGaAs / GaAs DH layer 31.

이어, 전공정에서 AlGaAs/GaAs DH층(31)이 제거된 GaAs기판(30)의 중앙부에 [011] 방향으로 폭 W, 길이 L의 V-그루브(Groove)(33)를 형성한다.Subsequently, a V-groove 33 having a width W and a length L is formed in the central portion of the GaAs substrate 30 from which the AlGaAs / GaAs DH layer 31 is removed in the previous step.

이때, V-그루브(33)의 폭 W 및 길이 L은 후공정에서 사용될 광파이버 (Optical Fiber)의 크기에 따라 조정할 수 있다.At this time, the width W and the length L of the V-groove 33 can be adjusted according to the size of the optical fiber to be used in a later process.

그리고 V-그루브(33)의 조성은 H2SO4계나 NH4OH계의 습식 에칭용액을 사용하여 형성한다.The V-groove 33 is formed using a wet etching solution of H 2 SO 4 or NH 4 OH.

이어, 제3도 (c)에서와 같이, 상기 V-그루브(33)를 이용하여 길이 L인 광파이버(반경 R)(34)를 레이저 다이오드의 AlGaAs 발광부에 직접 결합시킨다.Subsequently, as shown in FIG. 3 (c), the optical fiber (radius R) 34 having a length L is directly bonded to the AlGaAs light emitting part of the laser diode using the V-groove 33.

이때, V-그루브(33)내로 들어간 광파이버(34)는 자우로 흔들림이 없고 광파이버(34)와 V-그루브(33)의 크기를 적절히 조정하면 효율적으로 AlGaAs발광부와 직접 결합시킬 수 있다.At this time, the optical fiber 34 into the V-groove 33 is free from shaking and can be directly coupled to the AlGaAs light emitting unit efficiently by properly adjusting the sizes of the optical fiber 34 and the V-groove 33.

그리고 제3도 (d)에서와 같이, 레이저 다이오드와 SHG소자의 커플링 (Coupling)을 위하여 웨이브가이드(Waveguide) 및 분극반전층(Domain Inversion Region)의 조성이 끝난 SHG소자의 두께 D를 레이저 다이오드의 두께 D와 일치하도록 SHG소자의 뒷면을 경면연마(Polishing)하여 레이저 다이오드와 SHG소자를 직접 결합시킨다.As shown in (d) of FIG. 3, the thickness D of the SHG device having the waveguide and the domain inversion region for the coupling of the laser diode and the SHG device is determined by the laser diode. Polishing the back side of the SHG element to match the thickness D of the laser diode and the SHG element directly.

이때, DH(Double Hetero)성장 및 금속화(Metallization)가 끝난 레이저 다이오드의 두께이고, SHG소자의 두께이므로, SHG소자를 400㎛ 정도 경면 연마한 후에 소자의 온도제어를 위한 펠티어 플레이트(Peltier Plate)(35)상에 레이저 다이오드와 QPM-SHG소자(36)를 결합시킨다.At this time, the thickness of the laser diode after DH (Double Hetero) growth and metallization The thickness of the SHG element Therefore, after the SHG element is mirror polished about 400 μm, the laser diode and the QPM-SHG element 36 are coupled onto a Peltier plate 35 for temperature control of the element.

상기와 같은 본 발명의 광 파이버(Optical Fiber)를 이용한 초소형 광원소자는 이차비선형 광학효과를 갖는 광파이버를 이용하여 레이저 다이오드가 QPM-SHG소자를 별도의 광학계(Optical Component)의 구성없이 직접 결합시켜 광결합효율을 높이는 효과가 있다(종래기술의 광결합효율이 10% 미만이고, 본 발명의 광결합효율은 30% 이상이 된다).The micro light source device using the optical fiber of the present invention as described above, the laser diode is directly coupled to the QPM-SHG element without the configuration of an optical component by using an optical fiber having a secondary nonlinear optical effect. There is an effect of increasing the coupling efficiency (the optical coupling efficiency of the prior art is less than 10%, the optical coupling efficiency of the present invention is 30% or more).

또한, 레이저 다이오드와 광파이버를 직접 결합시켜 PKG 크기를 상당히 줄여 소자의 소형화가 가능하게 하는 효과가 있다.In addition, by directly combining the laser diode and the optical fiber it is possible to significantly reduce the size of the PKG to enable the miniaturization of the device.

제1도 (a)는 일반적인 LD-QPM-SHG소자의 구성도1 (a) is a block diagram of a general LD-QPM-SHG device

(b)는 QPM-SHG소자의 구성도(b) is a block diagram of a QPM-SHG device

제2도는 AlGaAs LD의 광프로파일2 shows the optical profile of AlGaAs LD

제3도 (a) 내지 (d)는 본 발명의 초소형 광원소자의 공정순서도3 (a) to (d) are process flowcharts of the ultra-light source element of the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

30 : GaAs기판 31 : AlGaAs/GaAs DH층30: GaAs substrate 31: AlGaAs / GaAs DH layer

32 : SiO233 : V-그루브32: SiO 2 33: V-groove

34 : 광파이버 35 : 펠티어 플레이트34: optical fiber 35: Peltier plate

36 : QPM-SHG소자36: QPM-SHG element

Claims (5)

특정파장의 광을 출력하는 레이저 다이오드와,A laser diode that outputs light of a specific wavelength, 상기 레이저 다이오드에서 출력되는 광의 파장을 변화시키는 QPM-SHG소자와,QPM-SHG device for changing the wavelength of the light output from the laser diode, 상기 레이저 다이오드에 직접 결합되어, 레이저 다이오드에서 출력되는 광을 상기 QPM-SHG소자에 입력시키는 광파이버를 포함하여 구성됨을 특징으로 하는 광파이버를 이용한 초소형 광원소자.Ultra-compact light source device using an optical fiber is coupled directly to the laser diode, comprising an optical fiber for inputting the light output from the laser diode to the QPM-SHG device. 제1항에 있어서, 광파이버는 레이저 다이오드의 한측면을 기판까지 식각하여 제거하고, 상기 식각되어진 기판의 중앙부에 V자형의 홈을 형성하여 레이저 다이오드에 직접 결합하는 것을 특징으로 하는 광파이버를 이용한 초소형 광원소자.The microfiber light source of claim 1, wherein the optical fiber is removed by etching one side of the laser diode to the substrate, and forming a V-shaped groove in the center of the etched substrate to directly couple the laser diode. device. 제1항 또는 제2항에 있어서, 광파이버와 결합된 레이저 다이오드와 QPM-SHG소자는 소자의 온도를 제어하는 펠티어 플레이트상에서 직접 결합하는 것을 특징으로 하는 광파이버를 이용한 초소형 광원소자.The ultra-compact light source device using an optical fiber according to claim 1 or 2, wherein the laser diode and the QPM-SHG device coupled to the optical fiber are directly coupled on a Peltier plate that controls the temperature of the device. 제1항에 있어서, 레이저 다이오드의 기판에 형성되는 V자홈은 H2SO4계 또는 NH4OH계의 습식 식각용액을 이용하여 형성하는 것을 특징으로 하는 광파이버를 이용한 초소형 광원소자.The microminiature light source device using an optical fiber according to claim 1, wherein the V-shaped groove formed on the substrate of the laser diode is formed using a wet etching solution of H 2 SO 4 or NH 4 OH. 제1항 또는 제2항에 있어서, 광파이버와 결합된 레이저 다이오드와 QPM-SHG소자의 직접 결합은 QPM-SHG소자의 뒷면을 경면연마(Polishing)하여 두께가 레이저 다이오드와 동일하게 하여 결합하는 것을 특징으로 하는 광파이버를 이용한 초소형 광원소자.The direct coupling of the laser diode coupled to the optical fiber and the QPM-SHG device is performed by mirror polishing the back surface of the QPM-SHG device so that the thickness is the same as that of the laser diode. Miniature light source element using an optical fiber.
KR1019960000085A 1996-01-05 1996-01-05 Micro light source device using optical fiber KR100370052B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960000085A KR100370052B1 (en) 1996-01-05 1996-01-05 Micro light source device using optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960000085A KR100370052B1 (en) 1996-01-05 1996-01-05 Micro light source device using optical fiber

Publications (2)

Publication Number Publication Date
KR970060537A KR970060537A (en) 1997-08-12
KR100370052B1 true KR100370052B1 (en) 2003-03-26

Family

ID=37416422

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960000085A KR100370052B1 (en) 1996-01-05 1996-01-05 Micro light source device using optical fiber

Country Status (1)

Country Link
KR (1) KR100370052B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734839B1 (en) * 2005-10-13 2007-07-03 한국전자통신연구원 Wavelength conversion optical device and method of fabricating the same device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19827602A1 (en) * 1998-06-20 1999-12-23 Zeiss Carl Fa Process for correcting non-rotationally symmetrical image errors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734839B1 (en) * 2005-10-13 2007-07-03 한국전자통신연구원 Wavelength conversion optical device and method of fabricating the same device

Also Published As

Publication number Publication date
KR970060537A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
US9429812B2 (en) Optical reflector based on a directional coupler and a coupled optical loop
Kopp et al. Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging
JP3052651B2 (en) Short wavelength light source
US9762334B2 (en) Photonic integrated circuit using chip integration
US10901147B2 (en) Single edge coupling of chips with integrated waveguides
US11435522B2 (en) Grating coupled laser for Si photonics
JP3129028B2 (en) Short wavelength laser light source
KR100370052B1 (en) Micro light source device using optical fiber
KR101018278B1 (en) wavelength conversion device package
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
JP3111786B2 (en) Short wavelength laser light source
WO1996018132A1 (en) Frequency-doubled diode laser device
JP2003046183A (en) Coherent light source
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
US20230361532A1 (en) Silicon photonic hybrid distributed feedback laser with built-in grating
US20230216271A1 (en) Silicon photonic symmetric distributed feedback laser
JP3006023B2 (en) Optical fiber communication method
JP2900569B2 (en) Optical waveguide device
JP2738155B2 (en) Waveguide type wavelength conversion element
RU2153689C2 (en) Method and device for change-over, amplification, control and modulation of optical radiation (modifications)
JP2000010130A (en) Wavelength converter
JPH01172934A (en) Non-linear optical element
Zubrzycki et al. Integrated optic distributed Bragg reflector Fabry-Perot modulator for microwave applications
CN114583535A (en) Wavelength tunable laser
KR101075695B1 (en) Second harmonic generator and apparatus of laser light source using the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061220

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee