KR100367480B1 - Secondary concrete product with high stiffness using blast furnace slag and process for preparation thereof - Google Patents

Secondary concrete product with high stiffness using blast furnace slag and process for preparation thereof Download PDF

Info

Publication number
KR100367480B1
KR100367480B1 KR10-2000-0047010A KR20000047010A KR100367480B1 KR 100367480 B1 KR100367480 B1 KR 100367480B1 KR 20000047010 A KR20000047010 A KR 20000047010A KR 100367480 B1 KR100367480 B1 KR 100367480B1
Authority
KR
South Korea
Prior art keywords
compressive strength
blast furnace
furnace slag
kgf
average
Prior art date
Application number
KR10-2000-0047010A
Other languages
Korean (ko)
Other versions
KR20020013312A (en
Inventor
김진만
조홍준
조성현
이대경
Original Assignee
김진만
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김진만 filed Critical 김진만
Priority to KR10-2000-0047010A priority Critical patent/KR100367480B1/en
Publication of KR20020013312A publication Critical patent/KR20020013312A/en
Application granted granted Critical
Publication of KR100367480B1 publication Critical patent/KR100367480B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 고로슬래그를 이용한 고강도 콘크리트 2차제품 및 그 제조방법에 관한 것으로 진동압축성형기의 진동시간 5 ∼ 10초, 가압력 6 ∼ 12kgf/cm2의 조건하에서 산업폐기물인 고로슬래그를 시멘트 대신 20 ∼ 40% 대체 사용하여 제조한 본 발명 콘크리트 2차제품은 압축강도가 500kgf/cm2까지 향상되는 뛰어난 효과가 있다.The present invention relates to a high-strength concrete secondary product using the blast furnace slag and a method of manufacturing the same, the blast furnace slag as an industrial waste under the conditions of vibration time 5 ~ 10 seconds, pressing force 6 ~ 12kgf / cm 2 of 20 ~ instead of cement Concrete secondary product of the present invention manufactured using 40% replacement has an excellent effect of improving the compressive strength up to 500kgf / cm 2 .

Description

고로슬래그를 이용한 고강도 콘크리트 2차제품 및 그 제조방법{Secondary concrete product with high stiffness using blast furnace slag and process for preparation thereof}Secondary concrete product with high stiffness using blast furnace slag and process for preparation according to blast furnace slag

본 발명은 고로슬래그를 이용한 고강도 콘크리트 2차제품과 그 제조방법에 관한 것이다. 더욱 상세하게는 본 발명은 산업폐기물인 고로슬래그를 재활용하여 제조한 고강도 콘크리트 2차제품 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength concrete secondary product using the blast furnace slag and a method of manufacturing the same. More particularly, the present invention relates to a high-strength concrete secondary product manufactured by recycling blast furnace slag which is industrial waste, and a method of manufacturing the same.

산업 활동이 급속히 진전함에 따라 발생되는 여러 산업폐기물은 공해발생등 환경파괴의 주요인으로서 그 처리 방법과 비용 등이 사회문제로 대두되고 있으나, 최근 지자체 중심으로 지역적인 NIMBY 현상으로 산업폐기물을 적정하게 최종 처분할 수 있는 매립장이 감소되고 있어 산업폐기물의 적정 처리를 위한 방안으로써 산업폐기물의 재활용이 시급한 실정이다.As industrial activities are rapidly progressing, various industrial wastes are a major cause of environmental destruction such as pollution generation, and their treatment methods and costs have emerged as social issues.However, recently, local NIMBY phenomenon centered on local governments to properly finalize industrial wastes. As landfills that can be disposed of are being reduced, it is urgent to recycle industrial wastes as a way for proper disposal of industrial wastes.

국내의 경우 고로슬래그 발생량은 연간 500만톤이 넘으며, 충청남도 지방에서도 보령, 당진 화력 발전소 등에서 년간 50-60만톤 규모의 고로슬래그가 발생되고 있다.In Korea, blast furnace slag generation is over 5 million tons per year, and blast furnace slag of 50-600,000 tons is generated annually in Boryeong and Dangjin thermal power plants in Chungcheongnam-do province.

본 발명자들은 이들 폐기물의 적정한 처리 및 재자원화를 위하여 기초물성의 파악을 통한 시멘트, 모래 등의 원료 대체재로서 사용 방안을 실험실적 연구를 통하여 제조조건을 선정하고, 실제 현장에서의 최적 제조조건을 확립하고자 하였다.The present inventors selected the production conditions through laboratory research on the method of using them as raw materials substitutes for cement and sand through the grasp of basic properties for proper treatment and recycling of these wastes, and establish the optimum manufacturing conditions in the actual site. Was intended.

따라서, 본 발명자들은 산업폐기물인 고로슬래그를 경제적이고 안전하게 재활용 하기 위해 콘크리트 2차 제품에 적용하고자 연구한 결과, 콘크리트 2차 제품의 제조시에 시멘트 대체재로 고로슬래그 적정량을 특정 조건하에서 배합할 경우 압축강도가 향상됨을 확인함으로써 본 발명을 완성하였다.Therefore, the present inventors have studied to apply industrial blast furnace slag economically and safely to the secondary concrete products for economical and safe recycling, and when the concrete secondary product is formulated with an appropriate amount of blast furnace slag under the specific conditions, it is compressed. The present invention was completed by confirming that the strength was improved.

본 발명의 목적은 산업폐기물인 고로슬래그를 재활용하여 제조한 고강도 콘크리트 2차제품을 제공함에 있다.An object of the present invention is to provide a high-strength concrete secondary product manufactured by recycling the blast furnace slag of industrial waste.

본 발명의 다른 목적은 상기 고강도 콘크리트 2차제품의 제조방법을 제공함에 있다.Another object of the present invention to provide a method for producing the high-strength concrete secondary product.

본 발명의 상기 목적은 ASTM C 109의 시멘트 모르타르 압축강도 시험방법에 의해 고로슬래그 대체율에 따른 모르타르의 압축강도 특성을 검토한 후, 건설 2차 제품 생산방식인 진동압축성형 방식에 의해 고강도 콘크리트 2차제품을 제조함에 있어서, 진동시간과 가압력 조건을 달리하여 콘크리트 2차제품을 제조한 후 제조된 콘크리트 2차제품 각각의 성능을 검토하여 고강도 콘크리트 2차제품을 제조하기 위한 적정 고로슬래그 대체율과 최적의 진동시간, 가압력 조건을 결정함으로서 달성하였다.The above object of the present invention is to examine the compressive strength characteristics of mortar according to the blast furnace slag replacement rate by the cement mortar compressive strength test method of ASTM C 109, and then the secondary construction of high-strength concrete by vibratory compression molding method of construction secondary product production method In manufacturing the product, after manufacturing the concrete secondary products with different vibration time and pressure conditions, the performance of each concrete secondary product manufactured is examined and the appropriate blast furnace slag replacement rate and optimum for producing high strength concrete secondary products This was achieved by determining the vibration time and the pressing force condition.

이하, 본 발명의 구성을 설명한다.Hereinafter, the configuration of the present invention will be described.

도 1은 본 발명에서 재활용한 고로슬래그를 다양한 양으로 대체한 모르타르의 압축강도를 재령 3일 후 측정한 결과를 나타낸 그래프이다.1 is a graph showing the result of measuring the compressive strength of the mortar in which the blast furnace slag recycled in the present invention in various amounts after 3 days of age.

도 2는 본 발명에서 재활용한 고로슬래그를 다양한 양으로 대체한 모르타르의 압축강도를 재령 7일 후 측정한 결과를 나타낸 그래프이다.Figure 2 is a graph showing the results of measuring the compressive strength of the mortar 7 days after the blast furnace slag recycled in the present invention in various amounts.

도 3은 시멘트만을 사용하여 가압력의 변화에 따라 제조된 본 발명의 콘크리트 2차제품의 압축강도를 측정한 결과를 나타낸 그래프이다.Figure 3 is a graph showing the results of measuring the compressive strength of the concrete secondary product of the present invention prepared according to the change in the pressing force using only cement.

도 4는 시멘트 대신 고로슬래그를 30% 대체한 후 가압력의 변화에 따라 제조된 본 발명의 콘크리트 2차제품의 압축강도를 측정한 결과를 나타낸 그래프이다.Figure 4 is a graph showing the result of measuring the compressive strength of the concrete secondary product of the present invention manufactured according to the change in pressure after replacing the blast furnace slag 30% instead of cement.

도 5는 시멘트만을 사용하여 진동압축성형기의 가압력은 8kgf/cm2으로 고정하고 진동시간의 변화에 따라 제조된 본 발명의 콘크리트 2차제품의 압축강도를 측정한 결과를 나타낸 그래프이다.Figure 5 is a graph showing the results of measuring the compressive strength of the concrete secondary product of the present invention fixed according to the change in the vibration time of the pressing force of the vibration compression molding machine using only cement 8kgf / cm 2 .

도 6은 진동시간은 5초로 고정하고 가압력의 변화에 따라 제조된 본 발명의콘크리트 2차제품의 압축강도를 측정한 결과를 나타낸 그래프이다.Figure 6 is a graph showing the results of measuring the compressive strength of the concrete secondary product of the present invention prepared according to the change in the pressing force and the vibration time is fixed to 5 seconds.

도 7은 진동시간은 10초로 고정하고 가압력의 변화에 따라 제조된 본 발명의 콘크리트 2차제품의 압축강도를 측정한 결과를 나타낸 그래프이다.Figure 7 is a graph showing the results of measuring the compressive strength of the concrete secondary product of the present invention prepared according to the change in the pressing force and the vibration time is fixed to 10 seconds.

도 8은 종래 콘크리트 2차제품과 본 발명 콘크리트 2차제품의 밀도와 압축강도의 관계를 비교한 결과를 나타낸다.Figure 8 shows the result of comparing the relationship between the density of the conventional concrete secondary product and the concrete secondary product of the present invention and the compressive strength.

도 9는 다양한 양의 고로슬래그를 대체하여 제조한 본 발명 콘크리트 2차제품의 압축강도를 재령 1일 후 측정한 결과를 나타낸 그래프이다.9 is a graph showing the results of measuring the compressive strength of the concrete secondary product of the present invention manufactured by replacing various amounts of blast furnace slag after one day of age.

도 10은 다양한 양의 고로슬래그를 대체하여 제조한 본 발명 콘크리트 2차제품의 압축강도를 재령 3일 후 측정한 결과를 나타낸 그래프이다.10 is a graph showing the result of measuring the compressive strength of the concrete secondary product of the present invention manufactured by replacing various amounts of blast furnace slag after 3 days of age.

도 11는 다양한 양의 고로슬래그를 대체하여 제조한 본 발명 콘크리트 2차제품의 압축강도를 재령 7일 후 측정한 결과를 나타낸 그래프이다.11 is a graph showing the result of measuring the compressive strength of the concrete secondary product of the present invention manufactured by replacing various amounts of blast furnace slag after 7 days of age.

도 12는 다양한 양의 고로슬래그를 대체하여 제조한 본 발명 콘크리트 2차제품의 압축강도를 재령에 따라 비교한 결과를 나타낸다.Figure 12 shows the results of comparing the compressive strength of the concrete secondary products of the present invention prepared by replacing various amounts of blast furnace slag according to age.

본 발명은 모르타르 제조시 시멘트 대체재로 고로슬래그를 0, 20, 30, 40, 50% 대체한 후 ASTM C 109의 시멘트 모르타르 압축강도 실험방법에 준하여 압축강도를 측정함으로서 고로 슬래그 대체율에 따른 모르타르 압축강도 발현특성을 조사하는 단계; 다양한 고로슬래그의 대체양에 따라 진동압축성형기의 가압력을 달리하여 콘크리트 2차제품을 제조한 후 압축강도를 측정하여 콘크리트 2차제품 제조시 고로슬래그 대체양에 대한 진동압축성형기의 최적 가압력을 조사하는 단계; 진동 압축성형기의 가압력을 8kgf/cm2으로 고정하고 진동시간을 5초, 10초, 15초로 다양하게 하여 콘크리트 2차제품을 제조한 후 압축강도를 측정함으로서 콘크리트 2차제품 제조시 최적의 진동압축성형기의 진동시간을 조사하는 단계; 상기 결정한 콘크리트 2차제품 제조시 최적의 진동압축성형기의 진동시간 조건하에서 다양한 가압력으로 콘크리트 2차제품을 제조한 후 압축강도를 측정하여 진동압축성형기의 진동시간에 따른 가압력 조건을 최적화하는 단계; 상기 제조한 본 발명 콘크리트 2차제품의 밀도와 압축강도의 값을 종래의 콘크리트 2차제품의 값과 비교하는 단계;및 W/B 28%로 하고 고로슬래그 대체율은 0, 20, 30, 40%와 같이 4수준으로 설정하여 콘크리트 2차제품을 제조한 후 압축강도를 각 재령별로 측정하여 고강도 콘크리트 2차제품을 개발하기 위한 적정 고로슬래그 대체율을 검토하는 단계로 구성된다.The present invention is the mortar compressive strength according to the blast furnace slag replacement rate by measuring the compressive strength according to the cement mortar compressive strength test method of ASTM C 109 after replacing the blast furnace slag 0, 20, 30, 40, 50% as a cement substitute in the manufacture of mortar Examining expression characteristics; Investigate the optimal pressing force of the vibratory compression molding machine for the replacement amount of the blast furnace slag in the manufacture of the concrete secondary products by measuring the compressive strength after manufacturing the concrete secondary products by varying the pressing force of the vibratory compression molding machine according to the replacement amount of the blast furnace slag step; Optimal vibration compression in manufacturing concrete secondary products by measuring the compressive strength after manufacturing the concrete secondary products by fixing the pressing force of the vibration compression molding machine to 8kgf / cm 2 and varying the vibration time to 5 seconds, 10 seconds and 15 seconds. Examining the vibration time of the molding machine; Optimizing the pressing conditions according to the vibration time of the vibration compression molding machine by measuring the compressive strength after manufacturing the concrete secondary products with various pressing pressures under the vibration time conditions of the optimum vibration compression molding machine when manufacturing the determined concrete secondary products; Comparing the values of the density and compressive strength of the prepared concrete secondary products of the present invention with those of conventional concrete secondary products; and W / B 28% and blast furnace slag replacement rate is 0, 20, 30, 40% After the concrete secondary product is set to 4 levels as described above, the compressive strength is measured at each age and the appropriate blast furnace slag replacement rate for developing the high-strength concrete secondary product is composed.

본 발명에서 시멘트를 대신한 고로슬래그를 W/B 28% 인 경우, 20 ∼ 40% 대체 사용하면 압축강도가 우수한 콘크리트 2차제품을 제조할 수 있다.In the present invention, when the blast furnace slag in place of cement is W / B 28%, 20 to 40% can be used to prepare a secondary concrete product having excellent compressive strength.

본 발명에서 진동압축성형기의 진동시간을 5 ∼ 10초로 하면 압축강도가 우수한 콘크리트 2차제품을 제조할 수 있다.In the present invention, when the vibration time of the vibration compression molding machine is 5 to 10 seconds, a secondary concrete product having excellent compressive strength can be manufactured.

본 발명에서 진동압축성형기의 가압력을 6 ∼ 12kgf/cm2로 하면 압축강도가 우수한 콘크리트 2차제품을 제조할 수 있다.In the present invention, when the pressing force of the vibration compression molding machine is 6 to 12 kgf / cm 2 , the secondary concrete product having excellent compressive strength can be manufactured.

이하, 본 발명의 구체적인 방법을 실시예를 들어 상세히 설명하고자 하지만 본 발명의 권리범위는 이들 실시예에만 한정되는 것은 아니다.Hereinafter, the specific method of the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited only to these Examples.

실시예 1: 고로슬래그 대체율에 따른 모르타르 압축강도 발현특성Example 1: Mortar compressive strength expression characteristics according to blast furnace slag replacement rate

산업폐기물로 발생되는 용융상태로부터 입상화 급냉시킨 고로슬래그는 고석회 알루민산 규산염의 불규칙한 망목상으로 된 준안정 유리구조로서 잠재수경성을 갖고 있다. 본 실시예에서는 고로슬래그 대체율 및 고로슬래그 시멘트의 압축강도 특성을 검토하기 위해 ASTM C 109의 시멘트 모르타르 압축강도 실험방법에 준하여 표 1과 같은 실험계획에 따라 실험을 실시하였다. 고로슬래그 대체율은 시멘트 중량대체율로 0, 20, 30, 40, 50%로 하였다. 물-결합재비 (W/B)는 48.5%로 하고, 시험체는 5×5×5cm 성형몰드로 제작하여, 온도 23±1.7℃, 습도 100%의 상태에서 각 측정재령까지 양생하였다. 실험횟수는 3회 반복하였으며, 압축강도의 측정은 재령 3, 7일에 실시하였다. 본 실시예에서 사용한 재료중 시멘트는 국내 쌍용양회의 보통 포틀랜트 시멘트를 사용하였으며 고로슬래그 시멘트와 고로슬래그는 성신양회의 것을 사용하였고 모래는 공주산 모래로서 조립율 3.01의 거친모래였다. 배합은 ASTM C 109 시험방법으로 사용되고 있는 물-결합재비(W/B) 48.5%를 기준으로 하고 표 2와 같이 시멘트의 중량에 대하여 고로슬래그를 0, 20, 30, 40, 50%로 대체하였으며, 모래는 고로슬래그의 대체율에 상관없이 일정하게 하였다. 공시체는 5×5×5cm 성형몰드로 제작 하였고 ASTM C 109에 준해 온도 23±1.7℃, 습도 100%의 상태에서 각 측정재령까지 양생하였다. 압축강도는 재령 3, 7일에 압축강도 측정기(Portable Compression Meter, 10ton)로 측정하였다.The blast furnace slag granulated and quenched from the molten state produced by industrial waste is an irregular meshed glass structure of high lime aluminate silicate and has latent hydraulic properties. In this example, the experiment was carried out according to the experimental plan as shown in Table 1 in accordance with the cement mortar compressive strength test method of ASTM C 109 to examine the blast furnace slag replacement rate and the compressive strength characteristics of the blast furnace slag cement. The blast furnace slag replacement rate was 0, 20, 30, 40, 50% in terms of cement weight replacement rate. The water-binding material ratio (W / B) was 48.5%, and the test body was made of a 5 x 5 x 5 cm molding mold, and cured to each measurement age under the condition of 23 ± 1.7 ° C and 100% humidity. The number of experiments was repeated three times, and the compressive strength was measured at 3 and 7 days of age. Among the materials used in this example, cement was used as the common portland cement of Ssangyong Yangyang, Korea. The blast furnace slag cement and the blast furnace slag were made by Sungshin Yangkai, and the sand was Gongju-san sand. The formulation was based on the water-binder ratio (W / B) 48.5%, which was used in the ASTM C 109 test method, and the blast furnace slag was replaced with 0, 20, 30, 40, and 50% by weight of cement as shown in Table 2. The sand was made constant regardless of the replacement rate of the blast furnace slag. The specimens were made of 5 × 5 × 5cm molding molds and cured to each measurement age under the condition of 23 ± 1.7 ℃ and 100% humidity according to ASTM C 109. Compressive strength was measured by the Portable Compression Meter (10ton) at 3 and 7 days of age.

실험결과, 표 3 및 도 1, 2에 나타낸 바와 같이 재령 3일의 경우 고로슬래그 대체율 20% 및 30%에서는 고로슬래그 대체율 0%와 동등한 수준의 압축강도를 보이고 있으나, 고로슬래그 대체율 30% 이상에서는 저하하는 것으로 나타났다.As a result of the experiment, as shown in Table 3 and Figures 1 and 2, the blast furnace slag replacement rate of 20% and 30% showed the same compressive strength as the blast furnace slag replacement rate of 0% at the blast furnace slag replacement rate of 30%. It was shown to decrease.

재령 7일에서는 고로슬래그 대체율 50%를 제외하면 고로슬래그 대체율 0%와거의 동등한 수준의 압축강도를 보이고 있다.On the seventh day, except for the blast furnace slag replacement rate of 50%, the compressive strength of the blast furnace slag replacement rate was 0%.

압축강도 측정치의 표준편차를 살펴보면, 재령 7일에서의 압축강도 편차가 재령 3일에 비하여 크게 나타났다.The standard deviation of the compressive strength measurements showed that the variation in compressive strength at 7 days was greater than at 3 days.

실험계획Experiment plan 고로슬래그 대체율(%)Blast furnace slag replacement rate (%) 실험방법Experiment method 측정항목Metric 비고Remarks 00 ASTM C 109 시멘트 모르타르 압축강도 시험방법ASTM C 109 Cement Mortar Compressive Strength Test Method 압축강도(재령 3일, 7일)Compressive strength (3 days, 7 days of age) · W/B : 48.5%·실험반복횟수:3회W / B: 48.5% Repetition of experiments: 3 times 2020 3030 4040 5050 SC(1) SC (1) [주] (1) 고로슬래그 시멘트(시멘트:고로슬래그=70:30)(1) Blast furnace slag cement (cement: blast furnace slag = 70:30)

배합표Formula 고로슬래그 대체율(%)Blast furnace slag replacement rate (%) W/B(%/wt)W / B (% / wt) 물(%/wt)Water (% / wt) 시멘트(%/wt)Cement (% / wt) 고로슬래그(%/wt)Blast furnace slag (% / wt) 모래(%/wt)Sand (% / wt) 합계(%/wt)Total (% / wt) 00 48.548.5 11.511.5 23.623.6 00 64.964.9 100100 2020 48.548.5 11.511.5 18.918.9 4.74.7 64.964.9 100100 3030 48.548.5 11.511.5 16.516.5 7.17.1 64.964.9 100100 4040 48.548.5 11.511.5 14.214.2 9.49.4 64.964.9 100100 5050 48.548.5 11.511.5 11.811.8 11.811.8 64.964.9 100100

고로슬래그 대체율에 따른 압축강도Compressive strength according to blast furnace slag replacement rate 고로슬래그 대체율(%)Blast furnace slag replacement rate (%) 실험회수Experiment count 3일 압축강도(kgf/cm2)3-day compressive strength (kgf / cm 2 ) 7일 압축강도(kgf/cm2)7 days compressive strength (kgf / cm 2 ) AA BB CC 평균Average AA BB CC 평균Average 00 1One 245245 246246 285285 259259 260260 294294 256256 270270 22 268268 294294 285285 282282 263263 252252 326326 281281 33 295295 241241 289289 275275 232232 288288 253253 258258 평균:272, 표준편차:21, 최고값:295, 최소값:241Average: 272, Standard Deviation: 21, Highest Value: 295, Lowest Value: 241 평균:269, 표준편차:26, 최고값:326, 최소값:232Average: 269, Standard Deviation: 26, Highest Value: 326, Lowest Value: 232 2020 1One 283283 273273 262262 273273 261261 276276 254254 264264 22 274274 266266 287287 276276 279279 316316 229229 275275 33 264264 266266 299299 276276 231231 280280 284284 265265 평균:275, 표준편차:12, 최고값:299, 최소값:262Average: 275, Standard Deviation: 12, Highest Value: 299, Lowest Value: 262 평균:268, 표준편차:26, 최고값:316, 최소값:229Average: 268, Standard Deviation: 26, Highest Value: 316, Min: 229 3030 1One 245245 253253 234234 244244 229229 225225 224224 226226 22 259259 255255 264264 259259 279279 252252 252252 261261 33 271271 288288 262262 273273 295295 313313 303303 304304 평균:259, 표준편차:14, 최고값:288, 최소값:234Average: 259, Standard Deviation: 14, Highest Value: 288, Lowest Value: 234 평균:263, 표준편차:33, 최고값:313, 최소값:224Average: 263, Standard Deviation: 33, Highest Value: 313, Lowest Value: 224 4040 1One 267267 214214 233233 238238 246246 265265 281281 264264 22 224224 231231 237237 231231 321321 171171 279279 257257 33 213213 225225 223223 220220 251251 273273 251251 258258 평균:230, 표준편차:15, 최고값:267, 최소값:213Average: 230, Standard Deviation: 15, Highest Value: 267, Lowest Value: 213 평균:260, 표준편차:38, 최고값:321, 최소값:171Average: 260, Standard Deviation: 38, Highest Value: 321, Lowest Value: 171 5050 1One 201201 220220 213213 211211 262262 176176 265265 235235 22 241241 233233 223223 232232 262262 264264 236236 254254 33 201201 188188 228228 206206 252252 221221 236236 평균:272, 표준편차:21, 최고값:295, 최소값:241Average: 272, Standard Deviation: 21, Highest Value: 295, Lowest Value: 241 평균:242, 표준편차:29, 최고값:265, 최소값:176Average: 242, Standard Deviation: 29, Highest Value: 265, Lowest Value: 176

실시예 2: 진동 가압성형기의 가압력 변화에 따른 콘크리트 2차제품의 제조Example 2 Preparation of Secondary Concrete Product According to Change of Pressing Force of Vibration Press Machine

건설 2차 제품은 진동압축성형기에 의해 생산되므로 진동압축성형기의 진동시간, 가압력 등에 의해서도 제품의 품질이 많은 영향을 받기 때문에 이에 대한 최적 조건의 설정이 필요하다. 본 실시예에서는 표 4의 실험계획에 따라 진동시간은 5초로 통일하고 가압력을 6, 8kgf/cm22수준으로 하여 실험을 수행 하였다. 배합수준은 고로슬래그를 30% 대체한 경우와 보통 포틀랜트 시멘트만을 사용했을 때를 대상으로 하였다. 공시체는 5×5×5cm의 Cubic 공시체를 진동 압축 성형기를 사용하여 제작하였으며, 시험체는 성형을 마친후 20℃의 실내에서 4시간 존치시킨 후, 양생하였다. 양생온도의 변화는 10℃/hr의 속도로 80℃까지 승온한 후 가열을 멈추고 10℃/hr 속도로 40℃까지 강온되도록 하였다. 최초 측정재령인 24시간이 되면 양생조를 개방하여 자연 방열시켜 총 양생시간이 840℃hr가 되도록 하였으며, 습도는 RH 100%를 유지하였다. 압축강도 측정은 실시예 1과 동일하게 실시하였다.Since the construction secondary products are produced by the vibration compression molding machine, the quality of the product is also affected by the vibration time and the pressing force of the vibration compression molding machine, so it is necessary to set the optimum condition for this. In this embodiment, the vibration time in accordance with the experimental design shown in Table 4 was carried out an experiment by the unification 5 seconds, and the pressing force 6, 8kgf / cm 2 2 level. Mixing levels were applied for blast furnace slag 30% replacement and for ordinary portland cement only. The specimen was prepared by using a 5 × 5 × 5 cm Cubic specimen using a vibration compression molding machine, and the specimen was cured after standing for 4 hours in a room at 20 ° C. after molding. Change in curing temperature was raised to 80 ℃ at a rate of 10 ℃ / hr and then stopped heating and lowered to 40 ℃ at a rate of 10 ℃ / hr. At 24 hours, the first measurement age, the curing tank was opened to dissipate naturally, so that the total curing time was 840 ℃ hr, and the humidity was maintained at RH 100%. Compressive strength measurement was carried out in the same manner as in Example 1.

실험결과, 표 5와 도 3, 4에 나타낸 바와 같이 진동압축성형기의 가압력이 증가할수록 압축강도는 증가되었다. 그리고 고로슬래그로 대체한 시멘트는 보통 포틀랜트 시멘트만을 사용한 시멘트와 비교하여 가압력 8kgf/cm2에서는 동등한 수준의 강도를 보이고 있으나 가압력 6kgf/cm2에서는 낮은 강도를 보이고 있다.As a result, as shown in Table 5 and Figures 3 and 4, the compressive strength increased as the pressing force of the vibration compression molding machine increased. And cement substituted with blast furnace slag showed the same level of strength at pressing force of 8kgf / cm 2 but lower at pressing force of 6kgf / cm 2 compared with cement using only portland cement.

실험계획Experiment plan 고로슬래그대체율(%)Blast furnace slag replacement rate (%) 가압력(kgf/cm2)Press force (kgf / cm 2 ) 진동시간(초)Vibration time (seconds) 측정항목Metric 030030 6868 55 재령 1일 압축강도1-day compressive strength

고로슬래그 대체율과 가압력에 따른 압축강도Compressive strength according to blast furnace slag replacement rate and pressing force 고로슬래그대체율(%)Blast furnace slag replacement rate (%) 가압력(kgf/cm2)Press force (kgf / cm 2 ) 1일 압축강도(kgf/cm2)Daily compressive strength (kgf / cm 2 ) 평균 압축강도(kgf/cm2)Average compressive strength (kgf / cm 2 ) 00 66 246246 199199 157157 201201 88 171171 241241 235235 215215 3030 66 223223 161161 200200 195195 88 249249 185185 220220 218218

실시예 3: 진동 가압성형기의 진동시간 변화에 따른 콘크리트 2차제품의 제조Example 3: Preparation of secondary concrete products according to the vibration time change of the vibration press molding machine

고강도 콘크리트 2차제품의 제조방식인 진동압축성형기의 진동시간에 따른 압축강도의 변화를 검토하여 콘크리트 2차제품의 제조에 적합한 진동시간을 알아보기 위한 것으로 실험계획은 표 6과 같고, 상기 실시예 2에서 높은 압축강도를 보인 8kgf/cm2으로 가압력을 일정하게 한 상태에서 진동시간을 5, 10, 15초로 변화시켰다. 시험체의 측정재령은 현장에서의 품질관리 일인 재령 1일로 하였다. 사용재료, 사용기기, 배합, 공시체 제작방법, 양생 및 압축강도의 측정방법은 실시예 2와 동일하게 하였다.In order to examine the change in compressive strength according to the vibration time of the vibration compression molding machine which is a method of manufacturing high-strength concrete secondary products, the experimental plan is as shown in Table 6, and the experimental plan is as shown in Table 6 The vibration time was changed to 5, 10, and 15 seconds with the pressing force constant at 8 kgf / cm 2 showing high compressive strength at 2 . The measurement age of the test specimen was 1 day of age, which is the quality control day in the field. The method of measuring the materials used, the equipment used, the formulation, the specimen preparation method, the curing and the compressive strength were the same as in Example 2.

실험결과, 표 7과 도 5에서 보여주듯 진동시간에 따른 압축강도의 변화로서진동시간이 10초인 경우가 가장 높은 압축강도를 보이고 있는 것으로 나타났으며, 진동시간 15초의 경우는 진동시간 5초보다도 압축강도가 저하되는 것으로 나타났다.As a result of the experiment, as shown in Table 7 and FIG. 5, the change in the compressive strength according to the vibration time showed the highest compressive strength when the vibration time was 10 seconds, and the vibration time was 15 seconds when the vibration time was 15 seconds. The compressive strength was found to be lowered.

실험계획Experiment plan 고로슬래그대체율(%)Blast furnace slag replacement rate (%) 가압력(kgf/cm2)Press force (kgf / cm 2 ) 진동시간(초)Vibration time (seconds) 측정항목Metric 00 88 5101551015 재령 1일압축강도Compressive strength

진동수에 따른 압축강도Compressive strength according to frequency 진동시간(초)Vibration time (seconds) 1일 압축강도(kgf/cm2)Daily compressive strength (kgf / cm 2 ) 평균 압축강도(kgf/cm2)Average compressive strength (kgf / cm 2 ) 실험1Experiment 1 실험2Experiment 2 실험3Experiment 3 55 406406 307307 326326 346346 1010 395395 383383 364364 381381 1515 354354 277277 237237 289289

실시예 4: 진동 가압성형기의 가압력 변화에 따른 콘크리트 2차제품의 제조Example 4 Manufacture of Secondary Concrete Products by Variation of Pressing Force of Vibration Press Machine

상기 실시예 3의 표 7에서 보여주듯 진동시간은 10초가 가장 적절한 것으로 나타났으므로, 본 실시예에서는 가압력을 실시예 3에서 실시했던 것 보다 좀더 다양하게 변화시켜 가압력을 최적화 하고자 하였다. 실험계획은 표 8에 나타낸 바와 같이 가압력 0, 6, 8, 12kgf/cm24수준과 진동시간 5, 10초의 두 수준으로 설정하였다. 사용재료, 사용기기, 배합, 공시체 제작방법, 양생 및 압축강도의 측정방법은 실시예 2와 동일하게 실시하였다. 실험결과, 표 9, 10과 도 6, 7에 나타낸 바와 같이 진동시간 5초, 10초에 상관없이 모두 가압력 8kgf/cm2까지는 가압력이 증가할수록 압축강도가 증가하지만 가압력 12kgf/cm2에서 압축강도가 저하하였다.As shown in Table 7 of Example 3, the oscillation time was found to be 10 seconds, and therefore, in this example, the pressing force was changed to be more varied than that performed in Example 3 to optimize the pressing force. As shown in Table 8, the experimental plan was set to two levels of pressing force 0, 6, 8, 12kgf / cm 2 and vibration time 5, 10 seconds. The method of measuring the materials used, the equipment used, the formulation, the specimen preparation method, the curing and the compressive strength were carried out in the same manner as in Example 2. As a result of the experiment, as shown in Table 9, 10 and Figs. 6 and 7, the compressive strength increases as the pressing force increases up to 8 kgf / cm 2 , but the compressive strength at 12 kgf / cm 2 is applied regardless of the vibration time of 5 seconds and 10 seconds. Fell.

실험계획Experiment plan 가압력(kgf/cm2)Press force (kgf / cm 2 ) 진동시간(초)Vibration time (seconds) 측정항목Metric 0681206812 510510 재령 1일 압축강도1-day compressive strength

가압력에 따른 압축강도Compressive strength according to pressing force 가압력(kgf/cm2)Press force (kgf / cm 2 ) 진동시간(초)Vibration time (seconds) 1일 압축강도(kgf/cm2)Daily compressive strength (kgf / cm 2 ) 평균 압축강도(kgf/cm2)Average compressive strength (kgf / cm 2 ) 실험1Experiment 1 실험2Experiment 2 실험3Experiment 3 00 55 158158 217217 207207 194194 66 243243 329329 262262 215215 88 273273 318318 348348 313313 1212 292292 298298 295295 295295

가압력에 따른 압축강도Compressive strength according to pressing force 가압력(kgf/cm2)Press force (kgf / cm 2 ) 진동시간(초)Vibration time (seconds) 1일 압축강도(kgf/cm2)Daily compressive strength (kgf / cm 2 ) 평균 압축강도(kgf/cm2)Average compressive strength (kgf / cm 2 ) 실험1Experiment 1 실험2Experiment 2 실험3Experiment 3 00 1010 206206 229229 195195 210210 66 319319 285285 348348 317317 88 311311 356356 371371 346346 1212 288288 278278 292292 286286

비교실시예 1: 종래 제품과의 밀도 및 압축강도 비교Comparative Example 1: Comparison of density and compressive strength with conventional products

본 비교실시예에서는 종래의 제품과 상기 실시예 4에서 제조한 시험체의 밀도와 압축강도의 관계를 비교하였다.In this comparative example, the relationship between the density of the conventional product and the test specimen prepared in Example 4 and the compressive strength was compared.

실험결과, 실시예 4에서 제조한 시험체는 가압력의 증가에 따라 거의 선형적으로 밀도가 증가하고 있다. 표 11과 도 8에서 보여 주듯 기존의 제품보다 밀도가 작으면서 압축강도는 더 높다는 것을 알 수 있으며 최고의 압축강도를 보인 시험체의 밀도는 2.05∼2.25의 범위로 나타냈다. 이상의 결과를 종합하면 고강도 콘크리트 2차제품을 제조하기 위한 최적의 가압력 및 진동시간 최적의 바람직한 조건은 가압력 8kgf/cm2, 진동시간 10초인 것으로 나타났다.As a result of the experiment, the test body prepared in Example 4 is almost linearly increased in density with increasing pressure. As shown in Table 11 and Figure 8 it can be seen that the compressive strength is higher and the density is smaller than the existing product, the density of the test specimen showing the highest compressive strength was expressed in the range of 2.05 ~ 2.25. In summary, the optimum pressure and vibration time for the production of high-strength concrete secondary products were found to be 8 kgf / cm 2 and 10 second vibration time.

기존 제품과 밀도 및 압축강도 비교Comparison of density and compressive strength with existing products 기존제품과 실험공시체의 밀도와 압축강도 비교Comparison of density and compressive strength of existing products and test specimens 가압력0kgf/cm2 Press force 0kgf / cm 2 가압력6kgf/cm2 Press force 6kgf / cm 2 가압력8kgf/cm2 Press force 8kgf / cm 2 가압력12kgf/cm2 Press force 12kgf / cm 2 기존제품Existing Product 밀도(t/m3)Density (t / m 3 ) 압축강도(kgf/cm2)Compressive strength (kgf / cm 2 ) 밀도(t/m3)Density (t / m 3 ) 압축강도(kgf/cm2)Compressive strength (kgf / cm 2 ) 밀도(t/m3)Density (t / m 3 ) 압축강도(kgf/cm2)Compressive strength (kgf / cm 2 ) 밀도(t/m3)Density (t / m 3 ) 압축강도(kgf/cm2)Compressive strength (kgf / cm 2 ) 밀도(t/m3)Density (t / m 3 ) 압축강도(kgf/cm2)Compressive strength (kgf / cm 2 ) 1.971.97 206206 2.062.06 319319 2.072.07 311311 2.132.13 288288 2.172.17 186186 1.991.99 229229 2.092.09 285285 2.112.11 356356 2.112.11 278278 2.432.43 388388 1.991.99 195195 2.092.09 348348 2.082.08 371371 2.232.23 296296

실시예 5: 고강도 콘크리트 2차제품의 제작을 위한 적정 고로슬래그 대체율 조사Example 5: Investigation of the appropriate rate of blast furnace slag for the production of high-strength concrete secondary products

본 실시예는 표 12에 나타낸 바와 같이 고강도 콘크리트 2차제품을 개발하기 위한 적정 고로슬래그 대체율을 검토하기 위한 것으로써 W/B 28%로 하고, 고로슬래그 대체율은 0, 20, 30, 40% 4수준으로 설정하여 고로슬래그 대체율에 따른 압축강도 특성을 각 재령별로 검토하였다. 시험체의 성형방식은 진동시간 및 가압력 시험결과를 토대로 진동시간 10초, 가압력 8kgf/cm2로 진동가압성형을 실시하였으며, 실험횟수는 5회 반복실험을 실시하였다. 사용재료, 사용기기, 배합, 공시체 제작방법, 양생 및 압축강도의 측정방법은 실시예 2와 동일한 방법으로 실시하였다. 배합은 표 13에 나타낸 바와 같다.As shown in Table 12, this Example is to examine the appropriate blast furnace slag replacement rate for the development of high-strength concrete secondary products, W / B 28%, blast furnace slag replacement rate is 0, 20, 30, 40% 4 The compressive strength characteristics according to the blast furnace slag replacement rate were reviewed at each age. The molding method of the test body was subjected to the vibration press molding with a vibration time of 10 seconds and a pressing force of 8 kgf / cm 2 based on the vibration time and the pressure test results, and the number of experiments was repeated five times. The method of measuring the materials used, the equipment used, the formulation, the specimen preparation method, the curing and the compressive strength were carried out in the same manner as in Example 2. The formulation is as shown in Table 13.

실험결과, 표 14와 도 9, 10, 11, 12에 나타낸 바와 같이 고로슬래그 대체율이 증가할수록 압축강도는 증가되고 있다. 실험차수별 표준편차와 변동계수를 살펴보면, 보통 포틀랜드 시멘트는 그 표준 편차가 경시시간에 따라 줄어 들지만, 고로슬래그를 대체한 시멘트는 압축강도의 편차가 높게 나타났다.As a result of the experiment, as shown in Table 14 and 9, 10, 11, 12, the compressive strength is increased as the blast furnace slag replacement rate increases. The standard deviations and coefficients of variation by experimental order show that the standard deviation of Portland cement decreases with time, but the cement substituted for blast furnace slag has a high variation in compressive strength.

실험계획Experiment plan 고로슬래그대체율(%)Blast furnace slag replacement rate (%) W/B(%)W / B (%) 측정항목Metric 비고Remarks 00 2828 압축강도 재령(1일, 3일, 7일)Compressive strength age (1 day, 3 days, 7 days) ·실험횟수: 5회·진동시간: 10초·가압력: 8kgf/cm2 Number of experiments: 5 times Vibration time: 10 seconds Pressure: 8 kgf / cm 2 2020 3030 4040

배합설계표Formulation Design Table 고로슬래그대체율(%)Blast furnace slag replacement rate (%) 시멘트(%)cement(%) 고로슬래그(%)Blast furnace slag (%) 석분(%)Stone powder (%) 모래(%)sand(%) 물(%)water(%) 00 23.6923.69 -- 18.3518.35 49.9949.99 6.816.81 2020 18.95218.952 4.7384.738 18.3518.35 49.9949.99 6.816.81 3030 16.58316.583 7.1077.107 18.3518.35 49.9949.99 6.816.81 4040 14.21414.214 9.4769.476 18.3518.35 49.9949.99 6.816.81

슬래그 대체율에 따른 1, 2, 3, 4, 5차 압축강도1, 2, 3, 4, 5th compressive strength according to slag replacement rate SL대체율(%)SL replacement rate (%) 실험횟수Number of experiments 1일 압축강도(kgf/cm2)Daily compressive strength (kgf / cm 2 ) 평균Average 3일 압축강도(kgf/cm2)3-day compressive strength (kgf / cm 2 ) 평균Average 7일 압축강도(kgf/cm2)7 days compressive strength (kgf / cm 2 ) 평균Average aa bb cc dd aa bb cc dd aa bb cc 00 1One 259259 296296 314314 300300 292292 316316 399399 335335 340340 348348 370370 357357 369369 366366 22 237237 271271 289289 322322 280280 333333 373373 361361 319319 347347 431431 340340 371371 381381 33 348348 336336 313313 345345 336336 434434 384384 329329 385385 383383 317317 326326 426426 356356 44 457457 322322 347347 402402 382382 292292 300300 354354 494494 360360 294294 347347 463463 368368 55 393393 396396 375375 454454 404404 265265 291291 391391 411411 340340 357357 419419 416416 397397 평균:339, σ:48.5,변동계수: 14.31%Average: 339, σ: 48.5, Coefficient of variation: 14.31% 평균:356, σ:15.1,변동계수: 4.24%Average: 356, σ: 15.1, Coefficient of variation: 4.24% 평균:368, σ:10.3,변동계수: 2.8%Average: 368, σ: 10.3, Coefficient of variation: 2.8% 2020 1One 344344 389389 323323 345345 350350 308308 331331 310310 313313 315315 323323 355355 386386 354354 22 345345 374374 404404 371371 374374 389389 437437 432432 421421 420420 433433 480480 494494 469469 33 270270 377377 288288 369369 326326 403403 449449 460460 490490 451451 318318 370370 456456 381381 44 399399 445445 350350 372372 392392 385385 399399 330330 498498 403403 389389 381381 498498 423423 55 416416 371371 382382 418418 397397 385385 350350 398398 380380 378378 415415 354354 470470 413413 평균:364, σ:23.4,변동계수: 6.43%Average: 364, σ: 23.4, Coefficient of variation: 6.43% 평균:393, σ:45.8,변동계수: 11.65%Average: 393, σ: 45.8, Coefficient of variation: 11.65% 평균:401, σ:49.1,변동계수: 12.24%Average: 401, σ: 49.1, Coefficient of variation: 12.24% 3030 1One 438438 390390 468468 415415 428428 350350 416416 372372 408408 387387 450450 472472 532532 484484 22 429429 425425 434434 426426 429429 557557 530530 571571 561561 555555 487487 518518 555555 520520 33 352352 387387 322322 339339 350350 415415 493493 399399 411411 430430 351351 354354 488488 397397 44 437437 460460 415415 458458 443443 542542 455455 404404 520520 481481 264264 406406 565565 412412 55 353353 323323 316316 389389 345345 341341 344344 388388 491491 391391 447447 482482 570570 500500 평균:399, σ:42.4,변동계수: 10.63%Average: 399, σ: 42.4, Coefficient of variation: 10.63% 평균:449, σ:63,변동계수: 14.30%Average: 449, σ: 63, Coefficient of variation: 14.30% 평균:467, σ:51.6,변동계수: 11.05%Average: 467, σ: 51.6, Coefficient of variation: 11.05% 4040 1One 311311 313313 295295 290290 302302 381381 357357 353353 333333 356356 454454 481481 584584 506506 22 505505 411411 429429 388388 433433 465465 502502 469469 511511 487487 567567 562562 482482 537537 33 348348 385385 412412 435435 395395 432432 418418 478478 465465 448448 408408 440440 345345 398398 44 447447 419419 462462 558558 472472 454454 521521 362362 379379 429429 383383 370370 428428 394394 55 290290 288288 324324 407407 327327 388388 379379 442442 476476 421421 380380 432432 512512 441441 평균:386, σ:63.6,변동계수: 16.48%Average: 386, σ: 63.6, Coefficient of variation: 16.48% 평균:428, σ:42.7,변동계수: 9.98%Average: 428, σ: 42.7, Coefficient of variation: 9.98% 평균:480, σ:59.6변동계수: 12.42%Average: 480, σ: 59.6 Coefficient of variation: 12.42%

이상, 상기 실시예를 통하여 설명한 바와 같이 진동압축성형기의 진동시간이 5 ∼ 10초, 가압력은 6 ∼ 12kgf/cm2의 조건하에서 산업폐기물인 고로슬래그를 시멘트에 대신 20 ∼ 40% 대체 사용하여 제조한 본 발명 콘크리트 2차제품은 압축강도가 500kgf/cm2까지 향상되는 뛰어난 효과가 있으므로 건축자재 제조산업상 매우 유용한 발명인 것이다.As described above, the blast furnace slag, which is an industrial waste, is replaced with 20 to 40% of cement under conditions of a vibration time of 5 to 10 seconds and a pressing force of 6 to 12 kgf / cm 2 as described above. One concrete secondary product of the present invention has an excellent effect of improving the compressive strength up to 500kgf / cm 2 is a very useful invention in the construction materials manufacturing industry.

Claims (2)

산업폐기물 고로슬래그를 물-결합재(W/B)의 비가 28%인 조건하에서 시멘트 대신 20 ∼ 40% 대체하여 진동압축성형기로 진동시간 5 ∼ 10초, 가압력 6 ∼ 12kgf/cm2로 성형함을 특징으로 하는 콘크리트 2차제품 제조방법.The industrial waste blast furnace slag is replaced by 20-40% instead of cement under the condition that the ratio of water-binding material (W / B) is 28%, and a vibration compression molding machine is molded with a vibration time of 5 to 10 seconds and a pressing force of 6 to 12 kgf / cm 2 Method for producing a concrete secondary product characterized in that. 제 1 항의 방법에 의해 제조된 콘크리트 2차제품.A secondary concrete product produced by the method of claim 1.
KR10-2000-0047010A 2000-08-14 2000-08-14 Secondary concrete product with high stiffness using blast furnace slag and process for preparation thereof KR100367480B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0047010A KR100367480B1 (en) 2000-08-14 2000-08-14 Secondary concrete product with high stiffness using blast furnace slag and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0047010A KR100367480B1 (en) 2000-08-14 2000-08-14 Secondary concrete product with high stiffness using blast furnace slag and process for preparation thereof

Publications (2)

Publication Number Publication Date
KR20020013312A KR20020013312A (en) 2002-02-20
KR100367480B1 true KR100367480B1 (en) 2003-01-10

Family

ID=19683145

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0047010A KR100367480B1 (en) 2000-08-14 2000-08-14 Secondary concrete product with high stiffness using blast furnace slag and process for preparation thereof

Country Status (1)

Country Link
KR (1) KR100367480B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001617A (en) * 1988-07-06 1990-02-27 박관석 Concrete Structure with Slug Aggregate
KR970042391A (en) * 1995-12-30 1997-07-24 이재복 Low heat generation low shrinkage concrete composition containing fine slag powder
JPH11269806A (en) * 1998-03-25 1999-10-05 Masao Sato Permeable cement concrete pavement method using incineration molten slag
JPH11268969A (en) * 1998-03-19 1999-10-05 Taiheiyo Cement Corp Porous concrete
JP2000102912A (en) * 1998-09-30 2000-04-11 Yamax Corp Method for decreasing air bubble on surface of high flow concrete molding
JP2000281425A (en) * 1999-03-30 2000-10-10 Taiheiyo Cement Corp Production of sulfur composition molded form

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001617A (en) * 1988-07-06 1990-02-27 박관석 Concrete Structure with Slug Aggregate
KR970042391A (en) * 1995-12-30 1997-07-24 이재복 Low heat generation low shrinkage concrete composition containing fine slag powder
JPH11268969A (en) * 1998-03-19 1999-10-05 Taiheiyo Cement Corp Porous concrete
JPH11269806A (en) * 1998-03-25 1999-10-05 Masao Sato Permeable cement concrete pavement method using incineration molten slag
JP2000102912A (en) * 1998-09-30 2000-04-11 Yamax Corp Method for decreasing air bubble on surface of high flow concrete molding
JP2000281425A (en) * 1999-03-30 2000-10-10 Taiheiyo Cement Corp Production of sulfur composition molded form

Also Published As

Publication number Publication date
KR20020013312A (en) 2002-02-20

Similar Documents

Publication Publication Date Title
Kaish et al. Effects of different industrial waste materials as partial replacement of fine aggregate on strength and microstructure properties of concrete
CN107746228B (en) Recycled concrete doped with rubber particles and preparation method and application thereof
JP5139777B2 (en) Sulfate-resistant centrifugal molded concrete composition
US11905213B2 (en) Ultra-high performance concrete with waste brick powder and preparation method and application thereof
Deng et al. Strength and constitutive model of recycled concrete under biaxial compression
Wei et al. Properties of mortar with waste tyre rubber as partial sand replacement
Abdulkadir et al. Modelling and optimization of the impact resistance of graphene oxide modified crumb rubber-ECC using response surface methodology
KR100367480B1 (en) Secondary concrete product with high stiffness using blast furnace slag and process for preparation thereof
US10870603B2 (en) Hemp straw ash as a supplementary cementitious material
Olawale et al. Strength characteristics of m40 grade concrete using waste pet as replacement for sand
KR100723245B1 (en) Manufacturing method of fine aggregate for concrete from electrical arc furnace slag
Alaloul et al. Deformation properties of concrete containing crumb rubber as partial replacement to fine aggregate
KR20000032312A (en) Molding material using granulated blast furnace slag sand
KR100984211B1 (en) Concrete composition using recycled aggregate from dust of waste concrete
Adekunle Characteristics of earth bricks produced with partial replacement of laterite with plastic, ceramic tiles and glass for sustainable management of the environment
Mohammad et al. Physical and Mechanical Properties of High Strength Concrete Containing PVC Waste as a Sand Replacement
Tapia Flexural Load Capacity of Heat-Treated Concrete Mixed with Recycled Glass Aggregate and Glass Pozzolan
Zaharie et al. Cement materials obtained by partial replacement of cement powder with brick powder
Nwankwo et al. THE FIRE RESISTANCE OF CONCRETE MADE WITH RECYCLED PLASTIC AS PARTIAL REPLACEMENT FOR COARSE AGGREGATE
Riahi et al. RETRACTED: Prediction of Resistance to Water Damage of Geopolymers with Seeded Fly Ash and Rice Husk Bark Ash by Fuzzy Logic
Delnavaz et al. COMPARATIVE STUDY ON DIFFERENT RATIOS OF FOUNDRY AND WASTE FOUNDRY SAND IN CONCRETE.
CN109231902B (en) Proportioning and preparation method of recycled concrete pavement brick
Akpenpuun CERAMIC WARE WASTE POTENTIAL AS CO-BALLAST IN DENSE MASONRY UNIT PRODUCTION
Jeyakaran et al. An investigation of engineering properties of high strength concrete containing rice hush ash and recycle aggregates
Kou et al. Effect of raw coal gangue coarse aggregates on mechanical properties and compressive stress–strain response of concrete

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121205

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141127

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151103

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161024

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20171218

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20181212

Year of fee payment: 17