KR100359931B1 - PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION - Google Patents

PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION Download PDF

Info

Publication number
KR100359931B1
KR100359931B1 KR1020000036085A KR20000036085A KR100359931B1 KR 100359931 B1 KR100359931 B1 KR 100359931B1 KR 1020000036085 A KR1020000036085 A KR 1020000036085A KR 20000036085 A KR20000036085 A KR 20000036085A KR 100359931 B1 KR100359931 B1 KR 100359931B1
Authority
KR
South Korea
Prior art keywords
catalyst
ethylene
carbon tetrachloride
magnesium
molar ratio
Prior art date
Application number
KR1020000036085A
Other languages
Korean (ko)
Other versions
KR20020001402A (en
Inventor
황교현
장호식
Original Assignee
삼성종합화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성종합화학주식회사 filed Critical 삼성종합화학주식회사
Priority to KR1020000036085A priority Critical patent/KR100359931B1/en
Publication of KR20020001402A publication Critical patent/KR20020001402A/en
Application granted granted Critical
Publication of KR100359931B1 publication Critical patent/KR100359931B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6423Component of C08F4/64 containing at least two different metals
    • C08F4/6425Component of C08F4/64 containing at least two different metals containing magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts

Abstract

본 발명은 에틸렌 중합 또는 에틸렌과 α-올레핀과의 공중합에 사용되는 촉매의 제조방법에 관한 것으로서, 보다 상세하게는 마그네슘 함유 담체상에 전이금속을 포함하는 담지촉매의 제조방법에 관한 것이다.The present invention relates to a method for preparing a catalyst used for ethylene polymerization or copolymerization of ethylene and an α-olefin, and more particularly, to a method for preparing a supported catalyst comprising a transition metal on a magnesium-containing carrier.

본 발명의 방법은 MgPh2.nMgCl2.mR20(여기서, n=0.37∼0.7 ; m ≥2 ; R20=에테르 ; Ph=페닐)의 조성을 갖는 유기마그네슘 화합물, 사염화탄소 및 Si(OEt)4를 -20℃∼80℃의 온도에서 마그네슘에 대한 사염화탄소의 몰비를 0.5몰비 이상으로 반응시킨 다음, 얻어진 담체를 티타늄으로 처리하는 것을 포함하며, 본 발명의 촉매의 제조방법에 의하면 마그네슘 담체 제조시 Si(OEt)4와 사염화탄소를 사용함으로써 사염화탄소 단독으로 사용하는 경우보다 중합체 입자의 물리적 강도를 강하게 하여 겉보기 밀도가 높은 중합체를 만들 수 있는 촉매를 제조할 수 있다.The process of the present invention comprises an organomagnesium compound, carbon tetrachloride and Si (OEt) having a composition of MgPh 2 .nMgCl 2 .mR 2 0 where n = 0.37 to 0.7; m ≧ 2; R 2 0 = ether; Ph = phenyl 4 is reacted with at least a molar ratio of carbon tetrachloride to the magnesium at a temperature of -20 ℃ ~80 ℃ 0.5 molar ratio comprising the following, the handling of the resulting support of titanium, according to the production process of the catalyst according to the present invention the magnesium carrier during manufacture By using Si (OEt) 4 and carbon tetrachloride, it is possible to prepare a catalyst capable of making a polymer having a high apparent density by making the physical strength of polymer particles stronger than using carbon tetrachloride alone.

Description

에틸렌 중합 또는 에틸렌/α-올레핀 공중합용 촉매의 제조방법{PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION}Process for the preparation of catalyst for ethylene polymerization or ethylene / α-olefin copolymerization TECHNICAL FIELD

본 발명은 에틸렌 중합 또는 에틸렌과 α-올레핀과의 공중합에 사용되는 촉매의 제조방법에 관한 것으로서, 보다 상세하게는 마그네슘 함유 담체상에 전이금속을 포함하는 담지촉매(supported catalyst)의 제조방법에 관한 것이다.The present invention relates to a method for preparing a catalyst used for ethylene polymerization or copolymerization of ethylene and an α-olefin, and more particularly, to a method for preparing a supported catalyst including a transition metal on a magnesium-containing carrier. will be.

담체상에 전이금속화합물을 피복하는 방법에 의해, MgmClnCpHg(여기서, m=0.8∼0.95; n=1.60∼1.90; p=0.8∼1.6; g=1.4∼3.4)의 담체상에 전이금속화합물 (TiCl4, VCl4, VOCl3)을 포함하는 에틸렌 중합용 담지촉매를 제조하는 방법이 공지되어 있다(SU 726702 A; SU 1400657 A). 담체는 분말 마그네슘과 알킬클로라이드를RCl/Mg > 2의 몰비로 탄화수소를 매개로 하여 반응시킴으로써 제조되었다.A carrier of Mg m Cl n C p H g (where m = 0.8-0.95; n = 1.60-1.90; p = 0.8-1.6; g = 1.4-3.4) by coating a transition metal compound on the carrier A method for producing a supported catalyst for ethylene polymerization containing a transition metal compound (TiCl 4 , VCl 4 , VOCl 3 ) in a phase is known (SU 726702 A; SU 1400657 A). The carrier was prepared by reacting powdered magnesium and alkylchloride via a hydrocarbon in a molar ratio of RCl / Mg> 2.

상기 공지의 방법에 의해 제조된 촉매의 주요 문제점은 넓은 입자크기 분포(1㎛∼100㎛)를 갖는 촉매분말의 입자크기조성이 조절되지 않는다는 점이다. 또한 상기 방법에 의해 제조된 촉매를 이용하여 얻어진 중합체분말 역시 넓은 입자크기 분포와 비교적 낮은 겉보기밀도(0.22g/㎤∼0.30g/㎤)를 갖게 된다.The main problem of the catalyst prepared by the above known method is that the particle size composition of the catalyst powder having a wide particle size distribution (1 μm to 100 μm) is not controlled. In addition, the polymer powder obtained using the catalyst prepared by the above method also has a wide particle size distribution and a relatively low apparent density (0.22 g / cm 3 to 0.30 g / cm 3).

중합공정을 향상시킴으로써 좁은 입자크기 분포와 증가된 겉보기밀도를 갖는 중합체를 제조할 수 있음이 공지되어 있다.It is known that polymers having narrow particle size distributions and increased apparent densities can be prepared by improving the polymerization process.

이 목적을 위하여, 좁은 입자크기분포와 형상(morphology)을 갖는 중합용 촉매가 사용되었다. 그런데, 이와 같은 경우 중합체 적용분야에 따라 각각 다른 중합기술이 적용되므로, 이에 따라 다양한 평균입자크기를 갖는 촉매가 각각 요구된다. 예를 들면, 에틸렌의 슬러리 중합반응의 경우에는 10~20㎛의 입자들로 된 촉매가 요구되고, 기체상 중합반응의 경우에는 25~90㎛의 입자들로 된 촉매가 요구된다.For this purpose, a catalyst for polymerization having a narrow particle size distribution and morphology was used. However, in this case, since different polymerization techniques are applied according to the polymer application field, a catalyst having various average particle sizes is required. For example, in the case of slurry polymerization of ethylene, a catalyst of particles of 10 to 20 mu m is required, and in the gas phase polymerization, a catalyst of particles of 25 to 90 mu m is required.

또한 입자의 크기와 별도로 중합공정에서 촉매입자 및 중합체의 입자형상이 유지되어야 한다. 일반적으로 기체상 중합용 촉매는 슬러리 중합용 촉매에 비하여 그 강도가 약하다. 그러므로 기체상촉매를 슬러리 중합 조건에 사용하게 되면 촉매 및 중합체의 파괴현상이 나타난다. 이는 중합조건이 슬러리 중합이 훨씬 가혹하기 때문으로, 단위 시간당 단위 촉매양에 대한 중합체 생성량이 슬러리 중합의 경우 3배 이상 높기 때문이다.In addition, the particle shape of the catalyst particles and the polymer must be maintained in the polymerization process separately from the particle size. In general, the catalyst for gas phase polymerization has a lower strength than the catalyst for slurry polymerization. Therefore, when gas phase catalysts are used in slurry polymerization conditions, the catalyst and polymers are destroyed. This is because the polymerization conditions are much harsher than the slurry polymerization, and the amount of polymer produced per unit time per unit time is three times higher in the case of slurry polymerization.

중합된 중합체입자는 중합공정의 안정성과 제품의 용도에 따라서 입자크기의조절이 용이해야 한다. 특히 높은 겉보기 밀도의 폴리에틸렌 입자는 중합후 공정에서 입자의 공기에 의한 입자 이송 및 압출기의 생산성에 많은 영향을 주는 것은 공지된 사실이다. 담체의 강도가 약하여 중합체 입자의 모양이 깨지면 겉보기 밀도가 감소하여 입자의 이송 및 생산성에 영향을 주게 된다.The polymerized polymer particles should be easy to control the particle size according to the stability of the polymerization process and the use of the product. In particular, it is known that polyethylene particles of high apparent density have a great influence on the particle transport by air of the particles in the post-polymerization process and the productivity of the extruder. If the strength of the carrier is so weak that the shape of the polymer particles is broken, the apparent density is reduced, affecting the transport and productivity of the particles.

담체로서 염화마그네슘을 포함하며, 좁은 입자크기분포를 갖는 촉매는 전자공여화합물(예를 들면, 에틸벤조에이트, 에틸아니세이트 등)의 존재하에 탄화수소용매내에서 MgCl2.3i-C8H17OH 화합물과 TiCl4와의 반응에 의해 얻어질 수 있다(일본특허출원 소59-53511호). 이 방법에 의해 제조된 촉매는 5㎛∼15㎛크기의 입자를 가지며, 활성이 높아서(35Kg-PE/g-Ti,h,C2H4atm) 좁은 범위의 조절된 입자크기와 높은 겉보기밀도를 갖는 폴리에틸렌 분말을 제조할 수 있게 한다. 그러나, 상기 방법은 낮은 온도(-20℃까지)의 적용, 반응매체로서 액체 TiCl4의 과량 사용 및 촉매의 합성과정중에 다량의 염화수소의 생성 등과 같은 단점들을 갖는다. 또한, 상기 방법에 의하면 15㎛ 이상의 입자크기를 갖는 촉매를 제조할 수 없다.Catalysts containing magnesium chloride as a carrier and having a narrow particle size distribution are selected from the group consisting of MgCl 2 .3i-C 8 H 17 OH in a hydrocarbon solvent in the presence of an electron donor compound (e.g., ethylbenzoate, ethyl aniseate, etc.). It can be obtained by reaction of a compound with TiCl 4 (Japanese Patent Application No. 59-53511). The catalyst produced by this method has particles of 5 μm to 15 μm in size and is highly active (35Kg-PE / g-Ti, h, C 2 H 4 atm) with a narrow range of controlled particle sizes and high apparent density. It is possible to prepare a polyethylene powder having a. However, the method has disadvantages such as application of low temperature (up to -20 ° C), excessive use of liquid TiCl 4 as the reaction medium, and generation of large amounts of hydrogen chloride during the synthesis of the catalyst. In addition, according to the above method, a catalyst having a particle size of 15 µm or more cannot be prepared.

마그네슘-알루미늄-알킬화합물(RMgR1-NAlR3-mD)과 염화탄화수소를 반응시킨 후, 얻어진 고체생성물(담체)을 티타늄 또는 바나듐 할라이드와 반응시켜 촉매를 제조하는 방법이 알려져 있다(독일출원 제3636060호; 프랑스특허 제 2529207호).It is known to prepare a catalyst by reacting a magnesium-aluminum-alkyl compound (RMgR 1 -NAlR 3 -mD) with hydrogen chloride, and then reacting the obtained solid product (carrier) with titanium or vanadium halide (Germany Application 3636060). French Patent No. 2529207).

이 방법에서는 탄화수소내에 용해된 (n-Bu)Mg(i-Bu) 또는 (n-Bu)Mg(Oct)가 유기마그네슘 화합물 RMgR'로 사용되고, tert-BuCl이 염화탄화수소로 사용된다. 이 방법에 의해 제조된 촉매의 주요단점은 촉매활성이 충분하지 않다는 것이다.In this method, (n-Bu) Mg (i-Bu) or (n-Bu) Mg (Oct) dissolved in a hydrocarbon is used as the organomagnesium compound RMgR ', and tert-BuCl is used as hydrocarbon chloride. The main disadvantage of the catalyst produced by this method is that the catalytic activity is insufficient.

본 발명의 목적은 좁은 범위의 조절된 입자크기분포와 향상된 물리적 강도를 갖는 중합체의 제조를 가능하게 하며, 슬러리 및 기상 에틸렌 중합 또는 에틸렌/α-올레핀 공중합에 있어서 모두 높은 활성을 갖는 에틸렌 중합 또는 에틸렌/α-올레핀 공중합에 유용한 촉매의 제조방법을 제공하는 것이다.It is an object of the present invention to enable the preparation of polymers having a narrow range of controlled particle size distribution and improved physical strength, and ethylene polymerization or ethylene having high activity in both slurry and gas phase ethylene polymerization or ethylene / α-olefin copolymerization. It is to provide a method for preparing a catalyst useful for / α-olefin copolymerization.

도 1은 실시예 1의 중합체 입자의 모양을 나타낸 것이고,1 shows the shape of the polymer particles of Example 1,

도 2는 실시예 2의 중합체 입자의 모양을 나타낸 것이며,Figure 2 shows the shape of the polymer particles of Example 2,

도 3은 비교예 1의 중합체 입자의 모양을 나타낸 것이다.Figure 3 shows the shape of the polymer particles of Comparative Example 1.

본 발명의 촉매의 제조방법은 MgPh2.nMgCl2.mR20(여기서, n=0.37∼0.7 ; m ≥2 ; R20=에테르 ; Ph=페닐)의 조성을 갖는 유기마그네슘 화합물, 염화제로 사염화탄소 및 물리적 강도 증강제로 Si(OEt)4를 사용하여, -20℃∼80℃의 온도에서 마그네슘에 대한 사염화탄소의 몰비를 0.5 몰비 이상으로 반응시킨 다음, 얻어진 담체를 티타늄 화합물 또는 바나듐 화합물로 Ti/Mg 또는 V/Mg 몰비를 0.8∼1.2로 2∼4회 반응시키는 것을 포함하는 것을 특징으로 한다.Method of producing the catalyst of the invention is MgPh 2 .nMgCl 2 .mR 2 0 (here, n = 0.37~0.7; m ≥2; R 2 0 = ether; Ph = phenyl), an organomagnesium compound, a chloride, carbon tetrachloride agent having a composition of And using Si (OEt) 4 as a physical strength enhancer, reacting the molar ratio of carbon tetrachloride to magnesium at a temperature of −20 ° C. to 80 ° C. or higher at a molar ratio of at least 0.5, and then obtaining the carrier with a titanium compound or a vanadium compound. Or reacting the V / Mg molar ratio at 0.8 to 1.2 two to four times.

본 발명을 구체적으로 설명하면 다음과 같다.The present invention will be described in detail as follows.

본 발명의 촉매의 제조방법에서, 유기마그네슘 화합물, 즉 MgPh2.nMgCl2.mR20(여기서, n=0.37∼0.7 ; m ≥2 ; R20=에테르 ; Ph=페닐)는 에테르, 바람직하게는 디부틸에테르 또는 디-이소아밀에테르의 존재하에 분말마그네슘과 클로로벤젠을 반응시킴으로써 제조된다. 또한 클로로벤젠, 에테르, 클로로벤젠과 에테르의 혼합물, 클로로벤젠과 지방족 또는 방향족화합물의 혼합물에서 용해된 용액의 상태로 사용될 수 있다.In the process for the preparation of the catalyst of the invention, the organomagnesium compound, ie MgPh 2 .nMgCl 2 .mR 2 0 (where n = 0.37 to 0.7; m ≧ 2; R 2 0 = ether; Ph = phenyl) is ether, preferably It is preferably prepared by reacting powdered magnesium with chlorobenzene in the presence of dibutyl ether or di-isoamyl ether. It can also be used in the form of dissolved solutions in chlorobenzene, ethers, mixtures of chlorobenzenes and ethers, mixtures of chlorobenzenes and aliphatic or aromatic compounds.

상기 유기마그네슘 화합물용액과 사염화탄소를 -20℃∼80℃의 온도에서 마그네슘에 대한 사염화탄소의 몰비를 0.5 이상의 몰비로 하여 반응시켜 마그네슘 함유 담체를 제조한다. 사염화탄소를 0.5 몰비 이상으로 반응시키는 이유는 충분한 반응으로 MgCl2를 생성시키기 위함이며, 0.5 몰비 미만에서는 미반응물이 잔류하여, TiCl4와 반응하여 활성이 낮아지는 등, 이후 공정에 문제를 야기한다. 이때, Si(OEt)4를 사염화탄소와 함께 혼합하여 촉매를 제조하면 물리적 강도가 증가한 담체를 얻을 수 있다. 본 발명에서 Si(OEt)4의 양은 Si/Mg = 0.001∼2몰비로 하는 것이 바람직하다. Si/Mg = 0.001몰비 미만일 경우 본 발명의 효과가 미비하며, Si/Mg = 2몰비를 초과할 경우 입자의 성상이 변화되어 구형의 담체가 나타나지 않아 겉보기 밀도가 감소하는 결과를 초래한다.The organic magnesium compound solution and carbon tetrachloride are reacted at a temperature of −20 ° C. to 80 ° C. with a molar ratio of carbon tetrachloride to 0.5 or more, thereby preparing a magnesium-containing carrier. The reason why the carbon tetrachloride is reacted at a molar ratio of 0.5 or more is to generate MgCl 2 with a sufficient reaction, and below 0.5 molar ratio, unreacted substances remain, which causes problems in subsequent processes such as reaction with TiCl 4 , resulting in lower activity. In this case, when the catalyst is prepared by mixing Si (OEt) 4 with carbon tetrachloride, a carrier having increased physical strength may be obtained. In the present invention, the amount of Si (OEt) 4 is preferably set to Si / Mg = 0.001 to 2 molar ratio. If the Si / Mg = less than 0.001 molar ratio, the effect of the present invention is inadequate, and if the Si / Mg = 2 molar ratio is exceeded, the properties of the particles are changed, the spherical carrier does not appear, resulting in a decrease in apparent density.

상기 단계에서 얻어진 마그네슘이 함유된 담체 분말의 현탁액은 특정의 입자크기와 좁은 입자 크기분포, 특히, 5㎛∼90㎛의 좁은 입자크기 분포 및 높은 겉보기 밀도를 갖는다. 담체와 촉매입자의 크기는 유기마그네슘 화합물의 조성 및 유기마그네슘 화합물과 사염화탄소의 반응조건에 의해 결정된다.The suspension of the magnesium-containing carrier powder obtained in this step has a specific particle size and narrow particle size distribution, in particular, a narrow particle size distribution of 5 μm to 90 μm and a high apparent density. The size of the carrier and the catalyst particles is determined by the composition of the organomagnesium compound and the reaction conditions of the organomagnesium compound and carbon tetrachloride.

상기와 같이 얻어진 마그네슘 함유 담체는 주로 마그네슘 디클로라이드, 에테르, 탄화수소 착화물 및 Si 화합물을 포함한다.The magnesium-containing carrier obtained as described above mainly contains magnesium dichloride, ether, hydrocarbon complex and Si compound.

본 발명의 촉매 제조방법은 상기와 같이 제조된 담체를 티타늄 화합물 또는 바나듐 화합물로 Ti(V)/Mg=0.2∼1.2, 바람직하게는 0.8∼1.2의 몰비로 탄화수소용매내에서 20℃∼100℃의 온도로 반응시킴으로써 얻어진다. 또한 촉매는 티타늄 화합물과 바나듐 화합물을 동시에 처리하여 제조할 수도 있다.In the catalyst preparation method of the present invention, the carrier prepared as described above is a titanium compound or a vanadium compound in a hydrocarbon solvent at a molar ratio of Ti (V) /Mg=0.2 to 1.2, preferably 0.8 to 1.2. It is obtained by reacting at temperature. The catalyst may also be prepared by simultaneously treating a titanium compound and a vanadium compound.

본 발명에서 높은 활성의 촉매를 얻기위해서는 티타늄 화합물에 의한 반응을 Ti/Mg =1로 하여 2회 이상, 바람직하게는 2∼4회 실시하는 것이 좋다. 이는 촉매내에 존재하는 Si(OEt)4의 에톡시 기를 제거하기 위함인데, 2회에서 4회 처리함으로서 활성을 증가시킬 수 있다. 활성증가의 효율성을 고려하여, 2차 이후 반응은 80∼120℃ 이상에서 실시하는 것이 특히 바람직하다.In order to obtain a highly active catalyst in the present invention, the reaction with a titanium compound is preferably performed two or more times, preferably two to four times, with Ti / Mg = 1. This is to remove the ethoxy group of Si (OEt) 4 present in the catalyst, which can be increased by two to four treatments. In view of the efficiency of the activity increase, it is particularly preferable that the reaction after the second time be carried out at 80 to 120 ° C or higher.

본 발명에서 사용되는 티타늄 화합물은 Ti(OR)aX4-a의 구조식을 갖는다. R은 탄소수 1∼14까지의 지방족 또는 방향족 탄화수소기 또는 COR'(여기서, R'는 탄소수 1∼14의 지방족 또는 방향족 탄화수소기임)이고, X는 Cl, Br 또는 I이며, a는 0, 1, 2 또는 3이다. 바람직한 티타늄 화합물은 사염화 티타늄과 티타늄 알콕시클로라이드로서, 이들 화합물의 예로는 TiCl4, Ti(OC3H7)2Cl2, Ti(OC3H7)Cl3, Ti(OC3H7)3Cl, Ti(OC4H9)2Cl2, Ti(OC4H9)Cl3, Ti(OC4H9)3Cl 등이 있고, 이들 화합물로 이루어진 그룹에서 선택된 하나 이상의 화합물을 사용할 수 있다.The titanium compound used in the present invention has a structural formula of Ti (OR) a X 4-a . R is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms or COR '(wherein R' is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms), X is Cl, Br or I, and a is 0, 1, 2 or 3. Preferred titanium compounds are titanium tetrachloride and titanium alkoxychlorides, examples of which include TiCl 4 , Ti (OC 3 H 7 ) 2 Cl 2 , Ti (OC 3 H 7 ) Cl 3 , Ti (OC 3 H 7 ) 3 Cl , Ti (OC 4 H 9 ) 2 Cl 2 , Ti (OC 4 H 9 ) Cl 3 , Ti (OC 4 H 9 ) 3 Cl, and the like, and one or more compounds selected from the group consisting of these compounds may be used.

본 발명에서 사용되는 바나듐 화합물은 최대원자가가 4가이며 또는 바나딜기 VO가 최대원자가 3가인 화합물이다. 바나듐화합물은 V(OR4)4-nXn또는 VO(OR4)3-mXm의 구조식을 갖는다. R4는 탄소수 1∼14까지의 지방족 또는 방향족 탄화 수소기 또는 COR5(여기서 R5는 탄소수 1∼14의 지방족 방향족 탄화 수소기임)이고, X는 Cl,Br, I이며, n은 0∼4의 정수 또는 분율이며, m은 0∼3의 정수 또는 분율이다. 이들 화합물의 예로는 사염화바나듐, 바나딜 트리클로라이드, 바나딜 트리-n-프로폭사이드, 바나딜 트리이소프로폭사이드, 바나딜 트리-n-부톡사이드, 바나딜 테트라-n-부톡사이드 및 테트라-n-프로폭사이드 등이 있으며, 이들 화합물로 이루어진 그룹에서 선택된 하나 이상의 화합물을 사용할 수 있다.The vanadium compound used in the present invention is a compound having a maximum valence tetravalent or a vanadil group VO having a maximum valency trivalent. The vanadium compound has a structural formula of V (OR 4 ) 4-n X n or VO (OR 4 ) 3-m X m . R 4 is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms or COR 5 (wherein R 5 is an aliphatic aromatic hydrocarbon group having 1 to 14 carbon atoms), X is Cl, Br, I, and n is 0 to 4 Is an integer or fraction, and m is an integer or fraction of 0 to 3. Examples of these compounds are vanadium tetrachloride, vanadil trichloride, vanadil tri-n-propoxide, vanadil triisopropoxide, vanadil tri-n-butoxide, vanadil tetra-n-butoxide and tetra -n-propoxide and the like, and one or more compounds selected from the group consisting of these compounds can be used.

본 발명의 방법은 좁은 입자크기분포, 높은 물리적 강도, 그리고 다양한 평균 입자크기를 가지며, 다양한 용도로 사용될 수 있는 고활성 촉매의 제조를 제공한다.The process of the present invention provides the preparation of highly active catalysts having a narrow particle size distribution, high physical strength, and a variety of average particle sizes, which can be used for a variety of applications.

예를 들면, 본 발명에 의하면 슬러리 에틸렌 중합에 유용한 5∼10㎛ 및 10∼15㎛의 입자크기를 갖는 촉매를 제조할 수 있고, 또한 가스상 에틸렌 중합에 유용한 20㎛∼90㎛의 입자크기를 갖는 촉매를 제조할 수 있다. 촉매의 활성성분으로서 티타늄 클로라이드를 이용할 경우, 좁은 분자량 분포를 갖는 폴리에틸렌이 얻어진다.For example, according to the present invention, a catalyst having a particle size of 5 to 10 μm and 10 to 15 μm useful for slurry ethylene polymerization can be prepared, and a particle size of 20 μm to 90 μm useful for gas phase ethylene polymerization. Catalysts can be prepared. When titanium chloride is used as the active component of the catalyst, polyethylene having a narrow molecular weight distribution is obtained.

본 발명에 따라 제조된 촉매는 에틸렌 중합 또는 에틸렌과 α-올레핀과의 공중합에 이용된다. 본 발명의 촉매는 조촉매로서 트리알킬 알루미늄(바람직하게는, 트리-이소부틸알루미늄 또는 트리에틸알루미늄 또는 트리옥틸알루미늄)과 함께 사용될 수 있다. 중합은 탄화수소용매(예로서, 핵산, 헵탄)내에서 50℃∼100℃의 온도에서 슬러리중합법으로 수행되거나, 또는 탄화수소용매의 부재하에 60∼100℃의 온도와 2∼40atm의 압력에서 가스상 중합법으로 수행된다. 중합체의 분자량 조절제로서 수소(5∼50부피퍼센트)가 사용된다. 프로필렌, 부텐-1, 헥센-1, 4-메틸펜텐-1 및 다른 α-올레핀이 에틸렌과 α-올레핀과의 공중합에 유용하다.The catalyst prepared according to the present invention is used for ethylene polymerization or copolymerization of ethylene with α-olefins. The catalyst of the present invention can be used with trialkyl aluminum (preferably tri-isobutylaluminum or triethylaluminum or trioctylaluminum) as cocatalyst. The polymerization is carried out by slurry polymerization at a temperature of from 50 ° C. to 100 ° C. in a hydrocarbon solvent (eg, nucleic acid, heptane), or gas phase polymerization at a temperature of 60 to 100 ° C. and a pressure of 2 to 40 atm in the absence of a hydrocarbon solvent. Performed by law. Hydrogen (5-50% by volume) is used as the molecular weight regulator of the polymer. Propylene, butene-1, hexene-1, 4-methylpentene-1 and other α-olefins are useful for the copolymerization of ethylene with α-olefins.

이하, 실시예를 통하여 본 발명을 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 제한하지는 않는다.Hereinafter, the present invention will be described in detail through examples. However, the following examples do not limit the content of the present invention.

실시예 1Example 1

<A> 유기마그네슘 화합물의 제조<A> Preparation of Organomagnesium Compound

교반기와 온도조절기가 구비된 10ℓ유리반응기내에서, 디부틸에테르(24.2몰) 4136㎖와 활성제로서 57㎖ 부틸클로라이드에 7.8g의 요오드가 용해된 용액의 존재하에, 393g의 마그네슘 분말(16.2몰)과 5860㎖의 클로로벤젠(56.3몰)을 반응시켰다. 반응은 80~100℃의 온도에서 불활성기체 분위기(질소)하에서 10시간동안 교반하면서 진행되었다. 그런 다음 반응혼합물을 교반하지 않은 상태로 12시간동안 정지시킨 후 액체상을 침전물로부터 분리하였다. 액체상은 MgPh2.0.49MgCl2.2(C4H9)2O의 조성을 갖는 유기마그네슘 화합물이 클로로벤젠내에 용해된 용액(Mg의 농도는 1ℓ 당 1.0몰)이다.393 g of magnesium powder (16.2 mol) in a 10 liter glass reactor equipped with a stirrer and a temperature controller in the presence of 4136 ml of dibutyl ether (24.2 mol) and 7.8 g of iodine dissolved in 57 ml butyl chloride as an activator And 5860 ml of chlorobenzene (56.3 mol) were reacted. The reaction proceeded with stirring for 10 hours under an inert gas atmosphere (nitrogen) at a temperature of 80 ~ 100 ℃. The reaction mixture was then stopped for 12 hours without stirring and the liquid phase was separated from the precipitate. The liquid phase is a solution in which an organic magnesium compound having a composition of MgPh 2.0 MgCl 2 (C 4 H 9 ) 2 O is dissolved in chlorobenzene (the concentration of Mg is 1.0 mol per liter).

<B> 담체 합성<B> Carrier Synthesis

<A>에서 얻어진 용액(2.5 몰e의 Mg) 2500㎖를 교반기가 구비된 반응기에 투입하고, 241㎖의 톨루엔과 혼합된 241㎖ CCl4(2.5몰)과 Si(OEt)450.19㎖ (0.23몰)를 50℃의 온도에서 5시간에 걸쳐 반응기내로 첨가했다(Si/Mg=0.09). 반응혼합물을 1시간동안 70℃에서 교반한 다음, 용매를 제거하고, 침전물을 2000㎖의 헥산으로 60℃에서 5회 세척하였다. 그 결과, 20㎛의 입자크기를 가지는 252g의 분말상염화마그네슘 담체가 헥산내에 현탁된 상태로 얻어졌다.2500 ml of the solution (2.5 mol Mg) obtained in <A> was added to a reactor equipped with a stirrer, and 241 ml CCl 4 (2.5 mol) and Si (OEt) 4 50.19 ml (0.23) mixed with 241 ml of toluene were added. Mole) was added into the reactor over 5 hours at a temperature of 50 ° C. (Si / Mg = 0.09). The reaction mixture was stirred for 1 hour at 70 ° C., then the solvent was removed and the precipitate was washed 5 times at 60 ° C. with 2000 ml of hexane. As a result, 252 g of powdered magnesium chloride carrier having a particle size of 20 µm was obtained while suspended in hexane.

<C> 촉매의 제조<C> Preparation of Catalyst

얻어진 유기마그네슘 담체의 헵탄현탁액에 275㎖의 TiCl4(Ti/Mg=1.0)을 첨가하고, 반응혼합물을 70℃로 가열한 다음, 1시간동안 교반하여 얻어진 고체침전물을 60℃에서 2000㎖ n-헥산으로 4회 세척하였다. 이후 헵탄 2000 ㎖로 3번 세척한 후, 다시 275㎖의 TiCl4(Ti/Mg=1.0)를 주입한 후 95℃에서 2시간 동안 유지하여, 2.0중량%의 Ti를 포함하는 촉매를 제조하였다.275 mL of TiCl 4 (Ti / Mg = 1.0) was added to the heptane suspension of the obtained organic magnesium carrier, and the reaction mixture was heated to 70 ° C., and then stirred for 1 hour to obtain a solid precipitate of 2000 mL n- at 60 ° C. Washed four times with hexane. After washing three times with 2000 mL of heptane, 275 mL of TiCl 4 (Ti / Mg = 1.0) was injected again, and then maintained at 95 ° C. for 2 hours to prepare a catalyst including 2.0 wt% Ti.

<D> 에틸렌의 중합<D> Polymerization of Ethylene

에틸렌의 중합은 교반기와 온도조절재킷이 구비된 2.0ℓ스틸반응기내에서 수행되었다. 탄화수소 용매로서 n-헥산(1000㎖)이 사용되고, 조촉매로서 3밀리몰의 Al(Et)3이 사용되었다. 중합은 총압력 270 psi로 하였으며, 수소양은 300 ㎖로 일정하게 하였으며, 80℃의 온도에서 1시간동안 수행되었다. 에틸렌 중합의 결과데이타는 표 1에 나타낸 바와 같다.The polymerization of ethylene was carried out in a 2.0 L steel reactor equipped with a stirrer and a temperature control jacket. N-hexane (1000 ml) was used as a hydrocarbon solvent, and 3 mmol of Al (Et) 3 was used as a promoter. The polymerization was carried out at a total pressure of 270 psi, the amount of hydrogen was kept constant at 300 ml, and carried out for 1 hour at a temperature of 80 ° C. The result data of ethylene polymerization are shown in Table 1.

실험을 위하여 0.0113g에 해당하는 촉매를 취하였으며, 분체 분석데이타로부터 하기 식으로 계산된 SPAN 값은 0.6 이하였다.A catalyst corresponding to 0.0113 g was used for the experiment, and the SPAN value calculated by the following equation from the powder analysis data was 0.6 or less.

SPAN=(d90-d10)/d50, 여기서 d90, d50 및 d10은 총입자함량이 각각 90, 50 및 10중량%가 되는 폴리에틸렌 입자크기를 의미한다.SPAN = (d90-d10) / d50, where d90, d50 and d10 mean polyethylene particle sizes such that the total particle contents are 90, 50 and 10% by weight, respectively.

실시예 2Example 2

실시예 1의 <A>와 동일한 조건에서 Si(OEt)45 ㎖(Si/Mg=0.009)를 사용하고,이후 실시예 1과 동일한 과정으로 촉매를 제조하였다. 제조된 촉매의 입자는 20㎛, Ti 담지량 1.8중량%의 촉매가 얻어졌다. 중합결과는 표 1에 나타낸 바와 같다.Under the same conditions as in <A> of Example 1, 5 ml of Si (OEt) 4 (Si / Mg = 0.009) was used, and then a catalyst was prepared in the same manner as in Example 1. As for the particle | grains of the manufactured catalyst, the catalyst of 20 micrometers and 1.8 weight% of Ti loadings was obtained. The polymerization results are shown in Table 1.

실시예 3Example 3

실시예 1의 헵탄 2000 ㎖로 3번 세척한 후, 다시 275㎖의 TiCl4(Ti/Mg=1.0)를 주입한 후 95℃에서 2시간 동안 유지하는 단계를 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조하였다. 중합결과를 표 1에 나타내었다. 입자의 모양은 동일하나 활성이 실시예 1의 절반으로 감소하였다.After washing three times with 2000 ml of heptane of Example 1, again 275 ml of TiCl 4 (Ti / Mg = 1.0) and then the same method as in Example 1 except maintaining for 2 hours at 95 ℃ The catalyst was prepared. The polymerization results are shown in Table 1. The shape of the particles was the same but the activity was reduced to half of Example 1.

비교예 1Comparative Example 1

실시예 1의 <A>와 동일한 조건에서 Si(OEt)4를 주입하지 않고, 이후 실시예 1과 동일한 과정으로 촉매를 제조하였다. 제조된 촉매의 입자는 20㎛, Ti 담지량 1.8중량%의 촉매가 얻어졌다.The catalyst was prepared by following the same procedure as in Example 1 without injecting Si (OEt) 4 under the same conditions as in Example <A>. As for the particle | grains of the manufactured catalyst, the catalyst of 20 micrometers and 1.8 weight% of Ti loadings was obtained.

표 1 중합 결과Table 1 Polymerization Results

Si/MgSi / Mg 활성activation BD1)g/㎤BD 1) g / cm 3 SPANSPAN kg-PE/g-cat/hkg-PE / g-cat / h 실시예 1Example 1 0.090.09 9.19.1 0.420.42 0.500.50 실시예 2Example 2 0.0090.009 8.48.4 0.380.38 0.850.85 실시예 3Example 3 0.090.09 4.34.3 0.410.41 0.500.50 비교예 1Comparative Example 1 00 8.18.1 0.300.30 2.532.53

(주)1)PE 분말의 겉보기 밀도(bulk density) 1) Bulk density of PE powder

상기에서 알 수 있듯이, 활성은 모두 유사 수준이나, Si/Mg의 양이 감소함에 따라 겉보기 밀도(BD)가 감소하고, SPAN이 증가하는 것을 알 수 있었다. 이 결과는중합체 입자의 깨짐으로부터 발생한 것임을 도 1로부터 알 수 있으며, Si/Mg가 감소할수록 입자의 깨짐이 증가하는 것을 알 수 있었다.As can be seen from the above, all of the activity is similar, but the apparent density (BD) decreases as the amount of Si / Mg decreases, it can be seen that the SPAN increased. It can be seen from FIG. 1 that the result is caused by the cracking of the polymer particles, and it was found that the cracking of the particles increases as the Si / Mg decreases.

이상에서 알 수 있는 바와 같이, 본 발명의 촉매의 제조방법에 의하면 마그네슘 담체 제조시 Si(OEt)4와 사염화탄소를 함께 사용함으로써 사염화탄소 단독으로 사용하는 경우보다 중합체 입자의 물리적 강도를 강하게 하여 겉보기 밀도가 높은 중합체를 만들 수 있는 촉매를 제조할 수 있다.As can be seen from the above, according to the method for preparing a catalyst of the present invention, the Si (OEt) 4 and carbon tetrachloride are used together to prepare a magnesium carrier, so that the physical density of the polymer particles is stronger than that of the carbon tetrachloride alone. Catalysts capable of making high polymers can be prepared.

Claims (3)

MgPh2.nMgCl2.mR20(여기서, n=0.37∼0.7 ; m ≥2 ; R20=에테르 ; Ph=페닐)의 조성을 갖는 유기마그네슘 화합물, 사염화탄소 및 Si(OEt)4를 -20℃∼80℃의 온도에서 마그네슘에 대한 사염화탄소의 몰비를 0.5몰비 이상으로 반응시킨 다음, 얻어진 담체를 티타늄 화합물 또는 바나듐 화합물로 Ti/Mg 또는 V/Mg 몰비를 0.8∼1.2로 2∼4회 반응시키는 것을 포함하는 에틸렌 중합 또는 에틸렌과 α-올레핀과의 공중합용 촉매의 제조방법.MgPh 2 .nMgCl 2 .mR 2 0 (where n = 0.37 to 0.7; m ≧ 2; R 2 0 = ether; Ph = phenyl) is used to form an organomagnesium compound, carbon tetrachloride and Si (OEt) 4 at -20 ° C. After reacting the molar ratio of carbon tetrachloride to magnesium at a temperature of ˜80 ° C. or higher at a molar ratio of 0.5 or more, the obtained carrier is reacted with a titanium compound or a vanadium compound at a Ti / Mg or V / Mg molar ratio of 0.8 to 1.2 2 to 4 times. Ethylene polymerization or method for producing a catalyst for copolymerization of ethylene and α-olefin. 제1항에 있어서, Si(OEt)4의 양은 Si/Mg = 0.001∼2몰비로 하는 것을 특징으로 하는 에틸렌 중합 또는 에틸렌과 α-올레핀과의 공중합용 촉매의 제조방법.The method for producing a catalyst for ethylene polymerization or copolymerization of ethylene and α-olefin according to claim 1, wherein the amount of Si (OEt) 4 is Si / Mg = 0.001 to 2 molar ratio. 제1항에 있어서, 티타늄 화합물에 의한 2차 이후 활성화 반응은 80∼120℃에서 수행되는 것을 특징으로 하는 에틸렌 중합 또는 에틸렌과 α-올레핀과의 공중합용 촉매의 제조방법.The method for preparing a catalyst for ethylene polymerization or copolymerization of ethylene and α-olefin according to claim 1, wherein the second and subsequent activation reaction with the titanium compound is performed at 80 to 120 ° C.
KR1020000036085A 2000-06-28 2000-06-28 PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION KR100359931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000036085A KR100359931B1 (en) 2000-06-28 2000-06-28 PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000036085A KR100359931B1 (en) 2000-06-28 2000-06-28 PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION

Publications (2)

Publication Number Publication Date
KR20020001402A KR20020001402A (en) 2002-01-09
KR100359931B1 true KR100359931B1 (en) 2002-11-07

Family

ID=19674525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000036085A KR100359931B1 (en) 2000-06-28 2000-06-28 PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION

Country Status (1)

Country Link
KR (1) KR100359931B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116325A (en) * 1992-10-02 1994-04-26 Asahi Chem Ind Co Ltd Polymerization of alpha-olefin
KR19990080442A (en) * 1998-04-17 1999-11-05 유현식 Process for preparing supported catalyst for ethylene polymerization and ethylene / α-olefin copolymerization
KR20000008918A (en) * 1998-07-18 2000-02-15 유현식 Process for preparing carrier catalyst for polymerization of ethylene and copolymerization of ethylene/alpha-olefin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116325A (en) * 1992-10-02 1994-04-26 Asahi Chem Ind Co Ltd Polymerization of alpha-olefin
KR19990080442A (en) * 1998-04-17 1999-11-05 유현식 Process for preparing supported catalyst for ethylene polymerization and ethylene / α-olefin copolymerization
KR20000008918A (en) * 1998-07-18 2000-02-15 유현식 Process for preparing carrier catalyst for polymerization of ethylene and copolymerization of ethylene/alpha-olefin

Also Published As

Publication number Publication date
KR20020001402A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
US4719193A (en) Processes for preparing polyethylene catalysts by heating catalyst precursors
US4173547A (en) Catalyst for preparing polyalkenes
RU2043150C1 (en) Method of preparing solid catalyst, catalyst and a method of synthesis of ethylene (co)polymers
US5290745A (en) Process for producing ethylene polymers having reduced hexane extractable content
US5324698A (en) New carrier catalyst for the polymerization of ethylene
EP1687342B1 (en) Spray-dried, mixed metal ziegler catalyst compositions
US5696044A (en) Method of producing a deposited catalyst for the polymerization of ethylene and copolymerization of ethylene with O-olefins
EP2285840B1 (en) Catalyst system for the polymerization of olefins
KR100334164B1 (en) A PRODUCTION METHOD OF A SUPPORTED T i / V CATALYST FOR ETHYLENE POLYMERIZATION AND ETHYLENE/ α-OLEFIN COPOLYMERIZATION
US4861846A (en) Process for simultaneously dimerizing ethylene and copolymerizing ethylene with the dimerized product
KR100334165B1 (en) A PRODUCTION METHOD OF A SUPPORTED CATALYST FOR ETHYLENE POLYMERIZATION AND ETHYLENE/α-OLEFIN COPOLYMERIZATION
KR100218045B1 (en) Method for producing supported catalyst for ethylene polymerization and ethylene/alpha-olefin copolymerization
KR100436494B1 (en) A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer
EP0525003B1 (en) Procatalyst composition for the polymerization of olefins, its preparation and use
EP0294168B1 (en) Method for producing an ethylene-based polymer
US6630544B1 (en) Propylene polymerization process with enhanced catalyst activity
KR100359931B1 (en) PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION
KR100436493B1 (en) A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer
KR100359930B1 (en) PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION
JP2759780B2 (en) Method for producing supported catalyst for polymerization of ethylene and copolymerization of ethylene and α-olefin
KR100334160B1 (en) Process for preparing supported catalyst for ethylene polymerization and ethylene / α-olefin copolymerization
EP0132288B1 (en) A method of polymerizing an olefin
KR100532071B1 (en) A preparation method of ethylene polymer and copolymer having the high molecular tail in molecular distribution
RU2356911C1 (en) Method of obtaining polyethylene and copolymers of ethylene with alpha-olefins with wide molecular mass distribution
CN101589068A (en) Catalyst component for the polymerization of olefins

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130926

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee