KR100355348B1 - Method of manufacturing silicon nitride/silicon carbide nanocomposites - Google Patents

Method of manufacturing silicon nitride/silicon carbide nanocomposites Download PDF

Info

Publication number
KR100355348B1
KR100355348B1 KR1020000004862A KR20000004862A KR100355348B1 KR 100355348 B1 KR100355348 B1 KR 100355348B1 KR 1020000004862 A KR1020000004862 A KR 1020000004862A KR 20000004862 A KR20000004862 A KR 20000004862A KR 100355348 B1 KR100355348 B1 KR 100355348B1
Authority
KR
South Korea
Prior art keywords
silicon nitride
silicon carbide
plasticizer
molded body
silicon
Prior art date
Application number
KR1020000004862A
Other languages
Korean (ko)
Other versions
KR20010077213A (en
Inventor
김창삼
정덕수
이강국
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020000004862A priority Critical patent/KR100355348B1/en
Publication of KR20010077213A publication Critical patent/KR20010077213A/en
Application granted granted Critical
Publication of KR100355348B1 publication Critical patent/KR100355348B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • C04B35/5755Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering

Abstract

본 발명은 질화규소/탄화규소 초미립 복합재료 제조방법에 관한 것으로, 질화규소 분말과 소결조제를 혼합시키고, 상기 혼합물을 건조시키고, 상기 건조시킨 혼합물에 고분자물질과 가소제로서 유기 바인더, 무기바인더 또는 물을 첨가하고 혼련하여 페이스트를 제조하고, 가소제가 첨가된 상기 페이스트를 성형하고, 성형체를 열처리하여 물과 가소제 일부를 제거하고, 물과 가소제 일부가 제거된 상기 성형체를 열처리하고, 열처리한 성형체를 온도를 상승시켜 소결체를 제조하는 단계를 포함하여 이루어진다. 본 발명에 의하면 종래 방법에 비해 기공이나 응집 등의 결함이 적고, 초미립 탄화규소가 고르게 분산된 복잡한 형상을 갖는 질화규소/탄화규소 초미립 복합 재료를 제조할 수 있다.The present invention relates to a method for producing silicon nitride / silicon carbide ultrafine composite materials, wherein silicon nitride powder and a sintering aid are mixed, the mixture is dried, and an organic binder, an inorganic binder, or water is used as a polymer material and a plasticizer in the dried mixture. A paste is prepared by adding and kneading, molding the paste to which the plasticizer is added, heat-treating the molded body to remove water and a part of the plasticizer, heat-treating the molded body from which the water and the plasticizer are removed, and heat-treating the molded body. It raises and consists of manufacturing a sintered compact. According to the present invention, a silicon nitride / silicon carbide ultrafine composite material having fewer complicated defects such as pores and agglomeration and having evenly dispersed ultrafine silicon carbide can be produced.

Description

질화규소/탄화규소 초미립 복합재료 제조방법{METHOD OF MANUFACTURING SILICON NITRIDE/SILICON CARBIDE NANOCOMPOSITES}Silicon nitride / silicon carbide ultra-fine composite material manufacturing method {METHOD OF MANUFACTURING SILICON NITRIDE / SILICON CARBIDE NANOCOMPOSITES}

본 발명은 질화규소/탄화규소 초미립 복합재료 제조방법에 관한 것으로, 상세하게는 기지상인 질화규소에 초미립의 탄화규소가 기지상의 입계와 입내에 고르게 분산된 초미립 복합 재료 부품을 탄화규소 분말의 첨가 없이 효과적으로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a silicon nitride / silicon carbide ultrafine composite material, and specifically, silicon carbide powder is added to an ultrafine composite material component in which ultrafine silicon carbide is uniformly dispersed in a matrix on a matrix and in a mouth. It relates to a method of manufacturing effectively without

질화규소(Si3N4)는 파괴강도, 파괴인성, 내열성이 우수하여 현재 절삭공구 등의 내마모성 재료, 예연소실, 벨브, 터보챠져로터(Turbo Charger Rotor) 등의 자동차 엔진용 부품으로 널리 사용되고 있다. 그러나 질화규소는 공유결합성을 갖기 때문에 소결조제, 즉 소결을 촉진하는 첨가제 없이는 1700℃ 이상의 고온에서 소결하여도 치밀한 소결체를 얻을 수 없다. 따라서 질화규소의 소결을 촉진시켜 치밀한 소결체를 제조하기 위해서 산화물계의 소결조제가 사용된다. 그러나 소결을 촉진시키기 위해 첨가한 산화물이 입계에 유리질막을 형성하여 대부분의 경우 1200℃ 이상에서 질화규소 소결체의 강도를 현저하게 저하시킨다.Silicon nitride (Si 3 N 4 ) has excellent fracture strength, fracture toughness, and heat resistance, and is widely used as an automotive engine component such as wear resistant materials such as cutting tools, preburn chambers, valves, and turbo charger rotors. However, silicon nitride is covalently bonded, and thus, without a sintering aid, that is, an additive that promotes sintering, a compact sintered body cannot be obtained even when sintered at a high temperature of 1700 ° C or higher. Therefore, an oxide-based sintering aid is used to promote the sintering of silicon nitride to produce a dense sintered body. However, the oxide added to promote sintering forms a glassy film at the grain boundary, which in most cases significantly lowers the strength of the silicon nitride sintered body at 1200 ° C or higher.

상기한 질화규소의 고온에서의 강도저하를 억제하는 방법으로 내열성이 강하고 질화규소와 반응이 없는 탄화규소(SiC)를 첨가하여 복합화하는 방법이 있다. 첨가하는 탄화규소의 형태에 따라서 섬유강화(예를 들면 JP113893, JP113902등), 화이버 강화(예를 들면 US450147, WO9108992 등), 입자 강화(예를 들면 JP329552) 복합재료가 있다.As a method of suppressing the decrease in strength at the high temperature of the silicon nitride, there is a method of adding and complexing silicon carbide (SiC) having high heat resistance and no reaction with silicon nitride. Depending on the type of silicon carbide to be added, there are fiber reinforced (for example, JP113893, JP113902, etc.), fiber reinforced (for example, US450147, WO9108992, etc.), particle reinforced (for example, JP329552) composite materials.

질화규소/탄화규소 초미립 복합재료를 제조하는 방법으로는 출발물질로서 ([Si(CH)3]2NH + NH3+ N2)의 혼합가스를 1000℃에서 기상 반응시켜 합성한 Si-C-N 비정질 분말을 이용하여 제조하는 방법(JP329552)과 질화규소 분말에 메탄가스를 열분해하여 탄소를 증착하여 제조하는 방법과 질화규소 분말과 초미립의 탄화규소 분말을 직접 혼합하여 초미립 복합재료 소결체를 제조하는 방법, 그리고 고분자와 질화규소를 혼합하여 고분자의 열분해에 의해서 생성되는 탄소를 질화규소 또는 질화규소 표면의 산화물과 반응시켜 제조하는 in-situ 방법(특허 제0188988호)이 있다.As a starting material, a silicon nitride / silicon carbide ultra-fine composite material is prepared by Si-CN amorphous by gas phase reaction of a mixed gas of ([Si (CH) 3 ] 2 NH + NH 3 + N 2 ) at 1000 ° C. (JP329552), a method of manufacturing by using powder and pyrolysis of methane gas on silicon nitride powder, and a method of manufacturing carbon, and a method of manufacturing ultrafine composite material sintered body by directly mixing silicon nitride powder and ultrafine silicon carbide powder, In addition, there is an in-situ method (Patent No. 0188988) which produces a mixture of a polymer and silicon nitride by reacting carbon produced by thermal decomposition of the polymer with an oxide on a silicon nitride or silicon nitride surface.

상기한 초미립 복합재료의 제조법으로 부품을 제조하기 위해서는 초미립 탄화규소와 질화규소 분말을 혼합한 혼합분말을 만든 후, 이 혼합분말을 이용하여 부품의 형상으로 성형하고 소결하여 부품을 제조하거나, 초미립 탄화규소를 출발원료로 사용하지 않고 대신 고분자를 첨가하여 열처리함으로써 질화규소의 산화막 또는 규소화합물과 열분해 탄소의 반응으로 탄화규소를 생성시켜 혼합분말을 제조하고, 혼합분말을 성형하고 소결하는 방법이 있다. 상기 방법들은 성형공정에서 초미립 분말이 포함된 혼합분말을 사용하게 된다. 그런데 초미립 분말은 분말의 유동성이 낮으며 비표면적이 크기 때문에 서로 응집하기 쉬운 성질이 있어 성형하기 어려울 뿐만 아니라, 성형체 내에 기공이나 초미립의 응집이 발생하여 소결체에 기계적 물성을 저하시키는 치명적인 결함이 발생하는 경우가 많아 복잡한 형상의 부품을 제조하는데 어려움이 있다.In order to manufacture a part by the above-described method for producing a ultrafine composite material, a mixed powder obtained by mixing ultrafine silicon carbide and silicon nitride powder is made, and then molded into a shape of a part using the mixed powder and sintered to manufacture a part, or Instead of using particulate silicon carbide as a starting material, a polymer is added and heat-treated instead of silicon oxide to produce silicon carbide by the reaction of silicon oxide or a silicon compound with pyrolysis carbon, thereby preparing a mixed powder, and molding and sintering the mixed powder. . These methods use a mixed powder containing ultra fine powder in the molding process. However, the ultra fine powder has a low flowability and a large specific surface area, which is easy to aggregate because of its tendency to agglomerate with each other, and is not only difficult to mold, but also a fatal defect that causes mechanical properties in the sintered body due to aggregation of pores or ultra fine particles. In many cases, it is difficult to manufacture a component having a complicated shape.

본 발명의 목적은 출발원료로 탄화규소를 사용하지 않으며 성형시에도 탄화규소 혼합분말을 사용함이 없이 성형하고 소결하는 방법을 제공하여 상기한 종래 방법의 문제점을 극복하고, 기공이나 초미립 탄화규소의 응집 등의 결함이 없는 복잡한 형상을 갖는 질화 규소/탄화규소 초미립 복합재료 부품을 만들 수 있는 제조공정을 제공하는 것이다.An object of the present invention is to use a method of forming and sintering without using silicon carbide as a starting material and without using a silicon carbide mixed powder during molding to overcome the problems of the conventional method described above, The present invention provides a manufacturing process for producing a silicon nitride / silicon carbide ultra-fine composite material part having a complicated shape without defects such as aggregation.

본 발명의 다른 목적 및 이점은 이하의 본 발명의 상세한 설명으로부터 명백해질 것이다.Other objects and advantages of the present invention will become apparent from the following detailed description of the invention.

도 1 은 본 발명의 기본 원리를 설명하는 개념도이다.1 is a conceptual diagram illustrating the basic principle of the present invention.

도 2 는 본 발명의 실시예 1에 따른, 사출형성에 의한 Si3N4/SiC 초미립 복합재료 부품 제조 공정도이다.FIG. 2 is a manufacturing process diagram of Si 3 N 4 / SiC ultrafine composite material component by injection molding according to Example 1 of the present invention.

도 3 은 실시예 1에 따라 제조된 질화규소/탄화규소 초미립 복합 재료 부품의 사진이다.3 is a photograph of a silicon nitride / silicon carbide ultrafine composite material component prepared according to Example 1. FIG.

본 발명에 따르면, 질화규소 기지상에 초미립인 탄화규소가 균일하게 분포되고 기공이나 응집 등의 결함이 적은 질화규소/탄화규소 초미립 복합재료의 제조 방법이 제공된다.According to the present invention, there is provided a method for producing a silicon nitride / silicon carbide ultrafine composite material in which ultrafine silicon carbide is uniformly distributed on a silicon nitride matrix and has fewer defects such as pores and agglomeration.

본 발명에 따른 질화규소/탄화규소 초미립 복합재료 부품의 제조 방법은 출발원료로 탄화규소 초미립을 사용하지 않고 열분해 탄소를 생성시키기 위한 고분자와 분말에 가소성을 부여하기 위한 유기 또는 무기 바인더 또는 물을 첨가하여 성형체를 만든 후, 고분자를 탄화시켜 생성되는 탄소와 질화규소, 질화규소의 표면 산화물 또는 첨가하는 규소화합물을 반응시키는 것을 특징으로 한다.The method for producing a silicon nitride / silicon carbide ultrafine composite material component according to the present invention uses organic or inorganic binders or water for imparting plasticity to polymers and powders for producing pyrolytic carbon without using silicon carbide ultrafine particles as starting materials. After the addition to form a molded article, it is characterized in that the carbon produced by carbonizing the polymer and the surface oxide of silicon nitride, silicon nitride or the silicon compound to be added to react.

보다 구체적으로는, 본 발명에 따른 질화규소/탄화규소 초미립 복합재료 제조 방법은 질화규소 분말과 소결조제를 혼합시키고, 상기 혼합물을 건조시키고, 상기 건조시킨 혼합물에 고분자물질과 가소제로서 유기 바인더, 무기바인더 또는 물을 첨가하고 혼련하여 페이스트를 제조하고, 가소제가 첨가된 상기 페이스트를 성형하고, 성형체를 열처리하여 물과 가소제 일부를 제거하고, 물과 가소제 일부가 제거된상기 성형체를 열처리하고, 열처리한 성형체를 온도를 상승시켜 소결체를 제조하는 단계를 포함하여 이루어진다.More specifically, the silicon nitride / silicon carbide ultrafine composite material manufacturing method according to the present invention is mixed with silicon nitride powder and a sintering aid, and the mixture is dried, the organic binder, inorganic binder as a polymer material and a plasticizer to the dried mixture Or by adding water and kneading to prepare a paste, molding the paste to which plasticizer is added, and heat-treating the molded body to remove water and a part of the plasticizer, heat-treating the molded body from which the water and the plasticizer are removed, and heat-treated the molded body It comprises the step of producing a sintered body by raising the temperature.

출발물질로는 상기 질화규소 외에 규소화합물을 추가로 사용할 수 있다. 규소화합물은 탄소와 반응하여 탄화규소를 생성시키는 역할을 할 뿐만 아니라, 첨가된 소결조제와 액상을 형성하여 성형체의 치밀화를 촉진시키는 작용을 한다.As the starting material, a silicon compound may be additionally used in addition to the silicon nitride. The silicon compound not only functions to generate silicon carbide by reacting with carbon, but also forms a liquid phase with the added sintering aid to promote densification of the molded body.

상기한 물과 가소제 일부가 제거된 상기 성형체를 열처리하면 상기 고분자가 탄화되어 탄소가 생성되고, 생성된 탄소는 다음의 반응식에 따라 질화규소 또는 규소화합물과 반응하여 탄화규소가 생성된다.The heat treatment of the molded body from which the water and the plasticizer is partially removed causes the polymer to be carbonized to produce carbon, and the produced carbon reacts with silicon nitride or a silicon compound according to the following reaction formula to produce silicon carbide.

Si3N4+ 3C = 3SiC + 2N2 Si 3 N 4 + 3C = 3SiC + 2N 2

SiO2+ 3C = SiC + 2COSiO 2 + 3C = SiC + 2CO

따라서, 출발원료로 탄화규소를 사용하지 않으며 성형시에도 탄화규소 혼합분말을 사용함이 없이 질화규소 기지상에 초미립인 탄화규소가 균일하게 분포되고 기공이나 응집 등의 결함이 적은 질화규소/탄화규소 초미립 복합체가 형성된다.Therefore, silicon nitride / silicon carbide ultrafine composites do not use silicon carbide as starting material and evenly distribute ultrafine silicon carbide on silicon nitride matrix and have less defects such as pores and agglomeration without using silicon carbide mixed powder during molding. Is formed.

또한, 상기한 물과 가소제 일부가 제거된 상기 성형체를 열처리한 후 소결하기 전에 상기 성형체를 냉간 가압 성형하는 단계를 추가할 수 있다.In addition, after the heat treatment of the molded body from which the water and the plasticizer are partially removed, the step of cold pressing the molded body may be added before sintering.

이하, 도면을 참조하여 본 발명에 의한 제조방법을 구체적으로 설명한다.Hereinafter, a manufacturing method according to the present invention will be described in detail with reference to the drawings.

도 1을 참고로 하면, 질화규소는 공기와 접촉함으로써 표면에 산화막(SiO2)이 생성되고, 일정 두께의 산화막이 형성되면 상온에서는 더 이상의 산화는 거의 진행되지 않는다. 질화규소 분말에서 산화막이 차지하는 양은 분말 중에 포함된 산소의양으로 측정 가능하다. 예를 들어, UBE CEMENT CO. 가 제조하는 SN-E10에는 1.26%의 산소가 포함되어 있고, ONODA CEMENT CO. 의 HM-5MF에는 1.5% 의 산소가 포함되어 있다. 이렇게 산화막이 있는 질화규소 분말의 표면에 고분자를 균일하게 입히고, 분말의 유동성을 부여하기 위하여 가소제를 첨가한 후 성형하여 고분자가 산화되지 않는 분위기에서 급격한 휘발을 억제하면서 열처리하면, 고분자의 종류에 따라서 차이가 있으나 탄화하여 탄소가 질화규소 입자 표면에 생성되며, 계속해서 온도를 상승시키면 탄소와 질화규소의 산화막 또는 질화규소가 반응하여 탄화규소가 질화규소 표면에 생성되고, 계속해서 성형체가 치밀해지도록 소결하면 도 1의 오른 쪽과 같이 질화규소 기지상에 초미립인 탄화규소가 균일하게 분포된 질화규소/탄화규소 초미립 복합체가 제조된다.Referring to FIG. 1, silicon nitride is in contact with air to form an oxide film (SiO 2 ), and when an oxide film having a predetermined thickness is formed, further oxidation is hardly performed at room temperature. The amount occupied by the oxide film in the silicon nitride powder can be measured by the amount of oxygen contained in the powder. For example, UBE CEMENT CO. SN-E10 produced by the company contains 1.26% oxygen, and ONODA CEMENT CO. HM-5MF contains 1.5% oxygen. In this way, the polymer is uniformly coated on the surface of the silicon nitride powder with the oxide film, and a plasticizer is added to give the fluidity of the powder, followed by molding and heat treatment while suppressing rapid volatilization in an atmosphere where the polymer is not oxidized. However, when carbonized, carbon is formed on the silicon nitride particle surface, and when the temperature is continuously raised, carbon and silicon nitride oxide film or silicon nitride react to form silicon carbide on the silicon nitride surface, and the sintered compact is continued as shown in FIG. A silicon nitride / silicon carbide ultrafine composite having a uniform distribution of ultrafine silicon carbide on a silicon nitride matrix is prepared as shown on the right.

도 2에 도시되어 있는 바와 같은 본 발명의 초미립 복합 재료 부품의 제조 방법에 따르면, 우선, 시판되고 있는 질화규소 분말과 소결을 촉진하기 위한 소결조제를 첨가하여 볼밀이나 어트리숀밀과 같은 일반적인 습식 혼합법으로 혼합하고 건조하여 혼합분말을 만든다. 건조한 혼합분말에 열분해 탄소를 생성시키기 위한 고분자와 성형에 필요한 분말의 유동성을 주기 위한 유기 바인더 또는 무기 바인더와 물을 첨가하고 혼련하여 페이스트화한다. 혼련된 페이스트를 사용하여 사출성형 또는 압출성형 등의 성형방법으로 복잡 형상의 부품을 성형한다. 성형체를 질소 분위기에서 350℃로 가열하여 성형을 위해 첨가한 물과 바인더를 제거한다. 계속해서 1000 ~ 1400℃에서 열처리하여 탄화규소 미립자가 균일하게 분포된 성형체를 만들고, 온도를 더 상승시켜 치밀한 소결체를 제조한다. 필요에 따라서는 탄화규소가 생성된 성형체를 소결전에 냉간 가압 성형하여 성형밀도를 높일 수도 있다.According to the manufacturing method of the ultrafine composite material component of the present invention as shown in FIG. 2, first, commercial wet mixing such as a ball mill or an attrition mill is added by adding a commercially available silicon nitride powder and a sintering aid to promote sintering. The mixture is mixed by the method and dried to form a mixed powder. In the dry mixed powder, an organic binder or an inorganic binder and water are added and kneaded to give a fluidity of a polymer for producing pyrolytic carbon, a powder required for molding, and kneaded to form a paste. The kneaded paste is used to mold a complex shaped part by a molding method such as injection molding or extrusion molding. The molded body is heated to 350 ° C. in a nitrogen atmosphere to remove water and binder added for molding. Subsequently, heat treatment is performed at 1000 to 1400 ° C. to form a compact in which silicon carbide fine particles are uniformly distributed, and the temperature is further increased to produce a compact sintered compact. If necessary, the molded body in which silicon carbide is produced may be cold press-molded before sintering to increase the molding density.

상기한 소결 촉진용 소결조제로는 알루미나(Al2O3) 1-4중량%, 잇트리아(Y2O3) 3-8중량%, 마그네시아(MgO) 1-3 중량% 만큼 첨가하는 것이 바람직하다.As the sintering aid for sintering promotion, it is preferable to add 1-4% by weight of alumina (Al 2 O 3 ), 3-8% by weight of yttria (Y 2 O 3 ), and 1-3% by weight of magnesia (MgO). Do.

상기한 열분해 탄소를 생성하기 위한 고분자로는 폴리스틸렌 (polystyrene), 페놀레진(phenol resin), 폴리부타디엔(polybutadiene), 폴리프로피렌(polypropylene) 등을 사용하는 것이 바람직하다.As the polymer for producing the pyrolytic carbon, polystyrene, phenol resin, polybutadiene, polypropylene, or the like is preferably used.

상기한 유기 바인더로는 폴리에틸렌그리콜(polyethylene glycol), 비닐아세테이트(vinyl acetate), 하이드로옥시프로필메틸셀루로우즈 (hydroxypropylmethylcellulose), 메틸셀루로우즈(methylcellulose), 메틸에틸셀루로우즈(methylethylcellulose) 등을 첨가하는 것이 바람직하며, 무기 바인더로는 점토 등이 바람직하다.Examples of the organic binder include polyethylene glycol, vinyl acetate, hydroxypropylmethylcellulose, methylcellulose, methylethylcellulose, and the like. It is preferable to add, and clay etc. are preferable as an inorganic binder.

상기한 성형을 위해 첨가한 물과 바인더를 제거하는 경우는 성형체의 두께에 따라서 승온속도를 5 ~ 15℃/시간으로 하는 것이 바람직하다.When removing the water and binder added for the above molding, it is preferable that the temperature increase rate is set to 5 to 15 ° C / hour depending on the thickness of the molded body.

상기한 냉간 가압 성형의 압력은 200 내지 400 MPa이 바람직하다.As for the pressure of the said cold press molding, 200-400 MPa is preferable.

상기 소결체의 제조에서, 성형체의 소결은 1900 내지 2100℃ 에서 2 내지 4시간 동안 수행하는 것이 바람직하다.In the production of the sintered body, the sintering of the molded body is preferably performed for 2 to 4 hours at 1900 to 2100 ℃.

이하, 실시예를 통해서 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1.Example 1.

폴리에틸렌 용기에 질화규소 분말(UBE E-10) 100g, 소결조제로알루미나(Al2O3) 2g과 잇트리라(Y2O3) 6g, 그리고 질화규소 볼 150cc와 알코올을 사용하여 24시간 습식 혼합하였다. 혼합된 슬러리를 비이커에 담아 80℃에서 완전히 건조시켰다. 혼합한 분말에 페놀레진 5 중량%, 폴리에틸렌그리콜(polyethyleneglycol) 40 부피%, 비닐아세테이트(vinyl acetate) 10 부피%, 왁스 2 부피% 를 첨가하여 가압 혼련하여 페이스트화 하였다. 가압 혼련한 페이스트를 직경 3mm, 길이 5mm 의 펠렛으로 만들어 사출성형용 원료로 사용하였다. 사출성형기를 사용하여 직경이 40mm, 높이 35mm이며 중앙에 타원형의 구멍이 있는 복잡한 형상의 연소실을 성형하였다. 성형체를 질소가스를 흘려주면서 시간당 5℃로 승온하면서 350℃로 가열하여 2시간 유지한 후 계속해서 1400℃로 승온시켜 4시간 유지하고, 계속해서 2000℃로 승온하여 2시간 유지하고 냉각하였다. 1400℃에서 1800℃까지는 질소가스의 압력을 20 기압으로 하였고 그 이상의 온도에서는 60 기압으로 하였다. 얻어진 복잡 형상의 연소실의 소결밀도는 99%이었으며, 탄화규소가 생성되어 있는 것을 X-선 회절분석기를 사용하여 확인하였다.100 g of silicon nitride powder (UBE E-10), 2 g of alumina (Al 2 O 3 ) as a sintering aid, 6 g of itrira (Y 2 O 3 ), and 150 cc of silicon nitride ball and alcohol were wet mixed in a polyethylene container. . The mixed slurry was placed in a beaker and completely dried at 80 ° C. 5 wt% phenol resin, 40 vol% polyethyleneglycol, 10 vol% vinyl acetate, and 2 vol% wax were added to the mixed powder to form a paste by kneading. The pressure kneaded paste was made into pellets having a diameter of 3 mm and a length of 5 mm and used as a raw material for injection molding. The injection molding machine was used to form a complex combustion chamber with a diameter of 40 mm and a height of 35 mm with an oval hole in the center. The molded body was heated to 350 ° C. and heated for 2 hours while being heated to 5 ° C. while flowing nitrogen gas, and then heated to 1400 ° C. for 4 hours, and then heated to 2000 ° C. for 2 hours, and cooled. From 1400 ° C to 1800 ° C, the pressure of nitrogen gas was 20 atm, and at higher temperatures, 60 atm. The sintered density of the obtained complex combustion chamber was 99%, and it was confirmed using an X-ray diffractometer that silicon carbide was produced.

실시예 2.Example 2.

폴리에틸렌 용기에 질화규소 분말(UBE E-10) 100g, 소결조제로 알루미나(Al2O3) 2g과 잇트리라(Y2O3) 6g, 마그네시아 (MgO) 1g, 그리고 질화규소 볼 150cc과 알코올을 사용하여 24시간 습식 혼합하였다. 혼합된 슬러리를 비이커에 담아 80℃에서 완전히 건조시켰다. 혼합한 분말에 페놀레진 10중량%, 폴리에틸렌그리콜(polyethylene glycol) 45 부피%, 비닐아세테이트(vinyl acetate) 10 부피%, 왁스2 부피 %를 첨가하여 가압 혼련하여 페이스트화 하였다. 가압 혼련한 페이스트를 직경 3mm, 길이 5mm의 펠렛으로 만들어 사출성형용 원료로 사용하였다. 사출성형기를 사용하여 직경이 40mm, 높이 35mm이며 중앙에 타원형의 구멍이 있는 복잡한 형상의 연소실을 성형하였다. 성형체를 질소가스를 흘려주면서 시간당 5℃로 승온하면서 350℃로 가열하여 2시간 유지한 후 계속해서 1400℃로 승온시켜 4시간 유지하고, 계속해서 2100℃로 승온하여 2시간 유지하고 냉각하였다. 1400℃에서 1800℃까지는 질소가스의 압력을 20 기압으로 하였고 그 이상의 온도에서는 60 기압으로 하였다. 얻어진 복잡 형상의 연소실의 소결밀도는 99% 이었으며, 탄화규소가 생성되어 있는 것을 X-선 회절분석기를 사용하여 확인하였다.100 g of silicon nitride powder (UBE E-10), 2 g of alumina (Al 2 O 3 ), 6 g of itrira (Y 2 O 3 ), 1 g of magnesia (MgO), 150 cc of silicon nitride and alcohol And wet mixing for 24 hours. The mixed slurry was placed in a beaker and completely dried at 80 ° C. Phenol resin was added by mixing 10% by weight of phenol resin, 45% by volume of polyethylene glycol, 10% by volume of vinyl acetate, and 2% by volume of wax to kneaded under pressure and kneading. The pressure kneaded paste was made into pellets having a diameter of 3 mm and a length of 5 mm and used as a raw material for injection molding. The injection molding machine was used to form a complex combustion chamber with a diameter of 40 mm and a height of 35 mm with an oval hole in the center. The molded body was heated to 350 ° C. and heated for 2 hours while being heated to 5 ° C. while flowing nitrogen gas, and then heated to 1400 ° C. for 4 hours, and then heated to 2100 ° C. for 2 hours and cooled. From 1400 ° C to 1800 ° C, the pressure of nitrogen gas was 20 atm, and at higher temperatures, 60 atm. The sintered density of the obtained complex combustion chamber was 99%, and it was confirmed using an X-ray diffractometer that silicon carbide was produced.

도 3은 본 발명의 실시예 1에 따라 제조된 질화규소/탄화규소 초미립 복합재료로 제조된 연소실이다.3 is a combustion chamber made of a silicon nitride / silicon carbide ultrafine composite material prepared according to Example 1 of the present invention.

본 발명의 질화규소/탄화규소 초미립 복합 재료 부품의 제조 공정은 가격이 저렴한 고분자를 초미립 탄화규소 대신에 사용하고, 초미립자가 없어 성형이 용이한 조건에서 복잡한 형상으로 성형한 다음에 초미립 탄화규소를 생성시키기 때문에 초미립 탄화규소 분말을 사용하여 성형하고 소결하는 제조법에 비하여 제조단가가 낮고, 제조공정이 간단하며 기공이나 응집이 없는 소결체를 제조할 수 있다.In the manufacturing process of the silicon nitride / silicon carbide ultrafine composite material component of the present invention, inexpensive polymer is used in place of ultrafine silicon carbide, and ultrafine silicon carbide In order to produce the sintered body, the manufacturing cost is lower than the manufacturing method of forming and sintering using ultra-fine silicon carbide powder, the manufacturing process is simple, and no pores or agglomeration can be produced.

Claims (15)

질화규소 분말과 3 ~ 15중량%의 소결조제를 혼합시키고,Silicon nitride powder and 3 to 15% by weight of the sintering aid is mixed, 상기 혼합물을 건조시키고,Drying the mixture, 상기 건조시킨 혼합물에 폴리스틸렌(polystyrene), 페놀레진(phenol resin), 폴리부타디엔(polybutadiene) 또는 폴리프로피렌(polypropylene) 중에서 선택되는 어느 하나의 고분자물질 3 ~ 10중량%와 가소제로서 유기 바인더, 무기바인더 또는 물을 3 ~ 25중량%의 범위로 첨가하고 혼련하여 페이스트를 제조하고,3-10 wt% of any one polymer selected from polystyrene, phenol resin, polybutadiene or polypropylene and the organic binder and inorganic binder as a plasticizer in the dried mixture. Or by adding water in the range of 3 to 25% by weight and kneading to prepare a paste, 가소제가 첨가된 상기 페이스트를 성형하고,Molding the paste to which plasticizer is added, 성형체를 질소 분위기에서 350℃까지 가열하여 물과 가소제 일부를 제거하고,The molded body is heated to 350 ° C. in a nitrogen atmosphere to remove water and some of the plasticizer, 물과 가소제 일부가 제거된 상기 성형체를 1000 ~ 1400℃의 범위로 열처리하고,Heat-treating the molded body from which water and a part of the plasticizer was removed in a range of 1000 to 1400 ° C., 상기 열처리한 성형체를 온도를 상승시켜 1900 ~ 2100℃의 온도 범위에서 20 ~ 3000 기압의 질소 가스를 가하는 가스 가압소결에 의하여 소결체를 제조하는 단계를 포함하여 이루어지는 질화규소/탄화규소 초미립복합재료 제조방법.Method of manufacturing a silicon nitride / silicon carbide ultrafine composite material comprising the step of increasing the temperature of the heat-treated molded body by producing a sintered body by gas pressure sintering applying nitrogen gas of 20 to 3000 atm in the temperature range of 1900 ~ 2100 ℃ . 제1항에 있어서, 출발물질로 상기 질화규소 외에 규소화합물을 추가로 사용하는 질화규소/탄화규소 초미립 복합재료 제조방법.The method of manufacturing a silicon nitride / silicon carbide ultrafine composite material according to claim 1, further comprising a silicon compound in addition to the silicon nitride as a starting material. 제1항에 있어서, 상기 성형은 사출성형, 압출성형, 프레스성형에 의하는 질화규소/탄화규소 초미립 복합재료 제조방법.The method of manufacturing a silicon nitride / silicon carbide ultrafine composite material according to claim 1, wherein the molding is performed by injection molding, extrusion molding, or press molding. 제1항에 있어서, 물과 가소제 일부가 제거된 상기 성형체를 열처리한 후 소결하기 전에 상기 성형체를 냉간 가압 성형하는 단계를 추가하는 질화규소/탄화규소초미립 복합재료 제조방법.The method of claim 1, further comprising the step of cold press molding the molded body after heat-treating the molded body from which water and a part of the plasticizer has been removed before sintering the silicon nitride / silicon carbide ultrafine composite material manufacturing method. 제4항에 있어서, 상기 냉간 가압 성형은 200 내지 400 MPa의 압력하에 이루어지는 질화규소/탄화규소 초미립 복합재료 제조방법.The method of claim 4, wherein the cold press forming is performed under a pressure of 200 to 400 MPa. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 소결은 2 내지 4시간 동안 수행되는 질화규소/탄화규소 초미립 복합재료 제조방법.The method of claim 1, wherein the sintering is performed for 2 to 4 hours. 제1항에 있어서, 상기 소결조제로는 알루미나(Al2O3) 1 ~ 4중량%, 잇트리아(Y2O3) 3 ~ 8중량% 또는 마그네시아(MgO) 1 ~ 3 중량% 를 사용하는 질화규소/탄화규소 초미립 복합재료 제조방법.The method of claim 1, wherein as the sintering aid, 1 to 4% by weight of alumina (Al 2 O 3 ), 3 to 8% by weight of yttria (Y 2 O 3 ) or 1 to 3% by weight of magnesia (MgO) is used. Silicon nitride / silicon carbide ultrafine composite material manufacturing method. 삭제delete 제1항에 있어서, 상기 유기 바인더로는 폴리에틸렌그리콜(polyethylene glycol), 비닐아세테이트(vinyl acetate), 하이드로옥시프로필메틸셀루로우즈 (hydroxypropylmethylcellulose), 메틸셀루로우즈(methylcellulose) 또는 메틸에틸셀루로우즈(methylethylcellulose)을 사용하는 질화규소/탄화규소 초미립 복합재료 제조방법.According to claim 1, wherein the organic binder is polyethylene glycol (vinyl glycol), vinyl acetate (vinyl acetate), hydroxypropylmethyl cellulose (hydroxypropylmethylcellulose), methyl cellulose (methylcellulose) or methyl ethyl cellulose Silicon nitride / silicon carbide ultrafine composite material manufacturing method using (methylethylcellulose). 제1항에 있어서, 상기 무기 바인더는 점토를 사용하는 질화규소/탄화규소 초미립 복합재료 제조방법.The method of claim 1, wherein the inorganic binder uses clay.
KR1020000004862A 2000-02-01 2000-02-01 Method of manufacturing silicon nitride/silicon carbide nanocomposites KR100355348B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000004862A KR100355348B1 (en) 2000-02-01 2000-02-01 Method of manufacturing silicon nitride/silicon carbide nanocomposites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000004862A KR100355348B1 (en) 2000-02-01 2000-02-01 Method of manufacturing silicon nitride/silicon carbide nanocomposites

Publications (2)

Publication Number Publication Date
KR20010077213A KR20010077213A (en) 2001-08-17
KR100355348B1 true KR100355348B1 (en) 2002-10-11

Family

ID=19643357

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000004862A KR100355348B1 (en) 2000-02-01 2000-02-01 Method of manufacturing silicon nitride/silicon carbide nanocomposites

Country Status (1)

Country Link
KR (1) KR100355348B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116987323B (en) * 2023-09-27 2023-12-26 广东腐蚀科学与技术创新研究院 Composite material, polyester resin, and preparation method and application thereof

Also Published As

Publication number Publication date
KR20010077213A (en) 2001-08-17

Similar Documents

Publication Publication Date Title
US4004934A (en) Sintered dense silicon carbide
US8142845B2 (en) Process for the manufacturing of dense silicon carbide
CN101302111A (en) Reactive liquid ceramics bonding agent
CN102391012B (en) Method for preparing recrystallized silicon carbide porous ceramic by combining carbothermic reduction
JPH09175865A (en) Production of alpha-type silicon carbide powder composition and its sintered compact
KR101236785B1 (en) Volume-change resistant silicon oxy-nitride or silicon oxy-nitride and silicon nitride bonded silicon carbide refractory
JPH0710656A (en) Method of manufacturing porous silicon carbide body from polysiloxane containing packing material
CN109553420A (en) A kind of preparation method of high porosity silicon carbide-based porous ceramic material
US4019913A (en) Process for fabricating silicon carbide articles
WO1993025495A1 (en) Porous silicon carbide
EP1197253B1 (en) Method for producing a silicon nitride filter
AU691626B2 (en) Preparation of high density zirconium diboride ceramics with preceramic polymer binders
KR100355348B1 (en) Method of manufacturing silicon nitride/silicon carbide nanocomposites
Semen et al. Structural ceramics derived from a preceramic polymer
EP0334577A1 (en) Carbon-coated silicon carbide whiskers for controlling the formation of an oxide coating
AU690699B2 (en) Preparation of high density titanium diboride ceramics with preceramic polymer binders
AU689270B2 (en) Preparation of high density zirconium carbide ceramics with preceramic polymer binders
JPH029777A (en) Fiber reinforced ceramic molded body and production thereof
KR100419778B1 (en) Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering
CA1320815C (en) Si3n4 process using polysilane or polysilazane as a binder
JP4041879B2 (en) Ceramic porous body and method for producing the same
JPH0549627B2 (en)
JPH05254945A (en) Production of reaction-sintered ceramic
KR101090275B1 (en) Ceramic compositions for mullite-bonded silicon carbide body, sintered body and its preparing method
JP3570676B2 (en) Porous ceramic body and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070831

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee