KR100352629B1 - Receiving method of magneto-strictive material on the base of ferric - Google Patents

Receiving method of magneto-strictive material on the base of ferric Download PDF

Info

Publication number
KR100352629B1
KR100352629B1 KR1020000031420A KR20000031420A KR100352629B1 KR 100352629 B1 KR100352629 B1 KR 100352629B1 KR 1020000031420 A KR1020000031420 A KR 1020000031420A KR 20000031420 A KR20000031420 A KR 20000031420A KR 100352629 B1 KR100352629 B1 KR 100352629B1
Authority
KR
South Korea
Prior art keywords
iron
aluminum
iron plate
sheet
diffusion
Prior art date
Application number
KR1020000031420A
Other languages
Korean (ko)
Other versions
KR20010110829A (en
Inventor
이희관
Original Assignee
주식회사 그린소닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 그린소닉 filed Critical 주식회사 그린소닉
Priority to KR1020000031420A priority Critical patent/KR100352629B1/en
Publication of KR20010110829A publication Critical patent/KR20010110829A/en
Application granted granted Critical
Publication of KR100352629B1 publication Critical patent/KR100352629B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising
    • C23C10/50Aluminising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hard Magnetic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

본 발명은 야금(Metallurgy)분야에 관한 것으로, 특히 칼로라이징 (Calorizing) 방법으로 얻는 철-알루미늄(Al-Ferro)합금과 비교하여 최상의 특성을 갖는 철-알루미늄(Fe-Al)과 같은 자기변형재료를 얻기 위한 방법에 관한 것이다.BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to the field of metallurgy, in particular magnetostrictive materials such as iron-aluminum (Fe-Al), which have the best properties as compared to iron-aluminum (Al-Ferro) alloys obtained by the calorizing method. It is about a method for obtaining.

Description

철을 기초로 한 자기변형재료를 얻는 방법{RECEIVING METHOD OF MAGNETO-STRICTIVE MATERIAL ON THE BASE OF FERRIC}Method of obtaining magnetostrictive material based on iron {RECEIVING METHOD OF MAGNETO-STRICTIVE MATERIAL ON THE BASE OF FERRIC}

본 발명은 야금(Metallurgy)분야에 관한 것으로, 특히 칼로라이징 (Calorizing)방법으로 얻는 철-알루미늄(Al-Ferro)합금(이하 "알파"라 칭함)과 비교하여 최상의 특성을 갖는 철-알루미늄(Fe-Al)과 같은 자기변형재료의 제조에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of metallurgy, in particular iron-aluminum (Fe) having the best properties compared to an iron-aluminum alloy (Al-Ferro) alloy (hereinafter referred to as "alpha") obtained by a calorizing method. To a magnetostrictive material such as -Al).

상기의 자기변형재료는 자기 전로, 다목적의 유체음향장치등과 같은 기기를 제조하는데 사용하게 되는 것이다.The magnetostrictive materials are used to manufacture devices such as magnetic converters, multipurpose fluid acoustic devices, and the like.

종래의 철-알루미늄 합금에 대한 자기 특성을 향상시키기 위한 방법은 철-알루미늄 합금을 500~900℃의 온도범위에서 애닐링(Annealing)한 다음 이를 100℃의 온도에서 저온냉각하여 이루어지는 것이고, 상기 방법의 변형방법은 철-알루미늄 합금을 400~300℃에서 3~15시간 동안 유지한 후에 100℃까지 서냉시키도록 하는 것이나, 이는 특정 방법에서 혼합물을 제거하지 못하기 때문에 재료의 자기특성이 비교적 낮아지는 동시에 주지한 바와 같이 금속내의 첨가제는 성질을 악화시키는 문제가 있는 것이다.The method for improving the magnetic properties of the conventional iron-aluminum alloy is made by annealing the iron-aluminum alloy in the temperature range of 500 ~ 900 ℃ and then cold-cooled at a temperature of 100 ℃, the method The method of modification is to maintain the iron-aluminum alloy at 400-300 ° C for 3-15 hours and then slowly cool it down to 100 ° C. However, the specific magnetic properties of the material are relatively low because the mixture cannot be removed by certain methods. At the same time, as is well known, additives in metals have a problem of deteriorating their properties.

또한, 확산(diffusive) 칼로라이징한 후에 산화하도록 하는 전로강 (Electric-technical steels)의 칼로라이징 방법의 경우에는 높은 열허용범위와 전기절연면 특성을 수용하는 높은 자기 성질을 위해서 칼로라이징을 실시하여 14.5 ~17.5중량%의 확산층내 알루미늄 농도를 제공하도록 하는 것이나, 이는 유지조건이 제로에 가까운 경우에 자기변형이 포화하는 것이어서, 자기 수용재료에 대하여는 이 방법을 사용할 수 없는 문제가 있다.In addition, in the case of the electricizing method of electric-technical steels which are oxidized after diffusing, the metallization is performed for high magnetic tolerance to accommodate high heat tolerance and electrical insulating surface characteristics. It is to provide a concentration of aluminum in the diffusion layer of 14.5 ~ 17.5% by weight, but the magnetostriction is saturated when the holding conditions are close to zero, there is a problem that this method can not be used for the magnetic receiving material.

또한, 제련(smelting), 단조(forging), 중간애닐링(intermediate annealing)을 갖는 열간압연 및 최종 냉간압연을 실시하여 5.5~6.5%의 알루미늄, 0.02~0.03%의 탄소 및 잔량의 철을 포함하는 자기변형 합금의 제조방법이 알려져 있는데, 여기서 최종의 냉각압연 후에 포화자계를 감소시키는 동시에 안정한 온도범위의 팽창에서 자기변형을 높이기 위해서는 1050~1150℃의 범위에서 부가적으로 애닐링을 실시하고, 최종적으로 냉각압연을 3~4%의 압축률로 실시하여 이루어지나, 이는 수용재료의 자기 특징이 낮아지는 동시에 최대 알루미늄 함량이 상기 방법에서의 5.5~6.5%보다 많은 8~14%에 이르게 된다.In addition, hot rolling and final cold rolling with smelting, forging and intermediate annealing are performed to include 5.5 to 6.5% of aluminum, 0.02 to 0.03% of carbon and the balance of iron. A method for producing a magnetostrictive alloy is known, in which annealing is additionally performed in the range of 1050 to 1150 ° C. in order to reduce the saturation magnetic field after the final cold rolling and to increase the magnetostriction in the expansion of a stable temperature range. This is achieved by performing a cold rolling at a compression rate of 3-4%, but this leads to lower magnetic properties of the receiving material and at the same time leads to 8-14%, with a maximum aluminum content higher than 5.5-6.5% in the process.

한편, 자기변형 포화 및 그 온도 안정성, 특정 자기손실을 향상시키기 위한 목적으로 제련, 단조, 중간애닐링을 갖는 열간압연, 냉간압연 및 최종 애닐링단계를 포함하여 철-알루미늄을 기초로 자기변형 재료를 얻도록 하는데, 이는 최종 애닐링 후에 자기활성 전기절연 커버링을 적용하여 도메인(domain) 구조의 리타입 (retype)에 충분한 응력감소를 이루게 하나, 최적의 알루미늄 함량과 비교하여 낮은 알루미늄 함량을 갖게 되고, 이에 수용재료의 자기 특성이 낮아지는 문제가 있는 것이다.On the other hand, magnetostrictive materials based on iron-aluminum, including hot rolling, cold rolling and final annealing steps with smelting, forging, intermediate annealing, for the purpose of improving magnetostrictive saturation and its temperature stability, specific magnetic losses. This results in a sufficient stress reduction for the retype of the domain structure by applying a self-active electrically insulating covering after final annealing, but with a low aluminum content compared to the optimal aluminum content. Therefore, there is a problem that the magnetic properties of the receiving material is lowered.

본 발명은 상기한 바와 같은 종래기술이 갖는 제반 문제점들을 해결하고자 안출된 것으로 다음과 같은 목적을 갖는다.The present invention has been made to solve the problems of the prior art as described above has the following object.

본 발명은 알파(Al-Ferro)와 비교하여 최상의 특성을 갖도록 철을 기초로 한 자기변형 재료를 얻기 위한 방법을 제공하는데 그 목적이 있다.It is an object of the present invention to provide a method for obtaining an iron-based magnetostrictive material so as to have the best properties compared to alpha (Al-Ferro).

하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.

그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 설정된 용어들로서 이는 생산자의 의도 또는 관례에 따라 달라 질 수 있으므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In addition, terms to be described below are terms set in consideration of functions in the present invention, and may be changed according to the intention or custom of the producer, and the definitions thereof should be made based on the contents throughout the present specification.

즉, 본 발명은 철판 및 조각철판을 디퓨전 코팅(Diffusion coating)시켜 철제의 자기변형재료를 얻기 위한 방법에 있어서, 상기 철판 및 조각철판을 1173~1373K까지의 온도로 가열한 다음 3~8시간동안 일정한 온도로 유지시키고, 상기에서 유지되는 동안 재료내의 알루미늄농도가 14~22원자%에 도달할 때 0.1MPa까지의 압력 상태에서 염화알루미늄을 확산 침투처리 후 서서히 냉각시키며, 상기 실시에 의해 두께가 20~40%인 순철제의 철판 또는 조각철판을 알루미늄으로 확산 침투시켜 이루어지게 되는 것이다.That is, the present invention is a method for obtaining iron magnetostrictive material by diffusing coating the iron plate and the iron sheet (diffusion coating), the iron plate and the iron sheet to heat up to a temperature of 1173 ~ 1373K for 3 to 8 hours It is maintained at a constant temperature, and while maintaining the aluminum concentration in the material reaches 14-22 atomic%, the aluminum chloride is slowly cooled after the diffusion infiltration treatment at a pressure of up to 0.1 MPa, and the thickness is 20 It is made by diffusing and infiltrating the iron plate or flake iron plate of ~ 40% pure iron.

상기의 실시에 의해 얻어지는 자기변형재료의 소정두께는 0.25~0.7mm의 범위에서 선택되는 것이 바람직하다.It is preferable that the predetermined thickness of the magnetostrictive material obtained by the said implementation is chosen in the range of 0.25-0.7 mm.

상기 순철의 철판은 부하변압기에 사용되고, 조각철판은 로드전로에 사용된다.The iron plate of the pure iron is used for the load transformer, the engraving iron plate is used for the load converter.

상기 철판나 조각철판은 탈지처리되고, 특정 어댑터 내에 고정되며, 확산 침투처리를 위해 가열실 내부에서 셋팅된다.The iron plate or the scrap iron plate is degreased, fixed in a specific adapter, and set inside the heating chamber for diffusion penetration treatment.

금속알루미늄은 로의 가열실 내부에 고정된 도가니 속에 장입되고, 상기 금속알루미늄의 양은 정해진 농도를 얻는데 필요한 것보다 많이 선택된다.The metal aluminum is charged into a crucible fixed inside the furnace's heating chamber, and the amount of metal aluminum is selected more than necessary to obtain a given concentration.

이는 설비 구조요소의 침투처리를 위해 금속알루미늄를 소비하도록 조정하고, 모든 공정내에 충분한 증발표면을 유지할 필요가 있기 때문이다.This is because it is necessary to adjust the consumption of metallic aluminum for the infiltration of plant structural elements and to maintain sufficient evaporation surface in all processes.

계산한 것과 비교하여 최소 1.5배 과량의 장입 금속알루미늄 내에서는 액체알루미늄의 방울이 형성되어 설비구조의 요소 상에 알루미늄이 석출될 가능성이 있다.Compared to the calculations, there is a possibility that droplets of liquid aluminum are formed in at least 1.5 times the amount of the charged metal aluminum, and aluminum is deposited on the elements of the installation structure.

그래서, 구조요소의 파괴가 빨라지고 지정된 크기에 달하는 방울들이 재료의 질에 나쁜 영향을 주는 철판이나 조각철판 상에 떨어질 수가 있다.Thus, the breakdown of structural elements can be accelerated, and drops of up to a specified size can fall on the sheet or sheet metal, which adversely affects the quality of the material.

염화알루미늄(AlCl3)은 진공로 내의 침투로 속에 또는 승화를 위한 독립 가열원을 갖는 특정 증발기 속에 고정된 도가니 내에 장입된다.Aluminum chloride (AlCl 3 ) is charged into the furnace in a vacuum furnace or in a crucible fixed in a specific evaporator with an independent heating source for sublimation.

침투 처리공정 내에서 염화알루미늄(AlCl3)의 증기압을 조정할 수 있고, 승화되는 염화알루미늄(AlCl3)의 양은 0.1MPa까지의 압력을 생성할 필요성에 의해 결정된다.The vapor pressure of aluminum chloride (AlCl 3 ) can be adjusted in the infiltration process, and the amount of aluminum chloride (AlCl 3 ) to be sublimed is determined by the need to generate pressures up to 0.1 MPa.

최대압력 내에서 철판이나 조각철판의 표면 상의 금속간 화합물의 농도가 상승함이 관철되며, 그 변형이 커짐이 관찰된다.It is observed that the concentration of the intermetallic compound on the surface of the iron plate or the iron plate is increased within the maximum pressure, and the deformation thereof is increased.

희박한 가공(압력이 없는 경우)에서는 불가피하게 공기산소가 가열실 내부에서 구동하는 순환펌프의 농후화를 통하여 침입한 철판이나 조각철판의 재료와 알루미늄을 산화시킨다. 이것은 재료의 질을 저하시키고, 승화전에 공기가 가열실 내부로부터 펌핑(pumping) 된다.In sparse processing (in the absence of pressure), air oxygen inevitably oxidizes the aluminum and the iron sheet or sheet metal sheet that enters through the thickening of the circulation pump driven inside the heating chamber. This degrades the material and air is pumped from inside the heating chamber before sublimation.

상기 가열실 내부는 1173~1373K의 일정한 온도로 가열되고, 이는 펌프상에서 절환되어 염화알루미늄(AlCl3) 증기를 순환시킨다.The interior of the heating chamber is heated to a constant temperature of 1173 ~ 1373K, which is switched on the pump to circulate aluminum chloride (AlCl 3 ) vapor.

상기 가열실 내부에서 염화알루미늄(AlCl3)이 순환하면 하기의 도식에 따라서 도가니 속에 장입된 금속알루미늄의 표면으로부터 알루미늄이 침투러리된 철판 및 조각철판의 표면으로 전송된다.When aluminum chloride (AlCl 3 ) is circulated in the heating chamber, aluminum is transferred from the surface of the metal aluminum charged into the crucible to the surface of the iron plate and the scrap iron plate infiltrated according to the following scheme.

하기의 반응에 따라서 금속알루미늄을 갖는 도가니의 배치영역에 아염화알루미늄이 형성된다.According to the following reaction, aluminum chloride is formed in the arrangement region of the crucible containing metal aluminum.

2/3AlCl3+ 4/3Al2AlCl2 / 3AlCl 3 + 4 / 3Al 2AlCl

2/3AlCl3+ 1/3AlAlCl2 2 / 3AlCl 3 + 1 / 3Al AlCl 2

침투처리된 철판 및 조각철판이 셋팅된 구역 속으로 아염화알루미늄이 들어가고, 그 표면에서 분리된 알루미늄과 불균형반응이 일어난다.Aluminum chloride enters into the zone where the permeated iron and flake iron plates are set, and an unbalance reaction occurs with the separated aluminum on its surface.

2AlCl2/3AlCl3+ 4/3Al2AlCl 2 / 3AlCl 3 + 4 / 3Al

AlCl2 2/3AlCl3+ 1/3AlAlCl 2 2 / 3AlCl 3 + 1 / 3Al

이 반응의 결과로서 형성된 알루미늄은 철판 및 조각철판의 표면으로부터 그 층 속으로 확산하여 염화알루미늄(AlCl3)이 다시 도가니 속에 장입된 금속알루미늄의 구역속에 들어가고, 일정한 온도로 3~8시간 동안 실시되며, 최소 시간값이 큰 온도값과 철판 및 조각철판의 최소두께와 대응할 때 최대 시간값은 최소 온도값과철판 및 조각철판의 온도값과 대응하게 되고, 상기에서 실시된 시간 및 온도값에 부속하여 철판 및 조각철판의 전체 두께에서 알루미늄 농도가 충분히 안정된다.The aluminum formed as a result of this reaction diffuses from the surface of the iron plate and the iron plate into the layer so that aluminum chloride (AlCl 3 ) enters into the zone of the metal aluminum loaded into the crucible and is carried out for 3-8 hours at a constant temperature. When the minimum time value corresponds to a large temperature value and the minimum thickness of the steel sheet and the sheet iron, the maximum time value corresponds to the minimum temperature value and the temperature value of the steel sheet and the sheet iron, and is in addition to the time and temperature values The aluminum concentration is sufficiently stable over the entire thickness of the iron plate and the sheet iron.

상기의 일정한 온도로 실시되는 시간의 경과 후에 가열실 및 펌프의 가열이 오프되고, 주위 환경온도에 근접한 온도에 도달하면 공기가 가열실 내부에 채워지며, 이때 가열실이 개방되고 철판 및 조각철판의 조정이 이루어진다.After the elapse of the above-described time, heating of the heating chamber and the pump is turned off, and when the temperature close to the ambient environmental temperature is reached, air is filled into the heating chamber, and the heating chamber is opened, and the Adjustment is made.

응축된 염화알루미늄(AlCl3)을 제거하기 위해 철판이나 조각철판을 흐르는 물에 씻는다.To remove the condensed aluminum chloride (AlCl 3 ), wash the plate or sheet iron under running water.

전술한 방법에 따른 수용재료는 기술적인 것이며, 이 재료는 알파(Al-Ferro)와 비교하여 높은 자기변형값을 갖는다.The receiving material according to the above-mentioned method is technical, and this material has a high magnetostriction value compared with alpha (Al-Ferro).

상기의 기술적 효과는 전로강에 대하여 밀링, 철판의 절삭, 스탬핑이 실시되기 때문에 주동작에서 알파(Al-Ferro)의 취약성이 방지되는 것이다.The above technical effect is that the fragility of alpha (Al-Ferro) in the main operation is prevented because milling, cutting and stamping of the converter steel is performed.

취약한 알파(Al-Ferro)의 밀링중에 재료구조내에 산화알루미늄 및 결함이 없으면 자기가 대략 10%까지, 영률이 대략 20%, 기계적 Q인자가 2.5배 증가하고, 또한 큰 자기변형값은 14~22원자%의 농도에 맞추어진다.Without aluminum oxide and defects in the material structure during milling of fragile Al-Ferro, the magnetism increases by approximately 10%, the Young's modulus by approximately 20%, the mechanical Q factor by 2.5 times, and the large magnetostriction is 14-22. To a concentration of atomic percent.

부가적으로 확산 침투처리에 의한 특성을 설명하면, 그 중에 특성을 감소시키는 첨가제에 의하여 침투 처리되는 재료의 고갈이 일어나고, 첨가제 원자 및 분자의 확산계수, 그 화학적 활성에 따라서 첨가제의 일부가 표면방향에서 표류하고 순환된 염화알루미늄 증기에 의해 소실되며, 다른 부분은 첨가제에 의해 침투 처리되는 박층에 형성된 조각철판 깊이 표류되고, 층의 존재는 철판이나 조각철판 두께에 2분할 하게 된다.In addition, the characteristics of diffusion permeation treatment may be explained, in which depletion of the material to be infiltrated by additives that reduce properties occurs, and a part of the additive is oriented according to the diffusion coefficient of the additive atoms and molecules and the chemical activity thereof. The drift at and lost by the circulated aluminum chloride vapors, the other part is drifted deep into the sheet metal formed in the thin layer infiltrated by the additive, and the presence of the layer is divided into two parts of the sheet or sheet thickness.

두꺼운 철판 및 조각철판을 적용할 수 있어서 균질구조의 경우와 비교하여 재료 생산비를 감소시키고, 보다 넓은 초음파장치의 주파수 22KHz에서 두께 0.72mm하에서 자계가 침투되며, 게다가 두께 0.1~0.3mm에 대하여 특정된 통상의 야금법에 의해 만들어진 재료로부터 조각철판의 한계에 소용돌이의 손실이 있는 것이다.It is possible to apply thick steel plates and sheet iron to reduce the material production cost compared to the homogeneous structure, and to infiltrate the magnetic field under the thickness of 0.72mm at the frequency of 22KHz of the wider ultrasonic device, and also to the thickness of 0.1 ~ 0.3mm There is a loss of vortex at the limit of the iron sheet from the material produced by the usual metallurgical method.

알루미늄에 의해 철판 또는 조각철판을 침투처리시키는 공정에서 알루미늄원자는 결정격자내의 철원자와 교체되고, 여기서 격자종류(체심입방격자)가 유지되며, 그 단계는 약간 변화하게 된다.In the process of infiltrating an iron plate or a piece iron plate by aluminum, the aluminum atoms are replaced with iron atoms in the crystal lattice, where the lattice type (centered cubic lattice) is maintained, and the steps are slightly changed.

상기에 따르면 실제로는 불변의 길이 및 폭 하에서 알루미늄농도에 따라서 두께가 20~40%까지 증가하여 침투 처리재료 용량의 증가가 계속되는 것이다.According to the above, in practice, the thickness increases by 20 to 40% depending on the aluminum concentration under the constant length and width, and the increase in the capacity of the penetration treatment material is continued.

한편, 본 발명은 자기변형재료을 얻는 방법에 있어 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있다.On the other hand, the present invention can be variously modified in the method of obtaining a magnetostrictive material and can take various forms.

하지만, 본 발명은 상기의 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.It is to be understood, however, that the present invention is not limited to the specific forms referred to in the above description, but rather includes all modifications, equivalents and substitutions within the spirit and scope of the invention as defined by the appended claims. It should be understood to do.

이상에서 살펴본 바와 같이 본 발명은 알파와 비교하여 최상의 특성을 갖도록 하는 철을 기초로 한 자기변형재료를 얻기 위한 것으로, 기술적 효과는 전로강에 대하여 밀링, 철판의 절삭, 스탬핑이 실시되기 때문에 주동작에서 상기 알파에 대한 취약성이 방지되는 효과가 있는 매우 유용한 발명임이 명백하다.As described above, the present invention is to obtain the magnetostrictive material based on iron to have the best characteristics compared to the alpha, the technical effect is the main operation because the milling, cutting, stamping of the converter steel is performed It is clear that the invention is a very useful invention with the effect that the vulnerability to alpha is prevented.

Claims (4)

철판 및 조각철판을 디퓨전 코팅(Diffusion coating)시켜 철제의 자기변형재료를 얻기 위한 방법에 있어서,In the method for obtaining iron self-deformation material by diffusing coating the iron plate and engraving iron plate (Diffusion coating), 상기 철판 및 조각철판을 1173~1373K까지의 온도로 가열한 다음 3~8시간동안 일정한 온도로 유지시키고, 상기에서 유지되는 동안 재료내의 알루미늄농도가 14~22원자%에 도달할 때 0.1MPa까지의 압력 상태에서 염화알루미늄을 확산 침투처리 후 서서히 냉각시키며, 상기 실시에 의해 두께가 20~40%인 순철제의 철판 또는 조각철판을 알루미늄으로 확산 침투시켜 이루어지게 되는 것을 특징으로 하는 철을 기초로 한 자기변형재료를 얻는 방법.The iron plate and the sheet iron plate is heated to a temperature of 1173 ~ 1373K and then maintained at a constant temperature for 3 to 8 hours, while maintaining the aluminum concentration in the material up to 0.1MPa when it reaches 14 to 22 atomic% The aluminum chloride is slowly cooled after the diffusion infiltration process under pressure, and the iron-based iron or sheet iron plate having a thickness of 20 to 40% is diffused and infiltrated into aluminum by the above-described iron-based iron. Method of obtaining magnetostrictive material. 삭제delete 삭제delete 제1항에 있어서,The method of claim 1, 상기의 확산 침투처리는 확산 침투처리용 설비의 가열실 내에서 행해지고, 상기 가열실 속에 배치된 알루미늄의 양은 재료내의 소망하는 알루미늄농도에 도달하기 위해서 1.5~3배로 실시하는 것을 특징으로 하는 철을 기초로 한 자기변형재료를 얻는 방법.The diffusion penetration treatment is carried out in a heating chamber of a diffusion penetration treatment plant, and the amount of aluminum disposed in the heating chamber is 1.5 to 3 times in order to reach a desired aluminum concentration in the material. Method of obtaining a magnetostrictive material.
KR1020000031420A 2000-06-08 2000-06-08 Receiving method of magneto-strictive material on the base of ferric KR100352629B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000031420A KR100352629B1 (en) 2000-06-08 2000-06-08 Receiving method of magneto-strictive material on the base of ferric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000031420A KR100352629B1 (en) 2000-06-08 2000-06-08 Receiving method of magneto-strictive material on the base of ferric

Publications (2)

Publication Number Publication Date
KR20010110829A KR20010110829A (en) 2001-12-15
KR100352629B1 true KR100352629B1 (en) 2002-09-12

Family

ID=19671423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000031420A KR100352629B1 (en) 2000-06-08 2000-06-08 Receiving method of magneto-strictive material on the base of ferric

Country Status (1)

Country Link
KR (1) KR100352629B1 (en)

Also Published As

Publication number Publication date
KR20010110829A (en) 2001-12-15

Similar Documents

Publication Publication Date Title
Bell et al. Environmental and technical aspects of plasma nitrocarburising
Ashrafizadeh Influence of plasma and gas nitriding on fatigue resistance of plain carbon (Ck45) steel
Bindal et al. Characterization of borides formed on impurity-controlled chromium-based low alloy steels
Gontijo et al. Characterization of plasma-nitrided iron by XRD, SEM and XPS
Hryha et al. Critical aspects of alloying of sintered steels with manganese
EP0242089B1 (en) Method of improving surface wear resistance of a metal component
Egawa et al. Effect of additive alloying element on plasma nitriding and carburizing behavior for austenitic stainless steels
CN100476008C (en) Plasma surface metallurgical high chromium high molybdenum high-carbon steel and preparation method thereof
Ahangarani et al. The influence of active screen plasma nitriding parameters on corrosion behavior of a low-alloy steel
Çelik et al. Investigation of compound layer formed during ion nitriding of AISI 4140 steel
Madanipour et al. Investigation of the formation of Al, Fe, N intermetallic phases during Al pack cementation followed by plasma nitriding on plain carbon steel
Yan et al. The effect of rare earth catalyst on carburizing kinetics in a sealed quench furnace with endothermic atmosphere
US8349093B2 (en) Method of plasma nitriding of alloys via nitrogen charging
EP0084569A1 (en) Process for manufacturing isotropic electromagnetic steel plate having excellent magnetic characteristics
Student et al. Modification of the surfaces of aluminum and titanium alloys aimed at the improvement of their wear resistance and tribological characteristics
Molinari et al. Plasma nitriding and nitrocarburising of sintered Fe Cr Mo and Fe Cr Mo C alloys
KR100352629B1 (en) Receiving method of magneto-strictive material on the base of ferric
US10260630B2 (en) Plunger with ion nitriding treatment for a hydraulic fracturing pump and a method for making said plunger
Roliński et al. Nature of surface changes in stamping tools of gray and ductile cast iron during gas and plasma nitrocarburizing
Sun et al. The formation and decomposition of nitrogen and carbon fct austenite in austenitic stainless steel
Goncharenko et al. Surface modification of steels by complex diffusion saturation in low pressure arc discharge
Eroglu et al. Surface hardening of tungsten heavy alloys
Kazior et al. Thermochemical treatment of Fe–Cr–Mo alloys
CN111286586B (en) Method for strengthening and toughening steel material
Rastkar et al. The effects of processing time on the microstructure and composition of plasma pack-aluminized and-oxidized surface layers on low carbon steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
J204 Request for invalidation trial [patent]
J301 Trial decision

Free format text: TRIAL DECISION FOR INVALIDATION REQUESTED 20040602

Effective date: 20050321

LAPS Lapse due to unpaid annual fee