KR100346017B1 - Paladium on Activated Carbon Catalysts and Preparation Methods thereof, and Method for Preparing Fluorohydrocarbon from Chlorofluorocarbon by Using the Same - Google Patents

Paladium on Activated Carbon Catalysts and Preparation Methods thereof, and Method for Preparing Fluorohydrocarbon from Chlorofluorocarbon by Using the Same Download PDF

Info

Publication number
KR100346017B1
KR100346017B1 KR1019990032851A KR19990032851A KR100346017B1 KR 100346017 B1 KR100346017 B1 KR 100346017B1 KR 1019990032851 A KR1019990032851 A KR 1019990032851A KR 19990032851 A KR19990032851 A KR 19990032851A KR 100346017 B1 KR100346017 B1 KR 100346017B1
Authority
KR
South Korea
Prior art keywords
activated carbon
catalyst
acid
naoh
reaction
Prior art date
Application number
KR1019990032851A
Other languages
Korean (ko)
Other versions
KR20010017372A (en
Inventor
문동주
안병성
정문조
박건유
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1019990032851A priority Critical patent/KR100346017B1/en
Publication of KR20010017372A publication Critical patent/KR20010017372A/en
Application granted granted Critical
Publication of KR100346017B1 publication Critical patent/KR100346017B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms

Abstract

본 발명은 염화불화탄소로부터 불화탄화수소를 제조하기 위한 접촉 수소화 반응시 촉매로 사용되는 활성탄(C)에 담지된 팔라듐(Pd) 촉매(Pd/C) 및 그의 제조 방법과, 이를 이용한 염화불화탄소로부터 불화탄화수소의 선택적 제조 방법에 관한 것이다. 본 발명의 Pd/C 촉매는 팔라듐을 활성탄에 담지시키기 전에 활성탄을 알칼리 (NaOH) 및 강산 (불산 또는 염산 및 불산)으로 전처리를 한 다음, 흡착 침전법 또는 함침법으로 팔라듐을 활성탄에 담지시킴으로써 제조된다. 본 발명의 Pd/C 촉매는, 알칼리 및 산 처리에 의해 활성탄 중에 미량 함유되어 있던 금속 성분들이 제거되기 때문에, 담체의 표면 특성이 변화되어 촉매 활성이 향상된다. 본 발명의 촉매는 염화불화탄소 (Chlorofluorocarbon, CFC)를 수소화시킬 때, 탈할로겐반응 중에서 탈염소수소화 반응의 선택도를 증가시키고, 탈불소수소화 반응은 물론 Pd의 소결 (sintering)에 따른 촉매의 비활성화 (deactivation)를 억제시키기 때문에, 염화불화탄소로부터 불화탄화수소 (Hydrofluorocarbon, HFC)를 제조하는데 특히 적합한 촉매이다.The present invention relates to a palladium (Pd) catalyst (Pd / C) supported on activated carbon (C), which is used as a catalyst in the catalytic hydrogenation reaction for the production of hydrofluorocarbons from chlorofluorocarbons, and to a process for preparing the same, and to fluorocarbons using the same. A method for the selective production of fluorohydrocarbons. The Pd / C catalyst of the present invention is prepared by pretreating activated carbon with alkali (NaOH) and strong acid (fluoric acid or hydrochloric acid and hydrofluoric acid) before supporting palladium on activated carbon, and then supporting palladium on activated carbon by adsorption precipitation or impregnation. do. In the Pd / C catalyst of the present invention, metal components contained in trace amounts in the activated carbon are removed by alkali and acid treatment, so that the surface properties of the carrier are changed to improve the catalytic activity. The catalyst of the present invention increases the selectivity of the dehydrogenation reaction during the dehalogenation reaction when hydrogenating chlorofluorocarbons (CFCs), and deactivates the catalyst due to sintering of the Pd as well as the dehydrogenation reaction. Since it inhibits deactivation, it is a particularly suitable catalyst for preparing hydrofluorocarbons (HFCs) from chlorofluorocarbons.

Description

활성탄에 담지된 팔라듐 촉매 및 그의 제조 방법과, 이를 이용한 염화불화탄소로부터 불화탄화수소의 제법 {Paladium on Activated Carbon Catalysts and Preparation Methods thereof, and Method for Preparing Fluorohydrocarbon from Chlorofluorocarbon by Using the Same}Palladium on Activated Carbon Catalysts and Preparation Methods etc, and Method for Preparing Fluorohydrocarbon from Chlorofluorocarbon by Using the Same}

본 발명은 염화불화탄소로부터 불화탄화수소를 제조하기 위한 접촉 수소화 반응에서 촉매로 사용되는 활성탄(C)에 담지된 팔라듐(Pd) 촉매(이하, "Pd/C 촉매"로 표기) 및 그의 제조 방법과, 이를 이용한 염화불화탄소로부터 불화탄화수소의 선택적 제조 방법에 관한 것이다.The present invention relates to a palladium (Pd) catalyst (hereinafter referred to as "Pd / C catalyst") supported on activated carbon (C) used as a catalyst in the catalytic hydrogenation reaction for producing fluorohydrocarbons from chlorofluorocarbons, and a method for producing the same; And a method for the selective production of fluorohydrocarbons from chlorofluorocarbons using the same.

염화불화탄소(CFC) 화합물은 열적, 화학적 안정성이 매우 높아, 냉매, 발포제, 분사제 등으로 널리 사용되어 왔다. 그러나, CFC가 오존층 파괴 및 지구 온난화의 주된 원인으로 밝혀짐에 따라, CFC의 생산 및 사용이 국제적인 규약에 의해 규제되었고, CFC 대체 물질의 개발이 중요한 연구 과제로 대두되었다.Chlorinated fluorocarbon (CFC) compounds have high thermal and chemical stability and have been widely used as refrigerants, blowing agents, and propellants. However, as CFCs have been found to be a major cause of ozone depletion and global warming, the production and use of CFCs has been regulated by international regulations, and the development of CFC substitutes has emerged as an important research task.

CFC의 수소화 및 탈염소화 반응은 디클로로디플루오로메탄 (CCl2F2, 이하 "CFC-12"로 표기)으로부터 디플루오로 메탄 (CH2F2, 이하 "HFC-32"로 표기)을 제조하거나 클로로펜타플루오로에탄 (CClF2CF3, 이하 "CFC-115"로 표기)으로부터 펜타플루오로에탄 (CHF2CF3, 이하 "HFC-125"로 표기)를 제조하는 등 대체 물질 개발의 중요한 경로로 인식되면서, 여러 연구자들에 의해 CFC의 탈염소수소화 반응 촉매 개발에 관한 연구가 수행되었다.Hydrogenation and dechlorination of CFCs produces difluoromethane (CH 2 F 2 , hereinafter referred to as "HFC-32") from dichlorodifluoromethane (CCl 2 F 2 , referred to as "CFC-12"). or chloro pentafluoroethyl pentafluoroethane from (CClF 2 CF 3, hereinafter "CFC-115" denoted by) ethane producing the (CHF 2 CF 3, hereinafter "HFC-125" expressed as) such as replacement key of materials developed to Recognized as a pathway, several researchers have been working on the development of catalysts for dehydrochlorination of CFCs.

CFC를 수소화시키면 염소와 수소가 치환되는 탈염소수소화 반응과 동시에 불소와 수소가 치환되는 탈불소수소화 반응이 일어난다. 그 결과, 목적하는 생산물인 HFC (탈염소 반응에 의한 부분 수소화 생성물) 이외에도, 메탄, 에탄 등의 부산물 (탈염소 및 탈불소 반응에 의한 완전 수소화 생성물)이 생성되므로 이러한 부산물 생성을 최소화하기 위한 탈염소수소화 반응 연구가 필요하게 되었다. 또한, 탈불소 반응에서 생성된 HF가 담체를 변화시켜 촉매의 활성에 영향을 미치므로 이에 대한 연구도 병행되었다.Hydrogenation of CFCs results in dechlorination reactions in which chlorine and hydrogen are substituted, and dehydrofluorination reactions in which fluorine and hydrogen are replaced. As a result, in addition to the desired product HFC (partially hydrogenated product by dechlorination reaction), by-products such as methane and ethane (complete hydrogenation products by dechlorination and defluorination reaction) are generated, so that demineralization to minimize the formation of these by-products is achieved. Hydrogenation reaction studies are needed. In addition, since the HF produced in the defluorination reaction changes the carrier and affects the activity of the catalyst, the research on the same has also been conducted.

콕 (B. Coq) 등은 문헌 [J. Catal., 141, (1993) 21]에 Al2O3, AlF3, 흑연 또는 활성탄 등의 담체에 여러 귀금속을 담지시킨 촉매 상에서 CFC-12의 수소화반응에 대한 반응 활성과 촉매의 특성을 연구, 개시하였다. AlF3에 Pd을 담지시킨 Pd/AlF3촉매는 활성은 비교적 낮지만 반응 시간에 따라 촉매 활성의 변화가 거의 없었으며, Pd/흑연, Pd/Al2O3와 Pd/카본블랙 촉매는 반응 초기에 급격한 활성 및 선택도 변화를 보였다. 특히, Pd/Al2O3촉매는 수소화 반응 도중에 담체의 형태 및 촉매의 조성과 특성이 변하기 때문에 선택도가 변하는 것으로 기재하였다. CH2F2에대한 선택도는 Pd/흑연 촉매일 때 가장 낮았고 Pd/AlF3일 때 가장 높은 것으로 보고되었다.B. Coq et al. Catal., 141, (1993) 21] studied the reaction activity and the characteristics of the catalyst for the hydrogenation of CFC-12 on a catalyst in which various precious metals were supported on a carrier such as Al 2 O 3 , AlF 3 , graphite or activated carbon, Started. Pd / AlF 3 catalyst was impregnated with Pd in AlF 3 has activity was relatively low, but as the reaction time, the change in the catalytic activity almost no, Pd / graphite, Pd / Al 2 O 3 and Pd / carbon black catalyst, the initial reaction Showed a sharp change in activity and selectivity. In particular, Pd / Al 2 O 3 catalysts were described as having a change in selectivity because of the change in the form of the carrier and the composition and properties of the catalyst during the hydrogenation reaction. The selectivity for CH 2 F 2 was reported to be lowest with Pd / graphite catalyst and highest with Pd / AlF 3 .

문 (Moon) 등은 문헌 [ Appl. Catal. A: General, 168 (1998) 154]에 CFC-115의 탈염소수소화 반응에서 반응 도중에 생성되는 불산이나 염산이 Al2O3와 같은 산화물과 반응하여 담체의 구조를 파괴하고 촉매의 비표면적을 감소시키며 촉매의 소결 (sintering)을 촉진한다는 것을 확인하고, 이에 따라 산화물은 CFC의 수소화 반응용 촉매의 담체로서 바람직하지 않음을 개시하였다.Moon et al., Appl. Catal. A: General, 168 (1998) 154] hydrofluoric acid or hydrochloric acid produced during the dehydrochlorination of CFC-115 reacts with an oxide such as Al 2 O 3 to destroy the structure of the carrier and reduce the specific surface area of the catalyst. It has been found that the catalyst promotes sintering of the catalyst, and thus, the oxide is not preferred as a carrier of the catalyst for the hydrogenation reaction of CFC.

Juszczyk 등은 문헌 [Appl. Catal. A: General, 155, (1997) 55]에서 Pd/Al2O3촉매의 전처리 온도를 달리하여 선택도의 향상을 규명하는 연구를 수행하였고, 반응 전환율은 낮았으나 염소 (Cl) 만을 제거하는, 부분적인 탈염소수소화 반응의 경로를 추정하였다.Juszczyk et al., Appl. Catal. A: General, 155, (1997) 55] investigated the improvement of selectivity by varying the pretreatment temperature of Pd / Al 2 O 3 catalyst, and the reaction conversion rate was low but only chlorine (Cl) was removed. The route of partial dechlorination reaction was estimated.

한편, 활성탄에 팔라듐 (Pd)을 담지시킨 Pd/C 촉매는 반응의 부산물로 생성되는 염산이나 불산에 의한 영향이 비교적 적은 것으로 발표되고 있어 이러한 Pd/C 촉매를 사용한 CFC의 수소화 반응이 다각도로 연구되고 있다.On the other hand, Pd / C catalysts loaded with palladium (Pd) on activated carbon have been reported to have relatively little effect from hydrochloric acid or hydrofluoric acid produced as by-products of the reaction. It is becoming.

비에르스마 (Wiersma) 등은 문헌 [Catal. Today, 27 (1996) 257, 35 (1997) 163]에서 활성탄을 수산화나트륨 및 염산 처리하여 촉매의 선택도를 향상시키려는 연구를 수행하여 개시하였다.Wiersma et al., Catal. Today, 27 (1996) 257, 35 (1997) 163] disclosed a study to improve the selectivity of catalysts by treating activated carbon with sodium hydroxide and hydrochloric acid.

담체로 사용되는 활성탄의 특성 연구 결과는 많은 문헌에 발표되고 있으며, 예를 들면, 보엠 (H. P. Boehm)의 문헌 [Adv. Catal., 16, (1966) 179]과 도네 (J.B. Dornet)의 문헌 [Carbon, 6, (1968) 161]에는 활성탄 표면의 옥사이드기의 특성이 개시되어 있고, 모리가와 (K. Morigawa) 등의 문헌 [Adv. Catal., 20, (1969) 97]에는 활성탄 표면에 표면 히드록실기를 형성시키기 위해 질산으로 전처리한 다음, 이온 교환법으로 Pd/C 촉매를 제조하면 Pd의 분산도를 개선시킬 수 있음이 보고되었다.The results of studies on the properties of activated carbon used as a carrier have been published in many literatures, for example, in H. P. Boehm, Adv. Catal., 16, (1966) 179 and JB Dornet [Carbon, 6, (1968) 161] disclose the characteristics of oxide groups on the surface of activated carbon, and K. Morigawa et al. See Adv. Catal., 20, (1969) 97] reported that pretreatment with nitric acid to form surface hydroxyl groups on the surface of activated carbon, followed by the preparation of Pd / C catalysts by ion exchange, can improve the dispersion of Pd. .

또한, 활성탄에 포함되어 있는 Fe과 Mg 등의 불순물은 프리델-크래프츠 (Friedel-Crafts) 반응 촉매로 작용하여 탄화수소로의 완전 수소화반응을 유발시키는 것으로 알려져 있으며 (British Patent, 2, 171, 925 (1986) 참조), Ca 등의 다른 불순물도 CFC의 수소화 반응에 있어서 선택도에 영향을 미치는 것으로 보인다.In addition, impurities such as Fe and Mg contained in activated carbon are known to act as a Friedel-Crafts reaction catalyst to cause a full hydrogenation reaction to hydrocarbons (British Patent, 2, 171, 925 ( And other impurities such as Ca also appear to influence the selectivity in the hydrogenation of CFCs.

수소화 반응에 주로 사용되는 Pd 촉매는 수소화 능력이 매우 높아 CFC를 수소화시킬 경우, 탈염소화 반응 뿐만 아니라 탈불소화 반응도 촉진시키는 완전 탈할로겐화 반응을 일으키며, 이 때, 활성탄 담체에 포함되어 있는 불순물이 이러한 완전 탈할로겐화를 촉진한다. 즉, CFC-12를 상용 Pd 촉매 상에서 수소화시킬 경우 HFC-32로의 전환 반응 (탈염소수소화 반응) 보다 메탄으로의 전환 반응 (완전탈할로겐 수소화 반응)이 더욱 촉진되어 목적하고자 하는 반응 (탈염소수소화반응)의 선택도를 높이기 어렵다. 또한, 완전 탈할로겐화에 따른 HF의 생성으로 촉매의 비활성화가 촉진되어 장시간 촉매를 사용할 경우 HFC-32으로의 전환율이 점차 감소할 수 있다.Pd catalyst, which is mainly used in hydrogenation reaction, has a very high hydrogenation ability, and when hydrogenated CFC, it causes a complete dehalogenation reaction that promotes dechlorination as well as defluorination reaction, and impurities contained in activated carbon carrier Promotes dehalogenation. That is, when CFC-12 is hydrogenated on a commercial Pd catalyst, the conversion reaction to methane (complete dehalogenation hydrogenation) is promoted more than the conversion reaction to HFC-32 (dehydrochlorination reaction), and thus the desired reaction (dehydrogenation). It is difficult to increase the selectivity of the reaction). In addition, the deactivation of the catalyst is promoted by the generation of HF due to the complete dehalogenation, so that the conversion to HFC-32 may gradually decrease when the catalyst is used for a long time.

따라서, 본 발명자들은 활성탄 담체에 포함되어 있는 불순물을 사전에 처리하여 제거함으로써 CFC의 수소화 반응에서 HFC의 선택도를 높일 수 있고, 또한, 촉매의 활성을 보다 오랜 시간 유지할 수 있을 것으로 기대하고, 활성탄의 전처리에 관하여 예의 연구를 거듭하여 본 발명에 이르게 되었다.Therefore, the present inventors expect that the selectivity of HFCs in the hydrogenation of CFCs can be increased by pretreatment and removal of impurities contained in activated carbon carriers, and the activated carbons can be maintained for a longer time. Intensive research has been made regarding the pretreatment of the present invention.

본 발명의 목적은 CFC의 수소화 반응에 있어서 탈염소수소화 반응의 선택도를 높임으로써, HFC로의 전환을 촉진하며, 촉매 활성이 장시간 유지되는 개선된 CFC 수소화 반응용 Pd/C 촉매를 제공하는 것이다.It is an object of the present invention to provide an improved Pd / C catalyst for CFC hydrogenation which promotes the conversion to HFC and increases the catalytic activity for a long time by increasing the selectivity of the dehydrogenation reaction in the hydrogenation of CFCs.

본 발명의 다른 목적은 상기 CFC의 수소화 반응용 Pd/C 촉매의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a Pd / C catalyst for the hydrogenation of the CFC.

본 발명은 또 다른 목적은 상기 개선된 CFC 수소화 반응용 Pd/C 촉매를 사용하여 CFC로부터 HFC를 선택적으로 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for selectively producing HFC from CFC using the improved Pd / C catalyst for CFC hydrogenation reaction.

본 발명에 따르면, 수산화나트륨을 사용하여 알칼리 처리하고, 불산을 사용하여 산 처리함으로써 존재하는 불순물을 제거한 활성탄(C)에 담지된 팔라듐(Pd)을 포함하는, 염화불화탄소(CFC)의 접촉 수소화 반응용 Pd/C 촉매가 제공된다. .According to the present invention, catalytic hydrogenation of chlorofluorocarbons (CFCs) comprising palladium (Pd) supported on activated carbon (C) from which alkali treatment with sodium hydroxide and acid treatment with hydrofluoric acid has removed impurities present A Pd / C catalyst for reaction is provided. .

또한, 본 발명에 따르면,In addition, according to the present invention,

(a) 활성탄(C)를 수산화나트륨 수용액으로 알칼리 처리하는 단계;(a) alkali treating activated carbon (C) with an aqueous sodium hydroxide solution;

(b) 상기 알칼리 처리한 활성탄(C)를 불산(HF) 용액으로 산 처리하는 단계; 및(b) acid treating the alkali treated activated carbon (C) with a hydrofluoric acid (HF) solution; And

(c) 상기 산 처리한 활성탄에 팔라듐(Pd)을 담지시키는 단계(c) supporting palladium (Pd) on the acid treated activated carbon;

를 포함하는, 염화불화탄소(CFC)의 접촉 수소화 반응용 Pd/C 촉매의 제조 방법 이 제공된다.Provided is a method for producing a Pd / C catalyst for catalytic hydrogenation of chlorofluorocarbon (CFC).

본 발명에 따른 Pd/C 촉매의 제조시 담체로서 사용되는 활성탄으로서는 통상의 Pd/C 촉매 제조시 담체로서 사용되는 활성탄, 예를 들면 알드리히 (Aldrich) 사의 활성탄 (Darco G-60)과 구라라이 케미칼 (Kuraray Chemical) 사의 촉매 담체용 활성탄 (32 내지 60 메시) 등 시판되고 있는 활성탄을 사용할 수 있다.As activated carbon used as a carrier in the preparation of the Pd / C catalyst according to the present invention, activated carbon used as a carrier in the production of a conventional Pd / C catalyst, for example, activated carbon (Darco G-60) from Aldrich Co. Commercially available activated carbon, such as activated carbon (32-60 mesh) for catalyst carriers from Kuraray Chemical, can be used.

본 발명에 따르면, 활성탄을 먼저 알칼리 처리한다. 알칼리 처리는 0.2 내지 1몰 농도의 NaOH 수용액을 사용하여 60 내지 80℃의 온도에서 1 내지 5 시간 동안 2 내지 5회 반복 수행한다.According to the invention, Activated carbon is first alkali treated. Alkali treatment is repeated 2 to 5 times for 1 to 5 hours at a temperature of 60 to 80 ℃ using an aqueous NaOH solution of 0.2 to 1 molar concentration.

알칼리 처리한 활성탄은 이어 산처리된다. 산 처리는 5 내지 50% 농도의 불산 용액을 사용하여 50 내지 80℃의 온도에서 1 내지 15 시간 동안 2 내지 5회 반복 수행한다.Alkali treated activated carbon is then acid treated. The acid treatment is repeated 2 to 5 times for 1 to 15 hours at a temperature of 50 to 80 ° C using a hydrofluoric acid solution at a concentration of 5 to 50%.

본 발명에 따른 Pd/C 촉매의 제조 방법에 있어서, NaOH 수용액으로 알칼리 처리한 활성탄은 불산 용액으로 산처리 하기 전에 염산으로 더 처리해도 좋다. 또한, 불산으로 산처리한 활성탄을, 팔라듐을 담지시키기 전에, 염산으로 더 처리할 수도 있다.In the method for producing a Pd / C catalyst according to the present invention, activated carbon treated with an aqueous NaOH solution may be further treated with hydrochloric acid before acid treatment with a hydrofluoric acid solution. The activated carbon acid treated with hydrofluoric acid may be further treated with hydrochloric acid before supporting palladium.

상기 산 처리 전후에 수행되는 염산 처리는 5 내지 37% 농도의 염산 용액을 사용하여 50 내지 80℃의 온도에서 1 내지 15 시간 동안 2 내지 5 회 반복 수행할 수 있다.The hydrochloric acid treatment performed before and after the acid treatment may be repeated 2 to 5 times for 1 to 15 hours at a temperature of 50 to 80 ° C. using a hydrochloric acid solution at a concentration of 5 to 37%.

본 발명에 따른 Pd/C 촉매의 제조 방법에 있어서, 활성탄을 NaOH 수용액에 의해 알칼리 처리한 다음, HF 용액을 사용한 산 처리 및 HF 처리 전 후에 HCl 수용액에 의한 추가 처리를 수행할 수 있다.In the method for producing a Pd / C catalyst according to the present invention, activated carbon may be subjected to alkali treatment with NaOH aqueous solution, followed by acid treatment with HF solution and further treatment with HCl aqueous solution before and after HF treatment.

본 발명에 따라 알칼리 처리 및 산 처리된 활성탄에 대한 물성 데이타는 각각의 비교예와 실시예에 나타내었다.Physical properties data for the alkali treated and acid treated activated carbons according to the present invention are shown in the respective comparative examples and examples.

이와 같이 알칼리 처리 및 산 처리한 활성탄에는 통상의 흡착 침전법 또는 함침법에 의해 Pd이 담지된다.The activated carbon treated with alkali and acid treatment in this way is supported with Pd by a conventional adsorption precipitation method or impregnation method.

본 발명에 의해 제조되는 Pd/C 촉매는 염화불화탄소 (Chlorofluorocarbon)의 탈할로겐에 의한 수소화 반응에 있어서, 탈불소수소화 보다 탈염소수소화의 선택도를 증가시켜, 선택적으로 불화탄화수소 (Hydrofluorocarbon)를 제조하는데 바람직한 촉매이다. 따라서, 본 발명에 따라 제조된 Pd/C 촉매를 사용하면, CFC-12로부터 높은 선택도로서 HFC-32를 제조할 수 있다.The Pd / C catalyst prepared according to the present invention increases the selectivity of dehydrochlorination rather than dehydrofluorination in the hydrogenation reaction of chlorofluorocarbons with dehalogen, thereby selectively preparing hydrofluorocarbons. Is a preferred catalyst. Thus, using the Pd / C catalyst prepared according to the present invention, HFC-32 can be prepared with high selectivity from CFC-12.

이하, 실시예에 의해 본 발명을 더욱 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명을 비교 및 예시하고자 하는 것이며, 본 발명을 제한하는 것은 아니다. 하기 실시예에서는 활성탄 담체의 전처리 방법 및 촉매 담지 방법에 따라 본 발명의 촉매 및 비교 촉매를 제조하고, 제조된 Pd/C 촉매의 BET 표면적, 불순물 분석, XRD 등을 측정하여 촉매의 특성을 조사하였다. 또한, 담체 구조의 변화 및(또는) 불순물 함량 변화를 측정하여 불순물이 촉매 활성에 미치는 영향을 조사하였다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are intended to compare and illustrate the invention, but not to limit the invention. In the following examples, the catalyst and the comparative catalyst of the present invention were prepared according to the pretreatment method and the catalyst supporting method of the activated carbon carrier, and the properties of the catalyst were investigated by measuring the BET surface area, impurity analysis, XRD, etc. . In addition, changes in the carrier structure and / or change in the impurity content were measured to investigate the effect of impurities on the catalytic activity.

비교예 1Comparative Example 1

Pd/DC 촉매 제조Pd / DC Catalyst Manufacturing

알칼리 및 산으로 처리하지 않은 알드리히사의 활성탄 (Darco G-60, 이하 DC로 표기)를 담체로 사용하여, 흡착 침전법으로 Pd/C 촉매를 제조하였다.Pd / C catalysts were prepared by adsorption precipitation using Aldrich's activated carbon (denoted by Darco G-60, hereinafter DC) as a carrier, which was not treated with alkali and acid.

약 40℃에서 0.6803g의 PdCl2를 녹인 0.087N의 HCl 수용액 260 ㎖에 전처리하지 않은 활성탄 20 g을 투입하였다. 0.1몰 농도의 중탄산암모늄 (NH4HCO3) 용액으로 pH 7이 될 때까지 중화시켜 침전 흡착시켰다. 침전흡착시킨 Pd/C 촉매의 수용액을 강하게 교반시키면서, 약 70 내지 80℃ 정도에서 수분을 감압증발시킨 후, 110℃에서 12 시간 건조시켜 2 중량%의 Pd가 담지된 Pd/DC 촉매를 제조하였다.20 g of unpretreated activated carbon was added to 260 ml of 0.087N HCl aqueous solution in which 0.6803 g of PdCl 2 was dissolved at about 40 ° C. Precipitated and adsorbed by neutralizing with 0.1 mol ammonium bicarbonate (NH 4 HCO 3 ) solution until pH 7. While strongly stirring the aqueous solution of the precipitated Pd / C catalyst, the water was evaporated under reduced pressure at about 70 to 80 ° C., and dried at 110 ° C. for 12 hours to prepare a Pd / DC catalyst having 2% by weight of Pd. .

촉매 제조 전, 활성탄에 포함된 Mg, Ca, Fe 분석 결과는 각각 37, 29, 15 ppm이었으며, 촉매 제조 후 35, 26, 15 ppm으로 변화가 없었으며 비표면적 또한 1100 ㎡/g과 1050 ㎡/g으로 크게 변화가 없었다.The results of Mg, Ca and Fe analysis of activated carbon before catalyst preparation were 37, 29 and 15 ppm, respectively, and there was no change to 35, 26 and 15 ppm after catalyst preparation. The specific surface area was also 1100 ㎡ / g and 1050 ㎡ / g did not change significantly.

비교예 2Comparative Example 2

Pd/DC(-NHOPd / DC (-NHO 33 ) 제조 - HNO) Manufacturing-HNO 33 로 전처리한 DC 사용DC preprocessed with

DC (알드리히사의 활성탄, Darco G-60)를 질산으로 처리한 후, 비교예 1에서와 같이 촉매를 제조하였다.After treating DC (activated carbon from Aldrich, Darco G-60) with nitric acid, a catalyst was prepared as in Comparative Example 1.

DC 50 g을 1 ℓ용기의 50% HNO3수용액 500 ㎖에 넣고 65 내지 75℃를 유지하며, 12 시간 동안 교반시켰다. HNO3수용액을 여과시킨 후, 5 ℓ의 증류수를 사용하여 여러 차례 세척과 여과를 반복하였다. 전처리한 활성탄을 110℃에서 24 시간 동안 건조시켜 DC(-NHO3) 담체를 제조하였다.50 g of DC was placed in 500 ml of 50% HNO 3 aqueous solution in a 1 L container, and maintained at 65 to 75 ° C., and stirred for 12 hours. After filtering the aqueous HNO 3 solution, washing and filtration were repeated several times using 5 L of distilled water. The pretreated activated carbon was dried at 110 ° C. for 24 hours to prepare a DC (-NHO 3 ) carrier.

HNO3처리 전, Mg, Ca, Fe, Al, K, Si 함량은 각각 37, 29, 15, 43, 2.9 ppm 및 1.4%이었으며 처리 후, 17, 9.8, 9, 30, 2.5 ppm 및 1.21%로 낮아졌다. HNO3처리시 활성탄이 분쇄되었으며 건조 후, 표면적을 측정한 결과, 65 내지 95 ㎡/g로 크게 감소하였다.The Mg, Ca, Fe, Al, K and Si contents were 37, 29, 15, 43, 2.9 ppm and 1.4% before HNO 3 treatment and 17, 9.8, 9, 30, 2.5 ppm and 1.21% after treatment. Lowered. Activated charcoal was pulverized upon HNO 3 treatment, and after drying, the surface area was measured to be significantly reduced to 65 to 95 m 2 / g.

비교예 1에서와 같은 방법으로 Pd를 침전흡착 담지시켜 Pd/DC(-HNO3) 촉매를 제조하였다. Pd 담지 전후의 금속 성분 함량 차이는 나타나지 않았다.Pd was precipitated and adsorbed and supported in the same manner as in Comparative Example 1 to prepare a Pd / DC (-HNO 3 ) catalyst. There was no difference in the content of metal components before and after Pd loading.

비교예 3Comparative Example 3

Pd/KC 촉매 제조Pd / KC Catalyst Preparation

알칼리 및 산으로 처리하지 않은 쿠라라이 케미칼 사의 활성탄 (32 내지 60 메시, 이하 KC로 표기)를 담체로 사용한 것 이외에는 비교예 1과 같은 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Comparative Example 1 except that Kuraray Chemical's activated carbon (32 to 60 mesh, hereinafter referred to as KC) which was not treated with alkali and acid was used as a carrier.

촉매 제조 전, KC 활성탄의 비표면적은 990 ㎡/g이었으며, 활성탄에 포함된 Mg, Ca, Fe, Al, K, Si 분석 결과는 각각 3, 12, 2, 2.6, 14, 73 ppm으로 DC 활성탄 보다 비교적 불순물 금속 성분 함량이 낮았다. 또한, Pd 담지 전후, 금속 성분 함량의 변화는 나타나지 않았다.Before preparation of the catalyst, the specific surface area of KC activated carbon was 990 m 2 / g, and the Mg, Ca, Fe, Al, K, Si analysis results of activated carbon were 3, 12, 2, 2.6, 14, 73 ppm, respectively. More relatively, the impurity metal component content was low. In addition, there was no change in the metal component content before and after Pd loading.

비교예 4Comparative Example 4

Pd/KC (-HNOPd / KC (-HNO 33 ) 제조 -HNO) Manufacture -HNO 33 전처리한 KC 사용Use pretreated KC

KC (쿠라라이 케미칼 사의 활성탄 32 내지 60 메시)을 비교예 2에서와 같이 질산으로 처리한 후, Pd/C 촉매를 제조하였다.KC (32 to 60 mesh of activated carbon from Kuraray Chemical) was treated with nitric acid as in Comparative Example 2, and then a Pd / C catalyst was prepared.

HNO3전처리 후, 활성탄에 포함된 Mg, Ca, Fe의 양은 각각 3, 8, 2 ppm으로전처리 후에도 크게 차이가 없었다. 비교예 2의 DC (-HNO3) 제조에서와 같이 활성탄이 분쇄되었으며 비표면적은 100 ㎡/g 이하로 크게 감소하였다.After HNO 3 pretreatment, the amounts of Mg, Ca and Fe contained in activated carbon were 3, 8, and 2 ppm, respectively, which were not significantly different after pretreatment. As in the preparation of DC (-HNO 3 ) of Comparative Example 2, activated carbon was pulverized and the specific surface area was greatly reduced to 100 m 2 / g or less.

비교예 1에서와 같은 방법으로 Pd를 침전흡착 담지시켜 Pd/KC(-HNO3) 촉매를 제조하였다.Pd was precipitated and adsorbed and supported in the same manner as in Comparative Example 1 to prepare a Pd / KC (-HNO 3 ) catalyst.

비교예 5Comparative Example 5

Pd/KC(-HF) 제조 - HF 전처리한 KC 사용Manufacture of Pd / KC (-HF)-using HF pretreated KC

KC를 HF로 처리한 후, Pd/C 촉매를 제조하였다.After KC was treated with HF, Pd / C catalysts were prepared.

KC 활성탄 50 g을 50% HF 수용액 500 ㎖에 넣고 30 내지 40℃로 유지하며 12 시간 동안 교반시켰다. HF 수용액은 버리고 5 ℓ의 증류수를 사용하여 세척과 여과를 반복한 다음, 110℃에서 24 시간 동안 건조시켜 KC(-HF) 담체를 제조하였다.50 g of KC activated carbon was added to 500 ml of 50% HF aqueous solution, and maintained at 30 to 40 ° C. for 12 hours. The aqueous HF solution was discarded, washed and filtered with 5 L of distilled water, and dried at 110 ° C. for 24 hours to prepare a KC (-HF) carrier.

HF에 의한 처리 전 후, 불순물 금속 Mg, Ca의 함량이 각각 2.7 ppm에서 1.2 ppm, 12 ppm에서 8.0 ppm으로 감소하였으며, Fe는 2 ppm으로 변화가 없었고, Si 함량은 거의 0이 되었다. HF 처리시 활성탄이 일부 분쇄되었으나 비표면적은 처리 전후 990 ㎡/g 및 930 ㎡/g으로 약간 감소하였고 SEM으로 확인한 결과 표면 구조의 차이는 없었다.Before and after treatment with HF, the contents of impurity metals Mg and Ca decreased from 2.7 ppm to 1.2 ppm and 12 ppm to 8.0 ppm, respectively, Fe was unchanged to 2 ppm, and the Si content was almost zero. Activated charcoal was partially crushed during HF treatment, but the specific surface area decreased slightly before and after treatment to 990 m 2 / g and 930 m 2 / g, and SEM showed no difference in surface structure.

비교예 1에서와 같이 Pd를 침전흡착 담지시켜 Pd/KC(-HF) 촉매를 제조하였다.As in Comparative Example 1, Pd was precipitated and adsorbed to prepare a Pd / KC (-HF) catalyst.

비교예 6Comparative Example 6

Pd/KC (-NaOH) 제조 - NaOH 전처리한 KC 사용Manufacture of Pd / KC (-NaOH)-using NaOH pretreated KC

KC 활성탄 150 g을 3 ℓ 용기의 0.5몰 농도 NaOH 수용액 2 ℓ에 넣고 65 내지 75℃를 유지하며 2 시간 동안 교반시켰다. 남은 NaOH 수용액을 버리고 위의 과정을 3회 반복하였다. 알칼리 처리된 활성탄을 5 ℓ의 증류수를 사용하여 여러 차례 세척, 여과를 반복한 다음, 110℃에서 24 시간 동안 건조하여 KC(-NaOH) 담체를 제조하였다.150 g of KC activated carbon was added to 2 L of a 0.5 molar NaOH aqueous solution in a 3 L container and stirred for 2 hours while maintaining 65 to 75 ° C. The remaining NaOH aqueous solution was discarded and the above procedure was repeated three times. Alkaline treated activated carbon was washed several times with 5 L of distilled water, filtered and then dried at 110 ° C. for 24 hours to prepare a KC (-NaOH) carrier.

NaOH 처리에 따른 불순 금속 성분의 함량 변화는 Mg 성분이 3 ppm에서 2.7 ppm으로, Si 성분이 73 ppm에서 11 ppm으로 K 성분이 14 ppm에서 5.6 ppm으로 감소하였으며, Ca 및 Fe의 함량은 12 ppm과 2 ppm으로 변화가 없었다. 비표면적은 990 ㎡/g에서 1090 ㎡/g으로 약간 증가하였으나 표면의 변화는 없었다.Changes in the contents of impurity metals with NaOH treatment decreased from 3 ppm to 2.7 ppm in Mg, from 73 ppm to 11 ppm in Si, and from 14 ppm to 5.6 ppm in K and 12 ppm in Ca and Fe. And no change to 2 ppm. The specific surface area slightly increased from 990 m 2 / g to 1090 m 2 / g, but there was no surface change.

촉매 담지 방법은 비교예 1에서와 같이 Pd를 침전 흡착 담지 방법을 사용하여 Pd/KC(-NaOH) 촉매를 제조하였다.In the catalyst supporting method, Pd / KC (-NaOH) catalyst was prepared using Pd precipitation adsorption supporting method as in Comparative Example 1.

비교예 7Comparative Example 7

Pd/KC(-NaOH-HCl) 제조 - NaOH 및 HCl 전처리한 KC 사용Preparation of Pd / KC (-NaOH-HCl)-using KOH pretreated with NaOH and HCl

비교예 6에서 NaOH로 처리한 KC(-NaOH)를 HCl로 재차 처리한 후, Pd를 담지시켜 Pd/C 촉매를 제조하였다.In Comparative Example 6, KC (-NaOH) treated with NaOH was treated again with HCl, and Pd was supported to prepare a Pd / C catalyst.

알칼리 처리한 활성탄 50 g을 37% HCl 수용액 500 ㎖에 넣고 65 내지 75℃를 유지하며 12 시간 동안 교반시켰다. HCl 수용액은 버리고 5 ℓ의 증류수를 사용하여 세척과 여과를 반복한 다음, 110℃에서 24 시간 동안 건조하여 KC(-NaOH-HCl) 담체를 제조하였다.50 g of alkali-treated activated carbon was added to 500 ml of 37% HCl aqueous solution, and the mixture was stirred for 12 hours while maintaining 65 to 75 ° C. Aqueous solution of HCl was discarded and washed with 5 L of distilled water and filtered, and then dried at 110 ° C. for 24 hours to prepare KC (-NaOH-HCl) carrier.

NaOH 및 HCl 처리 후, 불순 금속 Mg, Ca의 함량이 각각 2.7 ppm에서 2 ppm, 12 ppm에서 7.8 ppm으로 감소되었다. 활성탄의 일부가 분쇄되었으나 비표면적은 HCl 재처리 전후, 1090 ㎡/g 및 950 ㎡/g으로 약간 감소하였다.After NaOH and HCl treatment, the contents of impurity metals Mg and Ca were reduced from 2.7 ppm to 2 ppm and from 12 ppm to 7.8 ppm, respectively. Some of the activated carbon was crushed but the specific surface area decreased slightly to 1090 m 2 / g and 950 m 2 / g before and after HCl reprocessing.

비교예 1에서와 같이 Pd를 침전흡착 담지시켜 Pd/KC(-NaOH-HCl) 촉매를 제조하였다.As in Comparative Example 1, Pd was precipitated and adsorbed to prepare a Pd / KC (-NaOH-HCl) catalyst.

실시예 1Example 1

Pd/KC(-NaOH-HF) 제조 - NaOH 및 HF 전처리한 KC 사용Manufacture of Pd / KC (-NaOH-HF)-using NaOH and HF pretreated KC

비교예 6에서 NaOH로 처리한 KC(-NaOH)를 HF로 재차 처리한 후, Pd를 담지시켜 Pd/C 촉매를 제조하였다.In Comparative Example 6, KC (-NaOH) treated with NaOH was treated again with HF, and then Pd was supported to prepare a Pd / C catalyst.

알칼리 처리한 활성탄 50 g을 50% HF 수용액 500 ㎖에 넣고 30 내지 40℃를 유지하며 12 시간 동안 교반시켰다. HF 수용액은 버리고 5 ℓ의 증류수를 사용하여 세척과 여과를 반복한 다음, 110℃에서 24 시간 동안 건조하여 KC(-NaOH-HF) 담체를 제조하였다.50 g of alkali-treated activated carbon was placed in 500 ml of 50% HF aqueous solution, and stirred for 12 hours while maintaining at 30 to 40 ° C. The aqueous HF solution was discarded, washed and filtered with 5 L of distilled water, and dried at 110 ° C. for 24 hours to prepare a KC (-NaOH-HF) carrier.

NaOH 및 HF 처리 후, 불순 금속 Mg, Ca의 함량이 각각 2.7 ppm에서 0.62 ppm, 12 ppm에서 2.9 ppm으로 감소되었다. 전처리시 활성탄의 일부가 분쇄되었으며 비표면적은 HF 재처리 전후, 1090 ㎡/g 및 900 ㎡/g으로 약간 감소되었다.After NaOH and HF treatment, the contents of impurity metals Mg and Ca were reduced from 2.7 ppm to 0.62 ppm and 12 ppm to 2.9 ppm, respectively. During pretreatment, some of the activated carbon was crushed and the specific surface area was slightly reduced to 1090 m 2 / g and 900 m 2 / g before and after HF retreatment.

비교예 1에서와 같이 Pd를 침전흡착 담지시켜 Pd/KC(-NaOH-HF) 촉매를 제조하였다.As in Comparative Example 1, Pd was precipitated and adsorbed to prepare a Pd / KC (-NaOH-HF) catalyst.

실시예 2Example 2

Pd/KC(-NaOH-HF-HCl) 제조 - NaOH/HF/HCl 전처리한 KC 사용Preparation of Pd / KC (-NaOH-HF-HCl)-Using NaOH / HF / HCl pretreated KC

실시예 1에서 NaOH 및 HF로 처리한 KC(-NaOH-HF)를 HCl로 재처리한 후, Pd를담지시켜 Pd/C 촉매를 제조하였다.In Example 1, KC (-NaOH-HF) treated with NaOH and HF was retreated with HCl, and Pd was supported to prepare a Pd / C catalyst.

알칼리 및 강산 (HF) 처리한 활성탄을 비교예 7에서와 같이 HCl 수용액으로 처리하여 KC(-NaOH-HF-HCl)를 제조하였다. 전처리한 담체에 비교예 1에서와 같이 Pd를 침전 흡착 담지시켜 Pd/KC(-NaOH-HF-HCl) 촉매를 제조하였다. HCl 재처리 전후, 불순 금속의 함량 및 비표면적의 변화는 거의 없었다.Alkali and strong acid (HF) treated activated carbon was treated with aqueous HCl solution as in Comparative Example 7 to prepare KC (-NaOH-HF-HCl). Pd was precipitated and supported on the pretreated carrier as in Comparative Example 1 to prepare a Pd / KC (-NaOH-HF-HCl) catalyst. There was little change in the content of impurity metals and specific surface area before and after HCl retreatment.

실시예 3Example 3

Pd/KC(-NaOH-HCl-HF) 제조 - NaOH-HCl-HF 전처리한 KC 사용Preparation of Pd / KC (-NaOH-HCl-HF)-Using NaOH-HCl-HF pretreated KC

비교예 7에서 NaOH 및 HCl로 처리한 KC(-NaOH-HCl)를 HF로 재처리한 후, Pd를 담지시켜 Pd/C 촉매를 제조하였다.In Comparative Example 7, KC (-NaOH-HCl) treated with NaOH and HCl was retreated with HF, and Pd was supported to prepare a Pd / C catalyst.

알칼리 및 강산 (HCl) 처리한 활성탄을 실시예 1에서와 같이 HF 수용액으로 처리하여 KC(-NaOH-HCl-HF)를 제조하였다. 전처리한 담체에 비교예 1에서와 같이 Pd를 침전 흡착 담지시켜 Pd/KC(-NaOH-HCl-HF) 촉매를 제조하였다. HF 재처리 후, 불순 금속 Mg, Ca의 함량은 1 ppm 및 2 ppm 이하로 약간 감소하였고 비표면적의 변화는 거의 없었다.Activated carbon treated with alkali and strong acid (HCl) was treated with aqueous HF solution as in Example 1 to prepare KC (-NaOH-HCl-HF). Pd was precipitated and supported on the pretreated carrier as in Comparative Example 1 to prepare a Pd / KC (-NaOH-HCl-HF) catalyst. After HF retreatment, the contents of impurity metals Mg and Ca were slightly decreased below 1 ppm and 2 ppm and there was little change in specific surface area.

실시예 4Example 4

Pd/KC(-NaOH-HCl-HF)-I 제조 - NaOH-HCl-HF 전처리한 KC 사용Preparation of Pd / KC (-NaOH-HCl-HF) -I-Using NaOH-HCl-HF pretreated KC

실시예 3에서와 같은 방법으로 담체를 제조한 후, Pd 담지 방법으로 침전 흡착 방법을 사용하지 않고 통상적인 함침법 (PdCl2수용액을 담체에 첨가한 후, 감압 증발, 건조시키는 방법)을 사용하였다. Pd를 함침담지시킨 후, 110℃에서 12 시간 건조시켜 2 중량%의 Pd가 담지된 Pd/KC(-NaOH-HCl-HF)-I 촉매를 제조하였다.After preparing the carrier in the same manner as in Example 3, a conventional impregnation method (a method of adding an aqueous solution of PdCl 2 to the carrier, followed by evaporation under reduced pressure and drying) was used without using the precipitation adsorption method as a Pd supporting method. . After impregnating and supporting Pd, it was dried at 110 ° C for 12 hours to prepare a Pd / KC (-NaOH-HCl-HF) -I catalyst having 2% by weight of Pd.

담체 및 촉매의 비표면적 측정은 표면측정기기 (Germini 2375, Version 4.01)를 사용하였다. 강한 질산 (50% 이상)으로 활성탄을 전처리할 경우 활성탄의 분쇄가 일어나고 표면적이 급격히 감소하는 현상이 발견되었으나 35%의 HCl이나 50%의 HF 수용액을 사용할 경우, 활성탄 분쇄가 매우 적었다. 활성탄의 표면적이 1000 ㎡/g으로 매우 넓고 측정 오차가 ±50 ㎡/g 정도로 비교적 커서 비표면적 변화를 정확히 판단하기는 어려우나 HCl 및 HF 처리시 표면적 감소는 적었다. 또한, NaOH 처리 및 HCl, HF 전처리시 활성탄의 기공 구조 변화는 크지 않은 것으로 판단된다. 활성탄에 존재하는 금속 성분 함량은 알칼리 처리시에는 크게 변화가 없으나 강산 (HNO3, HF)으로 처리하였을 때에는 Mg, Ca, Fe 등이 현격히 감소하였음을 확인하였다. 특히, HF를 사용하면 HCl이나 HNO3을 사용할 때 보다 Si를 포함한 불순물 금속 성분을 효율적으로 제거할 수 있음을 확인하였다.The specific surface area of the carrier and catalyst was measured using a surface measuring instrument (Germini 2375, Version 4.01). The pretreatment of activated carbon with strong nitric acid (50% or more) was found to cause pulverization of activated carbon and a sharp decrease in surface area. However, the use of 35% HCl or 50% aqueous HF solution resulted in very little pulverization of activated carbon. Although the surface area of activated carbon was very large (1000 m 2 / g) and the measurement error was relatively ± 50 m 2 / g, it was difficult to accurately determine the change of specific surface area, but the surface area reduction was small in HCl and HF treatment. In addition, the pore structure change of activated carbon during NaOH treatment and HCl and HF pretreatment is not significant. Metal content in activated carbon was not significantly changed during alkali treatment, but it was confirmed that Mg, Ca, Fe, etc. were significantly reduced when treated with strong acid (HNO 3 , HF). In particular, it was confirmed that the use of HF can remove the impurity metal components including Si more efficiently than when using HCl or HNO 3 .

반응 실험 1Reaction Experiment 1

CFC-12의 수소화 반응 기본 실험Basic Experiment of Hydrogenation of CFC-12

여러 가지 촉매 제조 방법으로 제조된 촉매를 사용하여 수소화 반응을 실시하였다. 반응 실험은 크기가 1/2 인치 (내경 0.99 ㎜)이고, 길이가 30 ㎝인 인코넬 (Inconel-600) 튜브로 제작된 전형적인 고정층 촉매 반응기를 사용하였다. 0.5 g의 촉매를 반응기에 넣고, 반응기 안에서 20% 수소를 함유한 질소 가스를 40 cc/분의 유량으로 투입하며 300℃에서 12 시간 동안 Pd/C 촉매를 수소화반응에 적합하도록 환원처리하였다. 반응 원료인 CFC-12와 수소 그리고 희석제인 질소의 유량은 질량 유량 조절기 (mass flow controller)를 사용하여 각각 10, 4 그리고 6 cc/분으로 공급하며, 상압 250℃의 반응 조건에서 CFC-12와 수소화 반응을 수행하였다. 반응 생성물 중 부산물로서 생성되는 HF와 HCl은 NaOH 수용액 트랩을 통과시켜 중화시키고 실리카겔 (silica gel)이 채워진 건조기를 거쳐 미량의 수분을 제거한 후 반응 생성물을 분석하였다. 모세관 (크롬팩 (Chrompack) 사의 Poraplot Q)이 부착된 기체 크로마토그래피 (HP-5890 시리즈 II Plus)를 사용하여 온-라인으로 분석하였으며, 동일한 컬럼이 부착된 GC/MS (GC: HP-5890, MS 검색기: 5971A)를 사용하여 성분을 확인하였다.The hydrogenation reaction was carried out using catalysts prepared by various catalyst preparation methods. The reaction experiments used a typical fixed bed catalytic reactor made of Inconel-600 tubes of 1/2 inch (internal diameter 0.99 mm) and 30 cm in length. 0.5 g of catalyst was placed in a reactor, nitrogen gas containing 20% hydrogen was introduced at a flow rate of 40 cc / min, and the Pd / C catalyst was reduced for 300 hours at 300 ° C. to be suitable for hydrogenation. The flow rates of CFC-12, hydrogen, and nitrogen as diluent are supplied at 10, 4, and 6 cc / min using mass flow controller, respectively. Hydrogenation reaction was carried out. HF and HCl produced as by-products in the reaction product were neutralized by passing NaOH aqueous solution trap, and the reaction product was analyzed after removing trace amount of water through a dryer filled with silica gel. On-line analysis was carried out using gas chromatography (HP-5890 series II Plus) with capillary (Poraplot Q from Chrompack) and GC / MS (GC: HP-5890, with the same column attached). The component was confirmed using MS searcher: 5971A).

40 시간 반응 후, CFC-12의 전환율과 주요 성분의 선택도를 비교하여 촉매의 활성을 비교하였다. 여러 촉매에 따른 반응 전환율과 생성물 (CFC-12 제외)의 분포는 표 1과 같다.After 40 hours of reaction, the activity of the catalyst was compared by comparing the conversion of CFC-12 with the selectivity of the main components. The reaction conversion and distribution of products (except CFC-12) for different catalysts are shown in Table 1.

표 1에서 보는 바와 같이 미량 불순 금속이 반응에 영향을 미치는 것을 확인할 수 있으나 금속 성분의 함량이 비슷한 경우에도 생성물에서 탈염소수소화물질인 HFC-32의 선택도가 차이가 있음을 알 수 있다. 즉, 미량 성분의 함량 뿐만 아니라 전처리 방법과 순서에 따라 촉매 표면의 성질이 변화하여 반응 활성에 영향을 미치는 것으로 판단되었다.As shown in Table 1, it can be seen that the trace impurity metal affects the reaction, but even when the metal content is similar, the selectivity of HFC-32, which is a dehydrogenated substance, in the product is different. That is, it was determined that the properties of the catalyst surface were changed according to the pretreatment method and the order as well as the content of the minor component, which influenced the reaction activity.

(비교)실시예Comparative Example 전환율 (%)% Conversion CFC-12를 제외한 생성물 분포 (%)Product distribution (%) except CFC-12 HFC-32HFC-32 CH4 CH 4 C2H6 C 2 H 6 기타Etc 비교예1Comparative Example 1 3.23.2 38.938.9 21.621.6 12.212.2 27.327.3 비교예2Comparative Example 2 4.24.2 55.555.5 28.728.7 8.08.0 7.87.8 비교예3Comparative Example 3 7.47.4 42.242.2 22.322.3 13.413.4 22.122.1 비교예4Comparative Example 4 8.68.6 56.356.3 26.526.5 11.211.2 6.06.0 비교예5Comparative Example 5 16.616.6 59.059.0 18.418.4 9.69.6 13.013.0 비교예6Comparative Example 6 7.77.7 20.520.5 43.343.3 17.617.6 18.618.6 비교예7Comparative Example 7 15.15. 19.419.4 47.147.1 20.520.5 13.013.0 실시예1Example 1 18.718.7 68.568.5 15.215.2 3.03.0 13.313.3 실시예2Example 2 17.817.8 66.866.8 14.714.7 7.47.4 11.111.1 실시예3Example 3 20.420.4 72.272.2 12.412.4 6.86.8 8.68.6 실시예4Example 4 19.819.8 71.871.8 12.712.7 6.96.9 8.68.6

반응 실험 2Reaction experiment 2

활성 비교 실험Active comparison experiment

반응 실험 1의 기본 실험에서 우수한 촉매로 판단되는 Pd/KC(-HF), Pd/KC(-NaOH-HF), Pd/KC(-NaOH-HF-HCl), Pd/KC(-NaOH-HCl-HF), Pd/KC(-NaOH-HCl-HF)-I 촉매의 비활성화를 비교하였다. 반응 실험 1의 실험 조건에서 200 시간 후의 반응 전환율과 생성물 (CFC-12 제외)의 분포는 표 2와 같다. Pd/KC(-NaOH-HF-HCl) 촉매를 사용한 경우, 반응 전환율이 약 35% 감소하였고, Pd/KC(-HF) 촉매의 경우 13% 감소하였으나 Pd/KC(-NaOH-HF), Pd/KC(-NaOH-HCl-HF), Pd/KC(-NaOH-HCl-HF)-I 촉매의 경우 반응 활성 감소가 약 5% 이내로 활성 변화가 거의 없었다.Pd / KC (-HF), Pd / KC (-NaOH-HF), Pd / KC (-NaOH-HF-HCl), Pd / KC (-NaOH-HCl) -HF), Pd / KC (-NaOH-HCl-HF) -I catalyst inactivation was compared. The reaction conversion and the distribution of products (except CFC-12) after 200 hours under the experimental conditions of Reaction Experiment 1 are shown in Table 2. When Pd / KC (-NaOH-HF-HCl) catalyst was used, the reaction conversion was reduced by about 35% and Pd / KC (-HF) catalyst was decreased by 13%, but Pd / KC (-NaOH-HF), Pd For / KC (-NaOH-HCl-HF) and Pd / KC (-NaOH-HCl-HF) -I catalysts, there was little change in activity, with the decrease in reaction activity within about 5%.

담체인 활성탄을 알칼리 (NaOH) 및 산 (HCl, HF) 처리시, HF로 최종 처리하면, 탈할로겐 수소화반응에서 문제점 중 하나인 완전 탈할로겐화에 의해 HF가 생성됨으로써 촉매의 비활성화가 촉진되는 것을 효과적으로 억제할 수 있음을 알 수 있었다.When activated carbon, which is a carrier, is treated with alkali (NaOH) and acid (HCl, HF), the final treatment with HF effectively promotes deactivation of the catalyst by generating HF by complete dehalogenation, which is one of the problems in dehalogenation hydrogenation. It was found that it can be suppressed.

촉매 제조 방법Catalyst preparation method 40 시간 반응 후After 40 hours reaction 200 시간 반응 후After 200 hours reaction 반응 전환율 (%)Reaction Conversion Rate (%) HFC-32 조성 (%)HFC-32 Composition (%) 반응 전환율 (%)Reaction Conversion Rate (%) HFC-32 조성 (%)HFC-32 Composition (%) 비교예5Comparative Example 5 16.616.6 59.059.0 14.514.5 61.261.2 실시예1Example 1 18.718.7 68.568.5 17.617.6 69.869.8 실시예2Example 2 7.87.8 66.866.8 11.711.7 67.067.0 실시예3Example 3 20.420.4 72.272.2 19.619.6 73.573.5 실시예4Example 4 19.819.8 71.871.8 19.419.4 69.869.8

CFC-12의 수소화반응에서 주생성물인 HFC-32의 선택도가 높아지면, 메탄이나 에탄과 같은 탄화수소의 생성이 억제되고, 반응의 부산물로서 생성되는 불산 (HF)의 생성이 감소된다. 이에 따라 불산에 의한 Pd 촉매의 소결 (sintering)과 이에 따른 촉매의 비활성화도 감소할 것으로 판단된다. 또한 담체를 불산으로 전처리하여 비활성화를 억제시킬 수 있다.The higher selectivity of HFC-32, the main product in the hydrogenation of CFC-12, suppresses the production of hydrocarbons such as methane and ethane, and reduces the production of hydrofluoric acid (HF) produced as a byproduct of the reaction. Accordingly, the sintering of the Pd catalyst by hydrofluoric acid and the deactivation of the catalyst may be reduced. The carrier can also be pretreated with hydrofluoric acid to inhibit inactivation.

따라서, 본 발명에 의한, 알칼리 (NaOH 수용액) 및 강산 (불산 또는 염산 및 불산)의 처리 방법으로 활성탄을 전처리하고 이를 사용하여 '팔라듐 담지 활성탄 촉매' (Pd/C 촉매)를 제조하여 CFC-12와 같은 염화불화탄소 (CFC)의 수소화반응에 사용하면 HFC-32와 같은 탈염소수소화 생성물의 선택도를 크게 높일 수 있으며, Pd 촉매의 소결에 따른 촉매의 비활성화를 억제시킬 수 있다.Therefore, according to the present invention, pretreatment of activated carbon by the treatment method of alkali (NaOH aqueous solution) and strong acid (fluoric acid or hydrochloric acid and hydrofluoric acid) and using this to prepare a 'palladium supported activated carbon catalyst' (Pd / C catalyst) to produce CFC-12 When used in the hydrogenation of chlorofluorocarbons (CFC) such as can significantly increase the selectivity of dehydrochlorination products such as HFC-32, it is possible to suppress the deactivation of the catalyst due to the sintering of the Pd catalyst.

Claims (7)

활성탄(C)를 수산화나트륨 수용액으로 알칼리 처리하고, 상기 알칼리 처리한 활성탄(C)를 불산(HF) 용액으로 산 처리함으로써, 존재하는 불순물을 제거한 활성탄(C)에 담지된 팔라듐(Pd)을 포함하는, 염화불화탄소(CFC)의 접촉 수소화 반응용 Pd/C 촉매.Alkaline treatment of activated carbon (C) with an aqueous solution of sodium hydroxide and acid treatment of the alkali-treated activated carbon (C) with a hydrofluoric acid (HF) solution include palladium (Pd) supported on activated carbon (C) from which impurities are removed. Pd / C catalyst for catalytic hydrogenation reaction of chlorofluorocarbon (CFC). 제 1항에 있어서, 상기 활성탄은 상기 산 처리 전 또는 후에 염산 용액으로 추가 처리한 것인 Pd/C 촉매.The Pd / C catalyst according to claim 1, wherein the activated carbon is further treated with a hydrochloric acid solution before or after the acid treatment. (a) 활성탄(C)를 수산화나트륨 수용액으로 알칼리 처리하는 단계;(a) alkali treating activated carbon (C) with an aqueous sodium hydroxide solution; (b) 상기 알칼리 처리한 활성탄(C)를 불산(HF) 용액으로 산 처리하는 단계; 및(b) acid treating the alkali treated activated carbon (C) with a hydrofluoric acid (HF) solution; And (c) 상기 산 처리한 활성탄에 팔라듐(Pd)을 담지시키는 단계(c) supporting palladium (Pd) on the acid treated activated carbon; 를 포함하는, 염화불화탄소(CFC)의 접촉 수소화 반응용 Pd/C 촉매의 제조 방법.A method for producing a Pd / C catalyst for catalytic hydrogenation of chlorofluorocarbon (CFC) comprising a. 제3항에 있어서, 상기 알칼리 처리한 활성탄을, 불산 용액으로 처리하기 전에, 염산 용액으로 처리하는 단계를 더 포함하는 방법.4. The method of claim 3, further comprising treating the alkali treated activated carbon with a hydrochloric acid solution before treating with hydrofluoric acid solution. 제3항에 있어서, 상기 불산 용액으로 처리한 활성탄을, 팔라듐을 담지시키기 전에, 염산 용액으로 처리하는 단계를 더 포함하는 방법.The method of claim 3, further comprising treating the activated carbon treated with the hydrofluoric acid solution with a hydrochloric acid solution before supporting palladium. 제3항 내지 제5항 중 어느 한 항에 있어서, 상기 팔라듐은 침전 흡착법 또는 함침법에 따라 상기 처리된 활성탄에 담지시키는 방법.The method according to any one of claims 3 to 5, wherein the palladium is supported on the treated activated carbon by precipitation adsorption or impregnation. 제1항 기재의 촉매를 사용하는 것을 특징으로 하는, 염화불화탄소(CFC)의 접촉 수소화에 의한 불화탄화수소(HFC)의 제조 방법.A method for producing hydrogen fluoride hydrocarbon (HFC) by catalytic hydrogenation of chlorofluorocarbon (CFC), comprising using the catalyst according to claim 1.
KR1019990032851A 1999-08-11 1999-08-11 Paladium on Activated Carbon Catalysts and Preparation Methods thereof, and Method for Preparing Fluorohydrocarbon from Chlorofluorocarbon by Using the Same KR100346017B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990032851A KR100346017B1 (en) 1999-08-11 1999-08-11 Paladium on Activated Carbon Catalysts and Preparation Methods thereof, and Method for Preparing Fluorohydrocarbon from Chlorofluorocarbon by Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990032851A KR100346017B1 (en) 1999-08-11 1999-08-11 Paladium on Activated Carbon Catalysts and Preparation Methods thereof, and Method for Preparing Fluorohydrocarbon from Chlorofluorocarbon by Using the Same

Publications (2)

Publication Number Publication Date
KR20010017372A KR20010017372A (en) 2001-03-05
KR100346017B1 true KR100346017B1 (en) 2002-08-01

Family

ID=19606771

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990032851A KR100346017B1 (en) 1999-08-11 1999-08-11 Paladium on Activated Carbon Catalysts and Preparation Methods thereof, and Method for Preparing Fluorohydrocarbon from Chlorofluorocarbon by Using the Same

Country Status (1)

Country Link
KR (1) KR100346017B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195140A (en) * 2015-09-17 2015-12-30 浙江工业大学 Palladium/alkali metal compound supported catalyst and preparation method and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101703307B1 (en) * 2016-06-29 2017-02-06 코웨이 주식회사 Normal operation checking method for an switching valve
KR20180072422A (en) 2016-12-21 2018-06-29 희성금속 주식회사 PREPARATION METHOD OF Pd/C CATALYST AND Pd/C CATALYST PREPARATEDUSING THE METHOD
KR20190070202A (en) 2017-12-12 2019-06-20 엘티메탈 주식회사 PREPARATION METHOD OF Pd/C CATALYST AND Pd/C CATALYST PREPARATED USING THE METHOD
CN108187670B (en) * 2017-12-27 2020-10-30 赣南师范大学 Palladium catalyst loaded with hydroxyl activated carbon and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195140A (en) * 2015-09-17 2015-12-30 浙江工业大学 Palladium/alkali metal compound supported catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
KR20010017372A (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US5447896A (en) Hydrodehalogenation catalysts and their preparation and use
KR101435407B1 (en) High pressure catalyst activation method and catalyst produced thereby
AU624480B2 (en) Purification of saturated halocarbons
EP0968161B1 (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
KR970011700B1 (en) Hydrodehalogenation of 1,1,1,2-tetrafluoro chloroethane in the presence of supported pd
EP3109225A1 (en) Method for purifying fluid that includes trifluoroethylene, and method for producing trifluoroethylene
JP4121745B2 (en) Removal of (hydro) haloalkene impurities from product streams
US4980324A (en) Regeneration or activation of noble metal catalysts using fluorohalocarbons or fluorohalohydrocarbons
US5545774A (en) Process for the manufacture of 1,1,1,3,3,3-hexafluoropropane
KR100346017B1 (en) Paladium on Activated Carbon Catalysts and Preparation Methods thereof, and Method for Preparing Fluorohydrocarbon from Chlorofluorocarbon by Using the Same
US5444171A (en) Method for purification of 1,1,1,2-tetrafluoroethane
JPH11226409A (en) Mixed fluorination catalyst
JP3862316B2 (en) Method for purifying pentafluoroethane
KR100365582B1 (en) Pretreatment Method of Active Carbon for Preparation of Pd/C Catalyst
KR100383216B1 (en) A catalyst and method for producing 1,1-difluoroethane
JP2773390B2 (en) Preparation of pentafluoroethane
KR100433081B1 (en) Process for the hydrogenolysis of chlorofluorocarbons and of chlorofluorohydrocarbons
EP0592711B1 (en) Method for the purification of 1,1,1,2-tetrafluoroethane
EP0796146A1 (en) Hydrogenation catalyst and process
EP0881946B1 (en) Process using a hydrogenation catalyst
WO1993024224A1 (en) Treatment of hydrogenation catalysts
JPH0517379A (en) Production of hydrogen-containing chlorofluorocarbons or hydrogen-containing fluorocarbons
JP4458784B2 (en) Method for producing pentafluoroethane and use thereof
JPH0495037A (en) Purification of 1,1,1,2-tetrafluoroethane
UA65595C2 (en) Supported catalyst and method for producing fluorocarbons

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140109

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140711

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee