KR100343549B1 - A water-dispersive fluoro-polyurethane - Google Patents

A water-dispersive fluoro-polyurethane Download PDF

Info

Publication number
KR100343549B1
KR100343549B1 KR1020000043116A KR20000043116A KR100343549B1 KR 100343549 B1 KR100343549 B1 KR 100343549B1 KR 1020000043116 A KR1020000043116 A KR 1020000043116A KR 20000043116 A KR20000043116 A KR 20000043116A KR 100343549 B1 KR100343549 B1 KR 100343549B1
Authority
KR
South Korea
Prior art keywords
fluorine
water
acrylate
polyurethane
methacrylate
Prior art date
Application number
KR1020000043116A
Other languages
Korean (ko)
Other versions
KR20020009322A (en
Inventor
이수복
김동권
이광원
박인준
김정훈
최영국
이용택
임혜진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020000043116A priority Critical patent/KR100343549B1/en
Publication of KR20020009322A publication Critical patent/KR20020009322A/en
Application granted granted Critical
Publication of KR100343549B1 publication Critical patent/KR100343549B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5003Polyethers having heteroatoms other than oxygen having halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions

Abstract

본 발명은 수분산성 불소계 폴리우레탄에 관한 것으로서, 더욱 상세하게는 불소계 매크로단량체, 디이소시아네이트 및 친수성 디올을 공중합하여 제조되는 불소계 폴리우레탄에 있어서, 상기 불소계 매크로단량체는 다음 화학식 1로 표시되는 과불소알킬기가 함유된 단량체와 불포화 이중결합을 갖는 탄화수소계 공단량체를 중합한 것으로서, 상기 폴리우레탄에 발수성, 발유성 및 방오성 등의 우수한 표면특성을 부여하며, 제조된 폴리우레탄은 부드러운 감촉을 나타내는 수분산성 불소계 폴리우레탄에 관한 것이다. 본 발명의 불소계 폴리우레탄은 물에 대한 용해성 또는 분산성이 우수하므로 섬유, 제지, 건설 산업 등에 코팅제로 유용하게 사용할 수 있고, 분산매로 물을 사용함에 따라 유기용매에 의한 환경오염 문제를 해결할 수 있다.The present invention relates to a water dispersible fluorine-based polyurethane, and more particularly to a fluorine-based polyurethane prepared by copolymerizing a fluorine-based macromonomer, a diisocyanate and a hydrophilic diol, wherein the fluorine-based macromonomer is represented by the following formula (1) Is a polymerized monomer containing an unsaturated double bond with a hydrocarbon-based comonomer, which gives the polyurethane excellent surface properties such as water repellency, oil repellency, and antifouling properties. It relates to a polyurethane. Since the fluorine-based polyurethane of the present invention has excellent solubility or dispersibility in water, it can be usefully used as a coating agent in textiles, paper, construction industry, etc., and water can be solved by using organic solvents as a dispersion medium. .

XCnF2n-(Y)-OCOCR1=CH2 XC n F 2n - (Y) -OCOCR 1 = CH 2

상기 화학식 1에서: Y는 -(CH)2-, -(CH2)m-, -CH2CH(OH)(CH2)m-, 또는 -SO2NR2(CH2)m-이고; R1은 H 또는 -CH3이고; R2는 C1∼ C4의 알킬기이고; X는 H 또는 할로겐 원자이고; m은 2 ∼ 6의 정수이고; n은 3 ∼ 21의 정수를 나타낸다.In Formula 1, Y is-(CH) 2 -,-(CH 2 ) m- , -CH 2 CH (OH) (CH 2 ) m- , or -SO 2 NR 2 (CH 2 ) m- ; R 1 is H or —CH 3 ; R 2 is a C 1 to C 4 alkyl group; X is H or a halogen atom; m is an integer from 2 to 6; n represents the integer of 3-21.

Description

불소계 수분산성 폴리우레탄{A water-dispersive fluoro-polyurethane}Fluorinated water dispersible polyurethane {A water-dispersive fluoro-polyurethane}

본 발명은 불소계 수분산성 폴리우레탄에 관한 것으로서, 더욱 상세하게는 불소계 매크로단량체, 디이소시아네이트 및 친수성 디올로 제조되는 불소계 폴리우레탄에 있어서, 다음 화학식 1로 표시되는 단량체 중에서 선택된 과불소알킬기를 함유하는 단량체와 불포화 이중결합을 갖는 공단량체로 제조된 불소계 매크로단량체; 디이소시아네이트; 그리고 친수성기가 함유된 디올을 공중합함으로써, 방오성, 발수성 및 발유성 등의 표면특성이 우수하고 부드러운 감촉을 나타내는 불소계 폴리우레탄에 관한 것이다. 또한, 본 발명의 불소계 폴리우레탄은 물에 대한 용해성 또는 분산성이 우수하며 섬유, 제지, 건설 산업 등에 코팅제로 유용하게 사용할 수 있고 분산매로 물을 사용함에 따라 유기용매에 의한 환경오염 문제를 해결할 수 있다.The present invention relates to a fluorine-based water-dispersible polyurethane, and more particularly, to a fluorine-based polyurethane made of fluorine-based macromonomer, diisocyanate and hydrophilic diol, a monomer containing a perfluorinated alkyl group selected from monomers represented by the following formula (1) A fluorine-based macromonomer prepared from a comonomer having an unsaturated double bond with; Diisocyanate; In addition, the present invention relates to a fluorine-based polyurethane having excellent surface properties such as antifouling property, water repellency, oil repellency, and the like, by copolymerizing diol containing a hydrophilic group. In addition, the fluorine-based polyurethane of the present invention is excellent in solubility or dispersibility in water, and can be usefully used as a coating agent in textile, paper, construction industry, etc. As water is used as a dispersion medium, it is possible to solve the problem of environmental pollution by organic solvents. have.

화학식 1Formula 1

XCnF2n-(Y)-OCOCR1=CH2 XC n F 2n - (Y) -OCOCR 1 = CH 2

상기 화학식 1에서: Y는 -(CH)2-, -(CH2)m-, -CH2CH(OH)(CH2)m-, 또는 -SO2NR2(CH2)m-이고; R1은 H 또는 CH3이고; R2는 C1∼ C4의 알킬기이고; X는 H 또는 할로겐 원자이고; m은 2 ∼ 6의 정수이고; n은 3 ∼ 21의 정수를 나타낸다.In Formula 1, Y is-(CH) 2 -,-(CH 2 ) m- , -CH 2 CH (OH) (CH 2 ) m- , or -SO 2 NR 2 (CH 2 ) m- ; R 1 is H or CH 3 ; R 2 is a C 1 to C 4 alkyl group; X is H or a halogen atom; m is an integer from 2 to 6; n represents the integer of 3-21.

과불소알킬기가 함유된 단량체와 공중합이 가능한 단량체를 라디칼, 축합 또는 이온중합 등 통상적인 고분자 중합방법으로 제조된 불소계 공중합체는 매우 낮은 저에너지 표면특성을 보유하고 있어 각종 저에너지 표면개질제로서 매우 유용하다고 알려져 있다(フッ素化合物 の 最先端應用技術, 1981, CMC). 이러한 과불소알킬기가 함유된 불소계 공중합체는 발수성, 발유성 및 내오염성 등이 우수하여 섬유, 프라스틱, 고무, 세라믹, 금속 등에 코팅제로 이용할 수 있으나, 기재와의 부착성이 좋지 못하다.Fluorinated copolymers prepared from conventional polymer polymerization methods such as radical, condensation or ion polymerization of monomers copolymerizable with monomers containing perfluoroalkyl groups have very low energy surface properties and are known to be very useful as various low energy surface modifiers. (FMC, 1981, CMC). The perfluoroalkyl group-containing fluorine-based copolymer is excellent in water repellency, oil repellency and fouling resistance and can be used as a coating agent for fibers, plastics, rubber, ceramics, metals, etc., but poor adhesion to the substrate.

과불소알킬기는 탄소에 부착된 불소원자의 공간중첩(steric hindrance)으로 인하여 13개의 탄소가 꼬여진 상태의 분자구조를 갖고, 탄소원자가 불소원자로 보호되는 형태의 구조를 가지게 됨으로써 화학적으로 안정하고, 발수성, 발유성, 이형성 및 표면이동성 등의 우수한 표면특성을 나타낸다. 그러나, 상기 과불소알킬기가 함유된 불소계 공중합체는 과불소알킬기의 화학적 안정성에서 유래되는 난용성 때문에 수용화가 불가능하며 심지어 불화탄소 용매(예, CCl4)에서도 용해가 용이하지 않다. 그리고, 분자구조상 탄소원자간 결합이 유연하지 못하기 때문에 표면개질제로 사용하는 경우 매우 딱딱한 촉감을 부여하게 되어 단독 사용하는 경우에는 불소 화합물 특유의 우수한 표면특성과 부드러운 감촉을 동시에 부여하는데 한계를 지니고 있다.The perfluoroalkyl group is chemically stable and water-repellent because it has a molecular structure in which thirteen carbons are twisted due to the steric hindrance of fluorine atoms attached to the carbon, and a structure in which carbon atoms are protected by fluorine atoms. It has excellent surface properties such as oil repellency, release property and surface mobility. However, the fluorine-based copolymer containing the perfluoroalkyl group is not soluable because of poor solubility derived from the chemical stability of the perfluoroalkyl group, and is not easily dissolved even in a fluorocarbon solvent (eg, CCl 4 ). In addition, since the bond between carbon atoms is inflexible due to its molecular structure, when used as a surface modifier, it gives a very hard touch, and when used alone, it has a limitation in providing excellent surface properties and soft texture unique to fluorine compounds.

이에, 상기한 난용성 및 딱딱한 표면 감촉 등의 문제점을 해결하기 위하여 부드러운 성질을 나타내는 우레탄 구조에 과불소알킬기를 도입하는 방법이 제안되었다. 그 결과, 불소계 중합체를 단독으로 사용할 보다 표면을 부드럽게 할 수 있으며 우수한 밀착성과 내마모성을 지니기 때문에 인공피혁, 섬유가공, 투명방수가공, 광택가공, 자동차용 전착도료, 접착제, 바인더 수지의 개질 등 다양한 산업분야에서 응용되어 발수성, 발유성, 방오성 및 내마찰성 등을 부여할 수 있다.Thus, in order to solve the problems such as poor solubility and hard surface feel, a method of introducing a perfluoroalkyl group into a urethane structure exhibiting soft properties has been proposed. As a result, the surface can be smoother than the fluorine-based polymer alone and has excellent adhesion and abrasion resistance. Therefore, various industries such as artificial leather, textile processing, transparent waterproofing, gloss processing, electrodeposition paint for automobiles, adhesives and binder resins are modified. It can be applied in the field to impart water repellency, oil repellency, antifouling property and friction resistance.

한편, 기존의 표면코팅용 폴리우레탄은 휘발성 유기용제에 용해 혹은 분산된 형태로 사용되어 기계적 재료 혹은 코팅제로 사용하는 경우 작업환경이 매우 불량하고, 유기용제의 유출에 의한 환경오염 문제가 매우 심각하며 사용후 유기 용제 회수가 어려운 문제점을 갖고 있다. 특히, 최근 환경에 대한 관심이 높아짐에 따라 환경규제가 강화되면서 유기용제를 사용하는 폴리우레탄의 경우 그 사용량이 규제되기 때문에 점차 시장에서 퇴조하며 물을 용매로 사용하는 수용성 또는 수분산성 에멀젼형으로 바뀌어져 가고 있다. 수분산성 폴리우레탄은 용제를 사용하지 않거나 최소한의 양만 사용하고, 분산매로 물을 사용하기 때문에 독성과 화재의 위험이 없을 뿐더러 대기 및 수질의 오염도 적기 때문에 수분산성 폴리우레탄의 상업화를 위한 연구개발이 활발히 진행되고 있다.On the other hand, the existing surface coating polyurethane is used in the form of dissolved or dispersed in volatile organic solvents, when used as a mechanical material or coating, the working environment is very poor, and the environmental pollution problem caused by the leakage of organic solvents is very serious Organic solvent recovery after use has a difficult problem. In particular, as environmental concerns have increased in recent years, polyurethanes using organic solvents have been regulated due to increased environmental regulations.They have gradually declined in the market and turned into water-soluble or water-dispersible emulsions that use water as a solvent. It is losing. As water-dispersible polyurethane does not use solvents or uses only a minimum amount of water and uses water as a dispersion medium, there is no danger of toxicity and fire, and there is little pollution of air and water. Therefore, research and development for commercialization of water-dispersible polyurethane is active. It's going on.

이러한 수분산성 폴리우레탄의 물에 대한 수용성 및 분산성을 향상시키기 위하여 분자내에 다량의 친수성 분절(hydrophilic segment) 또는 친수기를 함유시키게 되는데, 이때 사용되는 친수기로 인하여 코팅시 우레탄의 표면자유에너지를 증가시켜 형성된 폴리우레탄 코팅막의 표면물성을 저하시키는 단점이 있었다.In order to improve the water solubility and dispersibility of the water-dispersible polyurethane, it contains a large amount of hydrophilic segments or hydrophilic groups in the molecule. The hydrophilic group used at this time increases the surface free energy of the urethane during coating. There was a disadvantage in reducing the surface properties of the formed polyurethane coating film.

최근, 상기 친수기가 함유된 폴리우레탄의 표면물성을 증가시키기 위한 새로운 시도로서 앞서 설명한 불소화합물이 포함된 수분산성 불소계 폴리우레탄에 대한 연구가 활발히 진행되었다.Recently, studies on water-dispersible fluorine-based polyurethanes containing fluorine compounds described above have been actively conducted as new attempts to increase the surface properties of the hydrophilic-containing polyurethanes.

구체적으로, 다음 화학식 2 ∼ 4로 표시되는 분자량 2000∼4000의 불소기가 함유된 사불화에틸렌옥사이드 계열의 디올을 단량체로 사용하는 수분산성 불소계 폴리우레탄이 제시되었다[tetrafluoroethylene oxide, 상품명 Z-DOL, Ausimont S.p.A., 유럽특허 제273,449호 A1(1987); 제5333,159호 A1(1992); 제689,908호 A1; S. Yang et al., J. Macromol. Sci.-re and Appl., Chem., A30(23), pp. 241∼252 (1993)].Specifically, a water-dispersible fluorine-based polyurethane using a tetrafluoroethylene oxide-based diol containing a fluorine group having a molecular weight of 2000 to 4000 represented by the following Chemical Formulas 2 to 4 as a monomer has been proposed [tetrafluoroethylene oxide, trade name Z-DOL, Ausimont SpA, EP 273,449 A1 (1987); 5333,159 A1 (1992); 689,908 A1; S. Yang et al., J. Macromol. Sci.-re and Appl., Chem., A30 (23), pp. 241 to 252 (1993).

HO-R1-CF2-O-(C2F4O)a-(CF2O)b-CF2-R1-OH HO-R 1 -CF 2 -O- ( C 2 F 4 O) a - (CF 2 O) b -CF 2 -R 1 -OH

HO-R1-CF2-O-(C2F4O)c-(CF2O)d-(C(CF3)FCF2O)e-(C(CF3FO)f-CF2-R1-OHHO-R 1 -CF 2 -O- (C 2 F 4 O) c- (CF 2 O) d- (C (CF 3 ) FCF 2 O) e- (C (CF 3 FO) f -CF 2- R 1 -OH

HO-R1-CF2-O-(C3F6O)g-CF2-R1-OHHO-R 1 -CF 2 -O- (C 3 F 6 O) g -CF 2 -R 1 -OH

상기 화학식 2 ∼ 4에서: R1은 CH3또는 CH2CH3이다.In Chemical Formulas 2 to 4, R 1 is CH 3 or CH 2 CH 3 .

상기 화학식 2 내지 4의 사불화에틸렌옥사이드 계열 디올 단량체를 사용하여 수분산형 폴리우레탄을 합성하여 코팅제로 사용하는 경우에는 저에너지 표면특성이 충분히 발현되지 않는 단점이 있다.When synthesizing a water-dispersed polyurethane using the tetrafluoroethylene tetrafluoride-based diol monomer of Formula 2 to 4 when used as a coating, there is a disadvantage that low energy surface properties are not sufficiently expressed.

이러한 표면특성 불량현상은 크게 두 가지로 설명될 수 있다. 먼저, 고분자를 포함한 고체의 표면특성은 표면 최외각 분자층의 화학적 조성에 좌우되는데, 불소함유 단량체인 사불화에틸렌옥사이드는 분자내에 친수성기인 산소원자를 다량 함유하고 있기 때문에 친수성기가 전혀 없는 과불소화합물을 사용하는 경우에 비하여 저에너지 표면특성이 저하된다. 또한, 최외각 분자층에서 사불화에틸렌옥사이드 중의 산소원자에 의하여 표면자유에너지가 상승하고 그에 따른 불소함유 집합체(segment)의 소수성 불량에 의한 표면이동효과(surface migration effect)가 불량하여 저에너지 표면특성이 저하된다. 상기한 두가지 원인은 서로 동반 상승 혹은 동반 하락효과를 나타내고, 이에 따른 폴리우레탄 내 집합체의 미세한 소수성 차이는 최종제품인 불소함유 수분산성 폴리우레탄의 성능에 큰 영향을 미치게 된다.Such poor surface characteristics can be explained in two ways. First, the surface properties of solids including polymers depend on the chemical composition of the outermost molecular layer. The fluorine-containing monomer tetrafluoride ethylene oxide contains a large amount of oxygen atoms, which are hydrophilic groups, and thus has no hydrophilic compounds. Compared to the case of using the low energy surface properties are lowered. In addition, surface free energy is increased by oxygen atoms in ethylene tetrafluoride in the outermost molecular layer, and the surface migration effect due to hydrophobic defect of fluorine-containing aggregates is poor, resulting in low energy surface characteristics. Degrades. The two causes are accompanied by a mutually rising or falling effect with each other, the minute hydrophobic difference of the aggregate in the polyurethane has a great effect on the performance of the final product fluorine-containing water-dispersible polyurethane.

본 발명의 발명자들은 사불화에틸렌옥사이드 계열이 아닌 또 다른 계열의 불소계 단량체를 사용하여 저에너지 표면특성과 수분산 안정성의 최적 조건을 찾기위하여, 합성, 수분산성, 표면특성 및 표면개질효과에 관한 연구를 수년간 집중적으로 수행하였다. 그 결과, 과불소알킬기가 함유된 단량체와 불포화 이중결합을 갖는 공단량체를 사용하여 축합중합이 가능한 불소계 매크로단량체를 제조하였다. 불소계 매크로단량체는 디이소시아네이트 및 친수성 디올과 공중합하여 수용액에 안정하게 분산된 불소계 폴리우레탄을 제조함으로써 본 발명을 완성하게 되었다. 상기 제조된 본 발명의 불소계 폴리우레탄은 기존의 불소계 폴리우레탄에 비해 양호한 수분산성을 나타내고 도막형성시 우수한 표면특성을 갖게 되므로 섬유, 제지, 건설 산업 등에 코팅제로 사용시 발수성, 발유성, 내오염성 등의 탁월한 기능성을 나타내고, 유기용매에 의한 오염을 방지할 수 있어 산업적으로 유용하며 고부가가치 창출이 기대된다.The inventors of the present invention, in order to find the optimal conditions of low-energy surface properties and water dispersion stability using another series of fluorine-based monomers other than ethylene tetrafluoride series, studies on synthesis, water dispersibility, surface properties and surface modification effects It has been intensive for years. As a result, a fluorinated macromonomer capable of condensation polymerization was prepared using a comonomer having an unsaturated double bond with a monomer containing a perfluorinated alkyl group. The fluorine-based macromonomer has completed the present invention by producing a fluorine-based polyurethane stably dispersed in an aqueous solution by copolymerization with diisocyanate and hydrophilic diol. Since the fluorine-based polyurethane of the present invention has better water dispersibility than the conventional fluorine-based polyurethane and has excellent surface properties when forming a coating film, when used as a coating agent in textile, paper, construction industry, water repellency, oil repellency, fouling resistance, etc. It shows excellent functionality and can prevent contamination by organic solvents, which is industrially useful and is expected to create high added value.

따라서, 본 발명은 저에너지 표면특성이 우수하고 수분산이 가능한 불소계 폴리우레탄 및 합성방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a fluorine-based polyurethane and a synthesis method which are excellent in low energy surface properties and capable of water dispersion.

본 발명은 과불소알킬기가 함유된 불소계 매크로단량체, 디이소시아네이트 및 친수성 디올을 공중합하여 제조된 불소계 폴리우레탄에 있어서,The present invention is a fluorine-based polyurethane prepared by copolymerizing a fluorine-based macromonomer, diisocyanate and hydrophilic diol containing a perfluoroalkyl group,

상기한 불소계 매크로단량체로는 화학식 1로 표시되는 과불소알킬기가 함유된 단량체와 불포화 이중결합을 갖는 공단량체를 사용하여 제조된 축합중합이 가능한 매크로단량체와 친수성 단량체의 축합중합에 의해 제조된 수분산성 불소계 폴리우레탄을 그 특징으로 한다.As the fluorine-based macromonomer, water dispersibility prepared by condensation polymerization of a macromonomer capable of condensation polymerization and a hydrophilic monomer prepared using a comonomer having an unsaturated double bond with a monomer containing a perfluoroalkyl group represented by Formula 1 It is characterized by a fluorine-based polyurethane.

화학식 1Formula 1

XCnF2n-(Y)-OCOCR1=CH2 XC n F 2n - (Y) -OCOCR 1 = CH 2

상기 화학식 1에서: Y는 -(CH)2-,-(CH2)m-, -CH2CH(OH)(CH2)m-, 또는 -SO2NR2(CH2)m-이고; R1은 H 또는 -CH3이고; R2는 C1∼ C4의 알킬기이고; X는 H 또는 할로겐 원자이고; m은 2 ∼ 6의 정수이고; n은 3 ∼ 21의 정수를 나타낸다.In Formula 1 above, Y is-(CH) 2 -,-(CH 2 ) m- , -CH 2 CH (OH) (CH 2 ) m- , or -SO 2 NR 2 (CH 2 ) m- ; R 1 is H or —CH 3 ; R 2 is a C 1 to C 4 alkyl group; X is H or a halogen atom; m is an integer from 2 to 6; n represents the integer of 3-21.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명의 불소계 폴리우레탄은 분자내 축합반응이 가능한 디올기가 포함된 특정의 불소계 매크로단량체와 통상적으로 사용되고 있는 디이소시아네이트 및 친수성 디올을 공중합하여 제조된 것으로, 수분산성, 저에너지 표면특성 및 기재와의 부착성이 우수하여 섬유, 제지, 건설산업 등의 코팅제로 매우 적합하게 사용할 수 있다.The fluorine-based polyurethane of the present invention is prepared by copolymerizing a specific fluorine-based macromonomer containing a diol group capable of intramolecular condensation reaction with a diisocyanate and a hydrophilic diol which are commonly used, and has a water dispersibility, low energy surface properties and adhesion to a substrate. Because of its excellent properties, it can be suitably used as a coating agent in textile, paper, and construction industries.

본 발명의 불소계 폴리우레탄을 제조함에 있어, 특징적으로 사용하게 되는 불소계 매크로단량체는 저에너지 표면특성을 부여할 수 있도록 상기 화학식 1로 표시되는 과불소알킬기가 함유된 단량체를 사용하고, 축합중합시 과불소알킬 매크로단량체의 타수용성 단량체에 대한 용해도를 증진시키기 위해 탄화수소계 불포화 이중결합을 갖는 공단량체가 중합되어 제조된다.In the production of the fluorine-based polyurethane of the present invention, the fluorine-based macromonomer to be used as a characteristic uses a monomer containing a perfluorinated alkyl group represented by the formula (1) to give a low energy surface properties, and perfluorinated during condensation polymerization Comonomers having hydrocarbon-based unsaturated double bonds are polymerized to enhance solubility of alkyl macromonomers in other water-soluble monomers.

상기 불포화 이중결합을 갖는 공단량체는 통상적인 것이 사용되고, 구체적으로는 아크릴산(AA), 메타크릴산(MAA), 메틸아크릴레이트(MA), 메틸메타크릴레이트(MMA), 에틸아크릴레이트(EA), 에틸메타크릴레이트(EMA), 부틸아크릴레이트(BA), 부틸메타크릴레이트(BMA), 헥실아크릴레이트(HA), 헥실메타크릴레이트(HMA), 도데실아크릴레이트(DA), 도데실메타크릴레이트(DMA), 스테아릴아크릴레이트(SA), 스테아릴메타크릴레이트(SMA), 벤질아크릴레이트(BA), 벤질메타크릴레이트(BMA), 사이클로헥실아크릴레이트(CHA), 사이클로헥실메타크릴레이트(CHMA), 아크릴로니트릴(AN), 아크릴아미드(AAM), 비닐아세테이트(VA), 스티렌, N-메틸올아크릴아미드(MAAM), N-메틸올메타크릴아미드(MMAAM), N-메틸올아크릴아미드부틸에테르(MAAMBE), N-부톡시메타크릴아미드(BAAM), N-부톡시메타크릴아미드(BMAAM), 2-히드록시아크릴레이트(HEA), 2-히드록시메타크릴레이트(HEMA), 2-히드록시프로필아크릴레이트(HPA) 및 2-히드록시프로필메타크릴레이트(HPMA) 중에서 선택된 단독 또는 2종 이상을 함께 사용할 수 있다.As the comonomer having an unsaturated double bond, a conventional one is used, and specifically, acrylic acid (AA), methacrylic acid (MAA), methyl acrylate (MA), methyl methacrylate (MMA), ethyl acrylate (EA) , Ethyl methacrylate (EMA), butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA), hexyl methacrylate (HMA), dodecyl acrylate (DA), dodecyl meta Acrylate (DMA), stearyl acrylate (SA), stearyl methacrylate (SMA), benzyl acrylate (BA), benzyl methacrylate (BMA), cyclohexyl acrylate (CHA), cyclohexyl methacrylate Acrylate (CHMA), acrylonitrile (AN), acrylamide (AAM), vinyl acetate (VA), styrene, N-methylol acrylamide (MAAM), N-methylol methacrylamide (MMAAM), N-methyl Ole acrylamide butyl ether (MAAMBE), N-butoxy methacrylamide (BAAM), N-butoxy methacrylamide ( BMAAM), 2-hydroxyacrylate (HEA), 2-hydroxymethacrylate (HEMA), 2-hydroxypropylacrylate (HPA) and 2-hydroxypropylmethacrylate (HPMA) alone or Two or more kinds can be used together.

상기 화학식 1로 표시되는 과불소알킬기가 함유된 단량체와 불포화 이중결합을 갖는 공단량체를 중합하여 제조된 불소계 매크로단량체는 수평균분자량이 1,500 ∼ 30,000 이며 더욱 좋게는 2,000 ∼ 5,000의 단량체가 사용되며, 양 말단에 수산기가 함유되어 있어 다른 단량체와의 축합반응이 가능하다. 상기 불소계 매크로단량체는 상기 화학식 1로 표시되는 과불소알킬기가 함유된 단량체 및 불포화 이중결합을 갖는 공단량체가 95/5 ∼ 5/95 중량비로 존재하고 있으며, 이때 불소계 매크로단량체내에 과불소알킬기가 함유된 단량체의 함량이 부족하게 되면 저에너지 표면특성이 매우 불량하고, 불포화 이중결합을 갖는 공단량체가 부족하게 되면 축합중합시 타단량체에 대한 용해성이 하락하여 축합중합이 원활히 이루어지지않는 단점이 있다.A fluorine-based macromonomer prepared by polymerizing a monomer containing a perfluorinated alkyl group represented by Formula 1 and a comonomer having an unsaturated double bond has a number average molecular weight of 1,500 to 30,000 and more preferably 2,000 to 5,000 monomers. Hydroxyl groups are contained at both ends to allow condensation reaction with other monomers. In the fluorine-based macromonomer, a monomer containing a perfluorinated alkyl group represented by Formula 1 and a comonomer having an unsaturated double bond are present in a weight ratio of 95/5 to 5/95, wherein the perfluorinated alkyl group is contained in the fluorine-based macromonomer. When the content of the monomer is insufficient, the low energy surface properties are very poor, when the lack of the comonomer having an unsaturated double bond, there is a disadvantage that the condensation polymerization is not smoothly performed because the solubility of the other monomer is reduced during the condensation polymerization.

추가로, 상기 불소계 매크로단량체는 디올기 도입 및 분자량 조절의 목적으로 디올유도 가지조절제를 사용하여 합성되며, 이러한 디올유도 가지조절제는 티오글리세롤, 3-멀켑토-1,2-프로판디올 등이 바람직하게 사용될 수 있다.In addition, the fluorine-based macromonomer is synthesized using a diol-derived branching regulator for the purpose of introducing a diol group and molecular weight control, such a diol-derived branching regulator is preferably thioglycerol, 3-mulsotto-1,2-propanediol and the like. Can be used.

이어서, 상기 제조된 불소계 매크로단량체는 공단량체로 디이소시아네이트 및 친수성 디올과 통상적인 우레탄 축합반응에 의하여 불소계 폴리우레탄을 제조한다. 이러한 불소계 폴리우레탄은 분자내에 과불소알킬기가 함유됨에 따라 우수한 표면특성을 갖고, 우레탄기가 함유됨에 따라 부드러운 표면 감촉을 나타낼 수 있다.Subsequently, the prepared fluorine-based macromonomer is a comonomer to prepare a fluorine-based polyurethane by a conventional urethane condensation reaction with diisocyanate and hydrophilic diol. The fluorine-based polyurethane has excellent surface properties as the perfluorinated alkyl group is contained in the molecule, and may exhibit a smooth surface feel as the urethane group is contained.

이에, 상기 공단량체는 폴리우레탄 제조시 이용되는 통상적인 것이 사용될 수 있다.Thus, the comonomer may be used a conventional one used in the production of polyurethane.

구체적으로, 디이소시아네이트는 헥사메틸렌디이소시아네이트(HMDI), 톨루엔디이소시아네이트(TDI), 디페닐메틸 디이소시아네이트(MDI), 헥사메틸렌 디이소시아네이트(HDI), 2,2,4(2,4,4)-트리메틸 헥사메틸렌 디이소시아네이트(TMDI), p-페닐렌 디이소시아네이트(PPDI), 4,4'-디사이클로헥실메탄 디이소시아네이트(TODI), 3,3'-디메틸디페닐 4,4'-디이소시아네이트(TODI), 디아니시딘 디이소시아네이트(DADI), m-자일렌 디이소시아네이트(XDI), 테트라메틸실렌 디이소시아네이트(TMXDI), 이소포로닉 디이소시아네이트(IPDI), 1,5-나프탈렌 디이소시아네이트(NDI), t-1,4-사이클로헥실 디이소시아네이트(CHDI) 중에서 선택된 단독 또는 2종 이상을 함께 사용할 수 있다.Specifically, the diisocyanate is hexamethylene diisocyanate (HMDI), toluene diisocyanate (TDI), diphenylmethyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), 2,2,4 (2,4,4) -Trimethyl hexamethylene diisocyanate (TMDI), p-phenylene diisocyanate (PPDI), 4,4'-dicyclohexylmethane diisocyanate (TODI), 3,3'-dimethyldiphenyl 4,4'-diisocyanate (TODI), dianisidine diisocyanate (DADI), m-xylene diisocyanate (XDI), tetramethylsilane diisocyanate (TMXDI), isophoric diisocyanate (IPDI), 1,5-naphthalene diisocyanate (NDI ), t-1,4-cyclohexyl diisocyanate (CHDI) can be used alone or in combination of two or more.

친수성 디올은 폴리에틸렌글리콜(PEG), 폴리프로필렌글리콜(PPG), 폴리테트라메틸렌글리콜(PTMG), 폴리카프로락톤디올(PCLD) 및 폴리부타디엔디올(PBDD) 중에서 선택된 단독 혹은 2종 이상을 함께 사용할 수 있다.The hydrophilic diol may be used alone or in combination of two or more selected from polyethylene glycol (PEG), polypropylene glycol (PPG), polytetramethylene glycol (PTMG), polycaprolactonediol (PCLD) and polybutadienediol (PBDD). .

합성된 우레탄의 수분산화 및 수용화를 증진시키고 타화합물과 병행사용을 용이하게 하기 위해서 산 혹은 염기와 결합하여 수용성과 상용성을 증진시킬수 있는 공단량체가 사용된다. 카르복실산계 단량체로는 디메틸올아세틱산(DMA), 디메틸프로피오닉산(DMPA), 디메틸올부틸릭산(DMBA) 및 2,2-비스하이드록시메틸프로피오닉산(HMPA) 중에서 선택하여 사용하고, 양이온성 폴리우레탄을 제조하기 위해서는 3-디메틸아미노-1,2-프로판디올(DMAPD), 메틸디에탄올아민(MDA), 디메틸디에탄올아민(DMEA), 부틸디에탄올아민(BDA) 및 메틸디이소프로파놀아민(MDPA) 중에서 선택된 단독 혹은 2종 이상을 함께 사용할 수 있다.In order to enhance the water oxidation and solubilization of the synthesized urethane and to facilitate the parallel use with other compounds, a comonomer which is combined with an acid or a base to enhance water solubility and compatibility is used. As the carboxylic acid monomer, it is selected from dimethylol acetic acid (DMA), dimethyl propionic acid (DMPA), dimethylol butyric acid (DMBA) and 2,2-bishydroxymethyl propionic acid (HMPA), To prepare cationic polyurethanes, 3-dimethylamino-1,2-propanediol (DMAPD), methyldiethanolamine (MDA), dimethyldiethanolamine (DMEA), butyl diethanolamine (BDA) and methyldiiso It can be used alone or in combination of two or more selected from propanolamine (MDPA).

상술한 바와 같이, 본 발명의 수분산성 불소계 폴리우레탄은 저에너지 표면 특성, 안정한 수분산성 및 기재에 대한 높은 부착성으로 인하여 섬유, 제지, 건설 산업 등에 코팅제로 사용하여 발수성, 발유성 및 내오염성에서 탁월한 기능성을 나타낸다. 특히, 분산매로 물을 사용함에 따라 작업환경이 개선되고 유기용제로 인한 환경오염의 문제점을 근원적으로 차단할 수 있고, 현재 수분산성 불소계 폴리우레탄을 전량 수입에 의존하고 있으며 그 수요가 지속적으로 증가함에 따라 앞으로 고부가가치 산업으로의 전망이 매우 크다.As described above, the water-dispersible fluorine-based polyurethane of the present invention is excellent in water repellency, oil repellency and fouling resistance by being used as a coating agent in textile, paper, construction industry due to low energy surface property, stable water dispersibility and high adhesion to the substrate. It shows functionality. In particular, the use of water as a dispersion medium improves the working environment and fundamentally prevents the problems of environmental pollution caused by organic solvents. Currently, the total amount of water-dispersible fluorinated polyurethane is dependent on imports, and the demand is continuously increasing. The outlook for high value-added industries is great.

이하, 본 발명을 실시예에 의거하여 더욱 상세히 설명하면 다음과 같은 바, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples, but the present invention is not limited thereto.

제조예: 매크로단량체의 합성Preparation Example Synthesis of Macromonomer

다음 표 1의 조성 및 함량을 이용하여 라디칼 중합방법으로 불소계 매크로단량체를 제조하였다. 과불소알킬기가 함유된 단량체로 퍼플루오로알킬에틸아크릴레이트(C8F17C2H4OCOCH=CH2; 이하, "FA"라 함)를사용하였고, 공단량체로는 메틸메타아크릴레이트(이하, "MMA"라 함)를, 디올유도 가지조절제로는 3-멀캡토-1,2-프로판디올(HSCH2CH(OH)CH2OH; 이하, "TG"라 함)을 사용하였다.Next, a fluorine-based macromonomer was prepared by the radical polymerization method using the composition and content of Table 1. Perfluoroalkylethyl acrylate (C 8 F 17 C 2 H 4 OCOCH = CH 2 ; hereinafter referred to as "FA") was used as a monomer containing a perfluoroalkyl group, and methyl methacrylate ( Hereinafter, "MMA") and 3-mercapto-1,2-propanediol (HSCH 2 CH (OH) CH 2 OH; hereafter referred to as "TG") were used as diol-derived branch regulators.

먼저, 교반기 및 온도계가 설치된 1000 ㎖ 3구 유리 반응기에 FA, MMA, TG , THF 및 AIBN을 투입 후 밀봉하고 산소 제거를 위해 불활성가스인 질소 혹은 헬륨을 사용하여 탈기하였다. 이어서, 상기 반응기를 용질의 용해를 위하여 상온에서 10분간 교반하고 60 ℃로 승온하여 10시간 동안 반응시켰다. 생성된 불소계 매크로단량체를 n-헥산을 이용하여 침전시킨 후 미반응 물질을 제거하기 위해 THF와 n-헥산을 이용하여 3회 정제한 후 상온의 진공오븐에서 건조하여 불소계 매크로단량체를 얻었다.First, FA, MMA, TG, THF and AIBN were added to a 1000 ml three-necked glass reactor equipped with a stirrer and a thermometer, and then sealed and degassed using nitrogen or helium, which is an inert gas, for oxygen removal. Subsequently, the reactor was stirred for 10 minutes at room temperature for dissolution of the solute, and the reaction temperature was raised to 60 ° C. for 10 hours. The resulting fluorine-based macromonomer was precipitated using n-hexane, and then purified three times using THF and n-hexane to remove unreacted material, and then dried in a vacuum oven at room temperature to obtain a fluorine-based macromonomer.

상기 제조된 불소계 매크로단량체의 분자량 및 조성을 GPC와1H-NMR로 측정하였다. 표면특성을 알아보기 위하여 물 및 메틸렌아이오디드를 접촉액체로 하고 정착 유적법을 이용하여 접촉각을 측정하였고, 기하평균식을 이용하여 표면자유에너지를 산출하였으며, 이러한 결과는 다음 표 1에 나타낸 바와 같다.The molecular weight and composition of the prepared fluorine-based macromonomer were measured by GPC and 1 H-NMR. In order to investigate the surface characteristics, water and methylene iodide were used as contact liquids, and the contact angles were measured by the anchoring method, and the surface free energy was calculated by using the geometric mean equation. .

실시예 1 : Mac-1로 제조된 수분산성 불소계 폴리우레탄Example 1 Water Dispersible Fluorine-Based Polyurethane Prepared by Mac-1

상기 제조예에서 제조된 불소계 매크로단량체 Mac-1을 이용하여 수분산성 불소계 폴리우레탄을 제조하였으며, 이때 그 함량은 다음 표 2에 나타낸 바와 같이 변화시켜 수행하였다.The water-dispersible fluorine-based polyurethane was prepared using the fluorine-based macromonomer Mac-1 prepared in the above preparation, and the content thereof was changed as shown in Table 2 below.

먼저, 상기 제조예와 동일한 반응장치에 Mac-1, 헥사메틸렌디이소시아네이트(HMDI) 50g, 폴리에틸렌글리콜 600(PEG 600) 94g, 디메틸프로피오닉산(DMPA) 9g, 그리고 아세톤 82.25 g을 첨가후 밀봉하고, 질소로 퍼지한 다음 교반하면서 용해하였다. 이어서, 반응온도를 60 ℃로 올린 후 반응촉매인 디부틸틴디라우레이트(DBTDL) 0.06g을 투입하여 9시간 동안 반응시킨 후 상온으로 냉각하여 불소계 폴리우레탄을 제조하였다.First, Mac-1, 50 g of hexamethylene diisocyanate (HMDI), 94 g of polyethylene glycol 600 (PEG 600), 9 g of dimethylpropionic acid (DMPA), and 82.25 g of acetone were added to the same reactor as in Preparation Example, and then sealed. Purge with nitrogen and then dissolve while stirring. Subsequently, after raising the reaction temperature to 60 ° C., 0.06 g of dibutyl tin dilaurate (DBTDL), a reaction catalyst, was added and reacted for 9 hours, and then cooled to room temperature to prepare a fluorine-based polyurethane.

곧바로, 상기 제조된 불소계 폴리우레탄을 물에 수분산하여 불소계 폴리우레탄이 함유된 코팅 조성물을 제조하였다. 먼저, 상기 불소계 폴리우레탄에 아세톤 82.25g을 투입하여 점도를 낮추어 희석시킨 다음, 교반 속도를 증가시키며 디메틸에탄올아민(DMEA) 5.97g과 증류수 82.25g의 혼합물을 투입하였다. 여기에, 다시 증류수 435.37g을 투입하고 유기용매인 아세톤을 증류하여 제거함으로써 수용액에 안정하게 분산된 코팅 조성물을 제조하였다.Immediately, the prepared fluorine-based polyurethane was dispersed in water to prepare a coating composition containing the fluorine-based polyurethane. First, 82.25 g of acetone was added to the fluorine-based polyurethane to reduce the viscosity, and then diluted. Then, a stirring speed was increased, and a mixture of 5.97 g of dimethylethanolamine (DMEA) and 82.25 g of distilled water was added thereto. Here, 435.37 g of distilled water was again added, and acetone, an organic solvent, was distilled off to prepare a coating composition stably dispersed in an aqueous solution.

이어서, 상기 제조된 수분산성 불소계 폴리우레탄 특성을 측정하기 위하여 쿨터 입도 분석기(Coulter Model N4SD)을 사용하여 입자크기분포를 측정하였고, 슬라이드글래스 상에 필름을 형성한 후 정착 유착법을 이용한 접촉각 측정법에 의해 표면자유에너지를 산출하였으며, 이러한 결과는 다음 표 2에 나타낸 바와 같다.Subsequently, the particle size distribution was measured using a Coulter particle size analyzer (Coulter Model N4SD) to measure the water-dispersible fluorine-based polyurethane properties prepared above, and after forming a film on the slide glass in the contact angle measurement method using a fixing coalescence method Surface free energy was calculated, and these results are shown in Table 2 below.

실시예 2 : Mac-2로 제조된 수분산성 불소계 폴리우레탄Example 2 Water Dispersible Fluorine-Based Polyurethane Prepared by Mac-2

상기 제조예에서 제조된 Mac-2를 사용하여 상기 실시예 1과 동일한 방법으로 불소계 폴리우레탄을 합성하고, 수분산시켜 코팅 조성물을 제조하였다. 이때 제조된 수분산성 불소계 폴리우레탄의 특성은 다음 표 3에 나타난 바와 같다.Using Mac-2 prepared in the above Preparation Example, a fluorine-based polyurethane was synthesized in the same manner as in Example 1, and dispersed to prepare a coating composition. At this time, the properties of the prepared water-dispersible fluorine-based polyurethane are as shown in Table 3 below.

실시예 3 : Mac-3으로 제조된 수분산성 불소계 폴리우레탄Example 3 Water Dispersible Fluorine-Based Polyurethane Made of Mac-3

상기 제조예에서 제조된 Mac-3을 사용하여 상기 실시예 1과 동일한 방법으로 불소계 폴리우레탄을 합성하고, 수분산시켜 코팅 조성물을 제조하였다. 이때 제조된 수분산성 불소계 폴리우레탄의 특성은 다음 표 4에 나타난 바와 같다.Using Mac-3 prepared in the above Preparation Example, a fluorine-based polyurethane was synthesized in the same manner as in Example 1, and dispersed to prepare a coating composition. At this time, the properties of the prepared water-dispersible fluorine-based polyurethane are as shown in Table 4 below.

비교예Comparative example

비교예로는 시판되는 과불소폴리에테르가 함유된 불소계 매크로단량체인 Z-DOL 4000을 사용하고, 실시예 1과 동일한 방법으로 수행하였다. 제조된 불소계 폴리우레탄은 입자크기가 370 nm로 비교적 양호한 수분산을 형성하였고, 형성된 필름의 표면자유에너지는 21 dyn/cm로 측정되었다.As a comparative example, Z-DOL 4000, a fluorine-based macromonomer containing a commercially available perfluorinated polyether, was used, and was carried out in the same manner as in Example 1. The prepared fluorine-based polyurethane had a relatively good water dispersion with a particle size of 370 nm, and the surface free energy of the formed film was measured to be 21 dyn / cm.

이상의 결과에서, 실시예 1 ∼ 3의 수분산성 불소계 폴리우레탄은 표면자유에너지가 15 ∼ 20 dyn/㎝로 비교예에 비하여 우수한 표면특성을 나타내고 수용액상에서 안정한 분산상태를 보였다. 또한, 불소계 폴리우레탄의 제조시 상기 불소계 매크로단량체의 함량이 증가함에 따라 불소계 폴리우레탄 분자내에 과불소알킬기의 함량이 높아져 낮은 표면자유에너지를 가지게 되고, 이로 인하여 우수한 표면특성을 나타냄을 알 수 있다. 그러나, 불소계 매크로 단량체의 함량이 과도한 경우 과불소알킬기가 과량 함유됨에 따라 소수성의 증가로 인하여 수분산성 불소계 폴리우레탄의 입도 균일성이 저하되고 크기가 증가하여 수분산성이 저하되는 경향을 나타내었다.In the above results, the water-dispersible fluorine-based polyurethanes of Examples 1 to 3 had surface free energy of 15 to 20 dyn / cm, which showed superior surface characteristics and showed a stable dispersion state in aqueous solution. In addition, as the content of the fluorine-based macromonomer increases in the production of the fluorine-based polyurethane, the content of the perfluorinated alkyl group in the fluorine-based polyurethane molecule is increased to have a low surface free energy, thereby exhibiting excellent surface properties. However, when the content of the fluorine-based macromonomer is excessive, as the perfluorinated alkyl group is contained in excess, the particle size uniformity and the size of the water-dispersible fluorinated polyurethane have decreased due to the increase in hydrophobicity.

이에 비하여, 비교예의 경우 불소계 매크로단량체 제조시 사용된 사불화에틸렌옥사이드 계열의 디올 단량체는 분자내 친수성기를 다량 함유하고 있어 높은 표면자유에너지를 나타내었다.On the other hand, in the comparative example, the diol monomers of ethylene tetrafluoride-based series used in the production of fluorine-based macromonomers contained a large amount of hydrophilic groups in the molecule, thus showing high surface free energy.

상술한 바와 같이, 본 발명에 따라 과불소알킬기가 함유된 매크로단량체를 이용하여 불소계 폴리우레탄을 제조하였고, 이어서 수분산시켜 코팅 조성물을 제조하였다. 이러한 수분산성 불소계 폴리우레탄은 표면자유에너지가 15 ∼ 20 dyn/㎝로 매우 낮은 저에너지 특성을 나타내었으며 안정한 수분산을 형성하였다. 그 결과, 상기 코팅 조성물은 우수한 표면특성으로 인하여 섬유, 제지, 건설 산업 등에 코팅제로 유용하게 사용할 수 있고, 분산매로 유기용매를 사용하지 않게 되어 유기용매에 의한 환경오염 문제를 근본적으로 불식시킬 수 있다.As described above, according to the present invention, a fluorine-based polyurethane was prepared using a macromonomer containing a perfluorinated alkyl group, followed by water dispersion to prepare a coating composition. The water dispersible fluorine-based polyurethane exhibited very low energy properties with a surface free energy of 15 to 20 dyn / cm and formed stable water dispersion. As a result, the coating composition can be usefully used as a coating agent in textiles, paper, construction industry, etc. due to its excellent surface properties, it is possible to fundamentally eliminate the environmental pollution problems caused by organic solvents by not using an organic solvent as a dispersion medium. .

현재, 수용성 폴리우레탄은 전량수입에 의존하고 있고 그 사용량이 지속적인 증가추세에 있으므로 본 발명에 따라 제조된 수분산성 폴리우레탄은 수익성 전망이 매우 우수할 것으로 기대된다.Currently, water-soluble polyurethanes depend on total imports and their usage is on a steady increase, so the water-dispersible polyurethanes prepared according to the present invention are expected to have very good profitability prospects.

Claims (5)

과불소알킬기가 함유된 불소계 매크로단량체, 디이소시아네이트 및 친수성 디올을 공중합하여 제조된 불소계 폴리우레탄에 있어서,In the fluorine-based polyurethane prepared by copolymerizing a fluorine-based macromonomer, diisocyanate and hydrophilic diol containing a perfluoroalkyl group, 상기한 불소계 매크로단량체로는 다음 화학식 1로 표시되는 과불소알킬기가 함유된 단량체와 불포화 이중결합을 갖는 공단량체를 사용하여 제조된 것을 특징으로 하는 수분산성 불소계 폴리우레탄.The water-dispersible fluorine-based polyurethane, characterized in that the fluorine-based macromonomer is prepared using a comonomer having an unsaturated double bond with a monomer containing a perfluoroalkyl group represented by the following formula (1). 화학식 1Formula 1 XCnF2n-(Y)-OCOCR1=CH2 XC n F 2n - (Y) -OCOCR 1 = CH 2 상기 화학식 1에서: Y는 -(CH)2-, -(CH2)m-, -CH2CH(OH)(CH2)m- 또는 -SO2NR2(CH2)m-이고; R1은 H 또는 -CH3이고; R2는 C1∼ C4의 알킬기이고; X는 H 또는 할로겐 원자이고; m은 2 ∼ 6의 정수이고; n은 3 ∼ 21의 정수를 나타낸다.In Formula 1, Y is-(CH) 2 -,-(CH 2 ) m- , -CH 2 CH (OH) (CH 2 ) m -or -SO 2 NR 2 (CH 2 ) m- ; R 1 is H or —CH 3 ; R 2 is a C 1 to C 4 alkyl group; X is H or a halogen atom; m is an integer from 2 to 6; n represents the integer of 3-21. 제 1 항에 있어서, 상기 불소계 매크로단량체는 상기 화학식 1로 표시되는 과불소알킬기가 함유된 단량체와 불포화 이중결합을 갖는 공단량체가 95/5 ∼ 5/95 중량비로 사용하여 제조된 것을 특징으로 하는 수분산성 불소계 폴리우레탄.The method of claim 1, wherein the fluorine-based macromonomer is prepared by using a monomer containing a perfluorinated alkyl group represented by Formula 1 and a comonomer having an unsaturated double bond in a 95/5 to 5/95 weight ratio Water dispersible fluorine based polyurethane. 제 1 항 또는 2 항에 있어서, 상기 불포화 이중결합을 갖는 공단량체는 아크릴산(AA), 메타크릴산(MAA), 메틸아크릴레이트(MA), 메틸메타크릴레이트(MMA), 에틸아크릴레이트(EA), 에틸메타크릴레이트(EMA), 부틸아크릴레이트(BA), 부틸메타크릴레이트(BMA), 헥실아크릴레이트(HA), 헥실메타크릴레이트(HMA), 도데실아크릴레이트(DA), 도데실메타크릴레이트(DMA), 스테아릴아크릴레이트(SA), 스테아릴메타크릴레이트(SMA), 벤질아크릴레이트(BA), 벤질메타크릴레이트(BMA), 사이클로헥실아크릴레이트(CHA), 사이클로헥실메타크릴레이트(CHMA), 아크릴로니트릴(AN), 아크릴아미드(AAM), 비닐아세테이트(VA), 스티렌, N-메틸올아크릴아미드(MAAM), N-메틸올메타크릴아미드(MMAAM), N-메틸올아크릴아미드부틸에테르(MAAMBE), N-부톡시메타크릴아미드(BAAM), N-부톡시메타크릴아미드(BMAAM), 2-히드록시아크릴레이트(HEA), 2-히드록시메타크릴레이트(HEMA), 2-히드록시프로필아크릴레이트(HPA), 2-히드록시프로필메타크릴레이트(HPMA) 중에서 선택된 단독 또는 2종 이상인 것임을 특징으로 하는 수분산성 불소계 폴리우레탄.The method of claim 1 or 2, wherein the comonomer having an unsaturated double bond is acrylic acid (AA), methacrylic acid (MAA), methyl acrylate (MA), methyl methacrylate (MMA), ethyl acrylate (EA ), Ethyl methacrylate (EMA), butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA), hexyl methacrylate (HMA), dodecyl acrylate (DA), dodecyl Methacrylate (DMA), stearyl acrylate (SA), stearyl methacrylate (SMA), benzyl acrylate (BA), benzyl methacrylate (BMA), cyclohexyl acrylate (CHA), cyclohexyl meta Acrylate (CHMA), acrylonitrile (AN), acrylamide (AAM), vinyl acetate (VA), styrene, N-methylol acrylamide (MAAM), N-methylol methacrylamide (MMAAM), N- Methylolacrylamide butyl ether (MAAMBE), N-butoxy methacrylamide (BAAM), N-butoxy methacrylamide (BMAAM), 2-hydrate Hydroxyacrylate (HEA), 2-hydroxy methacrylate (HEMA), 2-hydroxypropyl acrylate (HPA), 2-hydroxypropyl methacrylate (HPMA), characterized in that the one or more selected from Water dispersible fluorine based polyurethane. 제 1 항에 있어서, 상기 카르복실 산계 단량체로는 디메틸올아세틱산(DMA), 디메틸프로피오닉산(DMPA), 디메틸올부틸릭산(DMBA) 및 2,2-비스하이드록시메틸프로피오닉산(HMPA) 중에서 선택된 단독 또는 2종 이상을 함께 축합중합하여 합성된 불소계 수용성 폴리우레탄.The method of claim 1, wherein the carboxylic acid monomers include dimethylol acetic acid (DMA), dimethyl propionic acid (DMPA), dimethylol butyric acid (DMBA) and 2,2-bishydroxymethylpropionic acid (HMPA). Fluorine-based water-soluble polyurethane synthesized by condensation polymerization of single or two or more selected from 제 1 항에 있어서, 상기 양이온성 수분산 불소계 폴리우레탄을 제조하기 위해 3-디메틸아미노-1,2-프로판디올(DMAPD), 메틸디에탄올아민(MDA), 디메틸에탄올아민(DMEA) 부틸디에탄올아민(BDA) 및 메틸디이소프로파놀아민(MDPA) 중에서 선택된 단독 또는 2종 이상을 함께 축합중합하여 합성된 수용성 불소계 폴리우레탄.The method of claim 1, wherein 3-dimethylamino-1,2-propanediol (DMAPD), methyldiethanolamine (MDA), dimethylethanolamine (DMEA) butyl diethanol to prepare the cationic water-dispersible fluorine-based polyurethane A water-soluble fluorine-based polyurethane synthesized by condensation polymerization of one or two or more selected from amine (BDA) and methyldiisopropanolamine (MDPA) together.
KR1020000043116A 2000-07-26 2000-07-26 A water-dispersive fluoro-polyurethane KR100343549B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000043116A KR100343549B1 (en) 2000-07-26 2000-07-26 A water-dispersive fluoro-polyurethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000043116A KR100343549B1 (en) 2000-07-26 2000-07-26 A water-dispersive fluoro-polyurethane

Publications (2)

Publication Number Publication Date
KR20020009322A KR20020009322A (en) 2002-02-01
KR100343549B1 true KR100343549B1 (en) 2002-07-20

Family

ID=19680093

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000043116A KR100343549B1 (en) 2000-07-26 2000-07-26 A water-dispersive fluoro-polyurethane

Country Status (1)

Country Link
KR (1) KR100343549B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200205B1 (en) 2009-12-23 2012-11-09 조광페인트주식회사 Metal-surface treatment composition with fluorine-containing polyurethane resin composition
KR102176746B1 (en) 2019-05-15 2020-11-09 한국신발피혁연구원 Coating composition for weather strips
KR20200132037A (en) 2019-05-15 2020-11-25 한국신발피혁연구원 Urethane acrylate hybrid coating composition for weather strips

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030040821A (en) * 2001-11-16 2003-05-23 신원상사주식회사 Composition of water polyurethane and method for processing the same
EP2810966A4 (en) * 2012-01-31 2015-09-30 Asahi Glass Co Ltd Fluorine-containing copolymer and method for producing same, and water repellent/oil repellent agent composition
EP2810967A1 (en) * 2012-01-31 2014-12-10 Asahi Glass Company, Limited Fluorine-containing copolymer, method for producing same, and water-/oil-repellant agent composition
KR101950220B1 (en) * 2014-08-26 2019-02-21 (주)엘지하우시스 Urethane modified polymer resin having anti-fouling, aqueous polyurethane resin dispersion and method of manufacturing the same
JP2020015851A (en) * 2018-07-26 2020-01-30 富士ゼロックス株式会社 Aqueous emulsion, aqueous coating composition, and surface protection resin member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872058A (en) * 1971-09-27 1975-03-18 Amc Corp Fluorinated polyurethane stain repellents
JPS594614A (en) * 1982-06-30 1984-01-11 Mitui Toatsu Chem Inc Manufacture of thermoplastic polyurethane resin
KR940011779A (en) * 1992-11-24 1994-06-22 정구철 Water Circulation Engine
JPH06316616A (en) * 1991-09-17 1994-11-15 Syremont Spa Aqueous dispersion of fluorinated polyurethane
KR0163843B1 (en) * 1996-02-09 1999-01-15 강박광 Urethane compositions staining resistant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872058A (en) * 1971-09-27 1975-03-18 Amc Corp Fluorinated polyurethane stain repellents
JPS594614A (en) * 1982-06-30 1984-01-11 Mitui Toatsu Chem Inc Manufacture of thermoplastic polyurethane resin
JPH06316616A (en) * 1991-09-17 1994-11-15 Syremont Spa Aqueous dispersion of fluorinated polyurethane
KR940011779A (en) * 1992-11-24 1994-06-22 정구철 Water Circulation Engine
KR0163843B1 (en) * 1996-02-09 1999-01-15 강박광 Urethane compositions staining resistant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200205B1 (en) 2009-12-23 2012-11-09 조광페인트주식회사 Metal-surface treatment composition with fluorine-containing polyurethane resin composition
KR102176746B1 (en) 2019-05-15 2020-11-09 한국신발피혁연구원 Coating composition for weather strips
KR20200132037A (en) 2019-05-15 2020-11-25 한국신발피혁연구원 Urethane acrylate hybrid coating composition for weather strips

Also Published As

Publication number Publication date
KR20020009322A (en) 2002-02-01

Similar Documents

Publication Publication Date Title
Xin et al. Novel cationic polyurethane-fluorinated acrylic hybrid latexes: Synthesis, characterization and properties
CN106883344B (en) Antifogging polymer, coating composition and preparation method thereof
Zhao et al. Synthesis of a waterborne polyurethane-fluorinated emulsion and its hydrophobic properties of coating films
Yang et al. Surface and mechanical properties of waterborne polyurethane films reinforced by hydroxyl-terminated poly (fluoroalkyl methacrylates)
Kim et al. Modification of waterborne polyurethane by forming latex interpenetrating polymer networks with acrylate rubber
WO2017020513A1 (en) Hydroxyl polyacrylate emulsion and preparation method and application thereof
Lee et al. Effect of total acrylic/fluorinated acrylic monomer contents on the properties of waterborne polyurethane/acrylic hybrid emulsions
Ramirez et al. Reversible addition–fragmentation chain transfer (RAFT) copolymerization of fluoroalkyl polyhedral oligomeric silsesquioxane (F-POSS) macromers
JP2017048381A (en) Aqueous multistep copolymer composition for use in leather top coat
Lee et al. Modification of aqueous polyurethanes by forming latex interpenetrating polymer networks with polystyrene
CN109734846A (en) A kind of core-shell type aqueous polyurethane/acrylate composite emulsion and preparation method thereof and damping paint
KR100343549B1 (en) A water-dispersive fluoro-polyurethane
Zhang et al. Synthesis and surface migration of polydimethylsiloxane and perfluorinated polyether in modified waterborne polyurethane
Yi et al. Polyurethane‐acrylic hybrid emulsions with high acrylic/polyurethane ratios: Synthesis, characterization, and properties
JP5103252B2 (en) Fluorine copolymer solution and method for producing the same
US20050202997A1 (en) Surfactant and dispersion aid each comprising graft fluoropolymer
Sundar et al. Aqueous dispersions of poly (urethane-co-vinylpyridine) synthesised from polyurethane macroiniferter
JP4327475B2 (en) Water-based top coating composition
KR100695508B1 (en) Water dispersed polyurethane
JP2882737B2 (en) Method for producing fluoropolymer
JPH08259877A (en) Water repellent film-forming composition
CN109160980B (en) Preparation method of waterborne polyurethane-acrylate resin and application of waterborne polyurethane-acrylate resin in printing adhesive
KR20070082431A (en) Urethane acrylic water dispersed emulsion for leather recoating
WO2021100788A1 (en) Composition for forming anti-snow-accretion film, and anti-snow-accretion film
Zhao et al. Preparation, thermal property and morphology analysis of waterborne polyurethane-acrylate

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061228

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee