KR100341129B1 - method for manufacturing TFT- LCD - Google Patents

method for manufacturing TFT- LCD Download PDF

Info

Publication number
KR100341129B1
KR100341129B1 KR1019990031421A KR19990031421A KR100341129B1 KR 100341129 B1 KR100341129 B1 KR 100341129B1 KR 1019990031421 A KR1019990031421 A KR 1019990031421A KR 19990031421 A KR19990031421 A KR 19990031421A KR 100341129 B1 KR100341129 B1 KR 100341129B1
Authority
KR
South Korea
Prior art keywords
resist pattern
layer
source
forming
metal film
Prior art date
Application number
KR1019990031421A
Other languages
Korean (ko)
Other versions
KR20010011858A (en
Inventor
김철하
조윤성
Original Assignee
주식회사 현대 디스플레이 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 현대 디스플레이 테크놀로지 filed Critical 주식회사 현대 디스플레이 테크놀로지
Priority to KR1019990031421A priority Critical patent/KR100341129B1/en
Publication of KR20010011858A publication Critical patent/KR20010011858A/en
Application granted granted Critical
Publication of KR100341129B1 publication Critical patent/KR100341129B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

본 발명은 박막 트랜지스터-액정 표시 장치의 제조 방법을 개시한다. 개시된 본 발명은, 절연 기판 상부에 금속막을 증착하는 단계; 상기 금속막 상부에 게이트 전극용 제 1 레지스트 패턴을 형성한다음, 상기 금속막을 제 1 레지스트 패턴의 형태로 패터닝하여 게이트 전극을 형성하는 단계; 상기 제 1 레지스트 패턴을 제거하는 단계; 상기 게이트 전극이 형성된 절연 기판 상부에 게이트 절연막과 도핑된 반도체층 및 소오스, 드레인용 금속막을 순차적으로 적층하는 단계; 상기 소오스, 드레인용 금속막 상부에 소오스, 드레인 전극 한정용 제 2 레지스트 패턴을 형성하는 단계; 상기 제 2 레지스트 패턴을 마스크로 하여, 소오스, 드레인용 금속막 및 도핑된 반도체층을 식각하여, 소오스, 드레인 전극 및 오믹 콘택층을 형성하는 단계; 상기 제 2 레지스트 패턴을 제거하는 단계; 상기 결과물 상부에 비정질 실리콘층 및 보호막을 적층하는 단계; 상기 보호막 상부에 채널 한정용 제 3 레지스트 패턴을 형성하는 단계; 상기 제 3 레지스트 패턴을 마스크로 하여, 상기 보호막 및 비정질 실리콘층을 소정 부분 패터닝하여 채널층 및 채널층을 덮는 보호막을 형성하는 단계; 및 상기 제 3 레지스트 패턴을 제거하는 단계를 포함하는 것을 특징으로 한다.The present invention discloses a method of manufacturing a thin film transistor-liquid crystal display device. The disclosed invention comprises the steps of depositing a metal film on an insulating substrate; Forming a first resist pattern for a gate electrode on the metal film, and then patterning the metal film in the form of a first resist pattern to form a gate electrode; Removing the first resist pattern; Sequentially stacking a gate insulating layer, a doped semiconductor layer, a source, and a drain metal layer on an insulating substrate on which the gate electrode is formed; Forming a second resist pattern for defining a source and a drain electrode on the source and drain metal film; Etching the source, the drain metal film, and the doped semiconductor layer using the second resist pattern as a mask to form a source, a drain electrode, and an ohmic contact layer; Removing the second resist pattern; Stacking an amorphous silicon layer and a protective film on the resultant; Forming a channel defining third resist pattern on the passivation layer; Forming a passivation layer covering the channel layer and the channel layer by partially patterning the passivation layer and the amorphous silicon layer using the third resist pattern as a mask; And removing the third resist pattern.

Description

박막 트랜지스터-액정 표시 장치의 제조방법{method for manufacturing TFT- LCD}Method of manufacturing thin film transistor-liquid crystal display device

본 발명은 박막 트랜지스터-액정 표시 장치의 제조방법에 관한 것으로, 보다구체적으로는, 3개의 마스크로 박막 트랜지스터를 제조할 수 있는 박막 트랜지스터-액정 표시 장치의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film transistor-liquid crystal display device, and more particularly, to a method for manufacturing a thin film transistor-liquid crystal display device capable of manufacturing a thin film transistor with three masks.

일반적으로, 액정 표시 소자중 액티브 매트릭스형 액정 표시 소자는 고속 응답성을 갖고, 많은 화소의 갯수를 갖는다. 이에 따라, 디스플레이 화면의 고 화질화, 대형화, 컬러 화면화등을 실현하는 특성을 지니며, 휴대형 TV, 노트북 PC, 자동차 항법 장치등에 이용된다.In general, the active matrix liquid crystal display device among the liquid crystal display devices has high speed response and has a large number of pixels. As a result, the display screen has high characteristics such as high image quality, large size, and color screen, and is used in portable TVs, notebook PCs, automobile navigation systems, and the like.

이러한 액티브 매트릭스형 액정 표시 소자에서, 화소 전극을 선택적으로 온/ 오프시키기 위하여 게이트 버스 라인과 데이타 버스 라인이 교차하는 점에 다이오드나 박막 트랜지스터와 같은 스위칭 소자가 배치된다.In such an active matrix liquid crystal display device, a switching device such as a diode or a thin film transistor is disposed at the intersection of the gate bus line and the data bus line to selectively turn on / off the pixel electrode.

이러한 박막 트랜지스터를 포함하는 종래의 액정 표시 소자의 제조방법을 도 1a 내지 도 1f를 참조하여 설명한다.A conventional method of manufacturing a liquid crystal display device including the thin film transistor will be described with reference to FIGS. 1A to 1F.

먼저, 도 1a에 도시된 바와 같이, 절연 기판(1) 표면에 게이트 버스 라인용 금속막을 소정 두께로 증착한다. 그리고나서, 제 1 사진 식각 공정을 통하여, 금속막을 패터닝하여, 게이트 전극(2)을 형성한다. 이어서, 게이트 전극(2)을 포함하는 절연 기판(1) 상부에 제 1 게이트 절연막(3), 제 2 게이트 절연막(4), 비정질 실리콘층(5) 및 에치 스톱퍼층(6)을 순차적으로 증착한다.First, as shown in FIG. 1A, a metal film for a gate bus line is deposited on a surface of an insulating substrate 1 to a predetermined thickness. Then, the metal film is patterned through the first photolithography process to form the gate electrode 2. Subsequently, the first gate insulating film 3, the second gate insulating film 4, the amorphous silicon layer 5, and the etch stopper layer 6 are sequentially deposited on the insulating substrate 1 including the gate electrode 2. do.

그후, 도 1b에 도시된 바와 같이, 에치 스톱퍼층(6)을 제 2 사진 식각 공정을 통하여, 게이트 전극(1)의 대응 부분에 존재하도록 소정 부분 패터닝하여, 에치 스톱퍼(6a)를 형성한다. 이때, 에치 스톱퍼(6a)는 공지된 바와 같이, 소오스, 드레인 전극 형성시, 채널층이 손상됨을 방지하여, 박막 트랜지스터의 동작 전류를 높이고, 누설 전류를 낮추는 역할을 한다.Thereafter, as shown in FIG. 1B, the etch stopper layer 6 is patterned to be present in the corresponding portion of the gate electrode 1 through the second photolithography process to form the etch stopper 6a. At this time, the etch stopper 6a, as is well known, prevents damage to the channel layer when forming the source and drain electrodes, thereby increasing the operating current of the thin film transistor and reducing the leakage current.

그 다음, 도 1c에서와 같이, 에치 스토퍼(6a)가 형성된 비정질 실리콘층(5) 상부에 도핑된 반도체층(7)을 증착한다.Next, as shown in FIG. 1C, the doped semiconductor layer 7 is deposited on the amorphous silicon layer 5 on which the etch stopper 6a is formed.

그 다음, 도 1d를 참조하여, 도핑된 반도체층(7) 및 비정질 실리콘층(5)을 제 3 사진 식각 공정에 의하여 소정 부분 패터닝하여, 오믹 콘택층(7a,7b) 및 채널층(5')을 형성한다. 이때, 오믹 콘택층(7a,7b)은 에치 스톱퍼(6)의 양측에 존재하도록 패터닝된다.Next, referring to FIG. 1D, the doped semiconductor layer 7 and the amorphous silicon layer 5 are partially patterned by a third photolithography process to form the ohmic contact layers 7a and 7b and the channel layer 5 '. ). At this time, the ohmic contact layers 7a and 7b are patterned to exist on both sides of the etch stopper 6.

이어서, 도 1e에 도시된 바와 같이, 도면에는 도시되지 않았지만, 기판 외곽의 게이트 전극 패드부가 노출될 수 있도록, 제 4 사진 식각 공정에 의하여 제 1 및 제 2 절연막(3,4)을 식각한다.Subsequently, as shown in FIG. 1E, the first and second insulating layers 3 and 4 are etched by the fourth photolithography process so that the gate electrode pad portion outside the substrate may be exposed.

그런다음, 도 1f에서와 같이, 하부 기판(1) 결과물 상부에 데이타 버스 라인용 금속막을 증착하고, 제 5 사진 식각 공정을 통하여, 금속막을 식각하여, 상기 오믹 콘택층(7a,7b) 상부에 소오스, 드레인 전극(8a,8b)을 형성한다.Then, as illustrated in FIG. 1F, a metal film for data bus lines is deposited on the lower substrate 1, and the metal film is etched through a fifth photolithography process to form an upper portion of the ohmic contact layers 7a and 7b. Source and drain electrodes 8a and 8b are formed.

그러나, 상기한 종래의 박막 트랜지스터를 제조하는데에는, 게이트 전극 형성 공정, 에치 스톱퍼 형성공정, 채널층 형성 공정, 패드 오픈 공정, 소오스, 드레인 형성 공정등 적어도 5번의 사진 식각 공정을 진행하여야 한다.However, in manufacturing the conventional thin film transistor, at least five photolithography processes, such as a gate electrode forming process, an etch stopper forming process, a channel layer forming process, a pad opening process, a source, and a drain forming process, must be performed.

이때, 상기 사진 식각 공정은 공지된 바와 같이 포토리소그라피 공정으로 그 자체 공정만으로도 레지스트 도포 공정, 노광 공정, 현상 공정, 식각 공정, 레지스트 제거공정등을 포함하므로, 한 번의 스텝으로도 장시간이 소요된다.At this time, the photolithography process is a photolithography process, as it is known, and includes a resist coating process, an exposure process, a developing process, an etching process, a resist removing process, and the like by itself, so that a single step takes a long time.

이로 인하여, 상기와 같은 박막 트랜지스터를 형성하기 위하여는 다수번의 사진 식각 공정이 요구되므로, 매우 긴 시간이 요구되어, 제조 비용이 상승하게 되고, 수율이 저하된다.For this reason, in order to form the thin film transistor as described above, since a plurality of photolithography processes are required, a very long time is required, and manufacturing cost is increased, and yield is lowered.

이에따라, 종래의 다른 방법으로는 에치 스톱퍼를 생략하여, 한번의 사진 식각 공정을 줄이는 기술이 제안되었다. 그러나, 에치 스톱퍼를 생략하게 되면, 소오스, 드레인 전극을 형성하는 공정시, 채널층이 일부 유실될 수 있어, 박막 트랜지스터의 동작 전류가 감소되고, 누설 전류가 발생된다.Accordingly, a technique of reducing the one-time photolithography process has been proposed by omitting the etch stopper in another conventional method. However, if the etch stopper is omitted, part of the channel layer may be lost during the process of forming the source and drain electrodes, so that the operating current of the thin film transistor is reduced and leakage current is generated.

따라서, 본 발명은 상기한 종래의 문제점을 해결하기 위한 것으로, 채널층이 식각됨이 없이, 사진 식각 공정수를 줄일 수 있는 박막 트랜지스터-액정 표시 장치의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method of manufacturing a thin film transistor-liquid crystal display device capable of reducing the number of photolithography processes without etching the channel layer.

도 1a 내지 도 1f는 종래의 박막 트랜지스터-액정 표시 장치의 제조방법을 설명하기 위한 각 공정별 단면도.1A to 1F are cross-sectional views of respective processes for explaining a method of manufacturing a conventional thin film transistor-liquid crystal display device.

도 2a 내지 도 2e는 본 발명에 따른 박막 트랜지스터-액정 표시 장치의 제조방법을 설명하기 위한 각 공정별 단면도.2A to 2E are cross-sectional views of respective processes for explaining a method of manufacturing a thin film transistor-liquid crystal display device according to the present invention.

(도면의 주요 부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)

11 - 절연 기판 12 - 게이트 전극11-insulated substrate 12-gate electrode

13,14 - 게이트 절연막 15 - 도핑된 반도체층13,14-gate insulating film 15-doped semiconductor layer

15a,15b - 오믹 콘택층 16 - 소오스, 드레인 전극용 금속막15a, 15b-ohmic contact layer 16-metal film for source and drain electrodes

16a,16b - 소오스, 드레인 전극 17 - 제 2 레지스트 패턴16a, 16b-source, drain electrode 17-second resist pattern

18 - 비정질 실리콘층 19 - 보호막18-Amorphous Silicon Layer 19-Protective Film

20 - 제 3 레지스트 패턴20-Third Resist Pattern

상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 일실시예에 의하면, 절연 기판 상부에 금속막을 증착하는 단계; 상기 금속막 상부에 게이트 전극용 제 1 레지스트 패턴을 형성한다음, 상기 금속막을 제 1 레지스트 패턴의 형태로 패터닝하여 게이트 전극을 형성하는 단계; 상기 제 1 레지스트 패턴을 제거하는 단계; 상기 게이트 전극이 형성된 절연 기판 상부에 게이트 절연막과 도핑된 반도체층 및 소오스, 드레인용 금속막을 순차적으로 적층하는 단계; 상기 소오스, 드레인용 금속막 상부에 소오스, 드레인 전극 한정용 제 2 레지스트 패턴을 형성하는 단계; 상기 제 2 레지스트 패턴을 마스크로 하여, 소오스, 드레인용 금속막 및 도핑된 반도체층을 식각하여, 소오스, 드레인 전극 및 오믹 콘택층을 형성하는 단계; 상기 제2 레지스트 패턴을 제거하는 단계; 상기 결과물 상부에 비정질 실리콘층 및 보호막을 적층하는 단계; 상기 보호막 상부에 채널 한정용 제 3 레지스트 패턴을 형성하는 단계; 상기 제 3 레지스트 패턴을 마스크로 하여, 상기 보호막 및 비정질 실리콘층을 소정 부분 패터닝하여 채널층 및 채널층을 덮는 보호막을 형성하는 단계; 및 상기 제 3 레지스트 패턴을 제거하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object of the present invention, according to an embodiment of the present invention, the step of depositing a metal film on the insulating substrate; Forming a first resist pattern for a gate electrode on the metal film, and then patterning the metal film in the form of a first resist pattern to form a gate electrode; Removing the first resist pattern; Sequentially stacking a gate insulating layer, a doped semiconductor layer, a source, and a drain metal layer on an insulating substrate on which the gate electrode is formed; Forming a second resist pattern for defining a source and a drain electrode on the source and drain metal film; Etching the source, the drain metal film, and the doped semiconductor layer using the second resist pattern as a mask to form a source, a drain electrode, and an ohmic contact layer; Removing the second resist pattern; Stacking an amorphous silicon layer and a protective film on the resultant; Forming a channel defining third resist pattern on the passivation layer; Forming a passivation layer covering the channel layer and the channel layer by partially patterning the passivation layer and the amorphous silicon layer using the third resist pattern as a mask; And removing the third resist pattern.

여기서, 상기 소오스, 드레인 전극 및 오믹 콘택층을 형성하는 단계시, 상기 소오스, 드레인 전극용 금속막을 상기 오믹 콘택층이 소정폭 만큼이 노출될 수 있도록 과도 식각하는 것이 바람직하다.In the forming of the source, drain electrode, and ohmic contact layers, the source and drain electrode metal layers may be over-etched to expose the ohmic contact layer by a predetermined width.

또한, 상기 소오스, 드레인 전극에 의하여 노출되는 오믹 콘택층의 폭은 약 5㎛이하 인것을 특징으로 한다.In addition, the width of the ohmic contact layer exposed by the source and drain electrodes may be about 5 μm or less.

아울러, 상기 채널층과 보호막을 형성하는 단계와, 상기 제 3 레지스트 패턴을 제거하는 단계 사이에, 상기 제 3 레지스트 패턴에 의하여 패드 부분이 노출될 수 있도록 게이트 절연막을 식각하는 단계를 더 포함한다.The method may further include etching the gate insulating layer between the forming of the channel layer and the passivation layer and removing the third resist pattern to expose the pad portion by the third resist pattern.

본 발명에 의하면, 게이트 전극을 형성하기 위한 제 1 사진 식각 공정, 오믹 콘택층 및 소오스 드레인 전극을 형성하기 위한 제 2 사진 식각 공정, 채널층 및 보호막을 형성하기 위한 제 3 사진 식각 공정으로 박막 트랜지스터를 형성한다.According to the present invention, a thin film transistor is formed by a first photolithography process for forming a gate electrode, a second photolithography process for forming an ohmic contact layer and a source drain electrode, and a third photolithography process for forming a channel layer and a passivation layer. To form.

이에따라, 종래의 5번의 사진 식각 공정보다 공정 단계가 크게 감소되어, 제조 단계 및 제조 공정 시간이 감소된다.As a result, the processing steps are greatly reduced compared to the conventional five photolithography processes, thereby reducing the manufacturing steps and the manufacturing process time.

(실시예)(Example)

이하 첨부한 도면에 의거하여 본 발명의 바람직한 실시예를 자세히 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도면 도 2a 내지 도 2e는 본 발명에 따른 박막 트랜지스터 액정 표시 장치의 제조방법을 설명하기 위한 각 제조 공정별 단면도이다.2A through 2E are cross-sectional views of respective manufacturing processes for explaining a method of manufacturing a thin film transistor liquid crystal display according to the present invention.

먼저, 도 2a에 도시된 바와 같이, 절연 기판(11) 예를들어, 투명 유리 기판 상부에 게이트 전극용 금속막을 소정 두께로 증착한다. 이어, 제 1 사진 식각 공정 즉, 상기 금속막 상부에 포토레지스트막(도시되지 않음)을 도포한다음, 게이트 전극을 한정하기 위한 마스크를 이용하여 노광 및 현상하여 제 1 레지스트 패턴(도시되지 않음)을 형성하고, 이 제 1 레지스트 패턴의 형태로 금속막을 식각하는 일련의 공정을 진행하여, 게이트 전극(12)을 형성한다. 이어서, 게이트 전극(12)이 형성된 절연 기판(11) 상부에 실리콘 질산화막으로 된 제 1 게이트 절연막(13)과 실리콘 질화막으로 된 제 2 게이트 절연막(13)과 도핑된 반도체층(15) 및 소오스, 드레인용 금속막(16)을 순차적으로 적층한다. 이때, 제 1 및 제 2 게이트 절연막(13,14)은 이후, 소오스 드레인 전극에서의 전류가 게이트 전극(12)쪽으로 흐르지 못하도록 하는 역할을 한다.First, as shown in FIG. 2A, a metal film for a gate electrode is deposited to a predetermined thickness on an insulating substrate 11, for example, on a transparent glass substrate. Subsequently, a first photolithography process, that is, a photoresist film (not shown) is applied on the metal layer, and then exposed and developed using a mask for defining a gate electrode to form a first resist pattern (not shown). And a series of processes for etching the metal film in the form of the first resist pattern are performed to form the gate electrode 12. Subsequently, the first gate insulating layer 13 of silicon nitride oxide and the second gate insulating layer 13 of silicon nitride, the doped semiconductor layer 15, and the source are formed on the insulating substrate 11 on which the gate electrode 12 is formed. The drain metal film 16 is sequentially stacked. In this case, the first and second gate insulating layers 13 and 14 may serve to prevent current from the source drain electrode from flowing toward the gate electrode 12.

그 다음, 도 2b에 도시된 바와 같이, 소오스, 드레인용 금속막(16) 상부에 포토레지스트막을 도포하고, 소오스, 드레인 전극 및 데이타 버스 라인을 한정할 수 있도록, 노광 및 현상하여, 제 2 레지스트 패턴(17)을 형성한다. 이때, 제 2 레지스트 패턴(17)은 제 2 사진 식각 공정으로 형성된다. 그후, 제 2 레지스트 패턴(17)을 마스크로 하여, 노출된 소오스, 드레인용 금속막(16)을 과도 식각하여, 소오스, 드레인 전극(16a,16b)을 형성한다. 이어, 제 2 레지스트 패턴(17)을 마스크로 하여, 노출된 도핑된 반도체층(15)을 식각하므로써, 오믹 콘택층(15a,15b)을 형성한다. 이때, 소오스, 드레인 전극(16a,16b)은 과도 식각되었으므로, 상기 제 2 레지스트 패턴(17) 보다 내측으로 함몰된다. 바람직하게는 오믹 콘택층(15a,15b)가 약 5㎛ 이하정도의 폭이 노출되도록 소오스, 드레인 전극(16a,16b)이 과도 식각된다.Then, as shown in FIG. 2B, a photoresist film is applied over the source and drain metal film 16, and the second resist is exposed and developed to define the source, drain electrode and data bus lines. The pattern 17 is formed. In this case, the second resist pattern 17 is formed by a second photolithography process. Thereafter, the exposed source and drain metal films 16 are excessively etched using the second resist pattern 17 as a mask to form the source and drain electrodes 16a and 16b. Subsequently, the ohmic contact layers 15a and 15b are formed by etching the exposed doped semiconductor layer 15 using the second resist pattern 17 as a mask. At this time, since the source and drain electrodes 16a and 16b are excessively etched, they are recessed inward from the second resist pattern 17. Preferably, the source and drain electrodes 16a and 16b are excessively etched so that the ohmic contact layers 15a and 15b are exposed to a width of about 5 μm or less.

그 다음, 도 2c에 도시된 바와 같이, 제 2 레지스트 패턴(17)을 공지의 방법으로 제거한다음, 하부 기판(11)의 결과물 상부에 채널용 비정질 실리콘층(18)을 약 300 내지 500Å 두께로 증착한다. 그후, 비정질 실리콘층(18) 상부에 보호막(19)을 약 4000 내지 5000Å 정도의 두께로 증착한다.Then, as shown in FIG. 2C, the second resist pattern 17 is removed by a known method, and then the amorphous silicon layer 18 for the channel 18 is formed to a thickness of about 300 to 500 kV over the resulting substrate 11. Deposit. Thereafter, a protective film 19 is deposited on the amorphous silicon layer 18 to a thickness of about 4000 to 5000 kPa.

그리고나서, 도 2d에 도시된 바와 같이, 보호막(19) 상부에 포토레지스트막을 도포하고, 채널층을 한정할 수 있도록 소정 부분 노광 및 현상하여, 제 3 레지스트 패턴(20)을 형성한다. 그 다음, 제 3 레지스트 패턴(20)을 마스크로 하여, 보호막(19)과 채널층(18)을 식각한다. 이때, 보호막(19)과 채널층(18)은 소정치만큼 과도 식각되어, 제 3 레지스트 패턴(20) 보다는 작은 크기를 갖는다. 이에따라, 박박 트랜지스터가 형성된다.Then, as shown in FIG. 2D, a photoresist film is applied over the passivation film 19, and predetermined partial exposure and development are performed to define the channel layer, thereby forming the third resist pattern 20. Next, the protective film 19 and the channel layer 18 are etched using the third resist pattern 20 as a mask. In this case, the passivation layer 19 and the channel layer 18 are excessively etched by a predetermined value, and thus have a smaller size than the third resist pattern 20. As a result, a thin film transistor is formed.

그 다음, 도 2e에서와 같이, 제 3 레지스트 패턴(20) 및 소오스, 드레인 전극(16a,16b)을 마스크로 하여, 노출된 제 1 및 제 2 게이트 절연막(13,14)을 식각하여, 패드부분(도시되지 않음)을 노출시킨다.Next, as shown in FIG. 2E, the exposed first and second gate insulating layers 13 and 14 are etched using the third resist pattern 20 and the source and drain electrodes 16a and 16b as a mask to form a pad. Expose a portion (not shown).

그후, 제 3 레지스트 패턴(20)을 공지의 방식으로 제거한다.Thereafter, the third resist pattern 20 is removed in a known manner.

이상에서 자세히 설명된 바와 같이, 본 발명에 의하면, 게이트 전극을 형성하기 위한 제 1 사진 식각 공정, 오믹 콘택층 및 소오스 드레인 전극을 형성하기 위한 제 2 사진 식각 공정, 채널층 및 보호막을 형성하기 위한 제 3 사진 식각 공정으로 박막 트랜지스터를 형성한다.As described in detail above, according to the present invention, the first photolithography process for forming the gate electrode, the second photolithography process for forming the ohmic contact layer and the source drain electrode, the channel layer and the protective film for forming The thin film transistor is formed by a third photolithography process.

이에따라, 종래의 5번의 사진 식각 공정보다 공정 단계가 크게 감소되어, 제조 단계 및 제조 공정 시간이 감소된다.As a result, the processing steps are greatly reduced compared to the conventional five photolithography processes, thereby reducing the manufacturing steps and the manufacturing process time.

또한, 채널층이 소오스, 드레인 전극 형성후에 형성되므로, 채널층이 식각되지 않는다.In addition, since the channel layer is formed after the source and drain electrodes are formed, the channel layer is not etched.

기타, 본 발명은 그 요지를 일탈하지 않는 범위에서 다양하게 변경하여 실시할 수 있다.In addition, this invention can be implemented in various changes within the range which does not deviate from the summary.

Claims (4)

절연 기판 상부에 금속막을 증착하는 단계;Depositing a metal film on the insulating substrate; 상기 금속막 상부에 게이트 전극용 제 1 레지스트 패턴을 형성한다음, 상기 금속막을 제 1 레지스트 패턴의 형태로 패터닝하여 게이트 전극을 형성하는 단계;Forming a first resist pattern for a gate electrode on the metal film, and then patterning the metal film in the form of a first resist pattern to form a gate electrode; 상기 제 1 레지스트 패턴을 제거하는 단계;Removing the first resist pattern; 상기 게이트 전극이 형성된 절연 기판 상부에 게이트 절연막과 도핑된 반도체층 및 소오스, 드레인용 금속막을 순차적으로 적층하는 단계;Sequentially stacking a gate insulating layer, a doped semiconductor layer, a source, and a drain metal layer on an insulating substrate on which the gate electrode is formed; 상기 소오스, 드레인용 금속막 상부에 소오스, 드레인 전극 한정용 제 2 레지스트 패턴을 형성하는 단계;Forming a second resist pattern for defining a source and a drain electrode on the source and drain metal film; 상기 제 2 레지스트 패턴을 마스크로 하여, 소오스, 드레인용 금속막 및 도핑된 반도체층을 식각하여, 소오스, 드레인 전극 및 오믹 콘택층을 형성하는 단계;Etching the source, the drain metal film, and the doped semiconductor layer using the second resist pattern as a mask to form a source, a drain electrode, and an ohmic contact layer; 상기 제 2 레지스트 패턴을 제거하는 단계;Removing the second resist pattern; 상기 절연 기판 결과물 상부에 비정질 실리콘층 및 보호막을 적층하는 단계;Depositing an amorphous silicon layer and a passivation layer on the resultant substrate; 상기 보호막 상부에 채널 한정용 제 3 레지스트 패턴을 형성하는 단계;Forming a channel defining third resist pattern on the passivation layer; 상기 제 3 레지스트 패턴을 마스크로 하여, 상기 보호막 및 비정질 실리콘층을 소정 부분 패터닝하여 채널층 및 채널층을 덮는 보호막을 형성하는 단계; 및Forming a passivation layer covering the channel layer and the channel layer by partially patterning the passivation layer and the amorphous silicon layer using the third resist pattern as a mask; And 상기 제 3 레지스트 패턴을 제거하는 단계를 포함하는 것을 특징으로 하는 박막 트랜지스터-액정 표시 장치의 제조방법.And removing the third resist pattern. 제 1 항에 있어서, 상기 소오스, 드레인 전극 및 오믹 콘택층을 형성하는 단계는, 상기 오믹 콘택층의 소정폭이 노출될 수 있도록 상기 소오스, 드레인 전극용 금속막을 과도식각하는 것을 특징으로 하는 박막 트랜지스터-액정 표시 장치의 제조방법.The thin film transistor of claim 1, wherein the forming of the source, drain electrode, and ohmic contact layer comprises over-etching the metal film for the source and drain electrode so that a predetermined width of the ohmic contact layer is exposed. -Manufacturing method of liquid crystal display device. 제 2 항에 있어서, 상기 소오스, 드레인 전극용 금속막의 과도식각으로 노출되는 상기 오믹 콘택층의 폭은 약 5㎛이하 인것을 특징으로 하는 박막 트랜지스터-액정 표시 장치의 제조방법.The method of claim 2, wherein the width of the ohmic contact layer exposed by the overetching of the source and drain electrode metal films is about 5 μm or less. 제 1 항에 있어서, 상기 채널층과 보호막을 형성하는 단계와 상기 제 3 레지스트 패턴을 제거하는 단계 사이에, 상기 제 3 레지스트 패턴에 의하여 패드 부분이 노출될 수 있도록 상기 게이트 절연막의 일부를 식각하는 단계를 더 포함하는 것을 특징으로 하는 박막 트랜지스터-액정 표시 장치의 제조방법.The method of claim 1, wherein a portion of the gate insulating layer is etched so that a pad portion is exposed by the third resist pattern between forming the channel layer and the passivation layer and removing the third resist pattern. A method of manufacturing a thin film transistor-liquid crystal display device, further comprising the step.
KR1019990031421A 1999-07-30 1999-07-30 method for manufacturing TFT- LCD KR100341129B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990031421A KR100341129B1 (en) 1999-07-30 1999-07-30 method for manufacturing TFT- LCD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990031421A KR100341129B1 (en) 1999-07-30 1999-07-30 method for manufacturing TFT- LCD

Publications (2)

Publication Number Publication Date
KR20010011858A KR20010011858A (en) 2001-02-15
KR100341129B1 true KR100341129B1 (en) 2002-06-20

Family

ID=19605838

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990031421A KR100341129B1 (en) 1999-07-30 1999-07-30 method for manufacturing TFT- LCD

Country Status (1)

Country Link
KR (1) KR100341129B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100069935A (en) 2008-12-17 2010-06-25 삼성전자주식회사 Thin film transistor array substrate and method for fabricating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149884A (en) * 1989-11-07 1991-06-26 Toppan Printing Co Ltd Thin film transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149884A (en) * 1989-11-07 1991-06-26 Toppan Printing Co Ltd Thin film transistor

Also Published As

Publication number Publication date
KR20010011858A (en) 2001-02-15

Similar Documents

Publication Publication Date Title
KR100699208B1 (en) Thin film transistor array, fabrication method thereof, and liquid crystal display device employing the same
US6740596B2 (en) Manufacturing method of active matrix substrate
KR100333274B1 (en) Liquid Crystal Display and Method Thereof
US6608658B1 (en) Top gate TFT structure having light shielding layer and method to fabricate the same
US5326712A (en) Method for manufacturing a thin film transistor
KR100653467B1 (en) Method for manufacturing tft-lcd
US20060154397A1 (en) Method for manufacturing a display device and method for forming a pattern
US6156583A (en) Method for manufacturing a liquid crystal display device
KR100590925B1 (en) method for manufacturing the TFT- LCD
US6411356B1 (en) Liquid crystal display device with an organic insulating layer having a uniform undamaged surface
US6558992B2 (en) Method to fabricate flat panel display
CN111446264A (en) Array substrate and manufacturing method thereof
KR20010010117A (en) Manufacturing method of a thin film transistor array panel for liquid crystal display
KR100744404B1 (en) Method of manufacturing array substrate of lcd device
KR100341129B1 (en) method for manufacturing TFT- LCD
KR100648214B1 (en) Method of manufacturing tft-lcd
KR100663288B1 (en) Method for fabricating tft-lcd
KR100705616B1 (en) Method for manufacturing thin film transistor liquid crystal display device
KR100653466B1 (en) Manufacturing method of liquid crystal display device
KR100336890B1 (en) Manufacturing Method of Thin Film Transistor Liquid Crystal Display Device
KR100619160B1 (en) Method of manufacturing tft-lcd
KR100336893B1 (en) Manufacturing method of thin film transistor-liquid crystal display device
US6398974B1 (en) Method of forming an electrode for a thin film transistor
KR100200350B1 (en) Method of fabricating an entirely selfaligned thin film transistor using a laser
KR100852831B1 (en) Method for manufacturing array substrate of liquid crystal display

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130514

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140519

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150518

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160518

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170523

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180517

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190527

Year of fee payment: 18

EXPY Expiration of term