KR100340750B1 - A manufacturing process of the functional hydrolystates of chitosan using microwave - Google Patents

A manufacturing process of the functional hydrolystates of chitosan using microwave Download PDF

Info

Publication number
KR100340750B1
KR100340750B1 KR1019980013369A KR19980013369A KR100340750B1 KR 100340750 B1 KR100340750 B1 KR 100340750B1 KR 1019980013369 A KR1019980013369 A KR 1019980013369A KR 19980013369 A KR19980013369 A KR 19980013369A KR 100340750 B1 KR100340750 B1 KR 100340750B1
Authority
KR
South Korea
Prior art keywords
chitosan
hydrolyzate
yield
acid
microwave
Prior art date
Application number
KR1019980013369A
Other languages
Korean (ko)
Other versions
KR19980025341A (en
Inventor
이응호
조순영
이정석
주동식
Original Assignee
이정석
조순영
이응호
주동식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이정석, 조순영, 이응호, 주동식 filed Critical 이정석
Priority to KR1019980013369A priority Critical patent/KR100340750B1/en
Publication of KR19980025341A publication Critical patent/KR19980025341A/en
Application granted granted Critical
Publication of KR100340750B1 publication Critical patent/KR100340750B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • A23L5/34Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation using microwaves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3562Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/312Foods, ingredients or supplements having a functional effect on health having an effect on dental health
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/50Polysaccharides, gums
    • A23V2250/51Polysaccharide
    • A23V2250/511Chitin, chitosan

Abstract

PURPOSE: A process for preparing functional chitosan hydrolysate having antibiotic activity using microwave is provided, thereby cheaply preparing the functional chitosan hydrolysate in higher yield. CONSTITUTION: A process for preparing functional chitosan hydrolysate having antibiotic activity using microwave comprises the steps of: dissolving 0.5g of harmless organic acids including succinic acid, lactic acid and maleic acid in 100 ml of water; adding 1 to 2 g of chitosan into the solution; and heating the chitosan added solution in a microwave digestion system(USA) at 121 deg. C for 200 minutes.

Description

마이크로파를 이용한 기능성 키토산 가수분해물의 제조방법{A manufacturing process of the functional hydrolystates of chitosan using microwave}A manufacturing process of the functional hydrolystates of chitosan using microwave}

본 발명은 게등 갑각류의 껍질에서 추출되는키틴으로 부터 제조된 키토산을 이용하여키토산 가수분해물을 제조함에 있어서 경제성이 있으면서 환경친화적인 산분해방법으로 다양한 식품산업에 응용할 수 있는마이크로파를 이용한 기능성키토산 가수분해물의 제조방법에 관한 것이다.The present invention is a functional chitosan hydrolyzate using microwave which can be applied to various food industries with economical and environmentally friendly acid decomposition method in manufacturing chitosan hydrolyzate using chitosan prepared from chitin extracted from shell of crab crustacean It relates to a manufacturing method of.

게등 갑각류의 껍질에서 추출되는 키틴 및이로 부터 제조되는키토산은 한때 소화 흡수과정에서 생물 생리기능이 없는 유용하지 못한 물질로서 취급되어 미이용자원으로 방치되어 왔으나, 근래에 와서 많은 연구결과, 키및 키토산은 흡착성, 보습성, 유화성 및 생분해성을 가진 무독성 물질로서 항균작용, 항위궤양작용, 항콜레스테롤, 장내 유용세균 생장촉진작용, 항종양활성, 식물세포의 활성화작용 및 면역부활작용 등 다양한 기능을 가진 고분자 다당류로서 건강지향성 식품, 의약품, 식품보존제, 중금속 흡착제, 효소고정화제, 화장품, 사료 및 토양개량제등 향후 다양한 분야에 응용가능한 생물자원으로 밝혀지고 있다.Chitosan is produced from chitin and which is extracted from the bark of gedeung crustacean was once in the digestion process is treated as a failed useful substances without biological physiology wateuna are left with unused resources, come in recent years, many studies, key Latin and chitosan Is a non-toxic substance with adsorption, moisturizing, emulsifying and biodegradability. It has various functions such as antibacterial activity, anti-ulcer activity, anti-cholesterol, intestinal useful bacteria growth promotion, anti-tumor activity, plant cell activation and immunoreactivity. It has been found to be a biological resource that can be applied to various fields such as health-oriented foods, medicines, food preservatives, heavy metal adsorbents, enzyme fixatives, cosmetics, feed and soil improving agents.

키틴은 분자내에 있는 아세틸아미노가 분자간의 수소결합으로 매우 강하게결합되어 있기 때문에 화학약품에 대한 내성이 강할 뿐만 아니라, 물과 대부분의 일반용매에 녹지 않는다.Chitin is not only resistant to chemicals, but also insoluble in water and most common solvents because acetylamino in the molecule is very strongly bound to hydrogen bonds between molecules.

반면에, 키토산은 저농도 무기산이나 아세틱산, 말레인산등의 유기산에 잘 용해되지만 물이나 알코에 녹지 않으며, 단백질이 존재하거나pH상승시 응집되는 성질이 있고 떫은 맛을 가지고 있을 뿐만 아니라, 점도도 높아 그 이용에 많은 제약이 따른다.On the other hand, chitosan is soluble in organic acids, such as low-density inorganic acid or acetic acid, maleic acid, but does not dissolve in water or alcohol, as well as the protein is present or there is a property that is cohesive when pH rises with the astringent taste, increase the viscosity There are many restrictions on its use.

따라서, 식품 및 의약품 분야 등 산업전반에 키틴 및 키토산을 폭넓게 응용하기 위해서는 해결하여야 할 과제가 많다.Therefore, there are many problems to be solved in order to apply chitin and chitosan to a wide range of industries such as food and pharmaceutical fields.

이와같은 관점에서 최근 우수한 생리기능성을 가지는 동시에 수용성이고 유기용매등에 용해가 가능하며, 안정성이 높은 키틴 및 키토산 유도체에 대하여 많은 연구가 진행되고 있으며 이 중에서도 특히, 키틴 및 키토산 올리고당을 포함한 가수분해물에 관심이 집중되고 있는바, 이들 키틴 및 키토산 올리고당은 항균, 항종 양활성, 비피더스균 증식인자 및 식물세포 활성화등의 다양한 기능특성을 가질 뿐만 아니라, 체내 흡수속도가 빨라 고부가가치 소재로서 응용이 기대되고 있다.In view of this, many studies have been conducted on chitin and chitosan derivatives having high physiological functionality, water solubility, solubility in organic solvents, and high stability. Among them, in particular, hydrolyzates including chitin and chitosan oligosaccharides are of interest. These concentrations of chitin and chitosan oligosaccharides have various functional characteristics such as antibacterial, antitumor activity, bifidus growth factor and plant cell activation, as well as rapid absorption in the body, which is expected to be applied as a high value-added material. .

지금까지 알려진 키틴 및 키토산 올리고당의 제조방법은 강산을 사용하는 화학적인 분해법과 키틴 및 키토산 분해효소를 이용하는 생물학적인 분해법이 개발되어 있다.Known methods for producing chitin and chitosan oligosaccharides have been developed by chemical degradation using strong acids and biological degradation using chitin and chitosan degrading enzymes.

전자의 화학적인 분해법은 강산의 사용으로 인하여 안전성이 의문시 될 뿐 아니라, 해양환경오염 유발, 중화시 발생하는 과다한 염의 제거, 고차 올리고당의 저수율, 염산분해중 탈아미노화 및 착색과 같은 화학반응등이 수반되는 것이 문제점으로 지적되고 있으며, 후자의 효소적 분해방법은 화학적 분해방법에 비해 안전성이 뛰어나 현재 시판되고 있는 키토산 가수분해물은 모두 이 방법으로 제조되고 있으나 이 방법은 분해효소의 시판가격이 비싸고, 대량생산시에도 생물공정 제반시설의 확충등 경제적 부담이 크기 때문에 공업적 생산에는 아직 많은 어려움이 따르는 문제점이 있었다.The chemical decomposition of the former is not only a question of safety due to the use of strong acids, but also causes marine environmental pollution, removal of excess salts that occur during neutralization, low yield of higher oligosaccharides, and chemical reactions such as deamination and coloring during hydrolysis. Accompanied by the enzymatic degradation method, the latter enzymatic degradation method is safer than the chemical degradation method, and all chitosan hydrolysates currently on the market are manufactured by this method, but this method has a high market price of the enzyme. In the case of mass production, there is a problem that industrial production is still difficult because of the large economic burden such as expansion of biological process facilities.

따라서, 화학 및 효소적 분해방법의 단점을 보완할 수 있는 새로운 분해방법의 개발이 요구되고 있다.Therefore, there is a need for the development of new decomposition methods that can compensate for the shortcomings of chemical and enzymatic degradation methods.

본 발명은 이와같은 필요적 당위성에 의거하여 오랜연구 끝에 안출한 것으로 키토산의 분해시 경제성이 있으면서 환경 친화적인 새로운 분해공정을 개발할 목적으로 저농도 유기산에 키토산을 첨가한 후 마이크로파 가열 처리로 분해하므로서 기존의 화학적 분해법으로 제조한 것과 거의 동일한 수율의 키토산 가수분해물을 제조한 것인데 이를 상세히 설명하면 다음과 같다.The present invention has been devised after a long study based on such necessity, and in order to develop a new decomposition process that is economical and environmentally friendly when chitosan is decomposed, chitosan is added to low-concentration organic acid and then decomposed by microwave heat treatment. Chitosan hydrolyzate was prepared in almost the same yield as that produced by the decomposition method, which will be described in detail as follows.

호박산, 젖산 및 말레인산같은인체에 무해한 저농도0.5%유기산에 키토산을 l∼2% 농도로 첨가하여용해하고 이를마이크로파가 발생하고, 내부 온도 조절이 가능한 가열장치(microwave digestion system, USA)로 121℃에서 200분간 분해하여 기능성 키토산 가수분해물을 제조하는 방법이다.Chitosan is dissolved in a low concentration of 0.5% organic acid such as succinic acid, lactic acid and maleic acid at a concentration of 1 ~ 2%, and it is microwaved and it generates 121 ℃ by microwave digestion system (USA). This is a method for producing a functional chitosan hydrolyzate by decomposition for 200 minutes in.

여기서 % 는 용액 100ml에 녹아있는 용질의 g을 나타낸 것으로, 키토산 농도 1∼2%는 0.5%로 제조된 유기산에 대한 % 농도를 말한다.Where% represents the g of the solute dissolved in 100 ml of the solution, and the chitosan concentration of 1 to 2% refers to the% concentration of the organic acid prepared at 0.5%.

이와같이 된 본 발명을 아래의 실시예에 의거 상술하면 다음과 같다.The present invention thus made will be described in detail based on the following examples.

실시예Example

1. 재료 및 방법1. Materials and Methods

(키토산의 제조)(Production of chitosan)

붉은대게 껍질을 35mesh 정도로 분쇄하여 이에 15배의 2N HC1을 가한 다음 실온(25℃)에 탈회분화 시킨 후 75℃에서 1N NaOH 용액을 사용하여 1시간의 반응으로 단백질을 제거하고, 이를 여과 및 수세하여 0.4% 차아염소산나트륨으로 10분간 탈색시킨 후 재여과 및 수세하고 열풍건조기로서 60℃에서 건조시켜 제조한 키틴 중량에 대하여 15배의 45% NaOH 용액을 가해 100℃에서 6시간 반응시킨 후 수세공정을 거쳐 60℃에서 건조하여 제조하였다.The red snow crab is crushed to about 35mesh, 15 times of 2N HC1 is added thereto, and then demineralized at room temperature ( 25 ° C. ). Then, the protein is removed by reaction with 1N NaOH solution at 75 ° C. for 1 hour, filtered and washed with water. Decolorized with 0.4% sodium hypochlorite for 10 minutes, re-filtered and washed with water, and dried at 60 ° C with a hot air dryer to add 15 times 45% NaOH solution to the weight of chitin, followed by reaction at 100 ° C for 6 hours. It was prepared by drying at 60 ℃ through.

(점도 및 탈아세틸화도의 측정)(Measurement of viscosity and deacetylation degree)

점도는 회전점도계(Brookfield LVTDV-II)를 사용하여 25℃에서 회전속도를 0.3rpm에서 100prm으로 바꾸어 가면서 측정하였으며, 이 때 점도 측정용 시료는 Austin 등의 방법에 따라 0.5% acetic aicd 용액에 용해시킨 0.5% 키토산 용액을 사용하였다. 한편, 키토산의 탈아세틸화도는 KBr cell을 만들어 IR spectrophotometer(Shimadzu IR-408, Japan)로 IR spectrum을 분석한 후 2878cm-1에서의 흡광도에 대한 1550cm-1에서의 흡광도 비(A1550/A2878)를 구하고, 이 비로부터 Sannan등이 제시한 검량선을 이용하여 탈아세틸화도를 구하였다.Viscosity was measured using a rotational viscometer (Brookfield LVTDV-II) by changing the rotational speed from 0.3rpm to 100prm at 25 ° C. At this time, the sample for viscosity measurement was dissolved in 0.5% acetic aicd solution according to Austin et al. 0.5% chitosan solution was used. On the other hand, the deacetylation degree of chitosan was measured by measuring the IR spectrum with an IR spectrophotometer (Shimadzu IR-408, Japan) by making a KBr cell and measuring the absorbance ratio (A1550 / A2878) at 1550 cm-1 to the absorbance at 2878 cm-1. From this ratio, the degree of deacetylation was determined using the calibration curve presented by Sannan et al.

(키토산 가수분해물의 제조)(Production of chitosan hydrolyzate)

키토산을 저농도 염산 및 유기산에 첨가한 후 microwave digestionsystem(MDS 2000, CEM Co,, USA)장치를 이용하여 가수분해물을 제조하였다.Chitosan was added to low concentration hydrochloric acid and organic acid, and hydrolyzate was prepared using a microwave digestion system (MDS 2000, CEM Co ,, USA).

(키토산 가수분해물의 수율)(Yield of Chitosan Hydrolyzate)

가수분해물의 수율은 키토산 g당 전당 함량으로 나타내었고, 전당 함량은 분해된 키토산을 중화(pH 8.0)하고 원심분리(12,000rpm, 10min)한 다음 상층액 1ml에 5% 페놀용액 1ml 및 진한황산 5ml를 첨가한 후 470nm에서 흡광도를 측정하여 표준검량선으로부터 구하였다.The yield of the hydrolyzate was expressed as the sugar content per g of chitosan, and the sugar content was neutralized (pH 8.0) of the decomposed chitosan, centrifuged (12,000 rpm , 10 min), and then 1 ml of 5% phenol solution and 5 ml of concentrated sulfuric acid in 1 ml of the supernatant. After the addition of the absorbance at 470nm was measured from the standard calibration curve.

(기능특성 측정)(Functional characteristic measurement)

(1)항균성 측정(1) Antibacterial measurement

키토산 가수분해물의 항균성은 확산법의 일종인 paper disk법을 사용하였다. 즉, 멸균 petri dish에 Mueller Hinton agar 배지를 20m1 정도씩 부어 평판을 만든 후 시험 균주들을 35℃에서 12∼24시간 배양시킨 균액을 멸균 면봉을 이용하여 petri dish상에 먼저 잘 도말하여 접종시켰다.Antimicrobial activity of chitosan hydrolyzate was paper disk method. That is, Mueller Hinton agar medium was poured into a sterile petri dish by about 20m1 to make a plate, and the test strains were inoculated well first on a petri dish using a sterile swab incubated for 12 to 24 hours at 35 ° C.

그 다음에 멸균 peter disk(8mm diameter, thick, Advantec Toyo Co., Japan)를 Mueller Hinton agar 배지 위에 올린 후 membrane filter (0.45㎛)로 여과한 시료를 일정량 주입한 후 37℃로 조절된 저온배양기(동경과학제작소, 한국)에서 24시간 및 48시간 배양하여 paper disk 주위의 clear zone 직경(mm)으로 항균성 유무를 판별하였다. 항균성 실험에 사용된 균주는 그람 양성 세균으로 Bacillus cereus ATCC 11778, Bacillus subtilis ATCC 6633 및 Staphylococcus aureus ATCC 6538이었고, 그람 음성 세균으로는 Escherichia coli ATCC 1129 및 Enterobacter aerogenes ATCC 13048을 사용하였다. 한편, 최소발육저지농도의 측정은 Lorian의방법에 따라 다음과 같이 측정하였다. Mueller Hinter broth, brain heart infusion 및 YM broth 9.8ml에 시료 함량이 일정한 농도가 되도록 희석된 액을 0.1ml씩 가한 다음 18∼24시간 계대 배양된 각종 균주를 0.1ml씩 접종하여 35℃에서 48시간 배양한 후 균 증식여부를 660nm에서 흡광도로 측정하여 증식 억제에 필요한 최소발육저지 농도를 산출하였다.Then, sterilized peter disk (8mm diameter, thick, Advantec Toyo Co., Japan) was put on the Mueller Hinton agar medium, and then a certain amount of the sample filtered through a membrane filter (0.45㎛) was injected and then a low temperature incubator (controlled at 37 ° C.) was used. The presence of antimicrobial activity was determined by the clear zone diameter (mm) around the paper disk after 24 hours and 48 hours incubation at Tokyo Science Works, Korea. The strain used in the antimicrobial experiment was Gram-positive bacteria. Bacillus cereus ATCC 11778, Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538. Gram-negative bacteria Escherichia coli ATCC 1129 and Enterobacter aerogenes ATCC 13048 was used. On the other hand, the minimum growth inhibition concentration was measured as follows according to Lorian's method. 0.1 ml of diluted solution was added to 9.8 ml of Mueller Hinter broth, brain heart infusion and YM broth, and then inoculated with 0.1 ml of various strains cultured for 18 to 24 hours and incubated at 35 ° C for 48 hours. After the growth of bacteria was measured by absorbance at 660nm to calculate the minimum growth inhibitory concentration required for growth inhibition.

(2)항충치성 측정(2) anti-cavity measurement

항충치성은 항균성 측정방법과 동일하게 실험하였으며, 이 때 사용된 충치균은 Streptococcus intermedius 였다.Anti-cavity was tested in the same way as the antimicrobial measurement method, the cavities used was Streptococcus intermedius .

(3)항고혈압성 측정(3) antihypertensive measurement

항고혈압성은 TNBS(Trinitrobenzene Sulfonate)를 이용한 색도계 측정방법에 따라 시료액 25㎕에 50㎕의 Hip-His-Leu(2.5mM in borate buffer containing 200mM NaCl, pH 8.3)을 넣은 다음 5배 희석시킨 ACE 조효소액 50㎕을 넣어 37℃에서 1시간 반응시켰다.Antihypertensive properties were obtained by adding 50 µl of Hip-His-Leu (2.5 mM in borate buffer containing 200 mM NaCl, pH 8.3) to 25 µl of the sample solution according to the colorimetric measurement method using Trinitrobenzene Sulfonate (TNBS), and then diluting 5 times with ACE crude. 50 μl of enzyme solution was added and reacted at 37 ° C. for 1 hour.

반응 정지 시약으로 0.5M HCI 250㎕을 첨가한 후 Kolthoff buffer(0.1M Na2HPO4:1.0N NaOH=1:2) 250㎕을 넣은 다음 TNBS solution 25㎕을 넣고 20분간 반응시켰다. 여기에 sulfite(4mM Na2SO3 in 0.2M NaH2PO4)를 넣은 후 분광광도계 (Shimadzu UV 140-02, Japan)로 416nm에서 흡광도를 측정하여 가수분해물 첨가 전후의 백분율로써 ACE 저해효과를 산출하였다.250 μl of 0.5 M HCI was added as a stopping reagent, 250 μl of Kolthoff buffer (0.1 M Na2HPO4: 1.0N NaOH = 1: 2) was added thereto, followed by 25 μl of TNBS solution, followed by reaction for 20 minutes. After adding sulfite (4mM Na2SO3 in 0.2M NaH2PO4) to the absorbance at 416nm with a spectrophotometer (Shimadzu UV 140-02, Japan), the ACE inhibitory effect was calculated as a percentage before and after hydrolyzate addition.

(키토산 가수분해물의 올리고당 조성 분석)Analysis of Oligosaccharide Composition of Chitosan Hydrolysate

키토산 가수분해물의 올리고당 조성은 gel permeation chromatography 분석시스템(JASCO, Model LCSS-905, Jasco Co., Japan)을 이용하여 분자량 분포도로 확인하였다. 즉, Shodex OHpak SB-801+SB-803 column (7.5mmID×300mmL)에 키토산 가수분해물을 주입한 후 이동상(0.1M NaCl in 0.2% acetic acid)으로 유출시킨 다음 RI detector로 검출하였다. 올리고당 조성 분석을 위해 1∼6당까지의 키토산 올리고당과 pullulan(MW 853000, 95400, 23700, 5800)은 일본 Wako사로부터 구입하였다.The oligosaccharide composition of the chitosan hydrolyzate was confirmed by molecular weight distribution using a gel permeation chromatography analysis system (JASCO, Model LCSS-905, Jasco Co., Japan). That is, chitosan hydrolyzate was injected into the Shodex OHpak SB-801 + SB-803 column (7.5mm ID × 300mmL ), and the solution was extracted with a mobile phase (0.1M NaCl in 0.2% acetic acid) and detected by RI detector. Chitosan oligosaccharides and pullulan (MW 853000, 95400, 23700, 5800) from 1-6 sugars were purchased from Wako, Japan for the analysis of oligosaccharide composition.

(가수분해물 첨가 연제품의 제조 및 품질특정 측정)(Preparation of Hydrolyzate-Containing Leaded Product and Quality Measurement

명태 냉동고기풀에 키토산 가수분해물을 0.5%, 1.0%, 1.5% 및 2.0%로 첨가한 다음 90℃에서 가열하여 연제품을 제조하였으며, 이 때 연제품의 생균수 A.P.H.A.의 방법에 따라 표준한천 평판배지법으로 20℃에서 배양하여 측정하였고, 갈변도는 직시 색차계(Model ND-1001DP, Denshoku kogyo Co., Japan)를 사용하여 측정하였다. 또한 젤리강도 및 경도는 연제품을 1cm 두께로 절단한 후 지름 10mm 구형 plunger가 부착된 rheometer(Compac-100, Sun scientific Co., Japan)로 측정하였다.Chitosan hydrolyzate was added to 0.5%, 1.0%, 1.5%, and 2.0% of frozen pollack paste and heated at 90 ° C to prepare a soft product. It was measured by incubation at 20 ℃ by the medium method, browning degree was measured using a direct color difference meter (Model ND-1001DP, Denshoku kogyo Co., Japan). In addition, the strength and hardness of the jelly was measured by a rheometer (Compac-100, Sun scientific Co., Japan) attached to a spherical plunger with a diameter of 10mm after cutting the soft product into 1cm thickness.

2. 결과 및 고찰2. Results and Discussion

물리화학적 분해법으로 제조한 키토산 가수분해물의 수율Yield of chitosan hydrolyzate prepared by physicochemical decomposition

(1)저농도 유기산 첨가에 의한 키토산의 가수분해(1) Hydrolysis of Chitosan by Addition of Low Concentration Organic Acid

최근 키토산 올리고당을 제조할 목적으로 키토산 분해시 저농도 염산 및 초산에 키토산을 녹인 후 초음파로 가수분해한 연구결과가 보고되므로써 분해장치를 이용한 물리화학적인 분해법의 실용화 가능성을 제시한 바 있다.Recently, research results of dissolving chitosan in low concentration hydrochloric acid and acetic acid when hydrolyzing chitosan for the purpose of preparing chitosan oligosaccharide and then hydrolyzing by ultrasonication have been reported, suggesting the possibility of the practical use of physicochemical decomposition using a decomposition device.

본 연구에서는 키토산은 인체에 무해한 저농도 유기산에 녹인 후 마이크로파 가열 장치를 이용한 물리화학적인 분해법으로 키토산 가수분해물을 제조하였고,아울러수율에 영향을 주는 다양한 인자를 검토하였다.In this study, chitosan was dissolved in low-concentration organic acid, which is harmless to human body, and then produced chitosan hydrolyzate by physicochemical decomposition using microwave heating device. Also , various factors affecting yield were examined.

1)마이크로파 가열 및 고온고압 처리에 따른 가수분해물의 수율1) Yield of hydrolyzate by microwave heating and high temperature and high pressure treatment

0.5% succinic acid에 붉은대게 키틴으로부터 제조한 키토산(탈아세틸화도: 92%, 점도:126cP)을 2% 농도로 첨가하여 녹인 후 2가치 분해장치 즉, 마이크로파 가열 및 고온고압 장치를 이용하여동일온도(121℃)에서50분 간격으로 200분간 분해시킨 다음 수율을 전당함량으로 나타낸 것이다.Chitosan (deacetylation: 92%, viscosity: 126cP) prepared from red crab chitin was dissolved in 0.5% succinic acid at 2% concentration, and then dissolved at the same temperature using a two-value decomposition device, that is, microwave heating and high temperature and high pressure equipment. After digestion at 200 minutes at 121 ° C. for 50 minutes, the yield is expressed as a sugar content.

한편, 키토산 첨가 농도 2%는 예비실험을 통하여 결정하였는데, 3% 이상일 때는 0.5% 유기산에서 용해성이 떨어졌다.On the other hand, chitosan addition concentration of 2% was determined through a preliminary experiment, when more than 3% was insoluble in 0.5% organic acid.

동일시간대에서 마이크로파 가열로 분해시킨 키토산 가수분해물의 전당 함량이 고온고압으로 분해시킨 키토산 가수분해물의 전당 함량보다 높았다.At the same time, the content of sugars of chitosan hydrolyzate decomposed by microwave heating was higher than that of chitosan hydrolyzate decomposed by high temperature and high pressure.

-▲-: Microwaving treatment, -●-: Autoclavin treatment-▲-: Microwaving treatment,-●-: Autoclavin treatment

즉, 100분 및 200분간 마이크로파 가열로 분해한 가수분해물의 전당 함량은 키토산 g당 각각 408mg 및 565mg이었고, 고온고압으로 100는 및 200분간 분해시킨 시료의 전당함량은 각각 368mg 및 532mg으로 마이크로파 가열로 분해한 가수분해물의 전당 함량이 높아 유기산 첨가 키토산의 물리화학적 가수분해시에는 마이크로파 가열 장치를 이용하는 것이 키토산 가수분해물의 수율을 높일 수 있는 효과적인 방법이었다.In other words, the total sugar content of the hydrolyzate decomposed by microwave heating for 100 minutes and 200 minutes was 408 mg and 565 mg per g of chitosan, respectively, and the content of the total sugar content of the samples decomposed for 100 minutes and 200 minutes at high temperature and high pressure was 368 mg and 532 mg, respectively. Because of the high content of decomposed hydrolyzate, the microwave heating device was an effective way to increase the yield of chitosan hydrolyzate.

2)키토산 분자량 차이에 따른 가수분해물의 수율2) Yield of hydrolyzate according to chitosan molecular weight difference

고점포 키토산(126cP)에H 2 O 2 를 첨가하여 40℃에서 반응시킨 후 에탄올로 세척한 다음 동결 건조하여 중점도(98.5cP) 및 저점도(7.4cP) 키토산을 얻었다. 분자량이 다른 3가지 키토산을 0.5% succinic acid에 2% 농도로 첨가하여 녹인 후 121℃에서 100분 동안 마이크로파 가열로 분해한 다음 가수분해물의 수율을 전당 함량으로 나타낸 것이다. H 2 O 2 was added to the high store chitosan (126cP), reacted at 40 ° C., washed with ethanol, and lyophilized to obtain a medium viscosity (98.5 cP) and low viscosity (7.4 cP) chitosan. Three different chitosans with different molecular weights were dissolved in 0.5% succinic acid at a concentration of 2%, and then digested by microwave heating at 121 ° C. for 100 minutes.

동일 반응조건에서 저점도 키토산(7.4cP)으로 제조한 가수분해물의 전당 함량은 키토산 1g당 585mg으로 중점도(98.5cP) 및 고점도(126cP) 키토산 가수분해물의 전당 함량(중점도:489mg, 고점도:400mg)에 비해 높은 값을 나타내었다. 즉, 분자량이 작은 키토산을 사용하면 동일시간대에서 수율이 높은 키토산 가수분해물을 제조할 수 있었다.Under the same reaction conditions, the total sugar content of the hydrolyzate prepared with low viscosity chitosan (7.4 cP) was 585 mg per g of chitosan (98.5 cP) and the total sugar content of the high viscosity (126 cP) chitosan hydrolyzate (medium viscosity: 489 mg, high viscosity: 400 mg). That is, when chitosan having a small molecular weight was used, a high yield of chitosan hydrolyzate was produced in the same time period.

3)유기산 종류에 따른 가수분해물의 수율3) Yield of hydrolyzate according to organic acid type

0.5%의 succinic acid, lactic acid 및 maleic acid에 각각 저점도 키토산(7.4cP)을 2% 농도로 녹인 후 마이크의파 가열로 121℃에서50분 간격으로 200분간 가수분해한 다음 전당 함량을 측정하여 나타내었다.Low viscosity chitosan (7.4 cP) was dissolved in 0.5% of succinic acid, lactic acid and maleic acid at 2% concentration, and then hydrolyzed for 200 minutes at 121 ℃ for 50 minutes by microwave heating. Indicated.

유기산 종류에 관계없이 분해시간이 길어짐에 따라 전당 함량은 증가하였으며, 3가지 유기산 중에서는 0.5% succinic acid에 녹인 후 마이크로파 가열로 분해한 키토산 가수분해물의 전당 함량이 가장 높아 100분 및 200분간 분해하였을 때, 키토산 g당 각각 585mg 및 715mg이었다.Regardless of the type of organic acid, the sugar content increased as the decomposition time increased. Among the three organic acids, the content of the sugar content of chitosan hydrolysate dissolved by 0.5% succinic acid and decomposed by microwave heating was the highest. At 585 mg and 715 mg per g of chitosan, respectively.

-● - : 0.5% Succinic acid,-●-: 0.5% Succinic acid,

-▲- : 0.5% Lactic acid,-▲-: 0.5% Lactic acid,

-■- : 0.5% Maleic acid,-■-: 0.5% Maleic acid,

한편, 동일조건에서 lactic acid에 녹인 후 분해시킨 키토산 가수분해물의 전당 함량은 각각 430mg 및 645mg이었고, maleic acid에 녹인 후 분해한 키토산 가수분해물의 전당 함량은 각각 380mg 및 565mg이었다. 따라서, 유기산 중에서는 succinic acid가 키토산 가수분해물의마이크로파 가열을 이용한 제조시수율을 높일 수 있는 가장 적당한 용매였다.On the other hand, the total sugar content of chitosan hydrolyzate dissolved in lactic acid and decomposed under the same conditions was 430mg and 645mg, respectively, and the content of sugar content of chitosan hydrolyzate dissolved in maleic acid was 380mg and 565mg, respectively. Therefore, among the organic acids, succinic acid was the most suitable solvent to increase the yield in the preparation using microwave heating of chitosan hydrolyzate.

4)키토산 첨가농도에 따라 가수분해물의 수율4) Yield of hydrolyzate according to chitosan concentration

유기산에 첨가되는 키토산 농도에 따라 가수분해물의 수율이 다른 것으로 생각되어 0.5%succinic acid에 0.5%, 1.0%, 1.5% 및 2.0% 농도로 저점도 키토산(7.4cP)을 첨가한 다음 121℃에서 100분간 마이크로파 가열로 가수분해한 후 0.5% 키토산 첨가 구간의 수율을 100으로 하였을 때 상대수율을 측정한 결과는 같다.The yield of the hydrolyzate was thought to be different depending on the concentration of chitosan added to the organic acid , so that 0.5%, 1.0%, 1.5% and 2.0% of low viscosity chitosan (7.4cP) was added to 0.5% succinic acid , followed by 100 at 121 ° C. The relative yield was measured when the yield of 0.5% chitosan was added to 100 after hydrolysis by microwave heating for 100 minutes.

1.0% 키토산 첨가구의 상대수율은 95.2%였고, 1.5% 및 2.0%키토산 첨가구는 각각 75.5% 및 65.6%로 1.0% 이하의 키토산 첨가구에서 수율이 높았으며, 키토산 첨가량이 많을수록 수율은 떨어졌다. 한편, 수치상으로는 0.5% 키토산 첨가구에서 분해수율이 가장 높았으나, 이 첨가구에서는 상대적으로 유기산 첨가량이 많이 소비되는 단점 때문에 경제적인 측면을 고려할 때는 1.0% 키토산 첨가 조건이 가장적당하였다.The relative yield of the 1.0% chitosan added group was 95.2%, the 1.5% and 2.0% chitosan added groups were 75.5% and 65.6%, respectively, and the yield was higher at 1.0% or less chitosan added group, and the yield decreased as the amount of chitosan added. On the other hand, numerically, the yield of decomposition was the highest in the 0.5% chitosan addition group, but the 1.0% chitosan addition condition was most suitable in consideration of economic aspects because of the disadvantage that the amount of organic acid addition was consumed relatively high.

이상의 결과를 종합해 보면,마이크로파 가열을 이용한 키토산의 가수분해시가수분해물의 수율을 높이기 위하여서는 마이크로파 가열이 고온고압 장치보다 효과가 있었고, 원료 키토산의 분자량은 작을수록 수율이 많았다. 한편, 용매로는 0.5% Succinic acid가 가수분해물의 수율을 가장 높일 수 유기산이었고, 키토산 첨가 농도는 1.0%가 적당하였다.In summary, in order to increase the yield of hydrolyzate during hydrolysis of chitosan using microwave heating , microwave heating was more effective than high temperature and high pressure equipment, and the smaller the molecular weight of the raw material chitosan, the higher the yield. On the other hand, 0.5% Succinic acid was the organic acid that can increase the yield of the hydrolyzate as a solvent, chitosan addition concentration was suitable 1.0%.

(2)저농도 염산 첨가에 의한 키토산의 가수분해(2) Hydrolysis of chitosan by adding low concentration hydrochloric acid

키토산의 물리화학적 분해시 저농도 염산을 첨가하여 마이크로파 가열로 분해하였을 때, 키토산 가수분해물의 수율을 검토한 것이다.The yield of chitosan hydrolyzate was investigated when the hydrolysis of chitosan was decomposed by microwave heating with the addition of low concentration hydrochloric acid.

1∼3M 염산에 1% 저점도 키토산(7.4cP)을 첨가한 후 마이크로파 가열로 121℃에서 분해시킨 결과, 염산 농도의 증가에 따라키토산 가수분해물의 수율도 증가하여 3M 염산으로 90분간 분해한 키토산 가수분해물의 전당함량은 키토산 g당 870mg이나 되었으나, 동일조건에서 0.5% succinic acid에 녹인후 90분간 가수분해한 나, 동일조건에서 0.5% succinic acid에 녹인 후 90분간 가수분해한 시료의 전당 함량(890mg)보다는 약간 적었다.After adding 1% low-viscosity chitosan (7.4cP) to 1-3M hydrochloric acid and decomposing it at 121 ° C by microwave heating, the yield of chitosan hydrolyzate increased with increasing hydrochloric acid concentration. The starch content of the hydrolyzate was 870mg per g of chitosan, but it was dissolved in 0.5% succinic acid under 90% hydrolysis under the same conditions, but it was dissolved in 0.5% succinic acid under the same conditions. Slightly less than 890 mg).

-○ -: Control (5% succinic acid),-○-: Control (5% succinic acid),

-● -: 1M HCL, -▲ -: 2M HC1-●-: 1M HCL,-▲-: 2M HC1

-■ -: 3M HC1-■-: 3M HC1

또한 기존의 산가수분해법으로 제조한 키토산 가수분해물의 수율과 저농도 염산 및 유기산을 첨가하여 제조한 키토산 가수분해물의 수율을 서로 비교하기 위하여 고농도(12M, 10M 및 8M)의 염산에 저점도 키토산(7.4cP)을 첨가한 후 70℃ 항온진탕수 조에서 분해한 키토산 가수분해물의 수율을 나타내었다.In addition, in order to compare the yield of chitosan hydrolyzate prepared by the acid hydrolysis method and the yield of chitosan hydrolyzate prepared by adding low concentration hydrochloric acid and organic acid, low viscosity chitosan (7.4) in high concentration (12M, 10M and 8M) hydrochloric acid was compared. After adding cP), the yield of chitosan hydrolyzate decomposed in a 70 ° C. constant temperature water bath was shown.

-● -: 8M HC1, -▲ -: 10M HCl,-●-: 8M HC1,-▲-: 10M HCl,

-■ -: 12M HCl-■-: 12M HCl

산가수분해법으로 제조한 키토산 가수분해물 중 수율이 가장 높은 용매 조건, 즉 12M 염산으로 90분간 분해한 가수분해물의 키토산 1g당 전당 함량은 860mg으로 0.5% 유기산 및 3M 염산을 사용하며 121℃에서 동일 시간 물리화학적으로 분해한 시료의 전당 함량(870∼890mg)과 거의 같았다.Among the chitosan hydrolysates prepared by the acid hydrolysis method, the yield of the highest yield per solvent, that is, the total sugar content per 1 g of chitosan obtained by hydrolysis of 12M hydrochloric acid for 90 minutes was 860 mg, using 0.5% organic acid and 3M hydrochloric acid and the same time at 121 ° C. It was almost the same as the sugar content (870-890 mg) of the physicochemically degraded sample.

따라서, 저농도 유기산에 녹인 후 마이크로파 가열로 분해하는 물리화학적인 방법은 가수분해물의 수율면에서도 진한 염산만으로 분해하는 산가수분해법과 큰 차이가 없었으며, 특히 가수분해 후 중화나 탈염조작 등의 복잡한 정제공정이 필요 없는 경제성이 있는 분해법으로 인정되어 향후 키토산의 가수분해시 유용하게 적용할 수 있을 것으로 사료된다.Therefore, the physicochemical method of dissolving in low concentration organic acid and then decomposing by microwave heating was not much different from the acid hydrolysis method in which only hydrochloric acid was decomposed in terms of the yield of hydrolyzate, and in particular, complex purification such as neutralization or desalting operation after hydrolysis. It is recognized as an economical decomposition method that does not require a process, and may be usefully applied to hydrolysis of chitosan in the future.

.키토산 가수분해물의 기능특성Functional Properties of Chitosan Hydrolysates

(1)항균 및 항충치 활성(1) antibacterial and anti-cavity activity

키틴 및 키토산 가수분해물의 그람 음성 세균에 대한 항균활성을 paper disk법으로 나타낸 결과가 Table1이다.Table 1 shows the antimicrobial activity of gram-negative bacteria of chitin and chitosan hydrolysates by paper disk method.

식품의 세균학적 검사의 대상이 되는 Escherichia coli 에 대한 항균효과는 마이크로파 가열 및 고온고압으로 121℃에서 분해한 6개의 키토산 가수분해물(CHM-1∼CHA-3)에서 전부 항균활성이 있었다. 키틴 가수분해물 중에서는 마이크로파 가열로 121℃에서 50분간 분해한 가수분해물The antimicrobial effect of Escherichia coli , which is the subject of bacteriological examination of food, was all antimicrobial activity in 6 chitosan hydrolysates (CHM-1 to CHA-3) decomposed at 121 ° C by microwave heating and high temperature and high pressure. In chitin hydrolyzate, hydrolyzate decomposed at 121 ° C for 50 minutes by microwave heating.

(CM-2, 전당 함량:613mg/g 키틴) 및 90분간 분해한 가수분해물(CM-3, 전당 함량: 830mg/g 키틴) 그리고, 고온고압으로 121℃에서 90분간 분해한 가수분해물(CA-3, 전당 함량: 740mg/g 키틴)에서 Escherichia coli 에 대하여 항균효과가 있었다.(CM-2, starch content: 613 mg / g chitin) and hydrolyzate decomposed for 90 minutes (CM-3, starch content: 830 mg / g chitin), and hydrolyzate decomposed for 90 minutes at 121 ° C. at high temperature and high pressure (CA- 3, starch content: 740mg / g chitin) Esherichia coli There was an antimicrobial effect against.

병원성 장내세균인 Enterobacter aerogenes 에 대한 항균활성은 키틴 가수분해물에서는 없었고, 키토산 가수분해물 중에서는 마이크로파 가열로 100분간 분해한 가수분해물(CHM-2, 전당 함량: 870mg/g 키토산)과 200분간 분해한 가수분해물(CHA-3, 전당 함량: 940mg/g 키토산) 그리고 고온고압으로 200분간 분해한 가수분해물(CHA-3, 전당 함량: 880 mg/g 키토산)에서 우수한 항균활성을 나타내었다.Antimicrobial activity against Enterobacter aerogenes , a pathogenic enterobacteriaceae, was not found in chitin hydrolyzate. Among chitosan hydrolysates, hydrolysates (CHM-2, starch content: 870mg / g chitosan) and hydrolysates digested for 200 minutes by microwave heating It showed excellent antimicrobial activity in the digested products (CHA-3, starch content: 940mg / g chitosan) and hydrolysates (CHA-3, starch content: 880 mg / g chitosan) which were decomposed at high temperature and high pressure for 200 minutes.

한편, 키틴 및 키토산 가수분해물의 그람 양성 세균에 대한 항균효과는 Table2에 나타내었다.On the other hand, the antimicrobial effects of the chitin and chitosan hydrolysates on Gram-positive bacteria are shown in Table 2 .

Bacillus cereus 에 대한 항균효과는 키토산 가수분해물에서 우수하였으며, 특히 CHM-2 및 CHM-3에서 항균활성이 매우 우수하였다. 키틴 가수분해물 중에서는CM-2와 CA-3에서 항균활성이 있었으나, CM-3에서는 항균활성이 없었다. The antimicrobial effect against Bacillus cereus was excellent in chitosan hydrolysates, especially in CHM-2 and CHM-3. Chitin hydrolysates had antibacterial activity in CM-2 and CA-3, but not CM-3.

Bacillus subtilis 에 대한 항균효과는 키토산 가수분해물인 CHM-3과 CHA-3에서 우수하였다. 한편 키틴 가수분해물은 키토산 가수분해물에 비해 항균활성이 떨어졌지만 CA-3 및 CM-3에서 항균활성이 있었다.Antimicrobial effect against Bacillus subtilis was excellent in chitosan hydrolysates CHM-3 and CHA-3. On the other hand, chitin hydrolyzate had lower antimicrobial activity than chitosan hydrolyzate, but had antimicrobial activity in CA-3 and CM-3.

병원성 식중독 세균인 Staphylococcus aureus 에 대한 항균효과는 키틴 가수 분해물 중에서 CM-2 및 CM-3에서 있었고, 키토산 가수분해물은 실험구 전부가 항균활성을 가지고 있었다.The antimicrobial effect against Staphylococcus aureus , a pathogenic food poisoning bacterium, was in CM-2 and CM-3 among chitin hydrolysates, and chitosan hydrolysates had antimicrobial activity.

한편, 충치균인 Streptococcus intermedius 에 대한 키틴 및 키토산 가수분해물의 항충치활성은 Table3에 나타내었다.On the other hand, the anti-cavities activity of the chitin and chitosan hydrolysates against the caries Streptococcus intermedius is shown in Table 3 .

항충치활성은 키틴 및 키토산 가수분해물 전구간에서 나타났으며, 특히 CHM-3 에서 가장 큰 clear zone을 형성하였다.Anti-cavity activity was seen in chitin and chitosan hydrolysates, and formed the largest clear zone in CHM-3.

또한, 대조구로 사용된 저점도 키토산(7.4cP)은 항충치균인 Streptococcus intermedius 에 대해서만 항균효과가 있었고, 나머지 세균에 대해서는 항균효과가 없었으며, 0.5% succinic acid는 단독으로 존재할 때 모든 균에 대하여 항균활성이 전혀 없었다.In addition, low-viscosity chitosan (7.4cP) used as a control had antimicrobial effect only against the anti-caries bacillus Streptococcus intermedius , no antimicrobial effect against the rest of the bacteria, 0.5% succinic acid antibacterial against all bacteria when present alone There was no activity at all.

이상의 실험결과를 종합해 볼 때, 키틴 가수분해물 보다는 키토산 가수분해물이 항균효과가 우수하였고, 특히 마이크로파 가열로 121℃에서 200분간 분해시킨 가수분해물(CHM-3)은 6개의 실험대상 균주 모두에 우수한 항균효과를 나타내었다.In conclusion, chitosan hydrolyzate showed better antibacterial effect than chitin hydrolyzate. Especially, hydrolyzate (CHM-3) decomposed for 200 minutes at 121 ℃ by microwave heating was superior to all 6 strains. It showed antimicrobial effect.

(2)항고혈압성(2) antihypertensive

키토산 가수분해물이 성인병인 고혈압을 억제할 수 있는지를 확인하기 위하여 항고혈압 활성(ACE 저해효과)을 실험한 결과, 가수분해물 전 구간에서 ACE 저해능이 없는 것으로 확인되었다. 한편, 대조구로 실험한 저점도, 중점도 및 고점도 키토산에서는 어느 정도 저해효과는 있었으며, 키토산의 분자량이 클수록 ACE 저해효과가 좋은 것으로 나타났다.The antihypertensive activity (ACE inhibitory effect) was tested to determine whether the chitosan hydrolyzate can inhibit hypertension, which is an adult disease. On the other hand, the low viscosity, medium viscosity, and high viscosity chitosan tested as a control showed some inhibitory effects, and the higher the molecular weight of chitosan, the better the ACE inhibitory effect.

·키토산 가수분해물 첨가 연제품의 저온저장 중 품질변화Changes in Quality of Chitosan Hydrolyzate Added Soft Products during Low Temperature Storage

키토산은 항균활성을 가진 천연 고분자 물질로써 식품보존제로서의 이용가능성 때문에 김치 및 두부 등에 첨가하여 식품의 저장성을 연장시킨 보고들이 있다.Chitosan is a natural polymer with antimicrobial activity and has been reported to extend the shelf life of food by adding it to kimchi and tofu because of its availability as a food preservative.

저농도 유기산을 첨가한 후 마이크로파 가열로 제조한 키토산 가수분해물은 고분자 키토산보다 우수한 항균활성을 나타내었을 뿐만 아니라, 산가수분해물과는 달리 중화 및 탈염공정을 거치지 않고 바로 식품에 적용할 수 있다는 장점이 있어 향후 천연 식품보존제로서의 이용이 기대된다.Chitosan hydrolyzate prepared by microwave heating after addition of low concentration organic acid not only showed superior antimicrobial activity than polymer chitosan, but unlike acid hydrolyzate, it can be directly applied to food without undergoing neutralization and desalting process. It is expected to be used as a natural food preservative in the future.

따라서, 키토산 가수분해물의 식품산업에의 응용차원에서 0.5%succinicacid에 저점도 키토산(7.4cP)을 1% 농도론 첨가한 후 마이크로파 가열로 121℃에서 200분간 분해시킨 가수분해물을 명태 냉동고기풀(FA 등급) 중량에 대해 0.5%, 1.0%, 1.5% 및 2.0% 첨가하여 제조한 연제품을 5℃ 저온저장하면서 생균수, 갈변도, 젤리강도 및 경도의 변화를 살펴보았다.Accordingly, hydrolyzate of chitosan hydrolyzate was added to 0.5% succinic acid with low viscosity chitosan (7.4 cP) in 1% concentration for 200 minutes at 121 ° C by microwave heating. (FA grade) The soft products prepared by adding 0.5%, 1.0%, 1.5% and 2.0% by weight were stored at 5 ° C. at low temperature, and the changes in viable cell number, browning degree, jelly strength and hardness were examined.

(1)생균수 및 갈변도의 변화(1) Change of viable cell number and browning degree

키토산 가수분해물을 첨가하여 제조한 연제품의 5℃ 저장 중 생균수 및 갈변도의 변화를 나타내었다.The change of viable cell number and browning degree during storage at 5 ° C of soft products prepared by the addition of chitosan hydrolyzate was shown.

-■-: control, -◆-: 0.5% -■-: control, -◆-: 0.5%-■-: control,-◆-: 0.5%-■-: control,-◆-: 0.5%

-●-: 1.0%, -▲-: 1.5% -●-: 1.0%, -▲-: 1.5%-●-: 1.0%,-▲-: 1.5%-●-: 1.0%,-▲-: 1.5%

-※-: 2.0% -※-: 2.0%-※-: 2.0%-※-: 2.0%

키토산 가수분해물 첨가제품은 저장 18일까지 첨가량에 관계없이 무첨가 연제품에 비해 생균수는 적었다. 특히, 2% 키토산 가수분해물을 첨가하여 제조한 연제품은 저장 6일차에 비해 오히려 생균수가 감소하여 우수한 항균효과를 알 수 있었다. 한편, 갈변도는 키토산 가수분해물 첨가구와 무첨가구간의 차이가 거의 없어 갈변 억제 효과는 없었다.Chitosan hydrolyzate added products had fewer viable cell counts than unadded leaded products regardless of the amount added up to 18 days of storage. In particular, the soft product prepared by adding 2% chitosan hydrolyzate showed a good antimicrobial effect as the number of viable cells decreased rather than the 6th day of storage. On the other hand, browning degree was almost no difference between the chitosan hydrolyzate added group and no added group, and there was no browning inhibitory effect.

(2)젤리강도 및 경도의 변화(2) change of jelly strength and hardness

키토산 가수분해물의 첨가에 의한 연제품의 texture 변화를 알아보기 위하여저온저장 중 젤리강도 및 경도의 변화를 나타내었다.In order to investigate the texture change of soft products by the addition of chitosan hydrolyzate, the change of jelly strength and hardness during low temperature storage was shown.

-■ -: control, -◆-: 0.5% -■ -: control, -◆-: 0.5%-■-: control,-◆-: 0.5%-■-: control,-◆-: 0.5%

-● -: 1.0%, -▲ -: 1.5% -● -: 1.0%, -▲ -: 1.5%-●-: 1.0%,-▲-: 1.5%-●-: 1.0%,-▲-: 1.5%

-※-: 2.0% -※-: 2.0%-※-: 2.0%-※-: 2.0%

젤리강도는 전 제품 모두 저장 중 감소하였고, 감소폭은 재품간에 큰 상관성이 없었다. 저장 일수에 관계 없이 키토산 가수분해물 첨가 연제품의 젤리강도는 약 2,000∼3,000g·cm로 무첨가 연제품의 젤리강도(약 1,700∼1,800g·cm)에 비해 상당히 높은 값을 나타내었는데, 이는 키토산 지니고, 있는 점성에 기인하는 것으로 생각된다.Jelly strength decreased during storage for all products, and the decrease was not significantly correlated between the products. Regardless of the storage days, the jelly strength of chitosan hydrolyzate-added soft products was about 2,000 to 3,000 g · cm , which was significantly higher than the jelly strength of unadded soft products (about 1,700 to 1,800 g · cm ). It is thought to be due to viscosity.

한편, 키토산 가수분해물의 첨가량에 따라서도 젤리강도가 다르게 나타나 0.5ml 첨가구에서 가장 높은 젤리강도를 나타내었으며, 첨가량이 많을수록 젤리강도는 낮았다. 또한 경도도 젤리강도와 마찬가지로 키토산 가수분해물 첨가구가 무첨가구에 비해 높은 값을 나타내었다. 장등은 효소로 분해한 키토산 가수분해물을 어육 연제품에 첨가하였을 때 파단강도가 증가한다고 발표한 바 있다.On the other hand, according to the addition amount of chitosan hydrolyzate, the jelly strength was different, showing the highest jelly strength in the 0.5ml addition group, and the higher the addition amount, the lower the jelly strength. In addition, the hardness of chitosan hydrolyzate added group showed higher value than that of the non-added group. Jang et al. Reported that breaking strength was increased when enzyme-decomposed chitosan hydrolyzate was added to fish meat products.

이상의 결과에서 저농도 유기산과 마이크로파 가열을 병행하여 분해한 키토산 가수분해물은 연제품 제조시 첨가하면 texture 보강 효과 뿐만 아니라 세균증식 억제를 가져와 유통기간을 연장할 수 있다는 결론을 얻었다.In conclusion, the chitosan hydrolyzate decomposed in combination with low concentration of organic acid and microwave heating was concluded that the addition of the product in the production of soft products can not only enhance the texture but also inhibit the growth of bacteria and extend the shelf life.

3. 결론3. Conclusion

키토산의 분해시 기존의 화학 및 효소적 분해방법의 단점을 보완할 수 있는 새로운 가수분해 방법을 개발할 목적으로 키토산을 저농도 유기산에 녹인 후 마이크로파 가열이용하여 가수분해한 다음 가수분해물의 수율에 미치는 요인을 검토하였다. 또한, 이들 가수분해물의 항균, 항충치 및 항고혈압성을 실험하였고, 아울러 항균활성이 우수한 가수분해물을 어육 연제품 제조시 첨가하여 품질에 미치는 영향을 알아본 결과는 다음과 같다.The dissolved chitosan new hydrolysis methods that can compensate the shortcomings of the conventional chemical and enzymatic degradation method is stable chitosan to develop purpose to the low-concentration organic acid by using a microwave heating hydrolysis following factors on the yield of the hydrolyzate Was reviewed. In addition, the antimicrobial, anti tooth decay and antihypertensive properties of these hydrolyzates were tested and the hydrolyzate with excellent antimicrobial activity was added during the production of fish meat products.

(1)키토산을 저농도 유기산에 녹인 후 마이크로파 가열로 분해할 때수율을 높이기 위한 조건으로써, 원료 키토산의 분자량은 작을수록 수율이 높았으며, 유기산 중에서는 succinic acid가 가장 높은 수율을 나타내었다.(1) As a condition for increasing the yield when the chitosan was dissolved in low concentration organic acid and then decomposed by microwave heating, the smaller the molecular weight of the raw chitosan, the higher the yield. Among the organic acids, succinic acid showed the highest yield.

한편, 0.5% succinic acid에 녹인 후 마이크로파 가열로 121℃에서 분해한 키토산 가수분해물의 수율은 12M의 진한 염산만을 사용하여 동일시간 분해한 키토산 가수분해물의 수율과 큰 차이가 없었다.On the other hand, the yield of chitosan hydrolyzate dissolved in 0.5% succinic acid and decomposed at 121 ° C. by microwave heating was not significantly different from the yield of chitosan hydrolyzate decomposed at the same time using only 12M concentrated hydrochloric acid.

(2) 0.5% succinic acid에 녹인 후 마이크로파 가열 처리한 키토산 가수분해물에 대한 항균활성은 전 구간에서 황균활성이 있었고, 특히 마이크로파로 121℃에서 200분간 가수분해한 실험구(CHM-3)에서 항균활성이 가장 우수하였다.(2) Antimicrobial activity against chitosan hydrolyzate after microwave heating after dissolving in 0.5% succinic acid showed antibacterial activity in all sections, especially in the experimental group (CHM-3) hydrolyzed at 121 ° C for 200 minutes in microwave. The activity was the best.

(3) 키토산 가수분해물은 전 구간에서 항충치활성이 있었으나, 항고혈합성은전 구간에서 없었고, 대조구인 고분자 키토산에서 항고혈압성이 어느 정도 있는 것으로 확인되었다. CHM-3의 균주에 대한 최소발육저지농도는 CHM-3으로부터 분획한 분자량 10,000이하의 올리고당 획분다 낮았다.(3) The chitosan hydrolyzate had anticariogenic activity in all sections, but antihypertensive synthesis was not found in all sections, and it was confirmed that there was some antihypertensive effect in the control polymer chitosan. Minimum inhibitory concentration on the strains of the CHM-3 has a molecular weight of 10,000 or less of the oligosaccharide fractions from Fraction 3 CHM-beams is low.

(4) CHM-3을 첨가하여 제조한 연제품은 5℃ 저온저장 중 무첨가 제품에 비해 저장 18일까지 생균수가 적었고, 젤리강도 및 경도는 높았다.(4) The soft product prepared by adding CHM-3 had less viable cell number by 18 days of storage and higher jelly strength and hardness than the non-added product at 5 ℃ cold storage.

이와같은 본발명의 키토산 분해방법은 국내외에서 최초로 적용한 실험결과로서 이에 의해 제조된 키토산 가수분해물의 수율이 종래의 화학적인 분해법으로 제조한 키토산 가수분해물의 수율과 거의 같아서 충분한 실용화가 가능하고 특히 어묵에 첨가하여 저온에서 저장한 결과 무첨가된 어묵에 비해 생균수의 양이 매우 적어 항균 및 항충치 활성이 우수한 것으로 판명되었, 조직감이 우수하였으며, 또한 종래의 화학적인 방법에 비해 중화 및 탈염 등의 정제공정이 필요없기 때문에 키토산 가수분해물의 제조비용을 크게 낮출 수 있어 식품의 천연보존제 및 기능성 가축사료의 원료 등 여러분야에 적용가능한 등 그 효과가 매우 크다.The chitosan decomposition method of the present invention is the first experimental result applied at home and abroad, the yield of chitosan hydrolyzate produced by this is almost the same as the yield of chitosan hydrolyzate prepared by the conventional chemical decomposition method is possible to practical use, especially in fish paste As a result of the addition and storage at low temperature, the amount of viable bacteria was very low compared to the non-added fish paste, and it was proved to be excellent in antimicrobial and anti-cavity activity, and the texture was excellent. Since the process is not necessary, the manufacturing cost of the chitosan hydrolyzate can be greatly lowered, and thus the effect is very high, such as being applicable to all fields such as natural preservatives of food and raw materials of functional livestock feed.

Claims (1)

호박산, 젖산 및 말레인산과 같은 인체에 무해한 유기산을 물 100㎖에 대하여 0.5g을 첨가하여 녹이고, 이 용액에 키토산을 1-2g을 첨가하여 용해한 후 이를 마이크로파가 발생하고 내부온도 조절이 가능한 가열장치(microwave digestion system, USA)로 121℃에서 200분간 분해하여서 되는 마이크로파를 이용한 기능성 키토산 가수분해물의 제조방법.A heating device capable of dissolving organic acids, such as succinic acid, lactic acid, and maleic acid, by adding 0.5 g to 100 ml of water, and adding 1-2 g of chitosan to the solution and dissolving it. microwave digestion system, USA) for the production of functional chitosan hydrolyzate using microwave which is decomposed at 121 ° C. for 200 minutes.
KR1019980013369A 1998-04-09 1998-04-09 A manufacturing process of the functional hydrolystates of chitosan using microwave KR100340750B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980013369A KR100340750B1 (en) 1998-04-09 1998-04-09 A manufacturing process of the functional hydrolystates of chitosan using microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980013369A KR100340750B1 (en) 1998-04-09 1998-04-09 A manufacturing process of the functional hydrolystates of chitosan using microwave

Publications (2)

Publication Number Publication Date
KR19980025341A KR19980025341A (en) 1998-07-06
KR100340750B1 true KR100340750B1 (en) 2002-11-29

Family

ID=37488158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980013369A KR100340750B1 (en) 1998-04-09 1998-04-09 A manufacturing process of the functional hydrolystates of chitosan using microwave

Country Status (1)

Country Link
KR (1) KR100340750B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190061828A (en) 2017-11-27 2019-06-05 이보균 Method for producing chitosan for forage use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512968A (en) * 1982-11-30 1985-04-23 Lion Corporation Oral compositions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512968A (en) * 1982-11-30 1985-04-23 Lion Corporation Oral compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190061828A (en) 2017-11-27 2019-06-05 이보균 Method for producing chitosan for forage use

Also Published As

Publication number Publication date
KR19980025341A (en) 1998-07-06

Similar Documents

Publication Publication Date Title
Sánchez et al. The effect of preparation processes on the physicochemical characteristics and antibacterial activity of chitooligosaccharides
Jeon et al. Continuous production of chitooligosaccharides using a dual reactor system
Sugumaran et al. Review on production, downstream processing and characterization of microbial pullulan
Kittur et al. Low molecular weight chitosans—preparation by depolymerization with Aspergillus niger pectinase, and characterization
Kumar et al. Low molecular weight chitosans: preparation with the aid of papain and characterization
Gacesa Enzymic degradation of alginates
CA2123602C (en) Gel production from plant matter
US20140100361A1 (en) Extraction of chitins in a single step by enzymatic hydrolysis in an acid medium
Niederhofer et al. A method for direct preparation of chitosan with low molecular weight from fungi
Mengíbar et al. Antibacterial activity of products of depolymerization of chitosans with lysozyme and chitosanase against Campylobacter jejuni
US4312979A (en) Polysaccharides containing allose
Affes et al. Enzymatic production of low-Mw chitosan-derivatives: Characterization and biological activities evaluation
Abidin et al. Intensifying chitin hydrolysis by adjunct treatments–an overview
Maalej et al. Depolymerization of Pseudomonas stutzeri exopolysaccharide upon fermentation as a promising production process of antibacterial compounds
Iqbal et al. Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy
Ilankovan et al. Production of N-acetyl chitobiose from various chitin substrates using commercial enzymes
Muzzarelli et al. Chitosans depolymerized with the aid of papain and stabilized as glycosylamines
EP0265970B1 (en) Lactobacillus bifidus proliferation promoting composition
Pokhrel et al. Synthesis of chitosan from prawn shells and characterization of its structural and antimicrobial properties
JPH0421477B2 (en)
KR100340750B1 (en) A manufacturing process of the functional hydrolystates of chitosan using microwave
Zimoch-Korzycka et al. Chitosan and cystatin/lysozyme preparation as protective edible films components
JP2008075075A (en) Novel glucan and its preparation method
US5786470A (en) Gel production from plant matter
Khasanova et al. Hydrolysis of chitozan with an enzyme complex from Myceliophthora sp.

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070531

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee