KR100338131B1 - Catalyst for the hydrogenation and method for preparing r-butyrolactone using the same catalyst - Google Patents

Catalyst for the hydrogenation and method for preparing r-butyrolactone using the same catalyst Download PDF

Info

Publication number
KR100338131B1
KR100338131B1 KR1020000025260A KR20000025260A KR100338131B1 KR 100338131 B1 KR100338131 B1 KR 100338131B1 KR 1020000025260 A KR1020000025260 A KR 1020000025260A KR 20000025260 A KR20000025260 A KR 20000025260A KR 100338131 B1 KR100338131 B1 KR 100338131B1
Authority
KR
South Korea
Prior art keywords
catalyst
butyrolactone
reaction
gamma
maleic anhydride
Prior art date
Application number
KR1020000025260A
Other languages
Korean (ko)
Other versions
KR20010103947A (en
Inventor
이정호
김형록
한요한
신현관
김정곤
우항수
김인기
Original Assignee
김이환
애경유화 주식회사
김충섭
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김이환, 애경유화 주식회사, 김충섭, 한국화학연구원 filed Critical 김이환
Priority to KR1020000025260A priority Critical patent/KR100338131B1/en
Publication of KR20010103947A publication Critical patent/KR20010103947A/en
Application granted granted Critical
Publication of KR100338131B1 publication Critical patent/KR100338131B1/en

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

본 발명은 다음 일반식(Ⅰ)로 표시되는 수소화 반응촉매와The present invention relates to a hydrogenation catalyst represented by the following general formula (I)

Ni9PdaMobNcZrdOx… (Ⅰ)Ni 9 Pd a Mo b N c Zr d O x . (Ⅰ)

상기식에서 N은 Co, Cu, Zn, Ag, Pb, Ru 중에서 선택되는 금속원소이고, a는 0.001~0.5, b는 0.01~5, C는 0.001~1.0, d는 0.5~12.0, x는 각성분의 원자가 및 조성비에 따른 화학 양론적 값을 나타낸다.In the formula, N is a metal element selected from Co, Cu, Zn, Ag, Pb, Ru, a is 0.001-0.5, b is 0.01-5, C is 0.001-1.0, d is 0.5-12.0, x is each component The stoichiometric value according to the valence and composition ratio of is shown.

이 촉매를 이용하는 감마-부티로락톤의 제조방법에 관한 것이다.A method for producing gamma-butyrolactone using this catalyst is provided.

본 발명의 촉매를 이용하는 본 발명의 방법은 온화한 반응조건하에서 높은 선택율과 높은 수율로 무수말레인산이나 무수석신산으로부터 감마-부티로락톤을 제조할 수 있는 효과를 갖는다.The process of the present invention using the catalyst of the present invention has the effect of producing gamma-butyrolactone from maleic anhydride or succinic anhydride with high selectivity and high yield under mild reaction conditions.

Description

수소화 반응촉매 및 이 촉매를 이용하는 감마-부티로락톤의 제조방법{Catalyst for the hydrogenation and method for preparing r-butyrolactone using the same catalyst}Catalytic reaction for the hydrogenation and method for preparing r-butyrolactone using the same catalyst

본 발명은 무수말레인산이나 무수석신산으로부터 감마-부티로락톤을 높은 선택율과 고수율로 제조하는데 유용한 촉매와 이 촉매를 이용하여 무수말레인산이나 무수석신산으로부터 감마-부티로락톤을 제조하는 방법에 관한 것이다.The present invention relates to a catalyst useful for producing gamma-butyrolactone from maleic anhydride or succinic anhydride with high selectivity and high yield and to a method for producing gamma-butyrolactone from maleic anhydride or succinic anhydride using this catalyst. will be.

구체적으로는 무수말레인산(Maleic anhydride)이나 무수석신산(Succinic anhydride)을 수소화반응(Hydrogenation)시켜 감마-부티로락톤(r-Butyrolactone)을 제조하는데 있어서 수소화 반응에 유용한 촉매와 이 촉매를 이용하여 무수말레인산이나 무수석신산을 저온 저압의 온화한 반응조건에서 액-기상 유통식 반응으로 수소화 반응시켜 감마-부티로락톤을 제조하는 방법에 관한 것이다.Specifically, in the preparation of gamma-butyrolactone by hydrogenation of maleic anhydride or succinic anhydride, a catalyst useful for hydrogenation and anhydrous using this catalyst The present invention relates to a method for producing gamma-butyrolactone by hydrogenating maleic acid or succinic anhydride in a liquid-gas flow reaction under mild reaction conditions at low temperature and low pressure.

감마-부티로락톤은 높은 비점(B·P 204℃)을 갖는 물질로 피롤리돈이나 N-메틸피롤리돈, N-비닐피롤리돈, 폴리비닐피롤리돈 등을 합성하는 중간체로서 뿐 만 아니라 농약, 의약, 염료·안료, 향료, 화장품, 석유화학, 전자산업분야에서 다양하게 사용되고 있는 중요한 원료중의 하나이다.Gamma-butyrolactone is a substance having a high boiling point (B · P 204 ° C.) and is used only as an intermediate for synthesizing pyrrolidone, N-methylpyrrolidone, N-vinylpyrrolidone, polyvinylpyrrolidone, etc. In addition, it is one of the important raw materials used in various fields of pesticides, medicine, dyes and pigments, fragrances, cosmetics, petrochemicals and electronics.

종래 감마-부티로락톤을 제조하는 방법으로는 1,4-부탄디올을 탈수소하여 제조하는 방법, 1,4-부탄디올이나 알릴 알콜을 카르보닐화하여 제조하는 방법 및 무수말레인산 이나 무수석신산을 수소화하여 제조하는 방법 등이 알려져 있으나 1,4-부탄디올이나 알릴알콜을 원료로하여 감마-부티로락톤을 제조하는 방법은 원료가 고가이고 반응이 다단계로 진행되기 때문에 무수말레인산의 직접수소화 방법에 비해 경제적이지 못하다.Conventional methods for preparing gamma-butyrolactone include dehydrogenation of 1,4-butanediol, carbonylation of 1,4-butanediol or allyl alcohol, and hydrogenation of maleic anhydride or succinic anhydride. Production methods are known, but the production of gamma-butyrolactone using 1,4-butanediol or allyl alcohol as raw materials is more economical than the direct hydrogenation of maleic anhydride because the raw materials are expensive and the reaction proceeds in multiple stages. Can not do it.

무수말레인산이나 무수석신산으로부터 감마-부티로락톤을 제조하는 공정으로는 균일계 또는 불균일계 촉매하에서 액상으로 수소화하는 방법과 기상에서 수소화하는 방법이 개발되어 있고, 각각의 공정에 적합한 촉매가 알려져 있다. 잘 알려져 있는 불균일계 액상 수소화 촉매 및 그 공정은(JP 87-111975, USP 5,118,821, JP 92-16237, EP 543340) 높은 온도와 높은 압력하에서 진행되며, 공정수율이 만족스럽지 못하다는 단점이 있고, 또한 공정상 촉매 분리, 용매의 분리·회수 및 수소화 분해반응에 의한 용매의 손실 등을 감안할 때 상업화하는데 불리한 점이 많다. 반면 기상수소화 공정은 Cu-Zn(GBP 1,168,220), Cu-Cr(USP 3,065,243), Cu-Zn-Cr(USP 5,698,713), Cu-Zn-Cr-Al(EP 332,140A), Cu-Zn-Al-M(M은 IIA.IIIA, VA, VIIIA, Ag, Au, III∼VIIB, 란타늄계열 및 악티늄계열에서 선택된 적어도 1종의 원소; CN 1034541A)등의 촉매하에서 무수말레인산 또는 무수석신산을 용매에 녹이거나 그대로 고정층 반응기에 주입하여 감마-부티로락톤을 제조하는 방법으로, 공정상의 단순함에도 불구하고 다음과 같은 문제점이 있다.As a process for producing gamma-butyrolactone from maleic anhydride or succinic anhydride, a method of hydrogenating a liquid phase under a homogeneous or heterogeneous catalyst and a method of hydrogenating in a gas phase have been developed, and a catalyst suitable for each process is known. . The well-known heterogeneous liquid hydrogenation catalyst and its process (JP 87-111975, USP 5,118,821, JP 92-16237, EP 543340) proceed under high temperature and high pressure, and have a disadvantage in that the process yield is not satisfactory. In view of the process of catalyst separation, solvent separation and recovery, and loss of solvent due to hydrocracking reaction, etc., there are many disadvantages in commercialization. On the other hand, gas phase hydrogenation processes include Cu-Zn (GBP 1,168,220), Cu-Cr (USP 3,065,243), Cu-Zn-Cr (USP 5,698,713), Cu-Zn-Cr-Al (EP 332,140A), Cu-Zn-Al- M (M is at least one element selected from IIA.IIIA, VA, VIIIA, Ag, Au, III-VIIB, lanthanum series and actinium series; CN 1034541A) and dissolve maleic anhydride or succinic anhydride in a solvent. Or as it is injected into a fixed bed reactor to produce gamma-butyrolactone, despite the simplicity of the process has the following problems.

통상, 기상 수소화반응은 반응온도가 220∼400℃의 비교적 높은 온도에서 진행되기 때문에 수소화반응 중간체인 무수석신산이나 본 발명의 목적물인 감마-부티로락톤이 과수소분해 반응이나 카르보닐기 이탈반응 등의 부반응에 의해 1,4-부탄디올, 테트라하이드로퓨란, 부탄올, 프로판올, 프로판산(Propionic acid), 부탄산(Butanoic acid) 등의 부산물로 생성되기 쉽다. 이와 같은 부반응을 줄이기 위해 공개된 기술은 수소화 능력이 상대적으로 약한 Cu계 촉매를 사용하는 것이 대부분이나 Cu의 낮은 수소화 활성으로 인해 공간속도가 0.003∼1.0hr-1, 바람직하게는 0.01∼0.1hr-1에서 운전되는 것으로 예시되고 있어 감마-부티로락톤의 생산성이 낮다. 또한, 원료나 원료중에 포함된 고비점 불순물이 탄화되거나, 반응물 중에 잔존하는 수분에 의해 무수말레인산의 일부가 가수-이성화되어 녹는점이 극히 높은 푸말산(mp: 287℃)이 생성되거나 또는 중합물의 생성 등으로 운전에 문제를 야기시키고, 촉매의 비활성화를 촉진시키기 때문에 반응물의 높은 순도가 요구된다. 또한 계속적인 반응을 위해서는 주기적으로 촉매를 활성화 시켜줄 필요가 있으며(예: USP 5,347,021) 촉매의 비활성화를 완화시키기 위한 목적으로 반응물 대비 수소 사용량을 50몰비 이상, 바람직하게는 100∼300몰비 범위에서 운전해야하는 것 등을 제안하고 있다. 이와 같은 Cu계 촉매상에서 기상수소화 공정의 단점을 보완하는 방법으로 USP 5,637,735에서는 Cu-Zn-Cr-Zr 촉매상에서 반응원료에 알콜을 무수말레인산 대비 1∼4 몰비 범위에서 사용하여 동시 공급하는 방법을 제안하고 있으나 이 방법은 원칙적으로 무수말레인산 또는 무수석신산의 에스테르화 물을 사용하는 방법과 유사하며, 오히려 과량의 알콜을 사용해야 하므로 공정상 좋은 방법이라고 할수 없다.In general, the gas phase hydrogenation reaction proceeds at a relatively high temperature of 220 to 400 ° C., so that succinic anhydride as a hydrogenation reaction intermediate and gamma-butyrolactone as an object of the present invention are subjected to hydrogen peroxide decomposition and carbonyl group leaving reaction. By side reaction, it is easy to produce by-products, such as 1, 4- butanediol, tetrahydrofuran, butanol, a propanol, propanoic acid, butanoic acid. In the described open to reduce the side reactions such as the hydrogenation capacity it is relatively weak because of the Cu based alloy it is at a low space velocity of the hydrogenation activity of the majority, or Cu using a catalyst 0.003~1.0hr -1, preferably 0.01~0.1hr - Illustrated as being operated at 1 , the productivity of gamma-butyrolactone is low. In addition, a high boiling point impurity contained in the raw material or the raw material is carbonized, or a part of maleic anhydride is hydro-isomerized by water remaining in the reaction product to produce an extremely high fumaric acid (mp: 287 ° C.) or a polymer. High purity of the reactants is required because this causes problems in operation and promotes deactivation of the catalyst. In addition, it is necessary to activate the catalyst periodically for the continuous reaction (e.g. USP 5,347,021), and in order to alleviate the deactivation of the catalyst, the amount of hydrogen used must be operated in a range of 50 molar ratios, preferably 100 to 300 molar ratios. I suggest things. As a method to supplement the disadvantages of the gas phase hydrogenation process on the Cu-based catalyst, USP 5,637,735 proposes a method of simultaneously supplying alcohol to the reaction raw material on the Cu-Zn-Cr-Zr catalyst using 1 to 4 molar ratios of maleic anhydride. However, this method is similar in principle to the method of using an esterified product of maleic anhydride or succinic anhydride. Rather, it is not a good method for the process because an excess alcohol must be used.

요약하면, 상기한 종래의 감마-부티로락톤의 촉매 제조공정은 각기 나름대로의 특징이 있으나 반응조건이 가혹하거나, 반응물의 공간 속도가 너무 낮아 생산성이 좋지 않거나, 감마-부티로락톤의 수율이 낮거나, 촉매의 비활성화 속도가 빠르고, 촉매의 수명이 짧으며, 수소 사용량이 많다는 등의 문제가 있고, 알콜을 부가하는 방법은 알콜의 회수공정이 필요하다는 단점이 따른다.In summary, the conventional process for preparing a gamma-butyrolactone catalyst has its own characteristics, but the reaction conditions are harsh, or the space velocity of the reactants is too low, resulting in poor productivity, or low yield of gamma-butyrolactone. In addition, there is a problem that the deactivation rate of the catalyst is fast, the catalyst life is short, the hydrogen consumption is high, and the method of adding alcohol requires a recovery process of alcohol.

본 발명의 목적은 무수말레인산이나 무수석신산으로부터 감마-부티로락톤을 제조하는데 있어서, 대량의 원료물질이 연속적으로 공급되는 조건하에서도 고활성, 고선택성을 유지하는 신규한 액·기상계 수소환원 촉매를 제공하는데 있으며, 또 다른 목적은 이 촉매를 이용하여 저온 저압의 온화한 반은 조건에서 감마-부티로락톤을 제조하는 방법을 제공하는데 있다.It is an object of the present invention to produce gamma-butyrolactone from maleic anhydride or succinic anhydride, which is a novel liquid and gaseous hydrogen reduction which maintains high activity and high selectivity even under conditions in which a large amount of raw materials are continuously supplied. It is another object of the present invention to provide a method for preparing gamma-butyrolactone under mild and low temperature conditions at low temperature using the catalyst.

본 발명자들은 무수말레인산의 직접 기상 수소화 공정에서는 거의 필연적으로 나타나고 있는 치명적인 문제점인 반응물의 탄화와 촉매 수명 단축 문제를 해결하기 위한 연구를 수행하던 중에, 무수말레인산의 순도 제한 조건을 완화시키고 원활한 공정운전이 장시간 가능하도록 하기 위해서는 무수말레인산을 고비점 용매와 함께 공급하고, 반응중에 유기 용매를 포함한 반응물 및 생성물의 일부를 촉매층 내에서 액상상태를 유지하도록 함으로써 상기한 문제들을 해결할 수 있음을 확인하고 본 발명을 완성하게 되었다.The inventors of the present invention conducted a study to solve the carbonization of the reactants and the shortening of catalyst life, which are almost inevitable in the direct gas phase hydrogenation process of maleic anhydride, while mitigating the purity restriction conditions of maleic anhydride and smooth process operation. In order to make it possible for a long time, it is confirmed that the above problems can be solved by supplying maleic anhydride with a high boiling point solvent and maintaining a liquid state in a catalyst layer of a part of a reactant and a product including an organic solvent during the reaction. It was completed.

본 발명의 방법은 용매를 사용하여 액상 상태를 유지한다는 점에서 액상반응과 비슷하나, 종래 액상반응 기술이 고온, 고압(50기압 이상)의 액상슬러리 반응형인데 비하여, 본 발명은 저온, 저압(50기압 이하)의 반응조건에서 반응물과 수소기체가 같은 방향의 흐름하에 촉매층을 동시에 통과하도록 하는 유동식 반응형으로 감마-부티로락톤이 제조된다는 점에서 차별화 되며, 또한 액·기상반응 면에서는 살수층 반응(Trickle bed reaction)과 유사하나 살수층(撒水層) 반응에서는 반응물과 생성물의 액상 상태 유지와 촉매층에서의 반응 액체 흐름을 정류(standing still)형태로 유지하기 위하여 매우 낮은 반응물 공급속도, 반응물에 대한 낮은 수소비(1-5의 몰비), 저온 및 고압이 요구되므로 촉매 반응생산성이 매우 낮게 되며 반응물과 생성물의 반응기내 체류시간이 길어져 과수소화 반응이 진행되어 테트라하이드로퓨란 등의 부산물 생성이 증가되고 운전조건을 엄격히 조절해야하는 등의 문제가 따른다. 반면에 본 발명의 액-기상 촉매공정은 모든 반응물과 생성물 및 용매가 촉매층 내에서 정류상태의 액체 흐름을 유지해야 된다는 제한 조건에서 운전되지 않으며 적절한 체류시간 하에서 운전되기 때문에 과수소화 반응을 억제할 수 있고, 운전 안정성를 확보할 수 있다는 점에서 액상 및 기상 공정의 장점을 취합한 공정이다. 이때 반응온도가 낮은 상태에서 운전할수록 반응 압력이나 수소의 유량 등 다른 반응 조건의 조절 제한 범위를 넓힐 수 있으므로 온화한 반응 조건하에서도 생산성이 뛰어난 고활성 촉매가 요구된다. 다음 일반식(Ⅰ)은 우수한 활성과 선택성을 보이는 본 발명의 촉매계를 나타낸다.The method of the present invention is similar to the liquid phase reaction in that the liquid phase is maintained by using a solvent, but the conventional liquid phase reaction technology is a liquid slurry reaction type of high temperature and high pressure (over 50 atm), but the present invention is low temperature and low pressure ( In the reaction conditions of 50 atm or less), gamma-butyrolactone is produced in a fluid reaction type that allows reactants and hydrogen gas to pass simultaneously through the catalyst bed under the same direction of flow. Similar to the trickle bed reaction, but in the trickle bed reaction, very low reactant feed rates, reactants, are used to maintain the liquid phase of the reactants and products and to maintain the reaction liquid flow in the standing bed as a standing still. The low hydrogen ratio (molar ratio of 1-5), low temperature and high pressure are required, resulting in very low catalytic reaction productivity. The longer is the fruit digestion reaction proceeds increases the generated by-products, such as tetrahydrofuran followed by the problems such as the need to strictly control the operating conditions. On the other hand, the liquid-gas catalyst process of the present invention does not operate under the restriction that all reactants, products, and solvents must maintain a steady flow of liquid in the catalyst bed, and can operate under an appropriate residence time, thereby suppressing the superhydrogenation reaction. It is a process that combines the advantages of liquid and gas phase processes in that it can ensure operational stability. In this case, as the reaction temperature is lowered, the control range of other reaction conditions such as reaction pressure and flow rate of hydrogen can be widened, so that a high activity catalyst having excellent productivity even under mild reaction conditions is required. The following general formula (I) shows the catalyst system of the present invention showing excellent activity and selectivity.

Ni9PdaMobNcZrdOx… (Ⅰ)Ni 9 Pd a Mo b N c Zr d O x . (Ⅰ)

식(1)에서 Ni, Pd, Mo, Zr, O는 각각 니켈, 팔라듐, 몰리브덴, 지르코늄, 산소를 나타내며, N은 코발트(Co), 구리(Cu), 아연(Zn), 은(Ag), 납(Pb), 루테늄(Ru) 중에서 선택된 금속 원소이며, a, b, c, d, x는 팔라듐, 몰리브덴, N, 지르코늄 및 산소성분의 원자비를 나타내는 것으로 니켈이 9일때 a는 0.001내지 5, 바람직하게는 0.05내지 2범위의 값을 가지며, b는 0.01 내지 5, 바람직하게는 0.1 내지 2범위의 값을 가지며, c는 0.001 내지 1.0범위의 값을 가지며 d는 0.5 내지 12.0, 바람직하게는 1내지 5범위의 값을 가진다. x는 촉매 제조과정에서 각 성분이 산화물 상태로 있을 때는 각 성분원소의 원자가 및 조성비에 따른 화학 양론적 값(stoichiometric number)을 가지나, 수소화반응 촉매로 활성화된 상태에서는 니켈과 팔라듐 성분은 금속상태로 환원됨에 따라, 몰리브덴, N 및 지르코늄 각 성분의 환원 정도와 b, c, d값에 따라 다른 값을 갖는다.In formula (1), Ni, Pd, Mo, Zr and O represent nickel, palladium, molybdenum, zirconium and oxygen, respectively, N represents cobalt (Co), copper (Cu), zinc (Zn), silver (Ag), It is a metal element selected from lead (Pb) and ruthenium (Ru), and a, b, c, d, and x represent atomic ratios of palladium, molybdenum, N, zirconium, and oxygen. When nickel is 9, a is 0.001 to 5 , Preferably has a value in the range of 0.05 to 2, b has a value in the range of 0.01 to 5, preferably 0.1 to 2, c has a value in the range of 0.001 to 1.0 and d is 0.5 to 12.0, preferably It has a value in the range of 1 to 5. x has a stoichiometric number according to the valence and composition ratio of each component when the component is in the oxide state in the process of preparing the catalyst, but the nickel and palladium components in the metal state when activated as a hydrogenation catalyst As it is reduced, the molybdenum, N and zirconium have different values depending on the degree of reduction of each component and the b, c, d values.

즉, 상기 일반식(Ⅰ)은 아래와 같이 나타낼 수 있다.That is, the general formula (I) may be represented as follows.

Ni9PdaMobNcZrdOx… (Ⅰ)Ni 9 Pd a Mo b N c Zr d O x . (Ⅰ)

상기식에서 N은 Co, Cu, Zn, Ag, Pb, Ru 중에서 선택되는 금속원소이고, a는 0.001~0.5, b는 0.01~5, C는 0.001~1.0, d는 0.5~12.0, x는 각성분의 원자가 및 조성비에 따른 화학 양론적 값을 나타낸다.In the formula, N is a metal element selected from Co, Cu, Zn, Ag, Pb, Ru, a is 0.001-0.5, b is 0.01-5, C is 0.001-1.0, d is 0.5-12.0, x is each component The stoichiometric value according to the valence and composition ratio of is shown.

무수말레인산이나 무수석신산으로부터 감마-부티로락톤을 제조하는데 이용되는 니켈을 주성분으로 한 공지된 촉매로는 Ni-Mo-Ba(Tl)(USP 3,890,361), Ni-Mo-Ba-Re(일본공개특허공보 88-88045), Ni-Mo-Ba-Re/SiO2(혹은 Al2O3) (일본공개특허공보 88-88044), Ni-Mo-Ca/규조토(일본공개특허공보 89-143865), Ni-Mo-Ca(일본공개특허공보 87-299550), Ni-Pd/SiO2(USP 5,118,821), Ni-Pd-Co/Al2O3혹은 Al2O3-SiO2(USP 4,814,464), Ni-Co/SiO2(USP 5,086,030) 등이 있으나 이들은 고온, 고압 액상 슬러리형 반응에 적합하게 설계된 촉매들로서 저온, 저압에서는 활성과 선택성이 매우낮다. 본 발명자들은 니켈을 환원성 담체로 그 자체가 환원능력을 가지고 있는 지르코니아와 일정한 성분비로 조합했을 때 우수한 활성과 반응 안정성을 보이고, 여기에 팔라듐 및 몰리브덴 성분을 첨가했을 때 활성과 선택성이 뚜렷하게 개선됨을 발견하고 본 발명을 완성하게 된 것이다.Known catalysts based on nickel which are used to prepare gamma-butyrolactone from maleic anhydride or succinic anhydride include Ni-Mo-Ba (Tl) (USP 3,890,361) and Ni-Mo-Ba-Re (published in Japan). Patent Publication No. 88-88045), Ni-Mo-Ba-Re / SiO 2 (or Al 2 O 3 ) (Japanese Patent Publication No. 88-88044), Ni-Mo-Ca / Diatomaceous Earth (Japanese Patent Publication No. 89-143865) Ni-Mo-Ca (Japanese Patent Laid-Open No. 87-299550), Ni-Pd / SiO 2 (USP 5,118,821), Ni-Pd-Co / Al 2 O 3 or Al 2 O 3 -SiO 2 (USP 4,814,464), Ni-Co / SiO 2 (USP 5,086,030), but these are catalysts designed for high-temperature, high-pressure liquid phase slurry reactions, and have low activity and selectivity at low and low pressures. The present inventors show excellent activity and reaction stability when nickel is combined with zirconia, which itself has a reducing ability, as a reducing carrier in a constant component ratio, and when palladium and molybdenum components are added thereto, the activity and selectivity are clearly improved. And to complete the present invention.

상기 일반식(Ⅰ)의 촉매는 통상적인 촉매제조 방법에 의해서 제조될 수 있으나, 각 성분 원소들의 수용성 염을 물에 녹인 후 공침방법으로 제조하는 것이 적당하다. 니켈, N 및 지르코늄 성분은 질산염이나 염산염과 같은 수용성 염을 사용한다. 제조방법은 상기 성분염을 물에 녹여 혼합용액을 만든 후, 수산화나트륨이나 탄산나트륨, 암모니아, 탄산암모늄, 혹은 적당한 알카리 용액을 사용하여 공침시킨다. 공침액을 숙성시킨 후 여과하여 케익을 얻고 수세한다. 케익을 물에 분산시키고 몰브덴산 암모늄염 용액 및 팔라듐 염 용액을 차례로 가한 후 증발 건조시킨다.상기 제조과정 중에 N 성분은 공침과정이나 팔라듐 성분의 첨가시에 부가할 수 있다. 특별히 팔라듐 성분은 건조나 400℃ 이하에서 소성된 촉매 분말에 코팅시킬 수 있다. 증발 건조된 케익은 120℃에서 건조하고, 300℃ 내지 600℃, 바람직하게는 350∼500℃에서 소성한다. 소성된 산화물상태의 촉매는 반응기에 충전 후 H2/N2가스 흐름하에서 환원한다. 환원온도는 300℃내지 600℃, 바람직하게는 350℃ 내지 450℃에서 환원한다. 환원시간은 H2/N2가스량과 촉매사용량에 따라 다르나 10시간정도 수행한다. 환원과정에 발열이 되므로 수소농도, 가스유량, 승온 속도 등을 조절하여 급격한 온도 상승으로 촉매가 열화되지 않도록 한다.The catalyst of the general formula (I) may be prepared by a conventional catalyst production method, but it is suitable to dissolve the water-soluble salts of the respective element elements in water and then prepare by the coprecipitation method. Nickel, N and zirconium components use water-soluble salts such as nitrates or hydrochlorides. In the preparation method, the component salt is dissolved in water to form a mixed solution, and then coprecipitated with sodium hydroxide, sodium carbonate, ammonia, ammonium carbonate, or a suitable alkali solution. After aging, the coprecipitation solution is filtered to obtain a cake and washed with water. The cake is dispersed in water, and then ammonium molybdate and palladium salt solutions are added sequentially and evaporated to dryness. The N component may be added during coprecipitation or addition of a palladium component. In particular, the palladium component may be coated on a catalyst powder which is dried or calcined at 400 ° C or below. The evaporated dried cake is dried at 120 ° C. and calcined at 300 ° C. to 600 ° C., preferably 350 to 500 ° C. The calcined oxide catalyst is reduced in a H 2 / N 2 gas stream after charging to the reactor. The reduction temperature is reduced at 300 ° C to 600 ° C, preferably at 350 ° C to 450 ° C. The reduction time depends on the amount of H 2 / N 2 gas and the catalyst usage, but it is carried out for about 10 hours. Since it generates heat during the reduction process, the hydrogen concentration, gas flow rate, temperature increase rate, etc. are adjusted to prevent the catalyst from deteriorating due to a rapid temperature rise.

반응은 수소 또는 수소나 불활성 혼합가스의 흐름하에서 진행하며, 무수말레인산에 대한 수소비는 과량의 수소 사용시 촉매층에서 용매 또는 반응물 및 생성물 중의 일부를 액체 상태로 유지시키기 위해 반응 압력을 높여야 하고, 이때 선택성 감소와 과잉 수소를 회수 재사용 하는 에너지 비용을 높이므로, 적절한 몰비는 5∼70 : 1, 더욱 바람직하게는 10∼40 : 1의 범위에서 수행한다. 반응온도는 본 반응 생성물인 감마-부티로락톤의 끓는점(204℃) 내에서 운전하는 것이 본 발명 목적을 달성하기에 유리하므로 150℃ 내지 240℃, 바람직하게는 160℃ 내지 220℃의 범위에서 조절한다. 반응압력은 1내지 50기압, 바람직하게는 1내지 30기압 범위에서 조절한다. 무수말레인산이나 무수석신산은 고비점 용매에 녹여 사용한다. 용매는 운전 중 촉매층의 액체 상태 유지에 결정적인 역할을 하므로 끓는점이 높을수록 좋다. 고비점 용매로는 트리에틸렌글리콜디메틸에텔(triethyleneglycoldimethylether), 테트라에틸렌글리콜디메틸에텔(tetraethyleneglycol dimethylether : 이하 TEGDME라 한다) 및 18-크라운-6등의 폴리에테르류나 감마-부티로락톤을 사용한다. 생성물인 감마-부티로락톤을 용매로 사용할 시 분리, 정제에 대한 공정상의 장점에도 불구하고 상대적으로 낮은 끓는점 때문에 고압 조건이 요구되므로 끓는점이 280℃ 이상이고 비중이 0.9이하인 포화 탄화수소계의 오일류와 병행하여 사용하면 본 발명 촉매공정의 장점을 최대한 발휘할 수 있다. 수소화 반응 생성물은 용매와 층분리 되어 단순하게 회수되며, 용매에 용해되는 반응 생성물은 무시할 수 있으므로, 용매를 정제하지 않고 그대로 회수 재사용 할 수 있다. 다만 탄화수소계 오일은 황을 함유하고 있어 촉매에 영향을 줄 수 있으므로 수소첨가로 황을 제거시킨 수소첨가 개질유를 사용하여야 한다. 용매 대비 무수말레인산 또는 무수석신산의 농도는 10wt% 내지 80wt%, 바람직하게는 20wt% 내지 70wt% 용액을 만들어 공급한다. 고비점 탄화수소계 오일용매를 함께 사용할 때 오일용매는 무게공간속도(Weight Hourly Space Velocity : 이하 WHSV라 한다)가 0.01 내지 2.0hr-1, 바람직하게는 0.01 내지 0.2hr-1속도로 공급한다. 반응물의 공급은 지방산 무수물 만으로 계산할 때 WHSV가 0.05hr-1내지 1.0hr-1, 바람직하게는 0.07hr-1내지 0.5hr-1속도로 공급한다. 이때, 촉매 무게는 편의상 환원전 산화물 상태의 촉매 무게를 기준한 값으로 정의한다. 참고적으로 반응물이나 생성물, 사용 용매의 물리적 특성 및 반응온도, 수소가스 유량, 반응 압력등을 고려한 촉매층에서의 액상상태 유지를 위한 조건에 대해서는 EP 379323A2에 명시되어 있다.The reaction proceeds under a flow of hydrogen or hydrogen or an inert mixed gas, and the ratio of hydrogen to maleic anhydride must be increased in order to maintain some of the solvent or reactant and product in the liquid phase in the catalyst bed when excess hydrogen is used, with selectivity Since the energy cost of reducing and recovering excess hydrogen is increased, the appropriate molar ratio is carried out in the range of 5 to 70: 1, more preferably 10 to 40: 1. The reaction temperature is controlled in the range of 150 ° C to 240 ° C, preferably 160 ° C to 220 ° C, because it is advantageous to operate within the boiling point (204 ° C) of gamma-butyrolactone as the present reaction product to achieve the object of the present invention. do. The reaction pressure is adjusted in the range of 1 to 50 atm, preferably 1 to 30 atm. Maleic anhydride or succinic anhydride is used after being dissolved in a high boiling point solvent. Since the solvent plays a decisive role in maintaining the liquid state of the catalyst layer during operation, the higher the boiling point, the better. As the high boiling point solvent, polyethers such as triethyleneglycoldimethylether, tetraethyleneglycol dimethylether (hereinafter referred to as TEGDME), and 18-crown-6 and gamma-butyrolactone are used. When using the product gamma-butyrolactone as a solvent, despite the advantages of the process of separation and purification, high pressure conditions are required because of the relatively low boiling point, so that it can be combined with saturated hydrocarbon oils having a boiling point of more than 280 ℃ and specific gravity of 0.9 or less. When used, the advantages of the catalytic process of the present invention can be exhibited to the maximum. The hydrogenation reaction product is simply separated by phase separation with the solvent, and the reaction product dissolved in the solvent can be ignored, so that the solvent can be recovered and reused as it is without purification. Hydrocarbon-based oils, however, contain sulfur, which may affect the catalyst. Therefore, hydrogenated reformate with hydrogen removed should be used. The concentration of maleic anhydride or succinic anhydride relative to the solvent is supplied by making 10wt% to 80wt%, preferably 20wt% to 70wt% solution. When using a high boiling point hydrocarbon oil solvent together, the oil solvent has a weight hourly space velocity (WHSV) of 0.01. To 2.0hr-One, Preferably 0.01 To 0.2hr-OneFeed at speed. The feed of reactant was 0.05 hrs when the WHSV was calculated from fatty acid anhydride alone.-OneTo 1.0hr-One, Preferably 0.07hr-OneTo 0.5hr-OneFeed at speed. At this time, the weight of the catalyst is defined as a value based on the weight of the catalyst in the oxide state before reduction for convenience. For reference, the conditions for maintaining the liquid phase in the catalyst bed in consideration of the physical properties of the reactants or products, the solvent used, the reaction temperature, the flow rate of hydrogen gas, and the reaction pressure are specified in EP 379323A2.

다음 예는 본 발명을 좀 더 상세히 설명하고 있으며, 본 발명의 범위를 제한하기 위한 것은 아니다. 실시예에서 전환율은 축차반응에서 수소화 정도를 나타내기 위해 무수말레인산의 일차 수소화 생성물인 무수석신산을 기준해서 표시하였으며, 각 실시예의 반응조건에서 무수말레인산 자체의 전환율은 거의 100%였다.The following examples illustrate the invention in more detail and are not intended to limit the scope of the invention. In the examples, the conversion rate was expressed based on succinic anhydride, which is the primary hydrogenation product of maleic anhydride, to indicate the degree of hydrogenation in the sequential reaction, and the conversion rate of maleic anhydride itself was almost 100% under the reaction conditions of each example.

실시예 1)Example 1

촉매 제조Catalyst manufacturing

질산니켈(Ni(NO3)26H2O) 30.0g, 지르코늄옥시클로라이드(ZrOCl2.8H2O) 8.45g 및 염화루테늄(Ru 43.6%) 0.133g을 200g의 증류수에 녹인 후, 수산화나트륨과 탄산나트륨 수용액을 가하여 공침시킨다. 공침 용액을 70∼80℃에서 4시간동안 숙성시킨 후, 나트륨 성분이 충분히 제거 될 때까지 증류수로 세척한다. 여기에 몰리브덴산 암모늄((NH4)Mo7O244H2O) 2.02g과 질산팔라듐(Pd(NO3)2.nH2O, n=1.9) 0.61g을 녹인 용액을 차례로 가한 후, 균일하게 혼합하고 증발, 건조시킨다. 이후 120℃에서 12시간 이상 건조시키고 20∼30메쉬 크기로 분별한 후 400℃에서 4시간동안 소성시킨다. 이 촉매(1)의 산소를 제외한 금속 원소 조성비는 다음과 같다.30.0 g of nickel nitrate (Ni (NO 3 ) 2 6H 2 O), 8.45 g of zirconium oxychloride (ZrOCl 2. 8H 2 O) and 0.133 g of ruthenium chloride (Ru 43.6%) were dissolved in 200 g of distilled water, followed by sodium hydroxide and Aqueous solution of sodium carbonate is added for coprecipitation. The coprecipitation solution is aged at 70-80 ° C. for 4 hours and then washed with distilled water until the sodium content is sufficiently removed. To this was added a solution of 2.02 g of ammonium molybdate ((NH 4 ) Mo 7 O 24 4H 2 O) and 0.61 g of palladium nitrate (Pd (NO 3 ) 2. nH 2 O, n = 1.9), and then uniformly Mix, evaporate and dry. After drying at 120 ℃ for more than 12 hours and fractionated to a size of 20 to 30 mesh and then fired at 400 ℃ for 4 hours. The metal element composition ratio except oxygen of this catalyst (1) is as follows.

촉매(1): Ni9Mo1.0Pd0.2Ru0.05Zr2.3 Catalyst (1): Ni 9 Mo 1.0 Pd 0.2 Ru 0.05 Zr 2.3

이 후 촉매들의 금속 원소 조성비를 표기할 때 산소를 제외한다.Thereafter, oxygen is excluded when describing the metal element composition ratio of the catalysts.

촉매 환원Catalytic reduction

내경 1/2인치 크기의 반응기에 4.0g의 촉매를 충전시키고, 5% H2/N2혼합 가스를 흘려보내면서 점차적으로 승온시켜 420℃에서 9시간동안 환원시킨다.Into a 1/2 inch diameter reactor, 4.0 g of catalyst was charged, gradually raising the temperature while flowing a 5% H 2 / N 2 mixed gas, and reduced at 420 ° C. for 9 hours.

무수말레인산의 수소화반응Hydrogenation of Maleic Anhydride

반응조건을 200℃, 3기압으로 맞추고 무수말레인산(MAn)을 TEGDME에 녹인 용액(MAn:TEGDME=20:80w/w)을 반응기 상부로부터 주입시키고 반응시킨다. 이때 반응물과 수소가스는 같은 방향으로 흐르도록 하고, 무수말레인산에 대한 WHSV(촉매산화물 기준)가 0.24hr-1, H2/MAn의 몰비는 25의 조건에서 반응시킨다.The reaction conditions were set at 200 ° C. and 3 atm, and a solution of maleic anhydride (MAn) dissolved in TEGDME (MAn: TEGDME = 20: 80 w / w) was injected from the top of the reactor and reacted. At this time, the reactant and hydrogen gas flow in the same direction, and the molar ratio of WHSV (catalytic oxide basis) to 0.24 hr −1 and H 2 / MAn to maleic anhydride is reacted at 25 conditions.

반응결과는 전환율 99.8%이고, 감마-부티로락톤의 선택율은 90.2 % 이었다.The reaction result was 99.8% conversion and the selectivity of gamma-butyrolactone was 90.2%.

실시예 2)Example 2)

촉매(2): Ni9Mo1.0Pd0.1Ru0.05Zr2.3 Catalyst (2): Ni 9 Mo 1.0 Pd 0.1 Ru 0.05 Zr 2.3

실시예 1)의 촉매(1)에서 팔라듐 성분을 제외한 촉매성분을 동일한 방법으로 제조하고 120에서 건조시킨 뒤 100메쉬 이하로 분쇄하였다. 여기에 질산팔라듐 0.305g을 녹인 용액을 담지시킨 뒤 동일한 조건에서 소성후 반응시켰다. 반응온도 195℃, 반응압력 3기압, WHSV=0.24hr, H2/MAn=25에서 반응시킨 결과는 전환율99.5%, 감마-부티로락톤의 선택율은 92.6% 이었다.The catalyst component except for the palladium component in the catalyst (1) of Example 1) was prepared in the same manner, dried at 120, and then ground to 100 mesh or less. After carrying out a solution of 0.305 g of palladium nitrate dissolved therein, it was reacted after firing under the same conditions. The reaction was conducted at a reaction temperature of 195 ° C, reaction pressure of 3 atmospheres, WHSV = 0.24hr, and H2 / MAn = 25, and the conversion rate was 99.5%, and the selectivity of gamma-butyrolactone was 92.6%.

비교예 1)Comparative Example 1)

비교 촉매(1): Ni9Zr2.3 Comparative Catalyst (1): Ni 9 Zr 2.3

니켈과 지르코늄 성분만으로 구성된 비교 촉매(1)을 실시예 1)에서와 같이 공침방법으로 제조하고 WHSV가 0.09hr-1, 반응온도 200℃, 반응압력 3기압, H2/MAn=25 조건에서 반응시켰다. 이때 무수말레인산을 TEGDME 20wt%로 녹인 용액을 공급하였다. 반응결과는 전환율 99.5%이고, 감마-부티로락톤의 선택율은 83.9%이었다. 특히, 부산물 중 프로판산으로의 선택율이 13.9%이었다.Comparative catalyst (1) consisting only of nickel and zirconium components was prepared by co-precipitation method as in Example 1) and reacted under the conditions of WHSV of 0.09hr -1 , reaction temperature of 200 ° C, reaction pressure of 3 atmospheres, and H 2 / MAn = 25. I was. At this time, a solution of maleic anhydride dissolved in 20 wt% TEGDME was supplied. The reaction result was a conversion rate of 99.5%, the selectivity of gamma-butyrolactone was 83.9%. In particular, the selectivity to propanoic acid in the byproduct was 13.9%.

비교예 2∼4)Comparative Examples 2-4)

비교 촉매(2): Ni9Mo0.5Zr2.3 Comparative Catalyst (2): Ni 9 Mo 0.5 Zr 2.3

비교 촉매(3): Ni9Mo0.5(70wt%)/SiO2(30wt%)Comparative Catalyst (3): Ni 9 Mo 0.5 (70 wt%) / SiO 2 (30 wt%)

비교 촉매(4): Ni9Mo0.5(70wt%)/Al2O3(30wt%)Comparative Catalyst (4): Ni 9 Mo 0.5 (70 wt%) / Al 2 O 3 (30 wt%)

니켈계 촉매에서 담체 효과를 조사하기 위해 실시예 1)의 촉매(1)에서 팔라듐 성분을 제외하고 동일한 방법으로 일차적으로 제조하였다. 실리카는 SiO2분말(Aerosil Ox-50)을, 알루미늄은 질산알루미늄을 사용하여 공침 방법으로 제조하였다. WHSV가 0.09hr-1, 반응온도 200℃, 반응압력 3기압, H2/MAn=25의 조건에서 반응시킨 결과는 다음 표 1에서와 같다.In order to investigate the carrier effect in the nickel-based catalyst, the catalyst (1) of Example 1) was prepared in the same manner except for the palladium component. Silica was prepared by a coprecipitation method using SiO 2 powder (Aerosil Ox-50) and aluminum as aluminum nitrate. The WHSV was reacted under the conditions of 0.09hr −1 , reaction temperature 200 ° C., reaction pressure 3 atm, and H 2 / MAn = 25, as shown in Table 1 below.

비교예NoComparative Example 촉매catalyst 전환율(%)% Conversion 선택율(%)% Selectivity 234234 Ni9Mo0.5Zr2.3Ni9Mo0.5(70wt%)/SiO2(30wt%)Ni9Mo0.5(70wt%)/Al2O3(30wt%)Ni 9 Mo 0.5 Zr 2.3 Ni 9 Mo 0.5 (70wt%) / SiO 2 (30wt%) Ni 9 Mo 0.5 (70wt%) / Al 2 O 3 (30wt%) 97.895.495.397.895.495.3 92.385.779.592.385.779.5

실시예 3)Example 3

촉매(3): Ni9Mo1.0Pd0.2Co0.5Zr2.3 Catalyst (3): Ni 9 Mo 1.0 Pd 0.2 Co 0.5 Zr 2.3

코발트 성분을 추가한 것 이외에는 실시예 1)의 촉매(1)에서와 같은 방법으로 촉매를 제조하였다. 실시예 1)에서와 같은 반응조건에서, 반응시킨 결과는 전환율 99.9%, 감마-부티로락톤 선택율 90.8%이었고, 700시간까지 계속 반응시킨 결과 전환율 98.5% 선택율 91.2% 이었다.A catalyst was prepared in the same manner as in the catalyst (1) of Example 1) except that the cobalt component was added. Under the same reaction conditions as in Example 1), the reaction result was 99.9% conversion, 90.8% gamma-butyrolactone selectivity, and 91.2% conversion 98.5% selectivity.

실시예 4∼7)Examples 4-7)

실시예 3)의 촉매(3)에서 코발트 대신에 구리, 아연, 은, 납을 표 2에서와 같은 조성으로 제조하였다. 구리, 아연 성분이 추가된 촉매(4)와 촉매(5)는 실시예 1)에서와 같은 방법으로 제조하였고, 은, 납이 추가된 촉매(6)과 촉매(7)은 상기성분의 전조화합물(질산은, 질산납)을 질산팔라듐과 같이 물에 녹여 공급하고 증발,건조시켜 제조하였다. 실시예 1)에서와 같은 조건에서 반응시킨 결과는 다음 표 2와 같다.In the catalyst (3) of Example 3), instead of cobalt, copper, zinc, silver, and lead were prepared in the same composition as in Table 2. The catalyst (4) and catalyst (5) added with copper and zinc components were prepared in the same manner as in Example 1), and the catalysts (6) and catalyst (7) with silver and lead added were precursor compounds of the above components. (Silver silver nitrate and lead nitrate) were prepared by dissolving in palladium nitrate and supplying water, evaporating and drying. The results of the reaction under the same conditions as in Example 1) are shown in Table 2 below.

실시예Example 촉매catalyst 전환율(%)% Conversion 선택율(%)% Selectivity 45674567 Ni9Mo1.0Pd0.2Cu0.2Zr2.3Ni9Mo1.0Pd0.2Zn0.2Zr2.3Ni9Mo1.0Pd0.2Ag0.1Zr2.3Ni9Mo1.0Pd0.2Pb0.02Zr2.3 Ni 9 Mo 1.0 Pd 0.2 Cu 0.2 Zr 2.3 Ni 9 Mo 1.0 Pd 0.2 Zn 0.2 Zr 2.3 Ni 9 Mo 1.0 Pd 0.2 Ag 0.1 Zr 2.3 Ni 9 Mo 1.0 Pd 0.2 Pb 0.02 Zr 2.3 99.399.299.799.599.399.299.799.5 91.291.089.292.191.291.089.292.1

실시예 8)Example 8

실시예 3)의 촉매(3)을 반응온도 195℃, 반응압력 5기압에서, 무수말레인산을 감마-부티로락톤에 60대 40의 무게비로 녹인 용액을 무수말레인산에 대해 WHSV가 0.24hr-1로 공급하고, 평균 끓는점이 350℃인 탄화수소계 수소첨가 개질유를 WHSV가 0.1hr-1로 공급하고, H2/MAn=25의 조건에서 반응시켰다. 이때 전환율은 98.5%, 감마-부티로락톤 선택율은 92.0%이었다.A solution obtained by dissolving maleic anhydride in gamma-butyrolactone at a weight ratio of 60 to 40 was dissolved in the catalyst (3) of Example 3 at a reaction temperature of 195 ° C. and a reaction pressure of 5 atm so that the WHSV of maleic anhydride was 0.24 hr −1 . A hydrocarbon-based hydrogenated reformate having an average boiling point of 350 ° C. was supplied at 0.1 hr −1 of WHSV, and reacted under a condition of H 2 / MAn = 25. The conversion rate was 98.5% and the gamma-butyrolactone selectivity was 92.0%.

실시예 9)Example 9

실시예 3)의 촉매(3)을 사용하고 동일 반응조건에서 무수석신산을 TEGDME에 녹인 용액을(10wt%) 무수석신산에 대해 WHSV가 0.24hr-1로 공급하여 반응시켰다. 반응결과는 전환율 99.7 %이고, 감마-부티로락톤의 선택율은 83.0 %이었다.The solution (3) of Example 3) was used and the solution of succinic anhydride dissolved in TEGDME under the same reaction conditions (10 wt%) was reacted by supplying 0.24hr −1 of WHSV to succinic anhydride. The reaction result was 99.7% conversion and the selectivity of gamma-butyrolactone was 83.0%.

실시예 10)Example 10)

내경이 1인치, 길이 1.2m 인 스테인레스 반응기에 실시예 1)의 촉매(1)을 압출 성형법으로(압출내경=4mm) 성형한 촉매 180ml를 충전하고, 실시예 1)에서와 같은 방법으로 수소환원하여 촉매를 활성화시킨다. 먼저 평균 끓는점이 350℃인 탄화수소계 오일을 0.10ml/min 속도로 반응기 상부로부터 공급하여 촉매층을 용매로 적신다. 촉매층을 용매로 적신 후 반응기 상부로 무수말레인산을 감마-부티로락톤에 녹인 용액을(MAn/GBL=6/4 무게비) WHSV=0.20hr-1(무수말레인산 기준) 속도로 공급하고, 반응온도 200℃, 반응압력 7기압, H2/MAn=25의 조건에서 반응시켰다. 반응시간 500시간에서의 전환율 94.9%, 감마-부티로락톤 선택율 91.2% 이었다.A stainless reactor having an internal diameter of 1 inch and a length of 1.2 m was charged with 180 ml of a catalyst obtained by extruding the catalyst (1) of Example 1 by extrusion molding (extrusion diameter = 4 mm), and hydrogen reduction was carried out in the same manner as in Example 1). To activate the catalyst. First, a hydrocarbon oil having an average boiling point of 350 ° C. is supplied from the top of the reactor at a rate of 0.10 ml / min, and the catalyst layer is wetted with a solvent. The catalyst layer was wetted with a solvent, and a solution of maleic anhydride dissolved in gamma-butyrolactone at the top of the reactor (MAn / GBL = 6/4 weight ratio) was supplied at a rate of WHSV = 0.20hr −1 (based on maleic anhydride), and the reaction temperature was 200. The reaction was carried out under the conditions of C, a reaction pressure of 7 atm, and H 2 / MAn = 25. The conversion was 94.9% and gamma-butyrolactone selectivity 91.2% at 500 hours.

실시예 11)Example 11

고비점 용매의 효과를 확인하기 위하여 실시예 10)의 성형 촉매를 사용하여 무수말레인산을(MAn/GBL=6/4 무게비) WHSV=0.12hr-1속도로 공급하고, 실시예 10)에서와 같은 방법으로 반응시켰으며, 일정 반응시간이 지난 후 고비점 용매의 공급을 중단하였다. 이때 반응온도와 반응압력 및 반응결과는 표 3과 같다. 반응시간 340시간에서 전환율 89.9%, 감마-부티로락톤 선택율 96.7% 이었다. 그 이후 용매 공급을 중단한 결과 전환율이 감소되기 시작하여 반응시간 460 시간(탄화수소계 오일 공급 중단 후 120시간 경과)에서 전환율 78.1%, 감마-부티로락톤 선택율 98.1% 이었다.In order to confirm the effect of the high boiling point solvent, maleic anhydride (MAn / GBL = 6/4 weight ratio) was fed at a rate of WHSV = 0.12hr −1 using the molding catalyst of Example 10), and the same as in Example 10). The reaction was carried out by the method, and the supply of the high boiling point solvent was stopped after a certain reaction time. The reaction temperature, reaction pressure and reaction results are shown in Table 3. The conversion rate was 89.9% and the gamma-butyrolactone selectivity was 96.7% at 340 hours. After that, the solvent supply was stopped, and the conversion rate began to decrease, and the conversion rate was 78.1% and the gamma-butyrolactone selectivity was 98.1% at a reaction time of 460 hours (120 hours after the hydrocarbon oil supply was stopped).

반응시간(hr)Response time (hr) 반응온도/반응압력(℃/기압)Reaction temperature / reaction pressure (℃ / atm) 무수말레인산 전환율(%)Maleic anhydride conversion (%) 감마-부티로락톤 선택율(%)Gamma-Butyrolactone Selectivity (%) 고비점 탄화수소계 오일High boiling hydrocarbon oil 4834048340 185/6190/6185/6190/6 88.889.988.889.9 95.796.795.796.7 OOOO 410460410460 190/6190/6190/6190/6 82.978.182.978.1 99.298.199.298.1 XXXX

본 발명의 촉매를 이용하는 본 발명의 방법은 온화한 반응조건하에서 높은 선택율과 높은 수율로 로부터 감마-부티로락톤을 제조할 수 있는 효과를 갖는다.The process of the invention using the catalyst of the invention has the effect of producing gamma-butyrolactone from high selectivity and high yield under mild reaction conditions.

Claims (5)

다음 일반식(Ⅰ)로 표시되는 수소화 반응촉매Hydrogenation reaction catalyst represented by the following general formula (I) Ni9PdaMobNcZrdOx… (Ⅰ)Ni 9 Pd a Mo b N c Zr d O x . (Ⅰ) 상기식에서 N은 Co, Cu, Zn, Ag, Pb, Ru 중에서 선택되는 금속원소이고, a는 0.001~0.5, b는 0.01~5, C는 0.001~1.0, d는 0.5~12.0, x는 각 성분의 원자가 및 조성비에 따른 화학 양론적 값을 나타낸다.In the formula, N is a metal element selected from Co, Cu, Zn, Ag, Pb, Ru, a is 0.001-0.5, b is 0.01-5, C is 0.001-1.0, d is 0.5-12.0, x is each component The stoichiometric value according to the valence and composition ratio of is shown. 무수말레인산이나 무수석신산을 수소화 반응시켜 감마-부티로락톤을 제조하는 방법에 있어서, 고비점 용매에 용해시킨 무수말레인산이나 무수석신산을 다음 일반식(Ⅰ)로 표시되는 촉매층에 액상으로 공급하고 수소 또는 수소함유기체와 수소화 반응시켜 감마-부티로락톤을 제조하는 방법.In the method for producing gamma-butyrolactone by hydrogenation of maleic anhydride or succinic anhydride, maleic anhydride or succinic anhydride dissolved in a high boiling point solvent is supplied in a liquid phase to the catalyst layer represented by the following general formula (I). Process for producing gamma-butyrolactone by hydrogenation with hydrogen or hydrogen-containing gas. Ni9PdaMobNcZrdOx… (Ⅰ)Ni 9 Pd a Mo b N c Zr d O x . (Ⅰ) 상기식에서 N은 Co, Cu, Zn, Ag, Pb, Ru 중에서 선택되는 금속원소이고, a는0.001~0.5, b는 0.01~5, C는 0.001~1.0, d는 0.5~12.0, x는 각성분의 원자가 및 조성비에 따른 화학 양론적 값을 나타낸다.In the formula, N is a metal element selected from Co, Cu, Zn, Ag, Pb, Ru, a is 0.001-0.5, b is 0.01-5, C is 0.001-1.0, d is 0.5-12.0, x is each component The stoichiometric value according to the valence and composition ratio of is shown. 제 2항에 있어서, 반응압력 상압~30기압과 반응온도 160~220℃에서 수소와 무수말레인산이나 무수석신산의 몰비가 10~50:1인 감마-부티로락톤을 제조하는 방법.The method for producing gamma-butyrolactone according to claim 2, wherein the molar ratio of hydrogen to maleic anhydride or succinic anhydride is 10 to 50: 1 at a reaction pressure of normal pressure to 30 atmospheres and a reaction temperature of 160 to 220 ° C. 제 2항에 있어서, 고비점 용매가 감마-부티로락톤, 트리에틸렌글리콜디메틸에텔 또는 테트라에틸렌글리콜디메틸에텔 중에서 선택된 것이고 무수말레인산이나 무수석신산을 고비점 용매에 10~80중량% 용해시킨 액상으로 촉매층에 공급하여 수소화 반응시키는 감마-부티로락톤의 제조방법.The solvent according to claim 2, wherein the high boiling point solvent is selected from gamma-butyrolactone, triethylene glycol dimethyl ether, or tetraethylene glycol dimethyl ether and is a liquid in which 10 to 80% by weight of maleic anhydride or succinic anhydride is dissolved in a high boiling point solvent. A method for producing gamma-butyrolactone which is fed to a catalyst layer and subjected to a hydrogenation reaction. 제 2항에 있어서, 고비점 용매로 비점이 280℃이상이며, 비중이 0.9 이하인 탄화수소계 오일을 단독으로나 또는 감마-부티로락톤과 함께 사용하며, 반응 후 용매를 반응 생성물과 층분리하여 재사용하는 감마-부티로락톤의 제조 방법.The high boiling point solvent is a hydrocarbon oil having a boiling point of 280 ℃ or more, specific gravity of 0.9 or less, alone or in combination with gamma-butyrolactone, and the solvent is separated from the reaction product and reused after the reaction Method for preparing gamma-butyrolactone.
KR1020000025260A 2000-05-12 2000-05-12 Catalyst for the hydrogenation and method for preparing r-butyrolactone using the same catalyst KR100338131B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000025260A KR100338131B1 (en) 2000-05-12 2000-05-12 Catalyst for the hydrogenation and method for preparing r-butyrolactone using the same catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000025260A KR100338131B1 (en) 2000-05-12 2000-05-12 Catalyst for the hydrogenation and method for preparing r-butyrolactone using the same catalyst

Publications (2)

Publication Number Publication Date
KR20010103947A KR20010103947A (en) 2001-11-24
KR100338131B1 true KR100338131B1 (en) 2002-05-24

Family

ID=45811767

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000025260A KR100338131B1 (en) 2000-05-12 2000-05-12 Catalyst for the hydrogenation and method for preparing r-butyrolactone using the same catalyst

Country Status (1)

Country Link
KR (1) KR100338131B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446655B1 (en) * 2002-04-09 2004-09-04 주식회사 엘지화학 Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same
CN102029156B (en) * 2009-10-07 2013-02-27 Sk新技术株式会社 Process for preparing of [gamma]-butyrolactone and n-methyl pyrrolidone from 1,4-butanediol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321925A (en) * 1993-05-17 1994-11-22 Tosoh Corp Production of lactones
JPH0753539A (en) * 1993-06-30 1995-02-28 Tosoh Corp Production of lactones
KR0131203B1 (en) * 1988-04-22 1998-04-17 알.뒤셀도르프 아이.씨.아이.에이 Process for the production of ñò-butyrolactone
KR20010095500A (en) * 2000-04-10 2001-11-07 손재익 Preparation method of gamma butyrolactone using maleic anhydride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0131203B1 (en) * 1988-04-22 1998-04-17 알.뒤셀도르프 아이.씨.아이.에이 Process for the production of ñò-butyrolactone
JPH06321925A (en) * 1993-05-17 1994-11-22 Tosoh Corp Production of lactones
JPH0753539A (en) * 1993-06-30 1995-02-28 Tosoh Corp Production of lactones
KR20010095500A (en) * 2000-04-10 2001-11-07 손재익 Preparation method of gamma butyrolactone using maleic anhydride

Also Published As

Publication number Publication date
KR20010103947A (en) 2001-11-24

Similar Documents

Publication Publication Date Title
US4083809A (en) Hydrogenation catalyst and method of producing same
CN112672990A (en) Catalyst for producing 1, 2-pentanediol, and method for producing 1, 2-pentanediol using the catalyst
EP0746553B1 (en) Process for the production of gamma-butyrolactone
US5347056A (en) Process for producing unsaturated alcohols
KR100338131B1 (en) Catalyst for the hydrogenation and method for preparing r-butyrolactone using the same catalyst
CN110872208B (en) Preparation method of cyclohexanol by coupling cyclohexane mixture dehydrogenation technology
US7307040B2 (en) Method for the selective production of tetrahydrofuran by hydrogenating maleic acid anhydride
US3927120A (en) Preparation of phenyl methyl carbinol
CN115121270A (en) Catalyst for synthesizing 2-ethylhexanal by selective hydrogenation and application method thereof
US4018831A (en) Production of 2-ethyl hexanal
KR100453296B1 (en) Process for preparing 1,3-alkanediol from 3-hydroxyester compounds
KR100538979B1 (en) Method for the preparation of 1,4-butanediol from maleic ester
US5026922A (en) Process for preparing glycol aldehyde
JP3153526B2 (en) Catalyst for partial hydrogenation of aromatic olefin and method for partial hydrogenation thereof
KR101049276B1 (en) Catalyst for the preparation of gamma-butyrolactone from 1,4-butanediol and method for producing gamma-butyrolactone from 1,4-butanediol using the same
KR102153514B1 (en) Method for Preparing 1,2-pentanediol by Gas Phase Reaction
CN112517018B (en) Catalyst for preparing trimethylolpropane by hydrogenating 2, 2-dimethylolbutyraldehyde and preparation method and application thereof
JP2874016B2 (en) Production method of γ-butyrolactone
KR100528839B1 (en) Preparation of phthalide from phthalic anhydride
KR100496324B1 (en) Process for preparing 1,3-propandiols from alkyl-3-hydroxypropionates
KR100528837B1 (en) Method for the preparation of gamma-butyrolactone from maleic ester
JPH03232875A (en) Production of gamma-butyrolactone
KR100457067B1 (en) Complicated metal oxide catalyst, preparation thereof, and method for the preparation of phthalide from phthalic ester using the catalyst
KR100490841B1 (en) Hydrogenation catalyst reaction and the process for the production of gammabutrolactone using the same
KR100352031B1 (en) Method for producing r-butyrolactone

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120424

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee